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HIGHER BIFURCATIONS FOR POLYNOMIAL SKEW PRODUCTS

MATTHIEU ASTORG AND FABRIZIO BIANCHI

We continue our investigation of the parameter space of families of polynomial skew-products.
We study the self-intersections of the bifurcation current, and in particular the bifurcation
measure, through the simultaneous bifurcations of multiple critical points. Our main result is
the equality of the supports of the bifurcation current and the bifurcation measure for families
of polynomial skew-products over a fixed base. This is a striking difference with respect to the
one-dimensional case.

Combined with results by Dujardin and Taflin, this also implies that the support of the
bifurcation measure in these families has non-empty interior. It also provides a new proof of
the existence of holomorphic families of arbitrarily large dimension whose bifurcation locus
has non empty interior. Finally, it shows that the Hausdorff dimension of the support of the
bifurcation measure is maximal at any point of its support.

Our proof is based on an analytical criterion for the non-vanishing of the bifurcation currents
and on a geometric method to create multiple bifurcations at a common parameter. The latter
is a variant of the inclination lemma, applied to the postcritical set at a Misiurewicz parameter.

1. Introduction

Polynomial skew products are regular polynomial endomorphisms of C2 of the form
f(z, w) = (p(z), q(z, w)), for p and q polynomials of a given degree d ≥ 2. Regular here
means that the coefficient of wd in q is non zero, which is equivalent to the extendibility
of these maps as holomorphic self maps of P2. Despite their specific forms, these maps
already provided examples of new phenomena with respect to the established theory
of one-variable polynomials or rational maps, see for instance [ABD+16, Duj16, Taf17].
We started in [AB18] a detailed study of the parameter space of such maps.

We will denote in what follows by Sk(p, d) the family of all polynomial skew products
of a given degree d over a fixed base polynomial p up to affine conjugacy, and denote by
Dd its dimension. Following [BBD18] it is possible to divide the parameter space of the
family Sk(p, d) (identified with CDd) into two dynamically defined subsets: the stability
locus and the bifurcation locus. The bifurcation locus coincides with the support of
ddcLv, where Lv(f) denotes the vertical Lyapunov function of f , see [Jon99, AB18].
We gave in [AB18] a description of the bifurcation locus and current in terms of natural
bifurcation loci and currents associated to the vertical fibres, and a classification of
unbounded hyperbolic components in the quadratic case.

For families of rational maps, the study of the powers of the bifurcation current
(which are meaningful because of the continuity of its potential) was started in [BB07],
see also [DF08, Duj11]. A geometric interpretation of the support of these currents is the
following: the support of T kbif is the locus where k critical points bifurcate independently.
They also detect the distribution of certain dynamically defined parameters, for instance
the loci of rational maps with k periodic cycles with prescribed multipliers. This gives
rise to a natural stratification of the bifurcation locus as

SuppTbif ⊇ SuppT 2
biff ⊇ · · · ⊇ SuppT kmaxbif
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where kmax is the dimension of the parameter space. The inclusions above are not
equalities in general, and are for instance strict when considering the family of all
polynomial or rational maps of a given degree (where kmax is equal to d− 1 and 2d− 2,
respectively). It is worth pointing out that this stratification has often been compared
with an analogous stratification for the Julia set of endomorphisms of Pk (given by the
support of the self-intersections of the Green current, see for instance [DS10]). We refer
to [Duj11] for a more detailed exposition.

The goal of this paper is to show that the situation in families of higher dimensional
dynamical systems is completely different. Namely, we establish the following result.
A moderately repelling cycle for a polynomial p of degree d ≥ 2 is a repelling cycle of
period n0 and multiplier strictly smaller than dn0 , see Definition 2.8.

Theorem 1.1. Let Sk(p, d) denote the family of polynomial skew products of degree
d ≥ 2 up to affine conjugacy, let Dd be its dimension and assume that p has a moderately
repelling cycle. Then the associated bifurcation current Tbif satisfies

SuppTbif ≡ SuppT 2
bif ≡ · · · ≡ SuppTDdbif .

The assumption that p has a moderately repelling cycle is relatively mild: we prove
that it is satisfied whenever the Julia set of p is not totally disconnected and p is neither
a power map nor a Chebyshev polynomial, see Proposition 2.10.

The proof of Theorem 1.1 essentially consists of two ingredients, respectively of
analytical and geometrical flavours.

The first is an analytical sufficient condition for a parameter to be in the support of
T kbif . This is inspired by analogous results by Buff-Epstein [BE09] and Gauthier [Gau12]
in the context of rational maps, and is based on the notion of large scale condition
introduced in [AGMV19]. It is a way to give a quantified meaning to the simultaneous
independent bifurcation of multiple critical points, and to exploit this condition to prove
the non-vanishing of T kbif . This part does not require essentially new arguments.

