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Abstract

Leaf carbon isotope discrimination (CID) has been suggested as an indirect tool

for breeding for water-use efficiency (WUE) in various crops. This work focused

on assessing phenotypic correlations between WUE and leaf CID and analysing

genotypic variability in four sunflower genotypes grown in a greenhouse in pots

with five different stable levels of soil water content (SWC). We measured WUE

at whole plant and leaf (intrinsic) level. At whole plant level, WUE was derived

from the ratio of total dry aerial biomass (BM) to cumulative water transpired

(CWT). At leaf level, intrinsic WUE was calculated as the ratio of light-saturated

CO2 assimilation to stomatal conductance (A/gs) in younger expanded leaves.

Significant differences among the four genotypes and the five SWCs were

observed for whole plant and leaf WUE and CID. Strong negative correlations

were observed between whole plant WUE and CID as well as between intrinsic

WUE and CID with decreasing water availability. No relationships appeared

between BM production and WUE or CID. Our results can help agronomists and

breeders to evaluate sunflower lines with high WUE for adaptation to drought

conditions and for reducing water consumption and crop water needs. Leaf CID

appears to be a pertinent and valuable trait to select sunflower genotypes with

high WUE.

Introduction

Sunflower (Helianthus annuus L.), the fourth important

sources of vegetable oil in the world (List 2014), is mainly

produced in Ukraine, Russia, European countries and

Argentina (USDA 2014). In recent years, sunflower planted

area has increased (Labalette et al. 2012) and expanded in

the arid region of the Mediterranean and North Africa

(Blamey et al. 1997, Kane et al. 2013). However, in south-

ern Europe, it suffers from intense period of water deficit

because it is mostly planted in low rainfall areas (Dufresne

et al. 2006, Casadebaig et al. 2008). According to Food and

Agriculture Organization of the United Nations (FAO)

publication reported by Garcia-Via et al. (2012), sunflower

yields vary between <0.5 ton ha�1 in low rainfall areas and

>5 ton ha�1 under ample water supply. In addition, sun-

flower is considered well adapted to drought, but genotypes

are not homogeneously efficient in the use of water. Sys-

tematic analyses of the physiological basis of drought toler-

ance in sunflower and purposeful attempts to breed for

greater drought resistance are still limited (Grieu et al.

2008).

Water availability is considered to be the main factor

limiting ecosystem and agrosystem biomass (BM) produc-

tion. This is because plant growth depends on two closely

linked leaf processes, photosynthesis and transpiration.

Water-use efficiency (WUE) is the ratio between two physi-

ological (transpiration and photosynthesis) and agronomic

(yield and crop water use) entities, and WUE is mostly dis-

cussed in terms of plant production rather than gas

exchange (Ehleringer et al. 1993, Ebdon and Kopp 2004).

On the one hand, improving WUE would reduce the water

requirement for a given yield and thus could help save a

considerable amount of irrigation water. On the other



and Lambrides et al. (2004) reported the occurrence of

correlations between CID and WUE for a range of sun-

flower genotypes.

In this study, exploring the possibility of using CID as an

indicator to select sunflower genotypes with high WUE, we

studied the relationship between CID and WUE in four

recombinant inbred lines (RILs) of juvenile sunflowers. We

were particularly interested in evaluating the CID and

WUE at five levels of soil water content (SWC) which were

maintained stable during the experiments.

Materials and Methods

Two experiments were carried out to measure WUE and

CID on sunflower plants grown in a greenhouse at the

INRA Auzeville station, Toulouse, France (43°31046,94″N;
1°29059,71″E). The first experiment (Exp. 1) was carried

out in spring 2012, from 19 March to 1 May 2012 (sowing

to harvest). The second experiment (Exp. 2) was carried

out in autumn, from 17 September to 30 October 2012

(sowing to harvest).

Plant sources

Four RILs of sunflower (Helianthus annuus L.) from the

collection of the Laboratory of Plant–Microbe Interactions

(LIPM), INRA Toulouse, France, were used in the two

experiments, namely RIL 043, RIL 127, RIL 149 and RIL

200. These four RILs are lines from the INEDI population

(Vincourt et al. 2012), which were chosen because of their

differing WUE response, determined in a previous experi-

ment (data not shown).

