Matthieu Astorg 
email: matthieu.astorg@univ-orleans.fr
  
Fabrizio Bianchi 
email: fabrizio.bianchi@univ-lille.fr
  
Higher bifurcations

Keywords: 2010 Mathematics Subject Classification. 32H50, 32U40, 37F46, 37H15 Holomorphic dynamics, bifurcation current, bifurcation measure, polynomial skew products

published or not. The documents may come    

Introduction

Polynomial skew products are regular polynomial endomorphisms of C 2 of the form f (z, w) = (p(z), q(z, w)), for p and q polynomials of a given degree d ≥ 2. Regular here means that the coefficient of w d in q is non zero, which is equivalent to the extendibility of these maps as holomorphic self-maps of P 2 . Despite their specific forms, these maps already provided examples of new phenomena with respect to the established theory of one-variable polynomials or rational maps, see for instance [ABD + 16, [START_REF] Dujardin | A non-laminar dynamical green current[END_REF][START_REF] Taflin | Blenders near polynomial product maps of C 2[END_REF]. We started in [START_REF] Astorg | Hyperbolicity and bifurcations in holomorphic families of polynomial skew products[END_REF] a detailed study of the parameter space of such maps.

We will denote in what follows by Sk(p, d) the family of all polynomial skew products of a given degree d over a fixed base polynomial p up to affine conjugacy, and denote by D d its dimension. Following [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF] it is possible to divide the parameter space of the family Sk(p, d) (identified with C D d ) into two dynamically defined subsets: the stability locus and the bifurcation locus. The bifurcation locus coincides with the support of dd c L v , where L v (f ) denotes the vertical Lyapunov function of f , see [START_REF] Jonsson | Dynamics of polynomial skew products on C 2[END_REF][START_REF] Astorg | Hyperbolicity and bifurcations in holomorphic families of polynomial skew products[END_REF]. We gave in [START_REF] Astorg | Hyperbolicity and bifurcations in holomorphic families of polynomial skew products[END_REF] a description of the bifurcation locus and current in terms of natural bifurcation loci and currents associated to the vertical fibres, and a classification of unbounded hyperbolic components in the quadratic case.

For families of rational maps, the study of the self-intersections of the bifurcation current (which are meaningful because of the continuity of its potential) was started in [START_REF] Bassanelli | Bifurcation currents in holomorphic dynamics on[END_REF], see also [START_REF] Pham | Lyapunov exponents and bifurcation current for polynomial-like maps[END_REF][START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF][START_REF] Dujardin | Bifurcation currents and equidistribution on parameter space[END_REF]. A geometric interpretation of the support of these currents is the following: the support of T k bif := T ∧k bif is the locus where k critical points bifurcate independently. Moreover, the current T k bif is known to equidistribute many kinds of dynamically defined parameters, such as maps possessing k cycles of prescribed multipliers and periods tending to infinity (see, e.g., [START_REF] Bassanelli | Bifurcation currents in holomorphic dynamics on[END_REF][START_REF] Gauthier | Equidistribution towards the bifurcation current i: Multipliers and degree d polynomials[END_REF]). This gives rise to a natural stratification of the bifurcation locus as

Supp T bif ⊇ Supp T 2 bif f ⊇ • • • ⊇ Supp T kmax bif
where k max is the dimension of the parameter space. The inclusions above are not equalities in general, and are for instance strict when considering the family of all polynomial or rational maps of a given degree (where k max is equal to d -1 and 2d -2, respectively). It is worth pointing out that this stratification is often compared with an analogous stratification for the Julia sets of endomorphisms of P k (given by the supports of the self-intersections of the Green current, see for instance [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]). We refer to [START_REF] Dujardin | Bifurcation currents and equidistribution on parameter space[END_REF] for a more detailed exposition.

In [START_REF] Astorg | Hyperbolicity and bifurcations in holomorphic families of polynomial skew products[END_REF], the authors have proved the first equidistribution property for the bifurcation current T bif in families of endomorphisms of projective spaces in any dimension, including polynomial skew products: for a generic η ∈ C, the bifurcation current T bif equidistributes the polynomial skew products with a cycle of period tending to infinity and vertical multiplier η. The arguments could easily be adapted to prove a similar statement for the bifurcation currents T k bif : given generic η 1 , . . . , η k ∈ C, k ≤ k max , the bifurcation current T k bif equidistributes skew products having k cycles of periods tending to infinity and respective vertical multipliers η 1 , . . . , η k ∈ C. It is then natural to ask whether the supports of the bifurcation currents still give a natural stratification of the bifurcation locus.

The goal of this paper is to show that the situation in families of higher dimensional dynamical systems is completely different from the one-dimensional counterpart. Namely, we establish the following result.

Theorem 1.1. Let p be a polynomial with Julia set not totally disconnected, which is neither conjugated to z → z d nor to a Chebyshev polynomial. Let Sk(p, d) denote the family of polynomial skew products of degree d ≥ 2 over the base polynomial p, up to affine conjugacy, and let D d be its dimension. Then the associated bifurcation current T bif satisfies Supp T bif ≡ Supp T 2 bif ≡ • • • ≡ Supp T D d bif . Theorem 1.1 is stated for the full family Sk(p, d) of all polynomial skew products of degree d over p (up to affine conjugacy). One could ask whether such a result holds for algebraic subfamilies of Sk(p, d): clearly, some special subfamilies have to be ruled out, such as the family of trivial product maps of the form (p, q) : (z, w) → (p(z), q(w)). A less obvious example in degree 3 is given by the subfamily of polynomial skew products over the base polynomial z → z 3 of the form f a,b : (z, w) → (z 3 , w 3 + awz 2 + bz 3 ), (a, b) ∈ C 2 .

One can check that f a,b is semi-conjugated to the product map (z, w) → (z 3 , w 3 +aw+b), and therefore that Supp T 2 bif (Λ) Supp T bif (Λ), where Λ := {f a,b , (a, b) ∈ C 2 }. The proof of Theorem 1.1 indeed uses the fact that the family Sk(p, d) is general enough so that it is possible to perturb a bifurcation parameter to change the dynamical behaviour of a critical point in a vertical fibre without affecting all other fibres. It would be interesting to classify algebraic subfamilies of Sk(p, d) that, like Λ, are degenerate in the sense that a bifurcation in one fibre implies a bifurcation in all other fibre; for such families, the conclusion of Theorem 1.1 will not hold. Likewise, it would be natural to try to extend Theorem 1.1 to other families with a similar fibred structure, see for instance [START_REF] Dupont | Dynamics of fibered endomorphisms of P k . to appear on Ann[END_REF]. To do this, one should first ensure that such a family is large enough in the sense above.

The proof of Theorem 1.1 essentially consists of two ingredients, respectively of analytical and geometrical flavours.

The first is an analytical sufficient condition for a parameter to be in the support of T k bif . This is inspired by analogous results by Buff-Epstein [START_REF] Buff | Bifurcation measure and postcritically finite rational maps[END_REF] and Gauthier [START_REF] Gauthier | Strong bifurcation loci of full Hausdorff dimension[END_REF] in the context of rational maps, and is based on the notion of large scale condition introduced in [START_REF] Astorg | Collet, Eckmann and the bifurcation measure[END_REF]. It is a way to give a quantified meaning to the simultaneous independent bifurcation of multiple critical points, and to exploit this condition to prove the non-vanishing of T k bif . This part does not require essentially new arguments and is presented in Section 4.

The second ingredient is a procedure to build these multiple independent bifurcations at a common parameter starting from a simple one. The idea is to start with a parameter with a Misiurewicz bifurcation, i.e., a non-persistent collision between a critical orbit and a repelling point, and to construct a new parameter nearby where two -and actually, D d -independent Misiurewicz bifurcations occur simultaneously. Here we say that k Misiurewicz relations are independent at a parameter λ if the intersection of the k hypersurfaces given by the Misiurewicz relations has codimension k in Sk(p, d), see Subsection 2.2, and we denote by Bif k the closure of such parameters. This geometrical construction is our main technical result, and the main contribution of this paper. Together with the analytic arguments mentioned above (which give Bif k ⊆ Supp T k bif for all 1 ≤ k ≤ D d ) and the trivial inclusion Supp T D d bif ⊆ Supp T bif , it implies Theorem 1.1.

Theorem 1.2. Let p be a polynomial with Julia set not totally disconnected, which is neither conjugated to z → z d nor to a Chebyshev polynomial. Let Sk(p, d) denote the family of polynomial skew products of degree d ≥ 2 over the base polynomial p, up to affine conjugacy, and let D d be its dimension. Then

Bif = Bif 2 = • • • = Bif D d .
In order to construct the desired Misiurewicz parameter, we will consider the motion of a sufficiently large hyperbolic subset of the Julia set near a parameter in the bifurcation locus. This hyperbolic set needs to satisfy some precise properties, and this is where the assumptions on p come into play. The construction, presented in Section 3, uses tools from the thermodynamic formalism of rational maps, and more generally of endomorphisms of P k , as explained in Appendix A. Once the hyperbolic set is constructed, the proof proceed by induction. We show that, given a Misiurewicz relations satisfying a given list of further properties (see Definition 5.1), it is possible to construct, one by one, the extra Misiurewicz relations happening simultaneously. The general construction and the application in our setting are given in Sections 5 and 6, respectively.

Our main theorems and the method developed for their proof have a number of consequences and corollaries. We list here a few of them. These families are given by the maps satisfying a given critical relation. Notice that d (and thus D d ) can be taken arbitrarily large. This result is for instance an improvement of the main result in [START_REF] Bianchi | Bifurcations in the elementary Desboves family[END_REF], where 1-parameter families with the same property are constructed.

More strikingly, in [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF][START_REF] Taflin | Blenders near polynomial product maps of C 2[END_REF], Dujardin and Taflin construct open sets in the bifurcation locus in the family H d (P k ) of all endomorphisms of P k , k ≥ 1, of a given degree d ≥ 2 (see also [START_REF] Biebler | Lattès maps and the interior of the bifurcation locus[END_REF] for further examples). Their strategy also works when considering the subfamily of polynomial skew products (and actually these open sets are built close to this family). Combining Theorem 1.1 with their result we thus get the following consequence.

Corollary 1.4. Let p be a polynomial with Julia set not totally disconnected, which is neither conjugated to z → z d nor to a Chebyshev polynomial. The support of the bifurcation measure in Sk(p, d) has non empty interior.