The second ingredient is a procedure to build these multiple independent bifurcations
at a common parameter starting from a simple one. The idea is to start with a parameter
with a Misiurewicz bifurcation, i.e., a non-persistent collision between a critical orbit and
a repelling point, and to construct a new parameter nearby where two (and actually, any
arbitrary large number of) Misiurewicz bifurcations occur. This geometrical construction
is our main technical result, and the main contribution of this paper.

Our main theorem and the method developed for its proof have a number of conse-
quences and corollaries. First of all, results analogous to Theorem 1.1 (in fact, stronger)
hold for many algebraic hypersurfaces of the family Sk(p, d). More precisely, as a
by-product of the proof of Theorem 1.1, we obtain the following.

Corollary 1.2. Assume that p has a moderately repelling cycle. Near any bifurcating
parameter in Sk(p, d), there exist algebraic subfamilies Mk of Sk(p, d) of any dimension
k < Dd such that the support of the bifurcation measure of Mk has non-empty interior
in Mk.

These families are given by the maps satisfying a given critical relation. Notice that d
(and thus Dd) can be taken arbitrarily large. This result is for instance an improvement
of the main result in [BT17], where 1-parameter families with the same property are
constructed.
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More strikingly, in [Duj17, Taf17], Dujardin and Taflin construct open sets in the
bifurcation locus in the family Hd(Pk) of all endomorphisms of Pk of a given degree
d ≥ 2 (see also [Bie19] for further examples). Their strategy also works when considering
the subfamily of polynomial skew products (and actually these open sets are built close
to this family). Combining Theorem 1.1 with their result we thus get the following
consequence.

Corollary 1.3. Assume that p has a moderately repelling cycle. The support of the
bifurcation measure in Sk(p, d) has non empty interior.

Notice that it is not known whether the bifurcation locus is the closure of its interior
(see the last paragraph in [Duj17]). Hence, a priori, the open sets as above could exist
only in some regions of the parameter space. The last consequence of our main Theorem
1.1 is a uniform and optimal bound for the Hausdorff dimension of the support of
the bifurcation measure, which is a generalization to this setting of the main result in
[Gau12].

Corollary 1.4. Assume that p has a moderately repelling cycle. The Hausdorff dimen-
sion of the support of the bifurcation measure in Sk(p, d) is maximal at all points of its
support.

Notice that, in the family of all endomorphisms of a given degree, such a uniform
estimate is not known even for the bifurcation locus, see [BB18] for some local estimates.

The paper is organized as follows. In Section 2 we set the notations and prove some
preliminary general results that will needed in the sequel. In Section 3 we give the
analytical criterion for the non-vanishing of T kbif , and in Section 4 we develop our main
construction to build multiple bifurcations starting from a simple one. As a by-product
of our procedure, we deduce Corollary 1.2. The proof of Theorem 1.1 is then concluded
in Section 5.

Acknowledgements. This project has received funding from the French government
through the programs I-SITE ULNE / ANR-16-IDEX-0004 ULNE, LabEx CEMPI
/ANR-11-LABX-0007-01, and ANR JCJC Fatou ANR-17- CE40-0002-01, from the
CNRS through the program PEPS JCJC 2019, and from the Louis D. Foundation
through the project "Jeunes Géomètres".

2. Notations and preliminary results

2.1. Notations. We collect here the main notations that we will use through all the
paper. We refer to [AB18] and [Jon99] for more details.

Given a polynomial skew product of degree d ≥ 2 of the form f(z, w) = (p(z), q(z, w)) =:
(p(z), qz(w)), we will write the n-th iterate as

fn(z, w) = (pn(z), qpn−1(z) ◦ · · · ◦ qz(w)) =: (pn(z), Qnz (w)).

In particular, if z0 is a n0-periodic point for p, the map Qn0
z0 is the return map to the

vertical fibre {z0} × C and is a polynomial of degree dn0 .
Let us now denote by (fλ)λ∈M a holomorphic family of polynomial skew products of a

given degree d ≥ 2, that is a holomorphic map F : M ×C2 → C2 such that fλ := F (λ, ·)
is a polynomial skew product of degree d for all λ ∈M . We will denote by Sk(d) the
family of all polynomial skew products of degree d, and by Sk(p, d) the subfamily of
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those with the given polynomial p as first component, both up to affine conjugacy. An
explicit description of these families in the case d = 2 is given in [AB18, Lemma 2.9],
the general case can be treated similarly.

