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Plasma rotation plays a crucial role on heat and particle confinement in tokamaks. To consider this issue, we
numerically compute the axisymmetric steady states of the visco-resistive magnetohydrodynamic equations
including the non-linear (v · ∇)v term using the finite element method. Imposing external n = 0 magnetic
perturbations offers a way to break the natural up-down symmetry of the system and produce a net toroidal
flow. Using realistic parameters, some numerical results indicate that n = 0 perturbations of the magnetic
configuration may be used to increase n = 0 steady-state speeds and promote tokamak plasma confinement
whilst preserving axisymmetry.

I. INTRODUCTION

It has long been recognized in the magnetic confine-
ment fusion community that plasma rotation plays an
important role on the heat and particle confinement
properties1. This raises naturally the question of the
derivation of steady-state flows in tokamak plasmas. The
usual assumption made by linear magnetohydrodynamic
(MHD) theory is to neglect them which allows also to
make less intricate its analytical derivation2. However,
it was shown3 that, although there are rigorously mo-
tionless steady-states in cylindrical geometry, this can no
longer be true in toroidal geometry. Because of toroidal
geometry, resistive steady-state flows of tokamak plas-
mas are non-vanishing. There is then, at least, some
fundamental interest in the investigation of steady-states
in the fluid, MHD, description of plasmas in toroidal de-
vices for magnetic confinement fusion. There is also some
pragmatic interest in terms of potential applications in
the search of conditions enhancing steady-state plasma
speeds, when viewing the fluid MHD description as a first
step towards the more realistic and complex (gyro)kinetic
description of future burning plasmas in magnetic con-
finement fusion.
Then one needs to evaluate the minimal necessary in-

gredients to put in the MHD description of tokamak plas-
mas. These are devices driven by two external, curl-
free, toroidal magnetic and electric fields. The later one
produces the toroidal current that is the source of the
poloidal magnetic field. This driving introduces natu-
rally two parameters in the model. As for the equa-
tions themselves, one retains a visco-resistive description
in toroidal geometry. This introduces two other (small)
dimensionless parameters: the resistivity η and the kine-
matic viscosity ν. These are respectively the inverses of
the magnetic Reynolds, S, and viscous Lundquist, M ,
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numbers. The Hartmann number, H ≡
√
MS, happens

to be a meaningful combination of those numbers. This
was the setting chosen by Kamp and Montgomery4 who
first investigated the visco-resistive MHD steady-states
for tokamaks using idealistic up-down symmetric plasma
domains. Later the effect of having a tokamak with a
cross-section that is not symmetric about the midplane
(’D-shaped’) was considered5,6. A net toroidal mass flow
can then develop. However, the maximum velocities, in
the region where the viscosity was large enough for the
numerics to work, were of the order of a few meters per
second, far below the speeds commonly measured in toka-
mak plasmas. Recently, a FreeFem++7 code was devel-
oped to solve the axisymmetric steady-state flows in the
visco-resistive frame relevant to tokamak physics using
JET and ITER geometries. The obtained results8 con-
firm that, within the visco-resistive MHD frame and for
the numerically manageable viscosity values, these n = 0
speeds are far below the levels expected to allow the sta-
bilization of MHD modes and positively impact confine-
ment.

In the present study, the symmetry properties with
respect to the tokamak midplane of the visco-resistive
MHD system are analyzed. Considering tokamaks with
up-down symmetric cross-sections, the possibility of play-
ing on boundary conditions to break symmetry and allow
a net toroidal mass flow is investigated through the use
of external magnetic perturbations. In Section II, the es-
sentials of the visco-resistive modeling frame relevant to
tokamak plasma physics are presented and the up-down
symmetry features of the system of differential equations
are analyzed. We use the open-source partial differential
equations solver FreeFem++7 for the numerical resolu-
tion of their weak formulation. In Section III, the various
physical parameters are discussed. Numerical results are
presented showing the impact of external magnetic per-
turbations on the plasma poloidal and toroidal speeds. In
Section IV, JET-relevant physical parameters are used.
Robust numerical results up to high Hartmann numbers
are obtained for small external n = 0 magnetic perturba-
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tions. These numerical results indicate that rather high
plasma speeds may be reached at fusion-relevant high
Hartmann numbers. Conclusions and perspectives are
drawn in Section V.