Notice that it is not known whether the bifurcation locus is the closure of its interior (see the last paragraph in [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF]). Hence, a priori, the open sets as above could exist only in some regions of the parameter space. The last consequence of our main theorems is a uniform and optimal bound for the Hausdorff dimension of the support of the bifurcation measure, which is a generalization to this setting of the main result in [START_REF] Gauthier | Strong bifurcation loci of full Hausdorff dimension[END_REF].

Corollary 1.5. Let p be a polynomial with Julia set not totally disconnected, which is neither conjugated to z → z d nor to a Chebyshev polynomial. The Hausdorff dimension of the support of the bifurcation measure in Sk(p, d) is maximal at all points of its support.

Notice that, in the family of all endomorphisms of a given degree, such a uniform estimate is not known even for the bifurcation locus, see [START_REF] Berteloot | Perturbations d'exemples de Lattès et dimension de Hausdorff du lieu de bifurcation[END_REF] for some local estimates.

Given a polynomial skew product of degree d ≥ 2 of the form f (z, w) = (p(z), q(z, w)) =: (p(z), q z (w)), we will write the n-th iterate of f as

f n (z, w) = (p n (z), q p n-1 (z) • • • • • q z (w)) =: (p n (z), Q n z (w)).
In particular, if z 0 is a n 0 -periodic point for p, the map Q n 0 z 0 is the return map to the vertical fibre {z 0 } × C and is a polynomial of degree d n 0 . For every z in the Julia set J p of p, we denote by K z ⊂ C the set of of points w such that the sequence {Q n z } is bounded and by J z the boundary of K z . Given a subset E ⊆ J p , we denote J E := ∪ z∈E {z} × J z .

Let us now denote by (f λ ) λ∈M a holomorphic family of polynomial skew products of a given degree d ≥ 2, that is a holomorphic map

F : M × C 2 → C 2 such that f λ := F (λ, •)
is a polynomial skew product of degree d for all λ ∈ M . We will denote by Sk(p, d) the family of all polynomial skew products of degree d with the given polynomial p as first component, up to affine conjugacy. We set D d := dim Sk(p, d). An explicit description of these families in the case d = 2 is given in [AB18, Lemma 2.9], the general case is similar.

Lemma 2.1. Every polynomial skew product of degree d ≥ 2 over a polynomial p is affinely conjugated to a map of the form

(z, w) → p(z), w d + d-2 j=0 w j A j (z) with deg z A j = d -j.
We are interested in bifurcations within families of polynomial skew products. Following [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF], the bifurcation locus Bif is defined as the support of the (1, 1)-positive closed current T bif := dd c λ L(λ) on M , where L(λ) is the Lyapunov function associated to f λ with respect to its measure of maximal entropy. In the case of polynomial skew products, the function L has a quite explicit description. Indeed, by [START_REF] Jonsson | Dynamics of polynomial skew products on C 2[END_REF] we have

L(λ) = L p (λ) + L v (λ), where (1) L p (λ) = log d + z∈Cp λ G p λ (z) and L v (λ) = log d + ˆ w:q λ,z (w)=0 G λ (z, w) µ p λ (z).
Here µ p λ , G p λ , C p λ are the measure of maximal entropy, the Green function and the critical set (whose points are counted with multiplicity) of f λ and p λ respectively, and G λ (z, w) := lim n→∞

1 n log + Q n λ,z ( 
w) is the non-autonomous Green function for the family {Q n λ,z } n∈N . The current T p := dd c λ L p (λ) is positive and closed. We proved in [AB18, Proposition 3.1] that T v := dd c λ L v = T bif -T p is also positive and closed. This allowed us to define the vertical bifurcation in any family of polynomial skew products. This was generalized in [START_REF] Dupont | Dynamics of fibered endomorphisms of P k . to appear on Ann[END_REF] to cover families of endomorphisms of P k (C) preserving a fibration. Of course, when p is constant we have T bif = T v . 2.2. Families defined by Misiurewicz relations. By [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF] the bifurcation locus of a family (f λ ) λ∈M coincides with the closure of the set of Misiurewicz parameters, i.e., parameters for which we have a non-persistent intersection between some component of the post critical set and the motion of some repelling point. More precisely, in our setting take λ 0 ∈ Sk(p, d) and let M be any holomorphic subfamily of Sk(p, d) such that λ 0 ∈ M . A Misiurewicz relation for f λ 0 is an equation of the form f n 0 λ 0 (z 0 , c 0 ) = (z 1 , w 1 ) where (z 1 , w 1 ) is a repelling periodic point of period m for f λ 0 , and q z 0 ,λ 0 (c 0 ) = 0.

Assume that c 0 is a simple root of q z 0 ,λ 0 (this assumption could be removed, but we keep it here for the sake of simplicity). Then there is a unique holomorphic map λ → c(λ) defined on a neighbourhood of λ 0 in Sk(p, d) such that c(λ 0 ) = c 0 . Similarly, it is possible to locally follow holomorphically the repelling point (z 1 , w 1 ) as λ → (z 1 , w 1 (λ)).

The Misiurewicz relation f n 0 λ 0 (z 0 , c 0 ) = (z 1 , w 1 ) is said to be locally persistent in M if f n 0 λ (z 0 , c(λ)) = (z 1 , w 1 (λ)) for all λ in a neighbourhood of λ 0 in M . If this is not the case, the equation f n 0 λ (z 0 , c(λ)) = (z 1 , w 1 (λ)) defines a germ of analytic hypersurface in M at λ 0 , which is open inside the algebraic hypersurface of M given by {λ ∈ M : Res w (q λ,z 0 , Q n 0 +m λ,z 0 -Q m λ,z 0 ) = 0}. Here, Res w (P, Q) denotes the resultant of two polynomials P, Q ∈ A[w], where A := C[λ]; it is therefore an element of A. Notice that this algebraic hypersurface consists of all λ ∈ M such that some critical point in the fibre at z 0 lands after n 0 iterations on some periodic point of period dividing m. We also say in this case that λ 0 is a Misiurewicz parameter in M . If the Misiurewicz relation is non-persistent in M , we denote by M (z 0 ,c),(z 1 ,w 1 ),n 0 (or by M (z 0 ,c 0 ),(z 1 ,w 1 (λ 0 )),n 0 if we wish to emphasize the starting parameter λ 0 ) this irreducible component and we call it the locus where the relation is locally preserved. We may avoid mentioning the periodic point if this does not create confusion.

2.3. The unicritical subfamily U d ⊂ Sk(p, d). We consider here the unicritical subfamily U d ⊂ Sk(p, d) given by ( 2)

U d := {f (z, w) = (p(z), w d + a(z))}, a(z) ∈ C d [z] ∼ C d+1 .
Thus, U d has dimension d + 1. We parametrize it with λ := (a 0 , . . . , a d ), where the a i are the coefficients of a(z). We will write λ(z 0 ) = 0 when z 0 is a root of the polynomial a(z) associated to λ, and similarly λ (z 0 ) = 0 when z 0 is a root of a (z).

We can compactify this parameter space to P d+1 and we denote by P d ∞ the hyperplane at infinity. Notice that, unless p (z 0 ) = 0, (z 0 , 0) is the only critical point for f λ in the fibre {z = z 0 } (this justifies the name chosen for this family, coherently with the name of the one dimensional unicritical family f λ (z) = z d + λ). Lemma 2.2. There exist two positive constants C 1 , C 2 such that, for all λ ∈ U d and for all z ∈ J p , we have

K z (f λ ) ⊂ D(0, C 1 + C 2 |λ| 1/d ). Moreover, if λ j ∈ M is a sequence with |λ j | → ∞ and [λ j ] → [λ ∞ ] for some λ ∞ such that λ ∞ (z 0 ) = 0, then for all w j ∈ K z 0 (f λ j ) we have |w j | |λ j | 1/d as j → ∞. Proof. Set A(λ) := max z∈Jp |a(z)|. Observe that we have A(λ) = O(|λ|) as |λ| → ∞, hence there exists C 0 > 2 such that A(λ) ≤ C 0 |λ| for all λ ∈ U d . It follows that, if w satisfies |w| > C 0 |λ| 1/d , then for any z ∈ J p we have |q z (w)| > C 2 0 |λ| -A(λ) ≥ (C 2 0 -C 0 )|λ| > C 0 |λ|.
This proves the first assertion.

For the second assertion, let a (j) (z) be the polynomial associated to λ j . Take w j ∈ K z 0 (f λ j ). Hence, q λ j ,z 0 (w j ) ∈ K p(z 0 ) (f λ j ). By the first part of the statement, we have Q n λ,z 0 (0) = Q n+m λ,z 0 (0) for some m, n ≥ 1 and z 0 ∈ J p with p n+m (z 0 ) = p n (z 0 ). For simplicity, we denote by M z 0 ,n,m the hypersurface defined by (3). Lemma 2.3. For any non-empty Misiurewicz hypersurface M z 0 ,n,m ⊂ U d of the form (3), the accumulation on

|w d j + a (j) (z 0 )| = |q λ j ,z 0 (w)| ≤ C 1 + C 2 |λ j | 1/d . Since λ(z 0 ) = 0, we have |a (j) (z 0 )| |λ j | as λ j → ∞.
P d ∞ of M z 0 ,n,m is precisely given by E z 0 := {[λ] : λ(z 0 ) = 0}. Proof. It follows from Lemma 2.2 that the accumulation of M z 0 ,n,m on P d ∞ is included in E z 0 .
On the other hand, the restriction of M z 0 ,n,m to any 2-dimensional subfamily of U d cannot be compact. By considering, for every point in E z 0 , an affine 2-dimensional subfamily whose line of intersection with P d

∞ meets E z 0 only in the given point, we see that the inclusion is actually an equality.