We are interested in bifurcations within families of polynomial skew products. Follow-
ing [BBD18], the bifurcation locus Bif is defined as the support of the (1, 1)−positive
closed current Tbif := ddcλL(λ) on M , where L(λ) is the Lyapunov function associated
to fλ with respect to its measure of maximal entropy. In the case of polynomial skew
products, the function L has a quite explicit description. Indeed, by [Jon99] we have
L(λ) = Lp(λ) + Lv(λ), where

(1) Lp(λ) = log d+
∑
z∈Cpλ

Gpλ(z) and Lv(λ) = log d+

ˆ ( ∑
w:q′λ,z(w)=0

Gλ(z, w)
)
µpλ(z).

Here µpλ , Gpλ , Cpλ are the measure of maximal entropy, the Green function and the
critical set (whose points are counted with multiplicity) of fλ and pλ respectively, and
Gλ(z, w) is the non-autonomous Green function for the family {Qnz }n∈N. The current
Tp := ddcλLp(λ) is positive and closed. We proved in [AB18, Proposition 3.1] that
Tv := ddcλLv = Tbif − Tp is also positive and closed. This allowed us to define the
vertical bifurcation in any family of polynomial skew products. This was generalized in
[DT18] to cover families of endomorphisms of Pk(C) preserving a fibration. Of course,
when p is constant we have Tbif = Tv.

2.2. The unicritical subfamily Ud ⊂ Sk(p, d). We consider here the unicritical
subfamily Ud ⊂ Sk(p, d) given by

(2) Ud := {f(z, w) = (p(z), wd + a(z))}, a(z) ∈ Cd[z] ∼ Cd+1.

Thus, Ud has dimension d+ 1. We parametrize it with λ := (a0, . . . , ad), where the ai
are the coefficients of a(z). We can compactify this parameter space to Pd+1 and we
denote by Pd∞ the hyperplane at infinity. Given z0 ∈ Jp, we set

(3) Bz0 := {λ ∈ Ud : {fnλ (z0, 0)} is bounded } .

Notice that (z0, 0) is the only critical point for fλ in the fibre {z = z0} (this justifies the
name chosen for this family, coherently with the name of the one dimensional family
fλ(z) = zd + λ). The following results are proved in [AB18] for the case d = 2. The
proofs in the general case are similar, we include a sketch for Theorem 2.1 for the
reader’s convenience.

Theorem 2.1. The accumulation on Pd∞ of Bz0 is precisely equal to Ez0 := {[λ] :
a(z0) = 0}.

Proof. Denote A(λ) := supz∈Jp |a(z)|. We prove that, for λ sufficiently large and any
z0 ∈ Jp,

(4) Gfλ(z0, 0) = 0⇒ |a(z0)| ≤ 2A(λ)1/d

This implies that the accumulation on Pd∞ of Bz0 is included in Ez0 . Indeed, take a
sequence λ(n) → ∞ with [λ(n)] → [λ] and associated polynomials a(n). If [λ] /∈ Ez0 ,
both |a(n)(z0)| and A(λ(n)) grow linearly with |λ(n)|. This proves the inclusion.
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In order to prove (4), set (zn, wn) := fnλ (z0, 0) = (pn(z0), Q
n
z0(0)) and ρn := a(zn).

Notice that wn+1 = wdn + ρn. Since Gfλ(z0, 0) = 0 we have |wn| ≤ 2A(λ)1/d for all n.
We deduce (4) taking n = 0.

For the opposite inclusion, we can restrict ourselves to generic 2-dimensional sub-
families L of Ud, with the property that the intersection of their closure in Pd+1 with
the hyperplane Ez0 is one point. It is then enough to prove that the restriction of Bz0
to L is not compact. This can be seen explicitly when z0 is periodic, and follows from
the density of the periodic points and the continuity of the Green function for all other
z0 ∈ Jp. �

The following is a consequence of Theorem 2.1, see [AB18, Corollary 4.3] for a proof.

Corollary 2.2. Let z0, . . . , zd ∈ Jp be d + 1 distinct points. Then Bz0 ∩ . . .Bzd is
compact.

2.3. Families defined by Misiurewicz relations. By [BBD18, Bia19] the bifurca-
tion locus of a family (fλ)λ∈M coincides with the closure of the set of Misiurewicz
parameters, i.e., parameters for which we have a non-persistent intersection between
some component of the post critical set and the motion of some repelling point. More
precisely, in our setting take λ0 ∈ Sk(p, d) and let M be an algebraic subfamily of
Sk(p, d) such that λ0 ∈M . A Misiurewicz relation for fλ0 is an equation of the form
fn0
λ0

(z0, c0) = (z1, w1) where (z1, w1) is a repelling periodic point of period m for fλ0 ,
and q′z0,λ0(c0) = 0.

Assume that c0 is a simple root of q′z0,λ0 (this assumption could be removed, but we
keep it here for the sake of simplicity). Then there is a unique holomorphic map λ 7→ c(λ)
defined on a neighbourhood of λ0 in Sk(p, d) such that c(λ0) = c0. Similarly, it is
possible to locally follow holomorphically the repelling point (z1, w1) as λ 7→ (z1, w1(λ)).