Experimental design and growth conditions

From sowing to harvest, experiments lasted 40 days. Three

seeds were sown in each two-litre pot. Ten days after sow-

ing (DAS), the most vigorous plant (based on morphologi-

cal criteria) in each pot was selected by cutting down the

two others. Each pot was put on a scale (maximum capac-

ity 30 kg, precision 2 g, model SXS, GRAM, Spain) con-

nected by interface wireless communication to a computer

with installed software (ENSAT 1.07T, developed by Pesage

du Sud Ouest, Launaguet, France).

Starting at 21 DAS, the plants were subjected to different

water treatments. Soil water conditions were maintained by

daily weighing of the pots and watering on the basis of

weight loss (the increase in plant weight was considered

negligible).

The experiments were arranged in a randomized com-

plete block design with four RILs, five water treatments and

five replicates.

hand, an improvement in WUE can significantly increase 
total BM production as well as yield at a limited and known 
soil moisture reserve (Impa et al. 2005). Blum (2009) 
recently proposed that selection for high WUE in breeding 
for water limited conditions could lead to reduce yield and 
drought resistance. However, most of authors argued that 
the prospect of improving agronomic WUE by breeding for 
greater WUE has been and remain an attractive challenge 
(Fischer 1981, Ehleringer et al. 1993, Condon et al. 2004).
Direct measurement of WUE relies either on extensive 

leaf gas-exchange data or long-term measurements of plant 
water consumption and BM production. This is because 
WUE can be defined either as the ratio of total plant dry 
matter produced to total water used over the same period 
or, at leaf level, as the ratio of photosynthetic carbon gain 
to transpiration water loss (Condon and Richards 1993, 
Ehleringer et al. 1993, Donovan et al. 2007). These 
approaches to WUE are logistically difficult in large-scale 
individual plant screening efforts. It has been demon-

strated, however, that leaf carbon isotope discrimination 
(CID) can be an excellent surrogate for direct measurement 
of WUE, and several authors have proposed to use this trait 
as indirect criterion for yield under drought (Farquhar and 
Richards 1984, Ehleringer et al. 1993, Condon et al. 2002, 
Xu et al. 2009).
CID is a measure of the ratio of the stable isotopes of 

carbon (13C/12C) in plant material relative to the value of 
the same ratio in the atmosphere (Farquhar et al. 1989, 
Condon 2004). The dominant processes leading to CID are 
fractionations associated with CO2 diffusion into leaf intra-
cellular airspaces and with CO2 carboxylation by the 
enzyme Rubisco (that catalyses CO2 fixation in the Calvin 
cycle). Discrimination against 13C in leaves during photo-
synthesis decreases with water stress, mainly because of the 
lowered stomatal conductance (Farquhar and Lloyd 1993, 
Ebdon and Kopp 2004). Therefore, CID in plant tissues 
shows subtle but systematic variations among different 
plant genotypes and/or species grown under different water 
conditions (Farquhar and Richards 1984).
The relationships between CID and WUE have been 

widely explored in several species, especially wheat (includ-
ing durum wheat) and rice. A negative correlation between 
CID and WUE in some wheat genotypes was reported by 
Farquhar and Richards (1984), Misra et al. (2010) and Riz-
za et al. (2012). Other authors such as Dingkuhn et al.
(1991), Scartazza et al. (1998) and Centritto et al. (2009) 
have also reported a negative correlation between CID and 
WUE in rice genotypes. However, in sunflower, the rela-
tionship between CID and WUE has rarely been explored. 
Lauteri et al. (1993) described a negative correlation 
between CID and WUE in four sunflower genotypes grown 
in a greenhouse. In addition, Virgona and Farquhar (1996)



Water treatments and greenhouse conditions of

Experiment 2 (17 September–30 October 2012)

In Exp. 2, water treatments consisted of five levels of SWC:

25 %, 20 %, 16 %, 13 % and 10 %. Pots were filled with

soil extracted from the field and sand in equal proportions.

During the photoperiod (from 05:30 to 17:30 CET), the

following parameters were measured: Tmin = 17.8 °C, Tmax =
26.2 °C and Tme = 23 °C; RHmin = 31.3 %, RHmax =
61.7 % and RHme = 48.8 %; VPDmin = 1.14 kPa, VPDmax =
z2.26 kPa and VPDme = 1.61 kPa (Fig. 1a).