II. MODELING FRAME

A. The dimensionless model

The computation of visco-resistive steady states in-
volves the resolution of the steady-state incompressible
Navier Stokes equation, including the (v ·∇)v term, cou-
pled to the Ohm’s law and steady-state Maxwell equa-
tions for the electromagnetic field. We restrict here to
the axisymmetric 2D problem. Variables are made di-
mensionless in the usual Alfvèn units so that veloci-
ties are normalized by the characteristic Alfvèn veloc-
ity vA = (B2/µ0ρ)

1/2 where ρ is plasma mass density.
The Reader is referred to Refs.4,8 for a detailed intro-
duction of the model equations. Importantly, both the
pressure and the electric potential being passive scalars,
the knowledge of which are not necessary in solving the
model, do not appear in the final set of equations.

The problem involves four divergence-free fields: the
velocity field v(r, z), the magnetic field B(r, z), the vor-
ticity field ω(r, z) and the current density field J(r, z).
In order to enforce the divergence-free properties, scalar
potentials are used together with the request for axisym-
metry. One defines then by ψ the velocity stream func-
tion and by χ the magnetic flux function. The scalars
rBφ (diamagnetic function) and rvφ play the roles of
flux functions for respectively the current density and
vorticity fields.

Defining by r0, the tokamak major radius, the model
can be expressed in terms of six variables

u1 =
ψ

r0
(1a)

u2 = r0rωφ (1b)

u3 =
rBφ

Ib
+ 1 (1c)

u4 =
rvφ
Ib

(1d)

u5 =
χ

r0
(1e)

u6 = r0rJφ − Ie (1f)

where Ib = r0B0 and Ie = r20E0/η. Here B0 and E0

(alternatively Ib and Ie) are the two driving parameters
mentioned in the introduction, respectively the values of
the external magnetic and electric fields at r0.

Space variables are rescaled by r0 and one defines the
horizontal and vertical coordinates by x = r/r0 and y =

r/r0. The system of equations to be solved reads finally

△∗u1 = −u2 (2a)

ν △∗ u2 =
I2b
x2
∂u23
∂y

− 2
u6 + Ie
x2

∂u5
∂y

(2b)

+
1

x
({u6, u5}+ {u1, u2}) + 2

u2
x2
∂u1
∂y

− I2b
∂

∂y
(
u24
x2

)

(2c)

η△∗ u3 =
2

x2
(u3

∂u1
∂y

− u4
∂u5
∂y

) +
1

x
({u1, u3}+ {u4, u5})

(2d)

ν △∗ u4 =
1

x
({u3, u5}+ {u1, u4}) (2e)

△∗u5 = −u6 − Ie (2f)

ηu6 = {u5, u1}. (2g)

In the equations (2), the operator △∗ is defined by

△∗ ≡ ∂2

∂x2
− 1

x

∂

∂x
+

∂2

∂y2
, (3)

and the Poisson bracket {·, ·} for any space functions u
and v by

{u, v} =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
. (4)

B. Domain and boundary conditions

In order to solve the above steady-state visco-resistive
MHD equations, two ingredients must be documented:
we must know the geometry of the tokamak plasma do-
main and the boundary conditions for the unknowns to
be fulfilled on its border.

As it is well-known, solving the equilibrium of a plasma
is generally a free-boundary problem since the plasma do-
main is not a priori known, apart from a limiter config-
uration. The interface between the plasma and the vac-
uum needs to be obtained by another non-linear problem
in the vacuum for given currents in external coils. We
make the usual simplifying assumption9 that the later
problem has been solved separately so that we can pre-
scribe the shape of the plasma boundary ∂Ω. In the
numerics, we shall use the JET geometry. The paramet-
ric equations modeling the boundary ∂Ω of the plasma
cross-section Ω ⊂ R2 that generates the full plasma do-
main under a toroidal rotation are given by

x = 1 +
r1
r0

cos(θ + arcsin δ sin θ),

y =
r2
r0

sin θ,
(5)

for θ ∈ [0; 2π]. Here r0 is the major radius, r1 the
semi-minor axis and r2 the semi-major axis of the cross-
section, and δ the triangularity parameter. Typical JET
parameters have been used: the major radius is r0 = 3m,
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the semi-minor axis radius r1 = 1.25m, the plasma elon-
gation κ = r2/r1 = 1.55 and triangularity is such that
arcsin δ = 0.5.
We are then left with the prescription of boundary con-