Lemma 2.4. For any non-empty Misiurewicz hypersurface

M z 0 ,n,m ⊂ U d of the form (3), the non-vertical eigenspace of (df m λ ) (z 1 ,w 1 (λ)) at (z 1 , w 1 (λ)) := (p n (z 0 ), Q n λ,z 0 (0)) is generated by the vector v λ :=   1, ∂Q m λ,z (w) ∂z (z,w)=(z 1 ,w 1 (λ)) ∂Q m λ,z (w) ∂w (z,w)=(z 1 ,w 1 (λ)) -(p m ) (z 1 )   .
In particular, if

z 0 / ∈ {p n (z 0 ), . . . , p n+m-1 (z 0 )}, given λ ∞ such that λ ∞ (p i (z 0 )) = 0 for all n ≤ i < n + m and a sequence λ j ∈ M z 0 ,n,m with |λ j | → ∞ and [λ j ] → [λ ∞ ], the second component v (2)
λ j of v λ j as above satisfies (4) |v

(2)

λ j | = O(|λ j | 1/d ) as j → ∞. Proof. We have (df m λ ) z 1 ,w 1 (λ) = (p m ) (z 0 ) 0 ∂Q m λ,z (w) ∂z (z,w)=(z 1 ,w 1 (λ)) ∂Q m λ,z (w) ∂w (z,w)=(z 1 ,w 1 (λ))
, from which we deduce the first assertion. A direct computation shows that, for every

λ ∈ M z 0 ,n,m , (5) 
∂Q m λ,z (w) ∂z (z,w)=(z 1 ,w 1 (λ)) = m-1 i=0 a (p i (z)) m-1 =i+1 q p (z 1 ) (Q λ,z 1 (w 1 (λ))) = m-1 i=0 a (p i (z 1 )) m-1 =i+1 d Q λ,z 1 (w 1 (λ)) d-1 and ∂Q m λ,z (w) ∂w (z,w)=(z 1 ,w 1 (λ)) = m-1 =0 q p (z 1 ) (Q j λ,z 1 (w 1 (λ))) = m-1 =0 d Q λ,z 1 (w 1 (λ)) d-1
where a is the polynomial associated to λ.

Let us now consider the evaluations of the expressions above at a sequence λ j as in the statement, and let us denote by a (j) the polynomial associated to

λ j . Since λ ∞ (p i (z 0 )) = 0 for all n ≤ i < n + m, we have |(a (j) ) (p i (z 0 ))| |λ j | as j → ∞.
Moreover, by Lemma 2.2, for all 0 ≤ < m we have

|Q z 1 ,λ j (w 1 (λ j ))| |λ j | 1/d . Hence, both the expressions above diverge as |λ j | → ∞ with [λ j ] → [λ ∞ ],
and the largest term in the sum in the last term of (5) is that corresponding to i = 0. Hence, as j → ∞, we have

|v (2) λ j | (a (j) ) (z 1 ) m-1 =1 d(Q λ j ,z 1 (w 1 (λ j ))) d-1 m-1 =0 d(Q λ j ,z 1 (w 1 (λ j ))) d-1 = |(a (j) ) (z 1 )| d(w 1 (λ j )) d-1 = O |λ j | |λ j | (d-1)/d = O(|λ j | 1/d ),
where in the last steps we used again Lemma 2.2.

Lemma 2.5. For any non-empty Misiurewicz hypersurface M z 0 ,n,m ⊂ U d of the form (3), the image of (df n λ ) (z 0 ,0) is generated by the vector

u λ :=   1, ∂Q n λ,z (w) ∂z (z,w)=(z 0 ,0) (p n ) (z 0 )   . In particular, given λ ∞ such λ ∞ (p i (z 0 )) = 0 for 0 ≤ i ≤ n -1 and a sequence λ j ∈ M z 0 ,n,m with |λ j | → ∞ and [λ j ] → [λ ∞ ], the second component u (2) 
λ j of u λ j as above satisfies (6) |u

(2)

λ j | |λ j | n(d-1)+1 d as j → ∞.
Proof. Since

(df n λ ) z 0 ,0 = (p n ) (z 0 ) 0 ∂Q n λ,z (w) ∂z (z,w)=(z 0 ,0) 0
, the first part of the statement is immediate. A computation as in Lemma 2.5 gives

∂Q n λ,z (w) ∂z (z,w)=(z 0 ,0) = n-1 i=0 a (p i (z 0 )) n-1 =i+1 d(Q λ,z 0 (0)) d-1
(where again a is the polynomial associated to λ) and, by Lemma 2.2, the above expression diverges as j → ∞ when evaluated at λ j as in the statement. Moreover, as j → ∞, denoting by a (j) the polynomial associated to λ j , we have

|u 2 λ j | ∂Q n λ j ,z (w) ∂z (z,w)=(z 0 ,0) (a (j) ) (z 0 ) n-1 =1 d(Q λ j ,z 0 (0)) d-1 |λ j | 1+ (n-1)(d-1) d = |λ j | n(d-1)+1 d
, where we used the facts that |(a (j) ) (z 0 )| = 0 for sufficiently large j, and hence

|(a (j) ) (z 0 )| |λ j |, and that Q λ j ,z 0 (0) ∈ K(f λ j ), and hence |Q λ j ,z 0 (0)| |λ j | 1/d by Lemma 2.2.
2.4. Higher bifurcations currents and loci. Higher bifurcation currents for families of polynomials (or rational maps) in one variable were introduced in [START_REF] Bassanelli | Bifurcation currents in holomorphic dynamics on[END_REF], see also [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF], with the aim of understanding the loci where simultaneous and independent bifurcations happen, from an analytical point of view. Since the Lyapunov function is continuous with respect to the parameters [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF], it is indeed meaningful to consider the self-intersections T k bif := T ∧k bif of the bifurcation current, for every k up to the dimension of the parameter space. The measure obtained by taking the maximal power is usually referred to as the bifurcation measure.

While in dimension one it is quite natural to associate a geometric meaning to Supp(T k bif ) (as, for instance, the points where k independent Misiurewicz relations happens, in a quite precise sense, see, e.g., [START_REF] Dujardin | Bifurcation currents and equidistribution on parameter space[END_REF]), in higher dimensions the critical set is of positive dimension and thus this interpretation is far less clear.

The following result gives a first step in the interpretation of the higher bifurcations as average of non-autonomous counterparts of the classical one-dimensional objects, valid in any family of polynomial skew products over a fixed base p. An interpretation of the non-autonomous factors will be the object of Section 4. The case of general polynomial skew products is completely analogous, and the following should be read as a decomposition for the vertical bifurcation

T k v = (dd c L v ) k , see Section 2.1. Given z := (z 1 , . . . , z k ) ∈ J k p , we denote by T z the current T z = T bif z 1 ∧ • • • ∧ T bif z k , where for every z ∈ J p we set T bif z := dd c λ w:q λ,z (w)=0 G λ (z, w) , see [AB18, §2.4].
Proposition 2.6. Let (f λ ) λ∈M be a family of polynomial skew products over a fixed base p. Then

T k bif = ˆJk p T z µ ⊗k and Supp(T k bif ) = ∪ z Supp T z .
Proof. The case k = 1 follows from the explicit formula for L v in [START_REF] Notations | We collect here the main notations that we will use through all the paper[END_REF]. The first formula in the statement is a consequence of the case k = 1 and the continuity of the potentials of the bifurcation currents T bif,z . The continuity of the potentials (in both z and the parameter) also implies that the currents T z are continuous in z ∈ J k p . We can thus apply the general Lemma 2.7 below to the family of currents R a = T z and a = z ∈ J k p = A. This concludes the proof. Lemma 2.7. Let A be a compact metric space, ν a positive measure on A and R a a family of positive closed currents on C N depending continuously on a ∈ A. Set R := ´A R a ν(a). Then

(1) the support of R a depends lower semicontinuously from a (in the Hausdorff topology); (2) the support of R is included in ∪ a Supp R a ;

(3) for every a ∈ Supp ν, we have Supp R a ⊆ Supp R.

Recall that the current R = ´A R a ν(a) is defined by the identity R, ϕ = ´A R a , ϕ ν(a), for ϕ test form of the right degree.

Proof. The first property is classical and the second is a direct consequence. Let us prove the last item. Fix a ∈ A and take x ∈ Supp R a . There exists an (arbitrarily small) ball B centred at x such that the mass of R a on B is larger than some η > 0. By the continuity of R a , the mass of R a on B is larger that η/2 for every a sufficiently close to a. In particular, this is true for all a in a ball B centred at a. Since a ∈ Supp ν, we have ν(B ) > η for some positive η . Thus, R has mass > ηη /2 on B, which in turn gives x ∈ Supp R.

Vertical-like hyperbolic sets and IFSs

Definition 3.1. Let f (z) = (p(z), q(z, w)) be a polynomial skew product of degree ≥ 2 and let H be an f -invariant hyperbolic set. We say that H is vertical-like if there exists α > 0 such that, for every (z, w) ∈ H, we have df (z,w) (C α ) C α , where

(7) C α := u ∈ C 2 : | u, (0, 1) | > α u .
Recall that, given any ergodic measure ν supported on a f -invariant hyperbolic set H, by Oseledets theorem one can associate to ν-almost every x ∈ H a decomposition of the tangent space T x C 2 = E 1 ⊕ E 2 , which is invariant under f , with the property that lim n→∞ n -1 log df n x (v) = χ i for all v ∈ E i , where χ 1 , χ 2 are the Lyapunov exponents of ν. The hyperbolicity of H implies that the decomposition is continuous in x, which in turn implies that it is also independent of ν. Since f is a polynomial skew product, we know that one invariant direction must necessarily coincide with the vertical one.

Denoting by E v = (0, 1) and E h the two fields of directions, Definition 3.1 implies that E h is then uniformly far from the vertical direction.

In the case of a periodic cycle, Definition 3.1 can we rephrased as a condition on the eigenvalues of the differential of the return map at the periodic points. Although a periodic point is not an invariant hyperbolic set, we will adopt the following notation for simplicity. Definition 3.2. Let f (z) = (p(z), q(z, w)) be a polynomial skew product of degree ≥ 2 and let (z 1 , w 1 ) be a m-periodic point for f . Let A := (p m ) (z 1 ) and B := (Q m z 1 ) (w 1 ) be the two eigenvalues of df m (z 1 ,w 1 ) . We say that (z 1 , w 1 ) is vertical-like if |B| > |A|. Definition 3.3. Let F be a subset of J p . We say that a set

A ⊆ F × C is a fibred box if A is an open subset of F × C of the form A = ∪ z∈B {z} × D z where B is an open subset of F , and D z ⊂ C is a topological disk depending continuously on z ∈ B and such that µ z (D z ) is constant in z.
Observe that fibred boxes exist since the family of measures z → µ z is continuous. Definition 3.4. Let H p be a hyperbolic invariant compact subset of J p . A vertical-like IFS over H p is the datum of a fibred box W ⊂ H p × C and of m inverse branches g 1 , . . . , g m of f -n with g m (W ) W (in the relative topology of J Hp ), and such that:

(V1) the limit set is a vertical-like hyperbolic set; (V2) for all 1 ≤ i ≤ m, there exists i = j such that π z (g i (W )) = π z (g j (W )); (V3) there exists i = j such that π z (g i (W )) ∩ π z (g j (W )) = ∅.
Note that due to the skew product structure of f , for all 1, ≤ i, j ≤ m, we automatically have either π z (g i (W )) = π z (g j (W )) or π z (g i (W )) ∩ π z (g j (W )) = ∅. We will consider in the following limit sets of vertical-like IFSs, which are then vertical-like hyperbolic sets (contained in J Hp ) as in Definition 3.1 by (V1). Condition (V2) ensures that each vertical slice of the limit set is non-trivial (i.e., it is a Cantor set in C), and condition (V3) ensures that the limit set is not included in a single vertical fibre.