Trait measurements

Agronomic traits and water-use efficiency

At the end of the experiments (23 DAE), the above-ground

parts of the plants were harvested. Stems and leaves were

oven-dried at 80 °C for 48 h until they reached constant

mass to determine total dry aerial BM.

Transpiration water loss (WT) for each plant was esti-

mated every day from the difference in the pot weight.

Total transpiration (cumulative water transpired, CWT)

for each plant was determined at the end of the experiment

by accumulating daily WT. WUE (on a whole plant basis)

was determined at the end of the experiments as the ratio

of BM to CWT.

Leaf gas-exchange measurements and intrinsic water-use

efficiency (A/gs)

Measurements of CO2 assimilation rates under saturating

light (A) and stomatal conductance (gs) were made with a

portable Li-6400 (Li-Cor, Lincoln, NE, USA) between

09:00 and 12:00 (Central European Time) in Exp. 2 (from

19 to 21 DAE). All the measurements were taken on a fully

expanded leaf (one per plant) under 1500 lmol m�2 s�1

photosynthetic photon flux density (PPFD) and 40 Pa CO2

partial pressure. Leaf temperature was maintained at

25 � 2 °C and RH was 50 %.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

21 23 25 27 29 31 33 35 37 39

VP
D

 (k
Pa

)

DAS (day)

Experiment 1

Experiment 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

21 23 25 27 29 31 33 35 37 39

VP
D

 (k
Pa

)

DAS (day)

(a) (b)

Fig. 1 Vapour pressure deficit (VPD) in the day (a) and in the night (b) in greenhouse during the Exp. 1 and Exp. 2. The data represent the mean of

VPD in the day (during photoperiod) and in the night. The linear lines in figure ‘a’ represent the average of VPD in the Exp. 1 and Exp. 2. DAS, days

after sowing.

Water treatments and greenhouse conditions of 
Experiment 1 (19 March–1 May 2012)

In Exp. 1, water treatments were applied consisting in five 
levels of SWC: 35 %, 23 %, 21 %, 18 % and 16 %. Pots 
contained 2 kg of a mixture of soil collected from the field 
(50 %), organic matter (30 %) and sand (20 %). SWC was 
determined by the gravimetric method described by Lambe 
and Whitman (1969).
The trials were carried out under well-controlled condi-

tions. Air temperature (T) and relative humidity (RH) were 
automatically recorded every 30 min. Air vapour pressure 
deficits (VPD) were calculated as described by Allen et al.
(1998): VPD = es � ea; es = 0.6108 9 exp[17.27T/(T + 
237.3)]; ea = es 9 (RH/100), where es is the saturation 
vapour pressure (kPa); T, the mean air temperature (°C); 
RH, the relative humidity of the air (%).

During the photoperiod (from 05:30 to 18:30 CET), the 
air temperatures were minimum (Tmin) 16.7 °C; maximum 
(Tmax) 23.6 °C and mean (Tme) 20.8 °C. The relative 
humidity was minimum (RHmin) 29.4 %; maximum 
(RHmax) 52.3 % and mean (RHme) 36.6 %. The vapour 
pressure deficits (Fig. 1a) were minimum (VPDmin) 
1.80 kPa, maximum (VPDmax) 4.40 kPa and mean 
(VPDme) 2.81 kPa.



Genotypic variability in WUE and CID in plants growing

on five stable SWC

Mean values of WUE were lower in Exp. 1 than in Exp. 2

(1.58 and 2.03 g kg�1, respectively), whereas mean values

of CID were higher in Exp. 1 than in Exp. 2 (23.45 & and

22.37 &, respectively). During Exp. 1, WUE values ranged

from 0.55 to 3.13 g kg�1 and CID values ranged from

21.50 to 24.88 & (Table 2). The variances of WUE and

CID were 0.34 and 0.71, respectively. During Exp. 2, WUE

values ranged from 0.79 to 4.32 g kg�1 and CID values

ranged from 21.50 to 24.88 &. The variances of WUE and

CID were 0.54 and 2.27, respectively. These results showed

a narrower genotypic variability for WUE and CID in Exp.