ditions. Because B, J, v and ω are divergence-free, we
need to ensure the continuity of the normal component of
those vector fields at the boundary ∂Ω. Assuming that
there is no plasma flow outside Ω, the normal compo-
nents of v and ω need to vanish on ∂Ω, which is ensured
by taking10 ψ = 0 and rvφ = 0 on ∂Ω. We shall prescribe
similarly that the normal component of the current den-
sity at the plasma boundary be zero, which is ensured by
taking rBφ = 0 on ∂Ω.
Putting aside for a moment the fate of the continuity

of the normal component of the magnetic field, we are
left with the boundary conditions for the toroidal compo-
nents of the vorticity and current density fields. We take
here the convenient choice that they vanish on ∂Ω which
is compatible with no-slip conditions for the plasma flow.
The remaining boundary condition involves the con-

tinuity of the normal component of the magnetic field.
When the plasma is assumed to be in contact with the
tokamak wall assumed to be a perfect conductor, then
this condition is prescribed by requiring that the poten-
tial χ be constant on the wall. In the present study, we
consider that some vacuum surrounds the plasma such
that we just request the continuity and continuous deriv-
ability (C1 character) of the potential χ on ∂Ω. This
introduces extra freedom in the problem, since we can
study the impact of stationary magnetic perturbations
coming from external coils. This is the subject of the
present article.
Let us then summarize the boundary conditions in

terms of the set of variables {u1, . . . , u6}. We have

u1 = u2 = 0, u3 = 1 on ∂Ω, (6a)

u4 = u6 = 0, u5 = β(x, y) on ∂Ω, (6b)

where β(x, y) denotes some C1 function associated to
some external (vacuum) stationary magnetic perturba-
tion.

C. Up-down symmetry features

Let us examine now the symmetry properties with re-
spect to the horizontal mid-plane y = 0 of the set u1, . . .,
u6 solving the system of equations (2).
As △∗ is invariant under the change y 7→ −y, from

Eqs. (2a) and (2f), we obtain that u1 and u2 have the
same parity (with respect to y) and so do u5 and u6+ Ie.
This induces that the right part of the equality (2c) is
odd, as the sum of odd terms (such as {u6, u5}), so that
u2 (and also u1) is also odd due to Eq. (2c). Because of
Eq. (2g), u1 and u2 do not have the same parity as u5
and u6: u5 and u6(+Ie) are even functions of y. From
Eqs. (2d) and (2e), it follows that u3 and u4 have oppo-
site parities. As u3 is defined up to a constant, it cannot
be odd so that u4 is odd and u3 is even.

These symmetry properties with respect to y are pre-
served when the plasma domain Ω is symmetric with
respect to the y-axis (which occurs for the configura-
tion considered here) and for compatible boundary con-
ditions. This is satisfied for the case β(x, y) = 0 in the
boundary conditions (6). In this case, the toroidal ve-
locity field vφ is an odd function in y so that there is
a zero net mass flow in the toroidal direction. In Sec-
tion III, we address this case first then study the impact
of breaking the up-down symmetry by stationary vac-
uum magnetic perturbations. The numerical resolution
of the weak form of the set of partial differential equa-
tions (pde) (2) uses the implementation of the Newton-
Raphson method8 in the pde solver FreeFem++ with the
finite element method.

III. NUMERICAL RESULTS

A. Physical parameters

In the present study, the impact of axisymmetric exter-
nal magnetic perturbations on the plasma velocity field is
investigated by comparison to the reference unperturbed
case all other things being equal. It happens that fully re-
alistic parameters are numerically challenging, which is
a well-known issue in MHD computations for magnetic
confinement fusion applications. This will be discussed
later in Section IV.

Geometrical JET parameters have been taken in the
equations for the plasma border (5) defining the compu-
tational domain Ω. The value of the external toroidal
magnetic field B0 is taken to be 2.8T. The toroidal loop
voltage is chosen to be equal to 1 Volt. This is a reason-
able assumption since the toroidal electric field E0 is of
the order of some V.m−1 in the present devices11. In
dimensionless units, the corresponding parameters are
B0 = 0.87 and E0 = 3.10−9. Velocities are expressed
in Alfvénic units with a JET-relevant Alfvén velocity
vA = 3.106m.s−1.