In order to prove our main results, we will need that our maps admit a vertical-like hyperbolic set. The following result ensures that this requirement is reasonably mild, and explains the assumption on p in our Theorems.

Proposition 3.5. Let p be a polynomial with Julia set not totally disconnected, which is neither conjugated to z → z d nor to a Chebyshev polynomial. Then any polynomial skew product f of the form f (z, w) = (p(z), q(z, w)) admits a vertical-like IFS.

Proof. By a result of Przytycki and Zdunik [START_REF] Przytycki | On hausdorff dimension of polynomial not totally disconnected julia sets[END_REF] (see also [START_REF] Przytycki | Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map[END_REF][START_REF] Zdunik | Parabolic orbifolds and the dimension of the maximal measure for rational maps[END_REF] for previous results in the connected case), since p is neither conjugated to z → z d nor to a Chebyshev polynomial, there exists a compact hyperbolic invariant set H ⊂ J p , with δ := dim H H > 1 and positive entropy. By the general theory of the thermodynamical formalism, there exists a unique ergodic invariant probability measure ν supported on H that is absolutely continuous with respect to the δ-dimensional Hausdorff measure (see for instance [START_REF] Przytycki | Conformal fractals: ergodic theory methods[END_REF][START_REF] Przytycki | Thermodynamic formalism methods in one-dimensional real and complex dynamics[END_REF]). By Manning's formula, L ν = h ν δ , where L ν is the Lyapunov exponent of ν, and h ν its metric entropy. Since δ > 1 and h ν < log d, we deduce that L ν < log d.

We now consider the measure ν := ´ H µ z d ν(z), whose support is equal to J H . The existence of the vertical-like IFS as in the statement will follow from the following result. The proof uses tools from the thermodynamical formalism together with quantitative estimates. We give it in Appendix A.

Lemma 3.6. For every ε > 0 there exists a fibred box A in H × C such that, for all n sufficiently large, the exists at least 3d n f n -inverse branches A i of A compactly contained in A (for the induced topology on H × C) which are fibred boxes and with the property that, for all i, f n : A i → A is injective and

(8) 1 n log |(p n ) (x)| < L ν +ε and 1 n log |(Q n z ) (x, y)| > L v -ε for all (x, y) ∈ A i .
Recall that L v ≥ log d, hence L v > L ν . Let A, A i be given by Lemma 3.6 applied with ε < L v -L ν and n sufficiently large. Since the entropy of H is smaller than log d, up to removing a small number of A i 's (bounded by d n ) we can assume that for every j there exists i = j such that A i and A j have the same projection on the first component, giving (V2). The number of remaining A i 's is still bounded below by 2d n . Since at most ∼ d n of them can share the same projection on the first coordinate, this also proves (V3). The assertion follows since the inequalities in Lemma 3.6 imply that the limit set is a vertical-like hyperbolic set, giving (V1).

Higher bifurcations: an analytic criterion

In this section we establish the following technical result, which gives an analytic sufficient condition for a point to lie in the support of the higher bifurcation currents. Recall that, given a simple critical point c(λ) for q λ,z 0 and a repelling point r(λ) for f λ , we denote by M (z 0 ,c),r,n 0 the analytic subset of M given by the equation f n 0 λ (z 0 , c(λ)) = r(λ). Proposition 4.1. Let (f λ ) λ∈M be a holomorphic family of polynomial skew products over a given base p. Let λ 0 ∈ M and z 1 , . . . , z k ∈ J p satisfy the following properties:

(1) there exist simple critical points c i for q λ 0 ,z i such that

r i := f m i λ 0 (z i , c i ) is a repelling periodic point for f λ 0 ; (2) codim ∩ k i=1 M (z i ,c i ),r i ,m i = k. Then λ 0 ∈ Supp T k bif (M ).
In the case of families of rational maps, this result is due to Buff-Epstein [BE09], using transversality arguments. In [START_REF] Gauthier | Strong bifurcation loci of full Hausdorff dimension[END_REF], Gauthier uses different arguments that only require that the intersections are proper, as is the case in Proposition 4.1. A more general condition (called the generalized large scale condition) was introduced in [AGMV19] as a sufficient condition for a point to lie in the support of T k bif (for a family of rational maps). We give an adapted version of this notion in our non-autonomous setting, and deduce that a parameter λ 0 as in the statement satisfies such condition. This will prove Proposition 4.1.

In the following we assume that z 1 , . . . , z k ∈ J p and that c j (λ) are holomorphic maps such that c j (λ) is a critical point for q λ,z j for all λ ∈ M . We denote by c : M → C k the map c(λ) = (c 1 (λ), . . . , c k (λ)). For a k-uple n := (n 1 , . . . , n k ), we define (9)

ξ j n j (λ) := Q n j λ,z j (c j (λ)) and Ξ c n (λ) := (ξ 1 n 1 (λ), . . . ξ k n k (λ)).
Notice that Ξ Definition 4.2 (Fibred large scale condition). We say that λ 0 ∈ M satisfies the fibred large scale condition for the critical points

(z 1 , c 1 ), . . . , (z k , c k ) if there exist z 1 , . . . z k ∈ J p , disks D 1 , . . . , D k ⊂ C with D i ∩ J z i = ∅, a sequence n l = (n l,1 , . . . , n l,k ) of k-uples with n l,i → ∞ and a nested sequence of open subsets Ω l such that • ∩ l Ω l = {λ 0 }, and • Ξ c n l : Ω l → D 1 × • • • × D k is a proper surjective map.
Proposition 4.3. Let λ 0 ∈ M satisfy the fibred large scale condition for some points (z 1 , c 1 ), . . . , (z k , c k ) with q z j (c j ) = 0 for every j and such that the z j are preperiodic for p.

Then λ 0 ∈ Supp T bif z 1 ∧ • • • ∧ T bif z k .
Proof. The proof follows the same line as that of [AGMV19, Theorem 3.2]. We give here the main steps.

First of all, it is enough to prove the statement in the assumption that the dimension of M is equal to k, see [Gau12, Lemma 6.3]. For every n = (n 1 , . . . , n k ) with n j ≥ 0, we define the map

F n : M × C k → M × C k (λ, w 1 , . . . , w k ) → (λ, Q n 1 λ,z 1 (w 1 ), . . . , Q n k λ,z k (w k )).
and we denote by

π j : M × C k → M × C the projection (λ, w 1 , . . . , w k ) → (λ, w j ).
One can prove that, for every n as above and Borel set Ω ⊆ M ,

T bif z 1 ∧ • • • ∧ T bif z k (Ω) = d -|n| ˆΩ×C k F * n k j=1 π * j (dd c λ,w G λ (z j , •)) ∧ k j=1 C j = d -|n| ˆΩ×C k k j=1 π * j (dd c λ,w G λ (z j , •)) ∧ [V n ],
see [AGMV19, Lemma 3.3]. Moreover, with Ω l and n l as in the statement, we also have (see [AGMV19, Lemma 3.4]) that

lim inf l→∞ ˆΩl ×C k k j=1 π * j (dd c λ,w j G λ (z j , •)) ∧ [V n l ] ≥ k j=1 (dd c w G λ 0 (z j , •))(D j ).
We use in this step the second assumption in Definition 4.2. The right hand side of the last expression is strictly positive by the assumption that D j ∩ J z j = ∅. This implies that

T bif z 1 ∧ • • • ∧ T bif z k (Ω l ) > 0,
for a sequence of integers l going to infinity. Hence

λ 0 ∈ Supp T bif z 1 ∧ • • • ∧ T bif z k , as desired.
We can now prove Proposition 4.1.

Proof of Proposition 4.1. By Proposition 2.6 it is enough to prove that

λ 0 ∈ Supp T bif z 1 ∧ • • •∧ T bif z k . By Proposition 4.
3 it is thus enough to prove that any λ 0 as in the statement satisfies the fibred large scale condition above. We can also assume that the dimension of M is k.

Denote by s i the period of the repelling point r i and set s = (s 1 , . . . s k ). Set r i =: (z i , r i ) and similarly let r i (λ) = (z i , r i (λ)) be the motion of r i in a neighbourhood of λ 0 as a periodic point. Fix η > 0 and an open neighbourhood Ω of λ 0 such that the following properties hold:

(1) for all r i as in the statement, r i (λ) ∈ D(r i , η/10) for all λ ∈ Ω;

(2) for every i and every λ ∈ Ω, the map

Q s i λ,z i
is uniformly expanding on D(r i (λ), η) (with expansivity factor uniform in λ). Observe that, for all λ ∈ Ω, we have D(r i , η/2) ⊂ D(r i (λ), η). We set

A 0 := {(λ, w 1 , . . . , w k ) ∈ Ω × C k : w i ∈ D(r i (λ), η)}.
We denote by g λ,i : D(r i (λ), η) → C the inverse branch of Q s i λ,z i such that g λ,i (r i (λ)) = r i (λ) and by G : A 0 → Ω × C k the inverse branch of F s which agrees on A 0 with the g λ,i as above. For l ∈ N, we set A l := G l (A 0 ). Observe that A l shrinks (exponentially) with l → ∞ to the graph of the product map λ → (r 1 (λ), . . . , r k (λ)).

Consider the map Φ :

C k → C k defined by Φ (w 1 , . . . , w k ) = (w 1 -r 1 (λ), . . . , w k -r k (λ))
and set Φ(λ, w 1 , . . . , w k ) := (λ, Φ (w 1 , . . . , w k )). Observe that Φ(λ, r 1 (λ), . . . , r k (λ)) = (λ, 0, . . . , 0). We denote B 0 := Φ(A 0 ) = Ω × D(0, η) k and similarly set B l := Φ(A l ). We will also need the projections π M , π of M × C k on M and on C k , respectively. For every n = (n 1 , . . . , n k ) consider the map H n : Ω → C k given by H n := Φ • Ξ c n , where Ξ c n is defined in (9). We claim that the map H m is open in a neighbourhood of λ 0 , where m = (m 1 , . . . , m k ). By [GR12, §3.1.2 and §5.4.3], it is enough to check that the point λ 0 is isolated in (H m ) -1 H m (λ 0 ). This is precisely given by the second assumption in the statement. The same assumption and the fact that the q λ,z 's are open imply that, for any l ∈ N, we also have codim ∩ k i=1 M (z i ,c i ),r i ,m i +ls i = k. The argument above implies that also the maps H n l are open, where n l := (m 1 + ls 1 , . . . , m k + ls k ).