The Misiurewicz relation fn0
λ0

(z, c0) = (z1, w1) is said to be locally persistent in
M if fn0

λ (z0, c(λ)) = (z1, w1(λ)) for all λ in a neighbourhood of λ0 in M . If this
is not the case, the equation fn0

λ (z0, c(λ)) = (z1, w1(λ)) defines a germ of analytic
hypersurface in M at λ0, which is open inside the algebraic hypersurface of M given by
{λ ∈M : Resw(q′z0,λ, Q

n0+m
z0,λ

−Qmz0,λ) = 0}. Here, Resw(P,Q) denotes the resultant of
two polynomials P,Q ∈ A[w], where A := C[λ]; it is therefore an element of A. Notice
that this algebraic hypersurface consists of all λ ∈M such that some critical point in
the fibre at z0 lands after n0 iterations on some periodic point of period dividing m.
We also say in this case that λ0 is a Misiurewicz parameter in M .

If the Misiurewicz relation is non-persistent in M , we denote by M(z0,c),(z1,w1),n0

(or by M(z0,c0),(z1,w1(λ0)),n0
if we wish to emphasize the starting parameter λ0) this

irreducible component and we call it the locus where the relation is locally preserved.
We may avoid mentioning the periodic point if this does not create confusion.

The following lemma, although quite elementary, provides a property of the families
M(z,c),n that will be of crucial use in this paper.

Lemma 2.3. Let λ0 ∈ Sk(p, d) be a Misiurewicz parameter: (z1, w1(λ0)) = fnλ0(z0, c0),
where q′z0,λ0(c0) = 0 and (z1, w1(λ0)) is a repelling point of period m for fλ0. Assume
that z0 /∈ {pk(z1) : 0 ≤ k ≤ m−1}. Then the vertical multiplier of the cycle of (z1, w1(λ))
is non-constant on the algebraic hypersurface M := M(z0,c0),n.
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Proof. Let Ud be the unicritical subfamily of Sk(p, d) as defined in (2) and denote by
L the algebraic hypersurface in Ud given by L := M ∩ Ud. It is enough to prove the
statement in restriction to L. We compactify Ud to Pd+1 = Cd ∪ Pd∞ as in Section
2.2 and L to L̂, respectively. Since L ⊂ Bz0 (where Bz0 is defined as in (3)), we have
L̂ ∩ Pd∞ ⊆ {[λ] : a(z0) = 0}. Since L̂ ∩ Pd∞ is an algebraic hypersurface of Pd∞, the
inclusion is actually an equality.

Pick any [λ̂] ∈ L̂ ∩ Pd∞ such that z0 is the only (simple) root in Jp of the associated
polynomial a(z), and consider a sequence of points λj ∈ L, for j ∈ N, such that
‖λj‖ → ∞ and [λj ]→ [λ̂] as j →∞. In order to prove the statement, it is enough to
prove that the vertical eigenvalue of (z1, w1(λj)) diverges as j →∞.

Fix α, β such that 0 < α < 1
d < β < 1. First note that for j large enough,

Rj := ‖λj‖β is an escape radius for fλj over Jp, meaning that Kz ⊂ D(0, Rj) for all
z ∈ Jp. Indeed, if |w| ≥ Rj then |qz(w)| � |w|d ≥ Rdj , hence the orbit of (z, w) (for
z ∈ Jp) is unbounded. Similarly, set rj := ‖λj‖α; we claim that, for any z ∈ Jp distinct
from z0, Kz ∩ D(0, rj) = ∅ for j large enough. Indeed, we have |aj(z)| � ‖λj‖ and
so |qz,λj (w)| � ‖λj‖ > Rj for any w ∈ D(0, rj). The claim follows from the previous
statement for Rj .

In particular, since we assumed z0 6= z1, we have that wk,j := Qkz1,λj (w1(λj)) satisfies

|q′
pk(z1)

(wk,j)| & r
(d−1)
j . This means that the vertical eigenvalue for fλj is larger than

r
m(d−1)
j , so in particular cannot be constant in λ. The assertion follows. �

By another intersection argument with the well-understood unicritical family Ud as
in (2) we also obtain the following Lemma.

Lemma 2.4. For every (n,m) ∈ N× N∗ the set

Λn,m := {λ ∈ Sk(p, d) : fλ has a critical component of preperiod n and period m }

is contained in an algebraic set of codimension at least 2 of Sk(p, d).