Plasma resistivity, η, decreases strongly with temper-
ature as T−3/2 (Spitzer’s law12). As discussed by Kamp
and Montgomery5, there is some uncertainty or latitude
on this parameter. Indeed, if one requires the toroidal
current to be equal to 3.1MA in JET given the previous
toroidal loop voltage, this gives by Ohm’s law a value of
dimensionless resistivity of about 10−8. Yet if one consid-
ers that the JET plasma is made of deuterium, with an
electron and ion density both of 3.6× 1013cm−3, with an
electron temperature of 10 keV and an ion temperature of
18 keV, tabulated formulas for transport coefficients indi-
cate that η should be two orders of magnitude smaller, of
the order 10−10. This discrepancy is presumably due to
anomalous transport. In the simulations we have con-
sidered a fixed resistivity with either η = 6.9 × 10−7

or η = 5.5 × 10−9. For the later value, that is likely
to be more realistic for fusion conditions, the numerical
code experiences some stability issues above some criti-
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cal value of the Hartmann number that is smaller than
for the former one. Yet, interestingly, in the presence of
external stationary magnetic perturbations, the code ap-
pears to become more stable at high Hartmann numbers.
As we have seen, there is some uncertainty on the

value of the tokamak plasma resistivity, due to anoma-
lous transport, which can be somehow resolved by ask-
ing that the effective resistivity gives the correct value
of the toroidal plasma current given the toroidal loop
voltage in the application of Ohm’s law (when neglect-
ing the v × B term). Uncertainties on the magnitude
of the magnetized plasma kinematic viscosity are much
higher4,5 so that we shall consider it as a free parameter.
Given the relevance of the Hartmann number in mag-
netized plasma channel flows, we shall practically run
simulations for a fixed resistivity η but for diverse val-
ues of the plasma kinematic viscosity ν, so that a wide
range of orders of the Hartmann number H = (ην)−1/2

be swept. We expect the physically relevant values of
H to be large. Their estimation relies on some assump-
tions on the scalar approximation of the tensor expres-
sion for Braginskii-Balescu viscosity coefficients, since a
direct tensor description would be too difficult to handle
directly. It was discussed4 that depending on whether the
kinematic viscosity is dominated by either the ion parallel
or transverse contribution, the corresponding Hartmann
number varies by a factor 106 reaching values of the order
108 for η = 5× 10−9 in the later case.
We shall now start by considering the results obtained

in the absence of external magnetic perturbations.

B. Numerical results in the absence of external magnetic
perturbations

As a result of toroidal geometry, some non-vanishing
velocity field is needed in the tokamak plasma steady-
state equations of motion. The zero-velocity states are
compatible with cylindrical geometry but cannot survive
the introduction of toroidal effects3 so that the tradi-
tional Grad-Shafranov equation for tokamak equilibria is
-strictly speaking- only approximate. Following a pre-
liminary communication8, we examine here results ob-
tained when putting β(x, y) = 0 in the boundary condi-
tions (6b). This corresponds, in particular, to the limiter
configuration when the wall is a perfect conductor.
We take the following dimensionless parameters E0 =

3 × 10−9, η = 6.9 × 10−7, take B0 = 2.8T and compute
the visco-resistive MHD steady-states using a continua-
tion method on H. Magnetic surfaces are represented
on Figure 1. These are obtained numerically in the code
and are practically unchanged in the range of Hartmann
numbers that is covered in this study.
The computed steady-state toroidal velocity fields are

presented for Hartmann numbers H = 10, H = 104 and
a large value H = 107 on Figs. 2, 3 and 4. In terms of
orders of magnitude, these numerical results with sym-
metric boundary conditions without external magnetic

IsoValue
0.0239254
0.0717763
0.119627
0.167478
0.215329
0.26318
0.31103
0.358881
0.406732
0.454583
0.502434
0.550285
0.598136
0.645986
0.693837
0.741688
0.789539
0.83739
0.885241
0.933091

u5_10, H= 10 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 1. Contour plot of the magnetic flux function χ at H =
10 for E0 = 3× 10−9, η = 6.9× 10−7, and B0 = 2.8T, with χ
normalized to one on the magnetic axis.