By restricting if necessary the Ω as above, we see that the graph Γ 0 of the map H m is of dimension k in B 0 . We set Ω l := π M (Γ 0 ∩ B l ). The Ω l 's are then open. Since B l shrinks with l to the constant graph {(λ, 0, . . . , 0)}, we also have that Ω l shrinks to {λ 0 } as l → ∞.

Set D i := D(r i , η/4), let Γ l be the graph of H n l on Ω l (which, by the above, is also k-dimensional) and recall that V n l denotes the graph of Ξ c n l . To conclude it is enough to prove that, for all l ∈ N, π(π -1 M (Ω l ) ∩ V n l ) ⊃ k i=1 D i . We will use the following fact. Fact. Let Ω

Ω be an open subset. Let W v , W h be two non-empty k-dimensional closed analytic subsets of

B 0 with π M (W v ) ⊂ Ω and π(W h ) ⊂ D(0, η/2) k . Then W h ∩ W v = ∅.
Recall that r i (λ) ∈ D(r i , η/10) for all i and λ ∈ Ω. Hence the Fact, applied with Ω = Ω l , W v = Γ l and W h = {(λ, y 1 -r 1 (λ), . . . , y k -r k (λ))}, implies that, for any y = (y 1 , . . . , y k ) ∈ k i=1 D(r i , η/4), there exists a λ ∈ Ω l such that

Q m i +ls i z i (c i (λ)) -r i (λ) = y i -r i (λ) for all 1 ≤ i ≤ k.
This implies that π(V n l ) ⊃ k i=1 D i , as desired. The proof is complete. Remark 4.4. As is the case in [START_REF] Astorg | Collet, Eckmann and the bifurcation measure[END_REF], it is enough to make a weaker assumption in Proposition 4.1, namely that the critical orbits fall in the motion of some hyperbolic set. The proof is slightly more involved in that situation (as is the case in [START_REF] Astorg | Collet, Eckmann and the bifurcation measure[END_REF]). We prefer to state only the simple criterion based on repelling periodic orbits since this simpler version will be enough to deduce our main result.

Creating multiple bifurcations: a geometric method

In this section we develop our method to construct multiple bifurcations (in the form of Misiurewicz parameters) starting from a simple one. In the next section we will ensure the applicability of this method. First, let us introduce the following definition.

Definition 5.1. Let (f λ ) λ∈M be a holomorphic family of polynomial skew products over a fixed base polynomial p. We say that M is a good Misiurewicz family, or that M has a persistently good Misiurewicz relation

f n 0 λ (z 0 , c(λ)) = (z 1 , w 1 (λ)) if the Misiurewicz relation f n 0 λ (z 0 , c(λ)) = (z 1 , w 1 (λ)) (where (z 1 , w 1 (λ)
) is a repelling periodic point of period m for f λ ) is persistent in M , and if moreover (G1) the vertical eigenvalue B(λ

) := (Q m λ,z 1 ) (w 1 (λ)) is non-constant on M ; (G2) for all λ ∈ M , (z 1 , w 1 (λ)) is vertical-like; (G3) (p n 0 ) (z 0 ) = 0 and z 0 / ∈ {p i (z 1 ), 1 ≤ i ≤ m}; (G4) for all λ ∈ M , c(λ) is a simple root of q λ,z 0 ; (G5) for all λ, if L λ denote the unique component of Crit(f λ ) passing through (z 0 , c(λ)), then f n 0 λ (L λ ) is regular at (z 1 , w 1 (λ)
) and is not tangent to an eigenspace of df m λ (z 1 , w 1 (λ)). A parameter λ 0 ∈ M satisfying all the conditions above will be called a good Misiurewicz parameter.

Observe that a good Misiurewicz family in Sk(p, d) is, in general, an open subset of an algebraic hypersurface of Sk(p, d). The next Proposition is the key technical result of our argument.

Proposition 5.2. Let (f λ ) λ∈M be a holomorphic family of polynomial skew products over a fixed base polynomial p and with a persistently good Misiurewicz relation

(z 1 , w 1 (λ)) := f N 0 λ (z 0 , c 0 (λ)).
There exists a dense subset S ⊂ M such that for all λ ∞ ∈ S and for every (z , w ) repelling periodic point in the limit set of a vertical-like IFS for f λ∞ , there exists a sequence λ n → λ ∞ such that f λn has a Misiurewicz relation of the form f Nn λn (y n , c n (λ n )) = (z , w (λ n )) (where (z , w (λ)) is the holomorphic motion as repelling periodic point of (z , w ) in a neighbourhood of λ ∞ ) which is nonpersistent on M and satisfies (G2), (G3), (G4), and (G5) on a neighbourhood of λ n in M (yn,cn(λn)),(z ,w (λn),Nn) ⊂ M .

Corollary 5.3. Let (f λ ) λ∈M be a holomorphic family of polynomial skew products with a persistently good Misiurewicz relation. Then, Bif(M ) = M .

Proof. The assertion follows from the fact that Misiurewicz parameters belong to the bifurcation locus, see [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Bianchi | Misiurewicz parameters and dynamical stability of polynomial-like maps of large topological degree[END_REF].

The remaining part of this section is devoted to proving Proposition 5.2. We start defining the set S.

Definition 5.4. Let M be a good Misiurewicz family, and let f n 0 λ (z 0 , c(λ)) = (z 1 , w 1 (λ)) be a persistent Misiurewicz relation satisfying the requirements of Definition 5.1.

We define the set S ⊂ M to be the set of λ ∞ ∈ M for which each of the following properties holds:

(S1) d λ B(λ ∞ ) = 0; (S2) log B(λ ∞ ) / ∈ R log A.
Note that S is open and dense in M . From now on, we fix an arbitrary λ ∞ ∈ S, and we choose a one-dimensional disk in local coordinates in M transverse to a level set of B in which λ ∞ = 0 (hence dB dλ (0) = 0). The proof of Proposition 5.2 will mostly use local arguments in phase space. Therefore, we will work in local linearizing coordinates near (z 1 , w 1 ); in particular, in the rest of this section we will take (z 1 , w 1 ) = (0, 0), and we will assume that m = 1 (which we can do up to passing to an iterate).

By item (S2) of the definition of S, there are no resonances between the eigenvalues of this fixed point (0, 0) for λ close to λ ∞ = 0. We may therefore assume that the fixed point (0, 0) is linearizable for f λ ; moreover the linearizing map can be chosen to depend holomorphically on the parameter. More precisely, we can fix a neighbourhood U of (0, 0) such that these linearizing coordinates are defined for (z, w) ∈ U for all f λ with |λ| small enough. So f λ acts in those coordinates as the linear map (z, w) → (Az, B(λ)w).

It follows from the Implicit Function Theorem and (G4) that there is a unique component of Crit(f λ ) passing through (z 0 , c(λ)), and that this component is smooth and can be locally described as a graph of the form w = β(z, λ), for some holomorphic germ β. Setting β(z, λ)

:= Q N 0 λ,z ( β(z, λ)), this implies that the graph w = β(z, λ) is a local parametrization of a component L λ of f N 0 λ (Crit(f λ )).
The assumption (G5) and our choice of local coordinates imply that the holomorphic map z → β(z, λ) is not constantly equal to 0, and moreover that β 1 := ∂β ∂z (0, 0) = 0.

Lemma 5.5. Let K ⊂ C * be a compact set. Let (z k ) k∈N be a sequence in J p such that z k → 0, and (m k ) k∈N be a sequence of integers such that

z k A -m k B m k ∈ K for all k. Set ϕ k (λ) := β(z k A -m k , λ)B(λ) m k . Then the sequence (ϕ k ) k∈N is not normal at λ = 0.
Proof. Let us compute the derivative of ϕ k at 0:

dϕ k dλ (0) = ∂β ∂λ (z k A -m k , 0)B m k + β(z k A -m k , 0)B (0)m k B m k -1 = O z k A -m k B m k + β 1 z k A -m k B (0)m k B m k -1 + O z 2 k A -2m k B m k + O z 2 k A -2m k B m k m k . Since β 1 = 0, by the choice of m k , we have dϕ k dλ (0) = β 1 z k A -m k B (0)m k B m k -1 + O(1) m k , hence lim k→+∞ | dϕ k dλ (0)| = +∞.
This proves the non-normality of (ϕ k ) at 0. Lemma 5.6. Let H 0 be the limit set of a vertical-like IFS for f 0 . Let (z , w ), (z , w ) ∈ K be periodic points and let U be an open neighbourhood of (z , w ). There exist w 1 = w 2 ∈ C, both distinct from w and with (z , w 1 ), (z , w 2 ) ∈ H 0 ∩ U , and sequences (z k , w k,i ) (with 1 ≤ i ≤ 2) with lim k→+∞ (z k , w k,i ) = (z , w i ) and such that, for all k ∈ N and i ∈ {1, 2},

(1) there exists

n k ∈ N such that f n k (z k , w k,i ) = (z , w ); (2) (z k , w k,i ) ∈ H 0 ∩ U ; (3) z k = z .
Proof. First, let (z , w 1 ) and (z , w 2 ) be two periodic points in H 0 ∩ U such that w , w 1 , and w 2 are pairwise distinct. Such points exist since H 0 ∩ ({z } × C) contains (the image of) the limit set of a non-trivial IFS in C by the condition (V2) in Definition 3.4. We can also assume that (z , w 1 ) and (z , w 2 ) have the same period.

There exists a finite sequence g i 1 , . . . , g i 1 with the property that (z , w 1 ) is the unique fixed point of the finite composition

G 1 := g i 1 • • • • • g i . Similarly, (z , w 2 ) is the unique fixed point of a finite composition G 2 := g j 1 • • • • • g j 2 .
Since (z , w 1 ) and (z , w 2 ) have the same period, we can assume that 1 = 2 = . Moreover, since (z , w 1 ) and (z , w 2 ) belong to the same vertical fibre, the maps G 1 and G 2 agree on the first coordinate.

We now construct the sequences (z k , w k,i ). We first assume that z does not belong to the orbit of z under the base polynomial p. In this case, given k 0 ∈ N it is enough to set (z k,i , w k,i ) := G k+k 0 i (z , w ) for all k ≥ 1. Since G 1 and G 2 agree on the first coordinate, we have z k,1 = z k,2 for all k. We set z k := z k,1 = z k,2 for all k. For i ∈ {1, 2}, the sequence (z k , w k,i ) converges to (z , w i ) as k → ∞ by the definition of G i . When k 0 is taken sufficiently large, all the points in such sequences belong to U ∩ H 0 . Finally, we have z k,i = z for all k since by assumption z is not in the orbit of z .