Proof. For any given (n,m), the set Λn,m is algebraic. Let Λ̃ be a component. In order
to prove the statement, it is enough to show that the intersection Λ̃ ∩ Ud is bounded
(recall that dimUd = d+ 1). This is a consequence of Corollary 2.2. �

Note that the argument above actually proves that Λn,m has codimension at least
d+ 1 in Sk(p, d), and in fact this is likely still not sharp. However, for our purposes it
will be enough that the codimension is at least 2.

Lemma 2.5. Let λ0 ∈ Sk(p, d) and assume that fλ0 has a Misiurewicz relation
fnλ0(z0, c0) = (z1, w1). Then the set of λ ∈ M(z0,c0),n for which qz0,λ has only sim-
ple critical points is Zariski open in M(z0,c0),n.

Proof. Again, it is enough to check the property on the intersection between M(z0,c0),n

and any algebraic subfamily of Sk(p, d). This time we can take the subfamily given
by the product maps, of the form {(z, w) 7→ (p(z), q(w))} for q : C → C of degree
d. The assertion then follows from the corresponding property for the family Pd of
one-dimensional polynomials of degree d. �
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2.4. Higher bifurcations currents and loci. Higher bifurcation currents for families
of polynomials (or rational maps) in one variable were introduced in [BB07] with the
aim of understanding the loci where simultaneous and independent bifurcations happen,
from an analytical point of view. Since the Lyapunov function is continuous with respect
to the parameters [DS10], it is indeed meaningful to consider the self-intersections T kbif
of the bifurcation current, for every k up to the dimension of the parameter space. The
measure obtained by taking the maximal power is usually referred to as the bifurcation
measure. We denote by Bifk the support of T kbif .

While in dimension one it is quite natural to associate a geometric meaning to Bifk
(as, for instance, the points where k independent Misiurewicz relations happens, in a
quite precise sense, see, e.g., [Duj11]), in higher dimensions the critical set is of positive
dimension and thus this interpretation is far less clear.

The following result gives a first step in the interpretation of the higher bifurcations
as average of non-autonomous counterparts of the classical one-dimensional objects,
valid in any family of polynomial skew products over a fixed base p. An interpretation of
the non-autonomous factors will be the object of the next Section. The case of general
polynomial skew products is completely analogous, and the following should be read
as a decomposition for the vertical bifurcation T kv = (ddcLv)

k, see Section 2.1. Given
z := (z1, . . . , zk) ∈ Jkp , we denote by Tz the current Tz = Tbifz1 ∧ · · · ∧ Tbifzk .

Proposition 2.6. Let (fλ)λ∈M be a family of polynomial skew products over a fixed
base p. Then

T kbif =

ˆ
Jkp

Tzµ
⊗k and Bifk = Supp(T kbif) = ∪z SuppTz.

Proof. The case k = 1 (which is a consequence of the explicit formula for Lv in (1)) is
proved in [AB18, Theorem 3.3]. The first formula in the statement is a consequence
of the continuity of the potentials of the bifurcation currents Tbif,z. The continuity
of the potentials (in both z and the parameter) also implies that the currents Tz are
continuous in z ∈ Jkp . We can thus apply the general Lemma 2.7 below to the family of
currents Ra = Tz and a = z ∈ Jkp = A. This concludes the proof. �

Lemma 2.7. Let A be a compact metric space, ν a positive measure on A and Ra
a family of positive closed currents on CN depending continuously on a ∈ A. Set
R :=

´
ARaν(a). Then

(1) the support of Ra depends lower semicontinuously from a (in the Hausdorff
topology);

(2) the support of R is included in ∪a SuppRa;
(3) for every a ∈ Supp ν, we have SuppRa ⊆ SuppR.

Recall that the currentR =
´
ARaν(a) is defined by the identity 〈R,ϕ〉 =

´
A〈Ra, ϕ〉ν(a),

for ϕ test form of the right degree.

Proof. The first property is classical and the second is a direct consequence. Let us
prove the last item. Fix a ∈ A and take p ∈ SuppRa. There exists an (arbitrarily small)
ball B centred at p such that the mass of Ra on B is larger than some η > 0. By the
continuity of Ra, the mass of Ra′ on B is larger that η/2 for every a′ sufficiently close
to a. In particular, this is true for all a′ in a ball B′ centred at a. Since a ∈ Supp ν, we
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have ν(B′) > η′ for some positive η′. Thus, R has mass > ηη′/2 on B, which in turn
gives p ∈ SuppR. �

2.5. Moderate and vertical-like repelling points. Our method of proof of Theorem
1.1 requires that the base polynomial p admits a repelling cycle satisfying the following
technical assumption.

Definition 2.8. Let p be a polynomial of degree d and let z0 be a n0-periodic point for
p. We say that z0 is moderately repelling if |(pn0)′(z0)| < dn0.

Although the two next results are not necessary for the proof of our main theorem,
they illustrate the existence of many polynomials satisfying this condition.