IsoValue
-4.18078e-12
-3.58375e-12
-3.18573e-12
-2.78771e-12
-2.38969e-12
-1.99167e-12
-1.59364e-12
-1.19562e-12
-7.97603e-13
-3.99583e-13
-1.56202e-15
3.96459e-13
7.94479e-13
1.1925e-12
1.59052e-12
1.98854e-12
2.38656e-12
2.78458e-12
3.1826e-12
4.17765e-12

vphi_100, H= 100 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 2. Toroidal velocity field computed with the Finite El-
ement Method (FEM) using FreeFem++ with P1 elements
for H = 100 for E0 = 3 × 10−9, η = 6.9 × 10−7, and
B0 = 2.8T in JET geometry with no-slip boundary condi-
tions and β(x, y) = 0 in (6).

perturbations are in the same range as those obtained by
Kamp and Montgomery4 (who considered the β(x, y) = 0
case). The natural steady flows obtained in the present
simulations happen to be far too small to impact plasma
confinement and to account for the measured plasma in-
trinsic toroidal velocities of the order of some km.s−1.
Indeed, Figure 5 depicts the dependence with H of some
averages on the plasma section domain Ω of the velocity
field. The up-down anti-symmetry of the solution for the
toroidal flow (vφ(x, y) = −vφ(x,−y)) reflects in the neg-
ligible value of the absolute value of the mean toroidal
velocity < vφ > with respect to its root-mean square up
to large values of the Hartmann numbers. We expect that
symmetry-breaking boundary conditions may offer a way
to alleviate this problem by inducing larger steady flows.
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IsoValue
-2.23641e-09
-1.91665e-09
-1.70348e-09
-1.4903e-09
-1.27713e-09
-1.06395e-09
-8.50777e-10
-6.37603e-10
-4.24428e-10
-2.11254e-10
1.92047e-12
2.15095e-10
4.28269e-10
6.41444e-10
8.54618e-10
1.06779e-09
1.28097e-09
1.49414e-09
1.70732e-09
2.24025e-09

vphi_10000, H= 10000 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 3. Same as Fig. 2 for H = 104.

IsoValue
-1.00805e-07
-8.56938e-08
-7.562e-08
-6.55461e-08
-5.54723e-08
-4.53984e-08
-3.53246e-08
-2.52507e-08
-1.51769e-08
-5.10304e-09
4.97081e-09
1.50447e-08
2.51185e-08
3.51924e-08
4.52662e-08
5.534e-08
6.54139e-08
7.54877e-08
8.55616e-08
1.10746e-07

vphi_1e7, H= 1e+07 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 4. Same as Fig. 2 for H = 107.

For this matter, we introduce in the following stationary
magnetic perturbations.

C. Numerical results with external magnetic perturbations

We now slightly perturb the magnetic configuration
by taking into account the effect of small axisymmetric
external stationary magnetic perturbations. Practically
speaking, we allow β(x, y) to be a small function of x and
y. An example of the magnetic surfaces in the perturbed
case is given in Figure 6.
We ran our FEM code for various forms, f , and am-

plitudes, h, of β(x, y) where we use the writing β(x, y) =
hf(x, y) with ∥f∥2 = O(1) and h ≪ 1. For the present
discussion, we concentrate mostly on three representa-
tive cases: f1(x, y) = sin(x − 1), f2(x, y) = sin(2y) and
f3(x, y) = sin(x − 1) sin(2y). Figures 7 and 8 present
numerical results on the velocity field respectively for
the f1 and f3 cases, with β(x, y) = 0.001 sin(x − 1) and
β(x, y) = 0.001 sin(x − 1) sin(2y). Insets of the toroidal
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FIG. 5. Maximal absolute value of the toroidal component
of the velocity, |vφ|max, and some section-averaged quanti-
ties: root-mean square of the toroidal and poloidal velocity,
⟨vφ⟩rms and ⟨vpol⟩rms, absolute value of the average toroidal
velocity ⟨vφ⟩ associated to the steady flow as a function of the
Hartmann number in Alfvèn velocity vA units.

IsoValue
-0.103041
-0.048679
0.00568329
0.0600456
0.114408
0.16877
0.223132
0.277495
0.331857
0.386219
0.440582
0.494944
0.549306
0.603669
0.658031
0.712393
0.766755
0.821118
0.87548
0.929842

u5_10, H= 10 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 6. Contour plot of the magnetic flux function χ at H =
10 for E0 = 3× 10−9, η = 6.9× 10−7, and B0 = 2.8T, in the
case β(x, y) = 0.001 sin(x− 1) sin(2y). χ is normalized to one
on the magnetic axis.

velocity field on the plasma cross-section Ω are inserted
to show its topology at different Hartmann numbers. The
boundary condition with the form f2 will be treated in
detail afterwards.