Suppose now that z belongs to the orbit of z . Since backwards preimages of (z , w ) are dense in H 0 , there exists at least one such preimage z not in the orbit of z . We choose w so that (z , w ) ∈ H 0 and (z , w ) is in the orbit of (z , w ). It is enough to apply the above argument to (z , w ) instead of (z , w ). The proof is complete.

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. We are working in the setting described after Definition 5.4. We fix a periodic point (z , w ) in the limit set H 0 of a vertical-like IFS as in the statement. Observe that (z , w ) is vertical-like. We can choose (z , w ) with z not in the post-critical set of p. We also denote by H λ the holomorphic motion of H 0 as hyperbolic set in a neighbourhood of λ = 0.

We let (z k , w k,i ) be the sequences of preimages of (z , w ) given by Lemma 5.6 applied to (z , w ) = (0, 0) and (z , w ). Since all of these points belong to H 0 , they all move holomorphically as (z k , w k,i (λ)) over a common domain in parameter space. Moreover, by the Definition 3.1 and continuity, we may fix a vertical cone C α 0 := {u ∈ C 2 : | u, (0, 1) | > α 0 u } such that, for all λ in a neighbourhood of 0 and (x, y) ∈ H λ , we have (df λ ) (x,y) (C α 0 ) C α 0 . This implies that the non-vertical Oseledets direction are uniformly bounded away from the vertical direction.

Fix ε > 0. We want to prove that there exists λ ∈ D(0, ε) and i 0 ∈ {1, 2} such that (z k , w k,i 0 (λ)) (and hence (z , w (λ))) is (non-persistently) in the post-critical set of f λ . To that end, observe that (10)

f m k (z k A -m k , β(z k A -m k , λ)) = (z k , β(z k A -m k , λ)B(λ) m k ) = (z k , ϕ k (λ))
is a post-critical point; it is therefore enough to prove that there exist sequences λ k → 0 and

(i k ) ∈ {1, 2} N such that w k,i k (λ k ) = ϕ k (λ k ).
By Lemma 5.5, the sequence (ϕ k ) k is not normal at λ = 0. Therefore, by Montel theorem, the sequence of the graphs of the ϕ k 's cannot avoid both those of w k,1 and w k,2 . Hence there exist λ k → 0 and

(i k ) ∈ {1, 2} N such that ϕ k (λ k ) = w k,i k (λ k ).
Up to a subsequence, we can assume that i k is constant. By Lemma 5.5 and the Definition 3.4 of a vertical-like IFS, the Misiurewicz relation constructed as above satisfies (G2). By the choice of (z , w ) at the beginning of the proof, this relation satisfies the first condition in (G3). By taking only k large enough, the second part of the condition is satisfied, too. Condition (G4) holds since, by assumption, c(0) is a simple critical point for q 0,z 0 , hence the same is true for small λ and z close to z 0 . It remains to prove that the relation satisfies (G5).

By the definition (7) of C α and the choice of α 0 at the beginning of the proof, it is enough to prove that for all k large enough, the tangent space to the component of the postcritical set passing through (z k , w k,i 0 (λ k )) and giving the Miriurewicz relation above lies in C α 0 . The branch of the postcritical set is locally given by the equation

w = β(zA -m k , λ k )B(λ k ) m k ,
and therefore its tangent space is generated by the vector

u k := 1, ∂ ∂z |z=z k β(zA -m k , λ k ))B(λ k ) m k . Since ∂ ∂z |z=z k β(zA -m k , λ k ))B(λ k ) m k = ∂β ∂z (z k A -m k , λ k ) B(λ k ) A m k ∼ k→+∞ β 1 • B(λ k ) A m k ,
and β 1 = 0, it follows that, for all k large enough, u k belongs to C α 0 . The proof is complete.

Proof of the main results

In this section, we will first apply inductively Proposition 5.2 in order to prove our main Theorem 1.2, and then deduce from this result and its proof the other results in the Introduction. We start with a few required lemmas. Lemma 6.1. Let (f λ ) λ∈M be a holomorphic family of polynomial skew products over a fixed base p and of a given degree d ≥ 2, and take λ 0 ∈ Bif(M ). There exists a finite set E ⊂ J p such that for all z 1 ∈ J p \E, if (z 1 , w 1 ) is any repelling periodic point of f λ 0 (which we locally follow as (z 1 , w 1 (λ))) then, for every n 0 ∈ N, arbitrarily close to λ 0 there exists λ 1 ∈ M such that f λ 1 has a Misiurewicz relation of the form

f n λ 1 (z, c) = (z 1 , w 1 (λ 1 )) with (p n ) (z) = 0 and n ≥ n 0 .
Proof. First of all, let us define E as the union of all repelling periodic points in the postcritical set. This set is finite. We fix any repelling periodic point z 1 / ∈ E. By [AB18, Proposition 3.5], we may find λ 0 arbitrarily close to λ 0 for which a critical point of the form (y, c) is active, where y is in the strict backward orbit of z 1 by p. By Montel theorem, we can further slightly perturb λ 0 to a λ 1 with the property that some iterate of (y, c) by f λ 1 coincides with (z, w 1 (λ 1 )). This completes the proof. Lemma 6.2. Take λ 0 ∈ Sk(p, d), let z ∈ J p be a periodic point of period m > d, and

(z, w i ) (1 ≤ i ≤ D d = dim Sk(p, d)
) denote a collection of repelling periodic points of Q m λ 0 ,z of different periods, which we follow locally as (z, w i (λ)) over a domain U ⊂ Sk(p, d) containing λ 0 . Let ρ i (λ) denote their vertical multipliers, and let ρ : U → C D d denote the map ρ : λ → (ρ i (λ)) 1≤i≤D d . There exists an analytic hypersurface R ⊂ U such that for all λ ∈ U \R, the differential dρ λ is invertible.

Proof. First we claim that, since the period m of z satisfies m > d, the family of the first returns (Q m λ,z ) λ∈Sk(p,d) can be mapped to an algebraic subfamily of pure dimension D d = dim Sk(p, d) in the space Poly(d m ) of monic centred degree polynomials of degree d m (the fact that the image is given by monic centred polynomials follows from the parametrization of Sk(p, d) given in Lemma 2.1). Indeed, consider first the map ϕ z : Sk(p, d) → Poly(d) m defined by ϕ z (λ) = (q λ,z i ) 1≤i≤m , where z i := p i (z). Since m > d and the coefficients of q λ,z i are given by polynomials in z i of degree at most d, the map ϕ z is injective. Then, consider the map C : Poly(d) m → Poly(d m ) defined by C(q m , . . . , q 1 ) = q m • . . . • q 1 . Claim 6.3. The differential of C at (w d , . . . , w d ) is injective.

Proof. For ε > 0, consider the polynomials q i = w d + εr i , with r i polynomials in w of degree ≤ d -2. For every j ≤ m, we also set Q j (ε, w) := q j • • • • • q 1 . It is enough to check that, for every choice of r 1 , . . . , r m (not all zero) we have ∂Qm(ε,w) ∂ε = 0 (as a polynomial in w) at ε = 0. Since for all 1 ≤ j ≤ m we have Q j (0, w) = w d j , we can check by induction that ∂Q 1 (ε, w) ∂ε ε=0 = r 1 (w);

. . .

∂Q j (ε, w) ∂ε ε=0 = r j (w d j-1 ) + d(w d j-1 •(d-1) ) • ∂Q j-1 (ε, w) ∂ε ε=0 ;
. . .

∂Q m (ε, w) ∂ε ε=0 = r m (w d m-1 ) + d(w d m-1 •(d-1) ) • ∂Q m-1 (ε, w) ∂ε ε=0 .
Since deg r j ≤ d -2 for all j, it follows that, for all 0 ≤ j ≤ m -1,

∂Q j+1 (ε,w) ∂ε ε=0 = 0
as soon as

∂Q j (ε,w) ∂ε ε=0
= 0. Hence, in order to have ∂Qm(ε,w) ∂ε ε=0

= 0, we must have

∂Q j (ε,w) ∂ε ε=0
= 0 for all 0 ≤ j ≤ m. Since this implies that all the r j 's must be equal to 0, the proof is complete.

Therefore, since Q m λ,z = C • ϕ z (λ), the map λ → Q m λ,z
is locally injective near λ := 0, and so the family (Q m λ,z ) λ∈Sk(p,d) has indeed dimension D d . Once this property is established, the statement follows from a slight adaptation of the main result in [START_REF] Gorbovickis | Algebraic independence of multipliers of periodic orbits in the space of polynomial maps of one variable[END_REF], which is as follows. For any D ≥ 2, for any Q λ 0 ∈ Poly(D), let w i (1 ≤ i ≤ D -1) be a collection of repelling periodic points for Q λ 0 , of distinct periods m i . Up to passing to a finite branched cover of Poly(D), we may follow globally those periodic points as functions of the parameter λ → w i (λ). If we denote by ρ i (λ) their respective multipliers ρ i (λ) := (Q m λ ) (w i (λ)) and set ρ(λ) := (ρ i (λ)) 1≤i≤D-1 , then Gorbovickis proves that there exists a global hypersurface R such that for all λ / ∈ R, the differential dρ λ is invertible.

Therefore, it is enough for us to arbitrarily complete our collection of repelling periodic points with some w i (with Proof. It will be useful to consider the algebraic hypersurface M ⊂ Sk(p, d) defined by: M := {λ ∈ Sk(p, d) : Res(q λ,z 0 , Q n+m λ,z 0 -Q m λ,z 0 )} where Res is the resultant and m is the period of (z 1 , w 1 ). In other words, M is the set of λ ∈ Sk(p, d) such that a critical point of the form (z 0 , c) lands after n iterations on a periodic point of period dividing m (and that periodic point may or may not be repelling). By definition, M (z 0 ,c 0 ),n is a neighbourhood of λ 0 in M.

D d < i ≤ d m
Let us first prove that the subset of M where (G4) does not hold has codimension at least 1 in M. Let Π := {(p, q) : q ∈ Poly(d)} ⊂ Sk(p, d) denote the subfamily of trivial products. Then (G4) holds on a dense open subset of M ∩ P , and so (G4) does not hold on a subset of M of codimension at least 1 (in fact exactly 1, unless d = 2 in which case (G4) is always true). Now let λ 1 ∈ M be a parameter where (G4) holds. Then we may locally follow the critical point (z 0 , c 0 ) as (z 0 , c 0 (λ)), and moreover there exists a unique irreducible component L λ of Crit(f λ ) passing through (z 0 , c 0 (λ)) for λ close enough to λ 0 , of local equation of the form w = c(λ, z). By (G3), the algebraic set f n λ (L λ ) is also locally a graph near (z 1 , w 1 (λ)), with local equation given by w = Q n λ,p -n (z) (c(λ, z)), where p -n denotes the local inverse branch of p n mapping z 1 to z 0 . In particular, it is regular at (z 1 , w 1 (λ)) and its tangent space is not vertical.