1 than in Exp. 2. ANOVA results showed that there were sig-

nificant effects of genotype and SWC for WUE and CID in

Table 1 Phenotypic correlations (rp) between water-use efficiency

(WUE), carbon isotope discrimination (CID), biomass (BM) and cumula-

tive water transpired (CWT) for four RILs and five soil water contents

(n = 20, average of five replicates)

Traits WUE (g kg�1) CID (&) BM (g)

Experiment 1

CID (&) �0.66***

BM (g) �0.09ns 0.44ns

CWT (ml) �0.37ns 0.62*** 0.92***

Experiment 2

CID (&) �0.67***

BM (g) 0.39ns 0.18ns

CWT (ml) �0.55** 0.81*** 0.50**

Significance at **P < 0.01, ***P < 0.001; ns, not significant.

Fig. 2 Relationships between water-use efficiency (WUE) and carbon

isotope discrimination (CID) in five soil water contents (SWC) for the

Exp. 1 and Exp. 2. For each experiment, values represent mean of four

recombinant inbred lines and five replicates (n = 5).

Carbon isotope discrimination

Oven-dried leaves (including petioles) of each plant were 
ground into a homogeneous fine powder, and 2–3 mg  
subsamples was weighed and placed in capsules (Elemental 
Microanalysis, Okehampton, UK) to be analysed using a 
continuous flow isotope ratio mass spectrometer (Sercon 
Ltd., Cheshire, UK) at UC Davis Stable Isotope Facility 
(Davis, CA, USA). Carbon isotope composition (d) was 
calculated relative to the international Pee Dee Belemnite 
(PDB) standard (Farquhar et al. 1989): dplant = 
(Rsa � Rsd)/Rsd X 1000 [&] where Rsa and Rsd are the 
13C:12C ratios of the sample and the standard, respectively 
(Craig 1957). Carbon isotope discrimination (CID) was 
estimated as: CID = (dair � dplant)/(1 + dplant/1000) where 
dair is the 13C composition of atmospheric CO2, which is 
assumed to be �8.0 & (Farquhar et al. 1989).

Statistical analysis

Data were tested for normal distribution with the Kol-
mogorov–Smirnov test. All statistical analysis was per-
formed using the statistical package PASW statistics 18 
(IBM, New York, NY, USA). Analysis of variance (ANOVA) 
was used to calculate the effects of genotypes and SWC. For 
each ANOVA, a trait was considered as a dependent variable. 
Genotype, SWC and replicate were considered as the fixed 
factors. Means were compared using a Student–Newman–
Keuls (SNK) test (P < 0.05). Pearson’s correlation coef-
ficients were calculated to determine the phenotypic 
relationships between WUE, CID and related traits (BM, 
CWT). Coefficient of determination (R2) was calculated by 
determining the regressions of main traits, CID and WUE.

Results

Relationships between WUE, CID, BM and CWT

In the two experiments, a highly significant negative corre-
lation was observed between WUE and CID (Table 1, 
rp = �0.66, P < 0.001, n = 20 in Exp. 1, and rp = �0.67, 
P < 0.001, n = 20 in Exp. 2), while there were no signifi-
cant correlations between BM and CID or WUE. In con-
trast, there was a significant negative correlation between 
WUE and CWT but only in Exp. 2 (rp = �0.55, P < 0.01, 
n = 20). In the two experiments, the coefficient of determi-

nation between WUE and CID was high (0.79 in Exp. 1 
and 0.81 in Exp. 2; Fig. 2). In the two experiments, there 
was a concomitant increase in WUE and a decrease in CID 
from the high to the low SWC for all genotypes. Thus, the 
highest values of WUE and the smallest values of CID were 
observed at the smallest SWC, whereas the smallest values 
of WUE and the highest values of CID were observed at the 
highest SWC (Fig. 3).



unlike in Exp. 1, significant differences were obtained in

WUE between genotypes for all SWCs (Fig. 3b).

Leaf gas-exchange, intrinsic water-use efficiency (A/gs) and

CID in experiment 2

Measurements of gas exchange for the five stable SWCs in

Exp. 2 showed a decrease in A (light-saturated CO2 assimi-

lation) and gs (stomatal conductance) as water availability

decreased. Therefore, high values for A and gs (27 lmol

CO2 m�2 s�1 and 0.68 mol H2O m�2 s�1, respectively)
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Fig. 3 Water-use efficiency in Exp. 1 and Exp. 2 (a, b), and carbon isotope discrimination in Exp. 1 and Exp. 2 (c, d), subjected to five soil water con-

tents (SWC) of four genotypes (recombinant inbred lines – RIL 200, RIL 043, RIL 149, RIL 127). Different letters in each SWC level represent significant

differences among genotypes (SNK’s test, P < 0.05).