We notice that the form of β(x, y) influence much the
topology of the toroidal velocity field at low Hartmann
numbers where the effect of viscosity is dominant. For
instance, when β(x, y) does not depend on y, like in the
f1 or β(x, y) = 0 cases, the symmetry properties with
respect to y presented in Sec. II C are preserved, and
there exists an odd solution for the toroidal velocity field.
Yet, as it is clear from the comparison between the insets
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FIG. 7. Same as Figure 5 for the case β(x, y) = 0.001 sin(x−
1). Some insets of the associated toroidal velocity field on the
plasma cross-section Ω are given for the Hartmann numbers:
H = 100, H = 104, H = 106 and H = 107. For comparison,
the root-mean square of the toroidal velocity of the β = 0
case, ⟨vφ0⟩rms has been plotted.

FIG. 8. Same as Figure 7 for the case β(x, y) = 0.001 sin(x−
1) sin(2y).

of Figure 7 and Figs. 2 and 3, the modification in the
boundary conditions induces a change from two pairs of
contra-rotating vortices when there is no magnetic per-
turbation to a single up-down pair of contra-rotating vor-
tices for the form f1 of the magnetic perturbation. The
root-mean-square value of vφ is larger in the later case
than for β(x, y) = 0 and the discrepancy increases with
the Hartmann number as seen on Fig. 7.

In the case of external magnetic perturbations with the
f3 form, the oddness of f3 with respect to y contradicts
the natural even character of the u5 variable and breaks
the symmetry properties of the system. A consequence is
depicted on Fig. 8: there is now a clear non-vanishing net

toroidal flow. This effect is more pronounced for the case
β = 0.001 sin(2y) than for β = 0.001 sin(x − 1) sin(2y)
since the effective amplitude of the symmetry breaking
in y is larger in the former case (because we have here
| sin(x − 1)| < 1). Features of the toroidal velocity field
are presented in Figures 9, 10 and 11. They clearly show

IsoValue
-2.85055e-12
-1.77585e-12
-1.05939e-12
-3.42929e-13
3.73533e-13
1.09e-12
1.80646e-12
2.52292e-12
3.23938e-12
3.95584e-12
4.67231e-12
5.38877e-12
6.10523e-12
6.82169e-12
7.53815e-12
8.25462e-12
8.97108e-12
9.68754e-12
1.0404e-11
1.21952e-11

vphi_100, H= 100 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 9. Toroidal velocity field computed computed with the
Finite Element Method (FEM) using FreeFem++ for H =
100 for E0 = 3×10−9, η = 6.9×10−7, and B0 = 2.8T in JET
geometry with β(x, y) = 0.001 sin(2y) in (6).

IsoValue
-4.10933e-09
-3.26644e-09
-2.70452e-09
-2.14259e-09
-1.58067e-09
-1.01874e-09
-4.56814e-10
1.05112e-10
6.67039e-10
1.22896e-09
1.79089e-09
2.35282e-09
2.91474e-09
3.47667e-09
4.0386e-09
4.60052e-09
5.16245e-09
5.72437e-09
6.2863e-09
7.69112e-09

vphi_10000, H= 10000 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 10. Same as Figure 9 for H = 104.

that vφ is no longer odd in y so that there is a net mass
flow of the tokamak plasma. This is confirmed by the
behaviour with respect of the Hartmann number of the
absolute value of the average toroidal velocity |⟨vφ⟩| that
is markedly above the ones plotted in the y-symmetric
β(x, y) = 0 and β(x, y) = 0.001 sin(x − 1) cases in Figs.
5 and 7 and is of the order, or so, of the root-mean-square
toroidal velocity.

Finally, the influence of the amplitude of the magnetic
perturbation was tested by varying the amplitude h for
a given form of the perturbation. We consider here the
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IsoValue
-0.00029866
-0.000252199
-0.000221225
-0.000190252
-0.000159278
-0.000128304
-9.73303e-05
-6.63566e-05
-3.53828e-05
-4.40901e-06
2.65648e-05
5.75385e-05
8.85123e-05
0.000119486
0.00015046
0.000181434
0.000212407
0.000243381
0.000274355
0.000351789

vphi_1e7, H= 1e+07 Eta= 6.9e-07 B0= 0.87 E0= 3e-09

FIG. 11. Same as Figure 9 for H = 107.
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FIG. 12. Maximal absolute value of the toroidal component
of the velocity, |vφ|max, and some section-averaged quan-
tities: root-mean square of the toroidal and poloidal ve-
locity, ⟨vφ⟩rms and ⟨vpol⟩rms, absolute value of the average
toroidal velocity ⟨vφ⟩ associated to the steady flow as a func-
tion of the Hartmann number in Alfvèn velocity vA units for
β(x, y) = 0.001 sin(2y) in (6).

form f2 = sin(2y). Figure 13 presents the results. As
h → 0, one recovers the behaviour of ⟨vφ⟩rms in the ab-
sence of magnetic perturbation. As h increases, the curve
⟨vφ⟩rms(H) takes off the h→ 0 curve above someH value
that decreases when the amplitude h increases.