We now need to prove that the set of λ 1 ∈ M where the tangent space of

f n λ (L λ ) is not an eigenspace of (df m λ ) (z 1 ,w 1 (λ)
) is open and dense in M; again by the algebraicity of the condition, it is in fact enough to prove that this subset is non-empty. Hence, we can restrict ourselves to the unicritical subfamily U d ⊆ Sk(p, d) introduced in Section 2.3 and prove the analogous statement there. By Lemmas 2.4 and 2.5, and with the notations as in those lemmas, it is enough to prove that the identity v

(2) λ = u (2) λ cannot hold on all of M ∩ U d .
By Lemma 2.3, the accumulation on

P d ∞ of M ∩ U d is equal to E z 0 = {[λ] : a(z 0 ) = 0}. We choose λ ∞ such that [λ ∞ ] ∈ E z 0
and z 0 is the only root in J p of the derivative a of the associated polynomial a. Since there exists a sequence (λ j ) j∈N such that for all j ∈ N, λ j ∈ M ∩ U d and [λ j ] → [λ ∞ ], the assertion follows from the estimates (4) and (6). The proof is complete.

We can now prove Theorem 1.2 and the other results stated in the Introduction.

Proof of Theorem 1.2. Fix λ 0 ∈ Bif(Sk(p, d)) and ε > 0. Set M 0 := Sk(p, d), and let H λ 0 denote the limit set of a vertical-like IFS for f λ 0 (which exists by Proposition 3.5). Let z be a repelling periodic point of period m > d for p and (z, w i (λ 0 )) be a collection of repelling periodic points in H λ 0 as in Lemma 6.2.

We will prove by induction on 1 ≤ k ≤ dim Sk(p, d) that there exist a parameter λ k which is kε-close to λ 0 and a family M k with λ k ∈ M k satisfying the following properties:

(I1) M k = 1≤i≤k M (y i ,c i ),(z,w i (λ k )),n i is the intersection of k distinct Misiurewicz loci (where a critical point lands after some iterations on one of the periodic points (z, w i ) introduced above);

(I2) M k has codimension k in Sk(p, d); (I3) if k < dim Sk(p, d), among the k persistent Misiurewicz relations defining M k ,
at least one is good in the sense of Definition 5.1 in a neighbourhood of λ k . Recall that each M (y i ,c i ),(z,w i (λ k )),n i is a local family; in particular, condition (I3) is also local.

Initialization: the case k = 1. Using the notation of Lemma 6.2, up to replacing λ 0 by a first perturbation λ 0 , we may assume without loss of generality that λ 0 ∈ Bif(Sk(p, d))\R. Indeed, the bifurcation locus cannot be locally contained in any proper analytic subset of Sk(p, d), since the bifurcation current has continuous potential. In the rest of the proof, we will always assume that all perturbations are small enough so that none of the parameters we consider belong to R.

We then apply Lemma 6.1 to find λ ∈ B(λ 0 , ε 3 ) such that f λ has a Misiurewicz relation of the form f n 1 λ (y 1 , c 1 ) = (z, w 1 (λ)), hence λ ∈ M (y 1 ,c 1 ),(z,w 1 (λ )),n 1 . Here n 1 can be taken arbitrarily large. We can assume that y 1 satisfies (p n ) (y 1 ) = 0, that it does not belong to the cycle of z and that the period m 1 of z satisfies m 1 > d. We need to prove that up to perturbing λ inside M (y 1 ,c 1 ),(z,w 1 (λ )),n 1 , we can obtain λ 1 ∈ M (y 1 ,c 1 ),(z,w 1 (λ )),n 1 ∩ B(λ 0 , ε) which is a good parameter in the sense of Definition 5.1.

Let us first prove that the vertical multiplier ρ 1 (λ) of (z, w 1 (λ)) is not constant on M (y 1 ,c 1 ),(z,w 1 (λ )),n 1 . The argument is similar to the one in the proof of Lemma 6.4: we consider the intersection M := M (y 1 ,c 1 ),(z,w 1 (λ )),n 1 ∩ U d with the unicritical subfamily U d and pick [λ ∞ ] is the accumulation on P d ∞ of M such that λ ∞ (p i (z)) = 0 for all 0 ≤ i ≤ m 1 . Then, by Lemma 2.3, there exists a sequence (λ j ) j∈N such that λ j ∈ M for all j ∈ N,

|λ j | → +∞ and [λ j ] → [λ ∞ ]. By Lemma 2.2, for all 0 ≤ i ≤ m 1 -1, we have |w i,j | |λ j | 1/d where w i,j := Q n 1 +i λ j ,z (0). In particular, |ρ 1 (λ j )| := (Q m 1 λ j ,z ) (w 0,j ) |λ j | m 1 •(d-1
)/d and therefore is not constant. This proves (G1).

Observe that (G3) follows from the choice of y 1 as in Lemma 6.1. Property (G2) is a consequence of the fact that (z, w 1 (λ)) belongs to the limit set of the vertical-like IFS, and it follows from Lemma 6.4 that properties (G4) and (G5) are generically satisfied in M (y 1 ,c 1 ),(z,w 1 (λ )),n 1 as soon as (G3) holds. This takes care of (I1) and (I3); and (I2) is obvious in the case k = 1.

Heredity. Assume now that k < D d is such that there exists λ k satisfying (I1), (I2) and (I3). By the induction hypothesis, there exists k 0 ∈ {1, . . . , k} such that the vertical multiplier ρ k 0 of the repelling cycle from the k 0 -th Misiurewicz relation M (y k 0 ,c k 0 ),(z,w k 0 (λ)) is non-constant on M k . Consider the germ of analytic subset of M k defined by N := {λ ∈ M k : ρ k 0 (λ) = ρ k 0 (λ k )}. Then N has codimension k + 1 in Sk(p, d). We claim that if k < D d -1, there exists at least one repelling point (z, w j 0 ) (among all those introduced at the beginning of the proof) with j 0 = k 0 such that its vertical multiplier ρ j 0 is non-constant on N . Indeed, by Lemma 6.2,

dim D d i=1 {λ ∈ Sk(p, d) : ρ i (λ) = ρ i (λ k )} = 0, while if k < D d -1 then dim N > 0. If j 0 > k,
then we relabel the repelling periodic points (z, w i ) k+1≤i≤D d so that j 0 = k + 1.

We now take λ k+1,∞ ∈ B(λ k , ε 2 ) to be a point in the dense set S given by Proposition 5.2, and then take λ k+1 ∈ B(λ k+1,∞ , ε

2 ) such that λ k+1 has a Misiurewicz relation as in Proposition 5.2, with (z , w ) := (z, w k+1 ). We consider the associated Misiurewicz locus M k ∩ M (y k+1 ,c k+1 ),(z,w k+1 (λ k+1 )),n k+1 . By Proposition 5.2, λ k+1 already satisfies (I1) and (I2) with

M k+1 := M k ∩ M (y k+1 ,c k+1 ),(z,w k+1 (λ k+1 )),n k+1 .
If k = D d -1, we are done; otherwise, it remains to be proved that at least one of the Misiurewicz relations defining M k+1 is good in M k .

Note that items (G2), (G3), (G4), and (G5) are all preserved by restriction, so that they still hold on M k+1 for each of the first k Misiurewicz relations M (y i ,c i ),(z,w i (λ k )),n i (with 1 ≤ i ≤ k). Moreover, the new Misiurewicz relation M (y k+1 ,c k+1 ),(z,w k+1 (λ k+1 )),n k+1 satisfies (G2) since (z, w k+1 ) is vertical-like by definition, and satisfies (G3), (G4), and (G5) by Proposition 5.2.

It now only remains to prove that at least one among the (z, w i (λ)) (for 1 ≤ i ≤ k + 1) has a non-constant vertical multiplier on M k+1 , which would give (G1). Recall that there exists k 0 , j 0 ≤ k + 1 with k 0 = j 0 , such that ρ j 0 is non-constant on {λ ∈ Sk(p, d) :

ρ k 0 (λ) = ρ k 0 (λ k )}.
In other words, the level sets {λ ∈ M k : ρ k 0 (λ) = ρ k 0 (λ k )} and {λ ∈ M k : ρ j 0 (λ) = ρ j 0 (λ k )} are two distincts analytic hypersurfaces of M k . Up to taking λ k+1 close enough to λ k , we may still assume that the same holds at λ k+1 . Therefore M k+1 (which has codimension 1 in M k ) cannot be contained in

{λ ∈ M k : ρ k 0 (λ) = ρ k 0 (λ k+1 )} ∩ {λ ∈ M k : ρ j 0 (λ) = ρ j 0 (λ k+1 )},
which precisely means that either ρ j 0 or ρ k 0 is non-constant on M k+1 .

Therefore, at least one of the k + 1 Misiurewicz relations defining M k+1 is good in the sense of definition 5.1. This proves (I3) and completes the inductive step. The proof is complete. We work here in the assumptions of Proposition 3.5. We assume that we are given a hyperbolic set H in J p as in the proof of Proposition 3.5, i.e., with positive entropy and δ := dim H H > 1. We will be only interested in the following in the dynamics of f on H (and H × C). We denote by m the conformal measure associated with the weight ϕ(z) := -log |p (z)| δ . Recall that this means that m is an eigenvector for the dual L * of the Perron-Frobenius operator L acting on continuous functions g : H → R as

L ϕ (g)(x) = f (a)=x e ϕ(a) g(a).
Observe that ϕ is Hölder continuous on H. This and the hyperbolicity of H imply the existence and uniqueness of m, see for instance [START_REF] Przytycki | Conformal fractals: ergodic theory methods[END_REF]. Moreover, m is equivalent to the δ-dimensional Hausdorff measure. It is also equivalent to the unique equilibrium state ν for the system ( H, f ) associated with ϕ. This means that ν is the (unique) maximizer of the pressure P ( ϕ) := sup ω h ω + ω, ϕ , where the supremum is taken over all invariant probability measures for f and h ω is the metric entropy of the measure ω. We denote by ρ the Radon-Nikodym derivative of ν with respect to m, i.e., set ν = ρ m, and by L ν = ν, ϕ the Lyapunov exponent for ν. By the construction of H, we have L ν < log d ≤ L v , where L v is the vertical exponent for f . We also have Recall that J H = ∪ z∈ H {z} × J z . We see (J H , f ) as a dynamical system and we can consider the weight on J H given by ϕ(z, w) = ϕ(z) = -log |p (z)| δ . Observe that, a priori, ϕ is not a Hölder continuous weight on J, and the system (J H , f ) is not necessarily hyperbolic. Hence, we cannot directly apply the thermodynamical formalism for the system (J, f ) and weight ϕ (see for instance [START_REF] Urbański | Equilibrium measures for holomorphic endomorphisms of complex projective spaces[END_REF][START_REF] Bianchi | Existence and properties of equilibrium states of holomorphic endomorphisms of P k[END_REF]), nor to the system (J H , f ). However, given the fibred structure it is immediate to deduce the following result. for all x ∈ J H and continuous functions g : J H → R. Moreover, the metric entropy of ν is strictly larger than log d and the Lyapunov exponents of ν are equal to L v and L ν . In particular, they are strictly positive.