Table 2 Genotypic variation, the mean squares of analysis of variance (MS ANOVA) for water-use efficiency (WUE), carbon isotope discrimination

(CID), biomass (BM) and cumulative water transpired (CWT) among four RILs, five soil water contents (SWC) and five replicates in Exp. 1 and Exp. 2

(n = 100 for each experiment)

Trait Minimum Maximum Mean S.D. Variance

MS ANOVA

Genotype SWC Genotype 9 SWC1

Experiment 1

WUE (g kg�1) 0.55 3.13 1.58 0.86 0.34 0.94* 1.35*** 0.35ns

CID (&) 21.50 24.88 23.45 0.84 0.71 4.31*** 6.19*** 0.27ns

BM (g) 0.07 1.87 0.58 0.36 0.13 0.27ns 0.59*** 0.06ns

CWT (ml) 121.00 991.00 387.39 180.42 32 552.38 27 573.21ns 438 588.76*** 13 247.16ns

Experiment 2

WUE (g kg�1) 0.79 4.32 2.03 0.72 0.51 9.14*** 0.85** 0.30ns

CID (&) 19.68 25.47 22.37 1.51 2.27 12.54*** 22.43*** 1.61ns

BM (g) 0.21 1.06 0.50 0.19 0.03 0.33*** 0.34*** 0.02ns

CWT (ml) 105.00 515.00 264.00 95.80 9178.21 26 889.10*** 156 976.81*** 3264.78ns

Significance at *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant.
1Genotype and SWC interaction.

the two experiments. Moreover, there was no significant 
effect of the genotype and SWC interaction for these two 
traits in the two experiments.

In Exp. 1, there were no significant differences between 
genotypes for WUE except for RIL 200 at 16 % SWC 
(Fig. 3a). WUE values were very low (the power of ANOVA 

was 0.77; data not shown). In contrast, for CID, significant 
differences between genotypes appeared at all five SWCs 
(Fig. 3c). This is consistent with the results for CID of Exp. 
2 where genotypes showed differences, with the same rank-
ing as in Exp. 1, under all five SWCs (Fig. 3d). In Exp. 2,



study the effect of water limitation on sunflower grown for

several weeks in a greenhouse. The levels of SWC defined

here covered a large gradient of water availability, leading

to differing plant physiological behaviour. This is demon-

strated by the marked differences observed in the rates of

CO2 assimilation and values of stomatal conductance

between plants grown at the highest or the lowest soil

moisture. Changes in SWC led also to changes in whole

plant WUE (BM/CWT) and intrinsic leaf WUE (A/gs), and

in leaf CID. WUE and A/gs were strongly and negatively

correlated with CID. This is in accordance with previous

work (Lauteri et al. 1993, Lambrides et al. 2004) and agrees

with the model of Farquhar and Richards (1984) developed

for wheat. WUE in Exp. 1 was lower than in Exp. 2. This

can be explained by the differences in average VPD values

in the greenhouse during the two experiments (Fig. 1a) as

VPD was higher in Exp. 1 than in Exp. 2.

WUE has often been shown to be related to biomass pro-

duction in plants. The relationship can be positive or nega-

tive (Li 1999). In sunflower, a positive correlation between

WUE and BM was found by Virgona and Farquhar (1996)

and Lambrides et al. (2004). If WUE and BM are positively

correlated, plants that use water more efficiently by pro-

ducing greater biomass for a given quantity of water tran-

spired would also grow more rapidly and produce higher

BM (Wright et al. 1993). In the present study with sun-

flower, no correlation (positive or negative) was found

between the two parameters (Table 1). This agrees with the

observation of Misra et al. (2010) on 20 durum wheat

genotypes. Thus, a plant which displayed high WUE may

not produce higher BM. This may be because higher WUE

is generally achieved by plant traits than lower transpira-

tion (such as reduced leaf area, moderate growth and low

stomatal conductance) reducing photosynthesis and there-

fore yield.