IV. RESULTS FOR REALISTIC PARAMETERS AND
DISCUSSION

The above results clearly indicate that the introduction
of some external vacuum magnetic perturbation contra-
dicting the even character of the magnetic flux potential
function (u5 in the present system), e.g. by having the
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FIG. 13. Root-mean square of the toroidal velocity ⟨vφ⟩rms

as a function of the Hartmann number in Alfvèn velocity vA
units for β(x, y) = h sin(2y) and various amplitudes h.

form of an odd function in y, allows to break the natural
up-down symmetry properties of the steady-state visco-
resistive MHD system (2). In particular, this breaks the
odd character with respect to the horizontal midplane of
the toroidal velocity field which induces a non-vanishing
net toroidal flow of the tokamak plasma. Let us stress
here that the non-zero average of the toroidal velocity
obtained in the cases without up-down symmetry break-
ing is a numerical artifact that can be diminished by
increasing the resolution or by considering P2 instead
of P1 elements in the finite element computations. Using
P2 elements, we observed that the average of the toroidal
velocity, ⟨vφ⟩, is numerically decreased by two orders of
magnitude below that computed with P1 elements with-
out modifying the rms values. However, this procedure
has a high numerical cost and becomes too prohibitive at
very large Hartmann numbers.

The numerical results presented in Sec. III have been
obtained for the value of the dimensionless resistivity
η = 6.9 × 10−7. Even if this is a large value (larger
than the one expected in JET4), they give a proof of
principle that, all other things being equal, substantially
larger magnitudes of the poloidal and toroidal steady-
state speeds can be reached with respect to the case
without magnetic perturbation (corresponding to a lim-
iter configuration with a perfectly conducting wall). Let
us note here that the f2 form of magnetic perturbation
clearly breaks the up-down symmetry but is not supposed
to be an optimal solution for this breaking.

It is important to investigate the evolution of those
results under more realistic values of resistivity. There-
fore, we ran numerical simulations by decreasing η by
two orders of magnitude down to η = 6.9 × 10−9 and
present now the results for the corresponding tokamak-
relevant set of physical parameters. Simulations were
done with P1b finite elements to improve numerical ro-



8

bustness. We used a small magnetic perturbation with
β(x, y) = 0.04 sin(2y) yielding the perturbed magnetic
flux function represented on Figure 14. Because the value
of the equilibrium poloidal magnetic field is now realistic,
being much larger than for the results obtained in Section
III, the value of the amplitude h of the perturbation in
β(x, y) needs to be larger to obtain perturbations of the
magnetic flux function similar to that obtained in Section
III. As depicted on Figure 15, the effect of the up-down

IsoValue
-0.142942
-0.0843523
-0.0257628
0.0328266
0.091416
0.150005
0.208595
0.267184
0.325774
0.384363
0.442953
0.501542
0.560131
0.618721
0.67731
0.7359
0.794489
0.853079
0.911668
0.970257

u5_10, H= 10 Eta= 6.9e-09 B0= 0.87 E0= 3e-09

FIG. 14. Contour plot of the magnetic flux function χ at
H = 10 for E0 = 3 × 10−9, η = 6.9 × 10−9, and B0 = 2.8T,
in the case β(x, y) = 0.04 sin(2y). χ is normalized to one on
the magnetic axis.

symmetry breaking external magnetic perturbation is to
trigger a net toroidal flow and enhance the rms value of
the toroidal velocity with respect to the non-perturbed
case. One observes the same numerically-driven enhance-
ment of the net toroidal flow as H increases in the latter
case. As previously, larger speeds could be attainable
with larger magnetic perturbations, yet numerical stabil-
ity declines as the Hartmann number increases so that
we keep to the perturbation depicted on Figure 14.