Lemma 2.9. The set of degree d polynomials p ∈ Pd with a moderately repelling periodic
point is an open set whose closure contains Bif(Pd).

Proof. The openness is clear. For the second part of the assertion, note that arbitrarily
close to any p0 ∈ Bif(Pd) one can find some polynomial with a neutral cycle. A suitable
perturbation makes that cycle become moderately repelling. �

More interestingly, we also have the following result.

Proposition 2.10. Let p be a polynomial with Julia set not totally disconnected, which
is neither conjugated to z 7→ zd nor to a Chebyshev polynomial. Then p has a moderately
repelling cycle.

Proof. By a result of Przytycki and Zdunik [PZ20] (see also [Prz85, Zdu90] for previous
results in the connected case), since p is neither conjugated to z 7→ zd nor to a
Chebyshev polynomial, there exists a compact hyperbolic invariant set K ⊂ J(p),
with δ := dimH K > 1. By the general theory of the thermodynamical formalism,
there exists a unique ergodic invariant probability measure ν supported on K that is
absolutely continuous with respect to the δ-dimensional Hausdorff measure (see for
instance [PU10, Prz18]). By Manning’s formula, χν = hν

δ , where χν is the Lyapunov
exponent of ν, and hν is its metric entropy. Since δ > 1 and hν < log d, we deduce that
χν < log d.

We will now approximate ν by a sequence of discrete invariant measures supported
by periodic cycles, in the following way. Fix ε > 0 and let δ1 > 0 be small enough so
that for all x, y ∈ Jp, |x− y| ≤ δ1 implies |log |f ′(x)| − log |f ′(y)|| ≤ ε (the existence of
such δ1 follows from the uniform continuity of log |f ′| on K, since p has no critical point
on K). Chose z ∈ K generic for ν, in the sense that its forward orbit equidistributes on
K according to ν. In particular, there exists N ∈ N such that for all n ≥ N :

(5)
∣∣∣〈 1

n

n−1∑
k=0

δfk(z), log |f ′|
〉
− 〈ν, log |f ′|〉

∣∣∣ ≤ ε,
where δy is the Dirac mass at y ∈ C. Since p : K → K is hyperbolic, as a consequence
of the Shadowing Lemma (see, e.g., [Jon97], Theorem 2.4) there exists δ2 > 0 such that
any δ2-pseudo-orbit can be δ1-shadowed by an actual orbit. Since z is recurrent, we
may chose n ≥ N such that |fn−1(z)− z| ≤ δ2; then the Shadowing Lemma gives the
existence of a cycle y0, . . . , yn−1 such that for all 0 ≤ j ≤ n− 1, |f j(z)− yj | ≤ δ1. With
our choice of δ1 and (5), this means that∣∣〈νn, log |f ′|〉 − χν

∣∣ ≤ 2ε,
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where νn := 1
n

∑n−1
k=0 δyk . In particular, if ε is small enough, we have 〈νn, log |f ′|〉 < log d,

which exactly means that the cycle y0, . . . , yn−1 is moderately repelling. �

Definition 2.11. Let f(z) = (p(z), q(z, w)) be a polynomial skew product of degree ≥ 2
and let (z1, w1) be a n1-periodic point for f . Let A := (pn1)′(z1) and B := (Qn1

z1 )′(w1)
be the two eigenvalues of Dfn1

(z1,w1)
. We say that (z1, w1) is vertical-like if |B| > |A|.

Lemma 2.12. Let f(z, w) = (p(z), q(z, w)) be a polynomial skew product. Let z1 be
moderately repelling n1-periodic point for p. Then (z1, w1) is a vertical-like repelling
periodic point for f for asymptotically all w1 ∈ C that are periodic for Qn1

z1 .

The above means that if Pn := {w1 ∈ C : Qnn1
z1 (w) = w} and Vn := {w1 ∈ Pn :

(z1, w1) is vertical-like}, then limn→∞
cardVn
cardPn

= 1.

Proof. Since by assumption z1 is moderately repelling for p, there exists ε > 0 such
that |(pn1)′(z1)| < (d − ε)n1 . The return map Q := Qn1

z1 associated to the vertical
fibre of z1 is a polynomial of degree dn1 , thus its Lyapunov exponent is larger than or
equal to log(dn1). By [BDM08, Lemma 4.5] for any η > 0, asymptotically all of the
dnn1 repelling periodic points of period dividing n for Q have multiplier larger than
(dn1 − η)n. Choosing η > 0 small enough that dn1 − η > (d − ε)n1 , this proves that
for asymptotically all periodic point w1 for Q, the point (z1, w1) is vertical-like, as
desired. �

3. Higher bifurcations: an analytic criterion

In this section we establish the following technical result, which gives an analytic
sufficient condition for a point to lie in the support of the higher bifurcation currents.
Recall that, given a simple critical point c(λ) for qz0,λ and a repelling point r(λ) for fλ, we
denote by M(z0,c),r,n0

the analytic subset of M given by the equation fn0
λ (c(λ)) = r(λ).