Variations in WUE are mainly due to leaf diffusive char-

acteristics (such as stomatal conductance, gs) and intrinsic

photosynthetic capacity (such as Rubisco capacity). As BM

production is closely associated with transpiration, in

plants where WUE is principally determined by intrinsic

leaf photosynthetic capacity (capacity type plant), WUE is

weakly dependent on transpiration, and high WUE may be

Table 3 Genotypic variation of net CO2 assimilation rates (A), stomatal conductance (gs), intrinsic water-use efficiency (A/gs) among four RILs, five

soil water contents (SWC) and five replicates in Exp. 2 (n = 100)

Trait Minimum Maximum Mean S.D. Variance

Mean square

Genotype Soil water content

A (lmol CO2 m�2 s�1) 1.70 27 16.68 6.59 43.37 13.53ns 698.12***

gs (mol H2O m�2 s�1) 0.02 0.68 0.33 0.18 0.03 0.04* 0.58***

A/gs (lmol CO2 mol�1 H2O) 24.29 136.36 59.57 23.04 530.88 1304.38** 5915.00***

Significance at *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant.

Table 4 Phenotypic correlations (rp) between carbon isotope discrimi-

nation (CID), net CO2 assimilation rates (A), stomatal conductance (gs),

intrinsic water-use efficiency (A/gs) among four RILs, five soil water

contents (SWC) and five replicates in Exp. 2 (n = 100)

Trait CID (&)

A (lmol

CO2 m�2 s�1)

gs (mol

H2O m�2 s�1)

A (lmol

CO2 m�2 s�1)

0.47***

gs (mol

H2O m�2 s�1)

0.45*** 0.90***

A/gs (lmol

CO2 mol�1 H2O)

�0.30*** �0.47*** �0.72***

Significant at ***P < 0.001.

were observed at the highest SWC (25 %), whereas low val-
ues of A and gs were reached (1.70 lmol CO2 m

�2 s�1 and 
0.02 mol H2O m�2 s�1, respectively) at the smallest SWC 
level (10 %, Table 3). The values of intrinsic water-use 
efficiency (A/gs) ranged from 24.29 to 136.36 lmol 
CO2 mol�1 H2O.

ANOVA showed that A was not significantly different 
between genotypes but that significant differences appeared 
for CO2 assimilation between SWC levels. By contrast, 
gs and A/gs were significantly different both between 
genotypes and SWC (Table 3).
Positive correlations were observed between CID and all 

leaf gas-exchange traits (Table 4). A small but very signifi-
cant phenotypic correlation was obtained between CID and 
A (rp = 0.47, P < 0.001, n = 100) as well as between CID 
and gs (rp = 0.45, P < 0.001, n = 100). CID and A/gs were 
negatively correlated (rp = �0.30, P < 0.001, n = 100), 
and A/gs was negatively correlated with A and gs 
(rp = �0.47, P < 0.001, n = 100 for A/gs and A; 
rp = �0.72, P < 0.001, n = 100 for A/gs and gs).

Discussion

In this study, we used five levels of soil moisture, which 
were maintained rigorously constant throughout the dura-
tion of the experiments. This is the first report to our 
knowledge of such stabilized treatments being used to



genotypes with high WUE. Irrigated agriculture represents

up to 85 % of total human water consumption. Thus, con-

sidering world population expansion, it is imperative to

improve WUE of irrigated but also of rain-fed crops (This

et al. 2010).

The wide range observed in this study for CID in Exp. 1

(absolute value of 3.38 &, from 21.50 & to 24.88 &) and

in Exp. 2 (5.79 &, from 19.68 & to 25.47 &) exceeds the

range of 2.8 & reported by Lauteri et al. (1993) on sun-

flowers grown in a greenhouse. Lambrides et al. (2004)

found variations of 4.4 & (absolute units) for 161 sun-

flower genotypes grown in field conditions. The CID ranges

found in the present study are in agreement with these

authors. In addition, in previous experiments on a larger

number of sunflower genotypes (150 RILs), we observed

ranges of 8.95 &, 5.82 & and 6.91 & in 2010, 2011 and

2012, respectively (unpublished data). Such wide ranges of

CID suggest that it could possibly be used as a selection cri-

terion in sunflower breeding programmes. Due to the wide

range of CID, using this trait rather than WUE might be

more suitable for comparing genotypes subjected to

drought.
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