Let us finally comment on the role of the no-slip as-
sumption for boundary conditions. One may indeed ar-
gue that, in the case when the plasma is not in con-
tact with the tokamak walls, but is surrounded by vac-
uum, the distortion of flux surfaces induced by some
external magnetic perturbations (see Figures 6 and 14)
would create some small leakage of plasma so that the
plasma domain Ω would realistically be surrounded by
a halo plasma instead of vacuum. This questions the
assumption of full-confinement state that is implicit in
the vanishing of the velocity field on ∂Ω. Consequently,
we tested the impact of replacing the condition u4 = 0
reflecting the vanishing of the toroidal velocity field on
∂Ω by a Neumann boundary condition of vanishing of
the normal derivative of u4 on ∂Ω. Simulations were no
longer stable in that case for H > 106. The results indi-
cate that the influence of the boundary condition on the
toroidal velocity field is weak for physically relevant Hart-
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FIG. 15. Root-mean square of the toroidal and poloidal veloc-
ities and maximal value of the modulus of the toroidal velocity
as a function of the Hartmann number in Alfvèn velocity vA
units for E0 = 3×10−9, η = 6.9×10−9, and B0 = 2.8T in the
cases β(x, y) = 0.04 sin(2y) with no-slip boundary conditions
(6). For reference, the root-mean-square and average of the
toroidal velocity is also represented for β(x, y) = 0.
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FIG. 16. Same as Figure 15 with the boundary condition
∂nu4 = 0 instead of u4 = 0 in (6).

mann values corresponding to low viscosity with com-
parable orders of magnitude of the plasma speeds at a
given H. Considering the results of Figure 15, maximal
values of the toroidal speed reach some units of km.s−1

for H ≃ 5 × 107 for the up-down symmetry-breaking
β(x, y) = 0.04 sin(2y) at η = 6.9 × 10−9 corresponding
to the disturbed magnetic flux function depicted on Fig-
ure 14. Figure 17 depicts the toroidal velocity field at
H = 100 for both boundary conditions.

Further investigations are needed to access numerically
the largest Hartmann numbers, up to 108, relevant to
fusion tokamak plasmas.
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FIG. 17. Toroidal velocity field at H = 100 for E0 = 3 ×
10−9, η = 6.9 × 10−9, and B0 = 2.8T in the cases β(x, y) =
0.04 sin(2y) with (left) u4 = 0 ; (right) ∂nu4 = 0 in Eqs. (6).

V. CONCLUSION AND PERSPECTIVES

The present academic study shows that axisymmetric
external magnetic perturbations can break the up-down
natural symmetry of the visco-resistive MHD equations
and produce a net axisymmetric tokamak plasma steady
flow with potentially relevant applications to magnetic
confinement fusion. Although some physically realistic
parameters were used, there are various, more or less nu-
merically demanding, perspectives to this work in order
to get a closer application to experiments. Some of them
are listed below.

(i) A fully realistic description would obviously mean
to consider three-dimensional steady states which would
request a considerably higher numerical cost. Yet, by
construction, tokamaks are close to axisymmetry mak-
ing meaningful to consider the KAM-like approach with
a zero-order axisymmetric state and higher-order three-
dimensional perturbations.

(ii) Plasma density is not constant in tokamaks but de-
creases close to its border. This inhomogeneity calls for a
reconsideration of the incompressibility assumption. Al-
lowing the plasma to be compressible would substantially
complicate the numerical resolution. Besides, the space
dependence of plasma density means that one needs to
rescale velocities in terms of a local Alfvèn speed. In
the present study, plasma density is constant and speeds
are given in Alfvèn speed units, meaning that they are
Alvèn Mach numbers. It may be that, in the present
study, plasma velocities (in km.s−1 units) are underesti-
mated in the tokamak border region and that their values
are indeed larger considering that the local Alfvèn speed
is larger there. This point needs to be explored further.

(iii) There remains extra freedom on boundary condi-
tions on the toroidal vorticity and current density fields
on which it may be possible to play to enhance plasma
speeds. This calls for further investigation.

Finally, the generalization of the 2D axisymmetric
equilibrium Grad-Shafranov equation to non-vanishing
plasma flow has been addressed in this study. The mag-

nitude of the plasma speeds has been shown to increase
with the Hartmann number when the up-down tokamak
symmetry is broken. Ways to improve the robustness of
the numerics at very large Hartmann numbers are under
current investigation. The present results yet indicate
that some n = 0 perturbations of the magnetic configura-
tion may help producing n = 0 steady-state speeds possi-
bly large enough to positively impact confinement for the
high, fusion-relevant, values of the Hartmann number.
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