Proposition 3.1. Let (fλ)λ∈M be a holomorphic family of polynomial skew products
over a given base p. Let λ0 ∈M and z1, . . . , zk ∈ Jp satisfy the following properties:

(1) there exist simple critical points ci for qzi,λ0 such that ri := fniλ0 (zi, ci) is a
repelling periodic point for fλ0;

(2) codim∩ki=1M(zi,ci),ri,ni = k.
Then λ0 ∈ Bifk(M).

In the case of families of rational maps, this result is due to Buff-Epstein [BE09]
when the hypersurfaces defined by the critical relations are transversal, and to Gauthier
[Gau12] when the intersections are just proper, as is the case above. A more general
condition (called the generalized large scale condition) was introduced in [AGMV19] as
a sufficient condition for a point to lie in the support of T kbif (for a family of rational
maps). We give an adapted version of this notion in our non-autonomous setting, and
deduce that a parameter λ0 as in the statement satisfies such condition. This will prove
Proposition 3.1.

In the following we assume that z1, . . . , zk ∈ Jp and that cj(λ) are holomorphic maps
such that cj(λ) is a critical point for qzj ,λ for all λ ∈M . We denote by c : M → Ck the
map c(λ) = (c1(λ), . . . , ck(λ)). For a k−uple n := (n1, . . . , nk), we define

ξjnj (λ) := Q
nj
zj (cj(λ)) and Ξcn(λ) := (ξ1n1

(λ), . . . ξknk(λ))
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Notice that Ξ
c
n : M → Ck. Denote by Vn the graph of Ξ

c
n in M × Ck.

Definition 3.2 (Fibred large scale condition). We say that λ0 ∈ M satisfies the
fibred large scale condition for the critical points (z1, c1), . . . , (zk, ck) if there exist
z′1, . . . z

′
k ∈ Jp, disks D1, . . . , Dk ⊂ C with Di ∩ Jz′i 6= ∅, a sequence nl = (nl,1, . . . , nl,k)

of k−uples with nl,i →∞ and a nested sequence of open subsets Ωl such that
• ∩lΩl = {λ0}, and
• Ξ

c
nl : Ωl → D1 × · · · ×Dk is a proper surjective map.

Proposition 3.3. Let λ0 satisfy the fibred large scale condition for some (z1, c1), . . . , (zk, ck),
with q′zj (cj) = 0 for every j and such that the zj are preperiodic for p. Then λ0 ∈
SuppTbifz1 ∧ · · · ∧ Tbifzk .

Proof. The proof is a direct consequence of the analogous result [AGMV19, Theorem
3.2]. Notice that the first step in the proof of that result actually consists in building a
new product dynamical space. In our case, we just directly consider the return maps on
the periodic fibres, near the repelling periodic points. The fact that the critical points
may lie in some pre-periodic fibre can be addressed by considering the orbit of their
first image on a periodic fibre. �

We can now prove Proposition 3.1

Proof of Proposition 3.1. By Proposition 2.6 it is enough to prove that λ0 ∈ SuppTbifz1∧
Tbifzk . It is thus enough to prove that any λ0 as in the statement satisfies the fibred
large scale condition above.

Fix η > 0 and an open neighbourhood Ω0 of λ0 such that the following holds:
(1) for all ri as in the statement, ri(λ) ∈ D(ri, η/2) for all λ ∈ Ω0;
(2) for every i and every λ ∈ Ω0, the map fλ is uniformly expanding on Di :=

D(ri, η).
To verify the fibred large scale condition it is enough that every ball centred at λ0 has
open image for the map

λ 7→ (fn1
λ (z1, c1(λ))− r1(λ), . . . , fnkλ (zk, ck(λ))− rk(λ)).

But this is implied by the second assumption in the statement. Indeed, if this were not
the case, the image would be contained in an analytic set of dimension ≤ k− 1, and the
preimage of any point would be (empty or of) codimension ≤ k − 1. Since the origin is
in the image, and is equal to the image of ∩ki=1M(zi,ci),ri,ni , this would contradict the
second assumption. The proof is complete. �

Remark 3.4. As is the case in [AGMV19], it is enough to make a weaker assumption
in Proposition 3.1, namely that the critical orbits fall in the motion of some hyperbolic
set. The proof is slightly more involved in that situation (as is the case in [AGMV19]).
We prefer to state only the simple criterion based on repelling periodic orbits since this
simpler version will be enough to deduce our main result.