Proof. It follows from the definition that ν is f -invariant. Moreover, (11) implies ( 12) and (12) implies that m is a (unique) conformal measure and that ν is mixing and is a unique equilibrium state, see for instance [PU10, UZ13, BD20]. The metric entropy of ν is equal to log d + h ν by Brin-Katok formula [START_REF] Brin | On local entropy[END_REF] for the mass of infinitesimal balls and the fibred structure of ν. Both L ν and L v must be Lyapunov exponents for the systems, which completes the proof.

In order to prove Lemma 3.6, we will give an adapted fibered version of the proof by Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] of the equidistribution of repelling periodic points with respect to the equilibrium measure for endomorphisms of P k (which is done by constructing enough contracting inverse branches of a ball centred on the Julia set to itself). Since the method is now standard, we just sketch the overall proof and highlight the differences here (due to the non-constant Jacobian of ν and ν). More details can be found in [BD20, Section 4.7], where the strategy is adapted to prove the equidistribution of repelling periodic points with respect to the equilibrium state (when the weight satisfies some regularity condition on all of J).

First we need to introduce the natural extension of the system (J H , f ), see [START_REF] Cornfeld | Ergodic theory[END_REF]. We set X := J H \ ∪ m≥0 f -m (P C f ), where P C f := ∪ n≥0 f n C f is the postcritical set of f . Since, by Lemma A.1, the entropy of ν is strictly larger than log d, we have ν(X) = 1, see [START_REF] De | Sur les exposants de Lyapounov des applications méromorphes[END_REF][START_REF] Dupont | Large entropy measures for endomorphisms of CP k[END_REF]. We then consider the dynamical system ( X, f , ν), where X = {x = (. . . x -1 , x 0 , x 1 , . . . ) : f (x i ) = x i+1 } and f (x) = (x i+1 ) i∈Z where x = (x i ) i∈Z .

The measure ν lifts to a measure ν satisfying (π 0 ) * ν = ν, where π 0 : X → X is given by (x i ) → x 0 . The measure ν is mixing since ν is mixing. For any x ∈ X and every n we denote by f -n x the inverse branch of f n in a neighbourhood of x 0 with values in a neighbourhood of x -n . We have the following lemma.

Lemma A.2. For all ε < L ν there exist measurable functions r ε , L ε , T ε : X → R + such that, for ν-almost all x ∈ X and all n ≥ 1,

(1) the map f -n

x is defined on B(x 0 , r ε (x)); (2) Lip(f -n

x ) ≤ L ε e -nL ν +nε on B(x 0 , r ε (x)); (3) ∀y ∈ f -n

x (B(x 0 , r ε (x))) we have 0 (E ∩ X), ÊC := Ê ∩ X C , and ν C = (π 0 ) * (ν | XC ). Fix now a point x ∈ X, a constant C sufficiently large (to be chosen later), and a fibred box x ∈ A ⊂ B(x, 1/(2C)). We also fix a subset A r := {y ∈ A, dist(y, A c ) > r}, where the complement A c is taken in J H .

We call good component of f -n (A) any connected component with diameter smaller than r/2. Since any good component intersecting A r is strictly contained in A, to prove the lemma we need to show that (we can choose A, C, r so that) for n sufficiently large, there are at least 3d n good components of f -n (A) intersecting A r and satisfying the estimates in (8).

Notice that, for any y ∈ ÂC the inverse branch f -n ŷ is defined on A. Moreover, it follows from Lemma A.2(2) that, for all n sufficiently large all images of such inverse branches have diameter smaller than r/2 (uniformly in ŷ). Hence they are good components.

Since ν is mixing, we have ν( f -n (E 1 ) ∩ E 2 ) → ν(E 1 ) • ν(E 2 ) for any Borel subsets E 1 , E 2 ⊆ X. In particular, we have, for all n large enough,

ν(π 0 ( f -n ( Âr ) C ) ∩ A r ) = ν( f -n ( Âr ) C ∩ Âr ) ≥ 1 2 ν(( Âr ) C ) • ν( Âr ) = 1 2 ν C (A r ) • ν(A r ).
By the argument above, the LHS of the above expression is larger that ν(∪ j A j ) where A j , 1 ≤ j ≤ N , are the good components of f -n (A) intersecting A r . To get the desired estimate on N , we need to find an upper bound for ν(A j ) (this bound is immediate when working with the measure of maximal entropy, since this measure has constant

Corollary 1 . 3 .

 13 Let p be a polynomial with Julia set not totally disconnected, which is neither conjugated to z → z d nor to a Chebyshev polynomial. Near any bifurcation parameter in Sk(p, d) there exist algebraic subfamilies M k of Sk(p, d) of any dimension k < D d such that the support of the bifurcation measure of M k has non-empty interior in M k .

  c n : M → C k . We denote by C j the graph of c j in M × C and by V n the graph of Ξ c n in M × C k . We also write |n| := n 1 + • • • + n k for a k-uple n as above.

  ) and prove that the subfamily (Q m λ,z ) λ∈Sk(p,d) ⊂ Poly(d m ) is not entirely contained in the corresponding algebraic hypersurface H ⊂ Poly(d m ). But this in turn follows from the facts that w → w D never belongs to H ([Gor16, Lemma 2.1]), and that w → w d m always belongs to(Q m λ,z ) λ∈Sk(p,d) ⊂ Poly(d m ).The proof is complete. Lemma 6.4. Let λ 0 ∈ Sk(p, d) and assume that f λ 0 has a Misiurewicz relation f n λ 0 (z 0 , c 0 ) = (z 1 , w 1 ) satisfying (G3), and let m be the period of (z 1 , w 1 ). Let M (z 0 ,c 0 ),n ⊂ Sk(p, d) denote the local hypersurface of Sk(p, d) where this Misiurewicz relation is preserved. Then, the set of parameters λ ∈ M (z 0 ,c 0 ),n which satisfy (G4) and (G5) is open and dense in M (z 0 ,c 0 ),n .

Proof of Theorem 1 . 1 .

 11 Let λ D d be as constructed in the proof of Theorem 1.2. By Proposition 4.1, we have λ D d ∈ Supp T D d bif . This gives Supp T bif = T D d bif , and proves the assertion. Proof of Corollary 1.3. By the initialization step in the proof of Theorem 1.2, for every d there exists a Misiurewicz hypersurface of Sk(p, d) which is good in the sense of Definition 5.1. The result follows from Corollary 5.3. Proof of Corollary 1.4. By [Duj17, Taf17], for every d ≥ 2 the bifurcation locus of the family Sk(p, d) is not empty. The assertion follows from Theorem 1.1.Proof of Corollary 1.5. By Theorem 1.1 it is enough to check that the same property is true for the bifurcation locus. By [AB18, Theorem 3.3], the bifurcation locus associated to the return maps of any periodic fibre is contained in the bifurcation locus of the family Sk(p, d). By[START_REF] Mcmullen | The Mandelbrot set is universal[END_REF] the bifurcation loci of the return maps have full Hausdorff dimensions. The assertion follows.Appendix A. Proof of Lemma 3.6

  n ) (a)| δ g(a) → ρ(x) m, g for all x ∈ H and continuous functions g : H → R, where λ is the eigenvalue corresponding to m, i.e., L * m = λ m.

Lemma A. 1 .

 1 The measuresm := ˆ H µ z d m(z) and ν := ˆ H µ z d ν(z) = ˆ H µ z ρ(z)d m(z)are the unique conformal measure and equilibrium state associated with the weight ϕ(z, w) = -log |p (z)| δ on the system (J H , f ), respectively. The measure ν is invariant, mixing, and satisfies (12) lim n→∞ (dλ) -n f n (a)=x 1 |(p n ) (π z (a))| δ g(a) → ρ(x) m, g

1 n

 1 log |Jac df n y | -(L ν + L v ) ≤ 1 n log T ε (x) + ε; (4) ∀y ∈ f -n x (B(x 0 , r ε (x))) we have 1 n log df n y -L v ≤ 1 n log T ε (x) + ε. Proof. The statement is a consequence of [BDM08, Theorem 1.4], see also [BD19,Theorem A]. These results are stated for the measure of maximal entropy, but only the strict positivity of the Lyapunov exponents of the measure is needed, see the remark at the end of the Introduction of[START_REF] Berteloot | A distortion theorem for iterated inverse branches of holomorphic endomorphisms of P k[END_REF].We fix ε L ν in what follows and set XC := {x ∈ X : r -1 ε , L ε , T ε < C}. We have ν( XC ) → 1 as C → ∞. Given a Borel subset E ⊂ C 2 , we setÊ := π -1

  Hence, |w d j | |λ j |, which gives |w j | |λ j | 1/d . Let us now consider the intersection of a Misiurewicz hypersurface in Sk(p, d) with U d . This (when not empty) is a Misiurewicz hypersurface in U d . Since the only critical points for maps in U d that can give non-persistent Misiurewicz relations in U d are of the form (z 0 , 0) (and these all have multiplicity d), we see that any Misiurewicz hypersurface of U d has the form

	(3)
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Since the measure ν is not-atomic, the function M (r) := sup z∈C ν(B(z, r)) goes to 0 as r → 0. Since the system ( H, f ) is hyperbolic, the diameters of all the B j tend uniformly to zero as n → ∞. Hence, there exists a function M n such that ν(B j ) ≤ M n for all j and M n → 0 as n → ∞. Take n large enough so that M n < 1/6. The above inequalities imply that N > 3d n , as desired. The estimates in (8) follow from items (3) and (4) in Lemma A.2 (up to possibly increasing n).