4. Creating multiple bifurcations: a geometric method

In this section we develop our method to construct multiple bifurcations (in the form
of Misiurewicz parameters) starting from a simple one. In the next section we will
ensure the applicability of this method. First, let us introduce the following definition.
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Definition 4.1. Let (fλ)λ∈M be a holomorphic family of polynomial skew-products. We
say that M is a good Misiurewicz family, or that M has a persistently good Misiurewicz
relation fn0

λ (z, c(λ)) = (z1, w1(λ)) if the Misiurewicz relation fn0
λ (z, c(λ)) = (z1, w1(λ))

is persistent in M , and if moreover
(G1) the vertical eigenvalue B(λ) := (Qmz,λ)′(w1(λ)) is non-constant on M ;
(G2) (z1, w1(λ)) is vertical-like for all λ ∈M ;
(G3) for all λ in a residual subset of M , at least one component of fnλ (Crit(fλ))

passing through (z, wλ) is not preperiodic;
(G4) c(λ) is a simple root of q′z,λ for a generic λ ∈M .

A parameter λ0 ∈M satisfying all the conditions above will be called a good Misiurewicz
parameter.

The next Proposition is the key technical result of our argument:

Proposition 4.2. Let (fλ)λ∈M be a holomorphic family of polynomial skew products
with a persistently good Misiurewicz relation (z1, w1(λ)) := fNλ (z0, c0(λ)). There exists
a dense subset S ⊂ M such that for all λ∞ ∈ S, for any non-exceptional graph
λ 7→ (z, w(λ)) defined in some neighbourhood of λ∞, there exists a sequence λn → λ∞
such that (z, w(λn)) is non-persistently in the forward orbit of a critical point (zn, cn(λn)),
with (zn, cn(λn))→ (z0, c0(λ∞)).

We call exceptional graph a holomorphic map λ 7→ (z, w(λ)) such that (z, w(λ))
belongs to the exceptional set of fλ for some λ. The following is a simple consequence
of Proposition 4.2. Together with Proposition 5.1, it will give Corollary 1.2.

Corollary 4.3. If (fλ)λ∈M has a persistently good Misiurewicz relation, then Bif(M) =
M .

Proof. Let S be given by Proposition 4.2, take λ∞ ∈ S and let Ω∞ be any neighbourhood
of λ∞. All possible motions on Ω∞ of repelling points for fλ∞ are of the form (z, w(λ)).
Since the exceptional set has zero mass for the equilibrium measure, there is at least one
among these graphs (and actually, many of them) which is not persistently contained in
the exceptional set. Let γ(λ) be one such graph. If γ is exceptional, since the exceptional
set is contained in the postcritical set, we get a Misiurewicz parameter at a parameter
λ ∈ Ω∞ such that γ(λ) is an exceptional point for fλ. If γ is not exceptional, we apply
Proposition 4.2 and still get a Misiurewicz parameters λ ∈ Ω∞ . The assertion follows
since Misiurewicz parameters belong to the bifurcation locus, see [BBD18, Bia19]. �

The remaining part of this section is devoted to proving Proposition 4.2. We state
and prove the following lemma before defining the subset S.

Lemma 4.4. Let α(z) = αpz
p +O(zp+1) be a holomorphic germ of (C, 0), with αp 6= 0

and p > 0. Let |A|, |B| > 1 be such that logA, logB and 2iπ are rationally independent,
and fix z0 ∈ C∗. Then {α(z0A

−n)Bm : m,n ∈ N} is dense in C.

Proof. We first prove that X := {A−nBm : m,n ∈ N} is dense in C. This corresponds
to the case α(z) = z and z0 = 1.

Working in logarithmic coordinates, we define Y := exp−1({A−nBm : m ∈ N, n ∈ Z}).
Notice that Y is invariant under the translations by integer multiples of the vectors 2iπ
and logA, and positive integer multiples of logB (we can choose any branch of log here).
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Therefore, the set Y is dense in C if and only if orbits under translations by positive
integer multiples of the vector logB are dense in the complex torus C/〈2iπ, logA〉.
Since we assumed that logA, logB and 2iπ are rationally independent, this follows from
Kronecker’s Theorem. This implies that X̂ := {A−nBm : m ∈ N, n ∈ Z} is dense in C.

Take now any w ∈ C. By the above, there exist nk ∈ Z and mk ∈ N such that
limk→∞A

−nkBmk = w. We may assume without loss of generality that limmk = +∞.
Since |B| > 1, this implies that limnk = +∞, and in particular that nk ∈ N for k large
enough. So X is indeed dense in C. Note that since p logA, logB and 2iπ are also
rationally independent, we may replace logA by p logA in the argument above.

Let us now treat the general case, with α(z) = αpz
p +O(zp+1) and z0 ∈ C∗ as in the

statement. Take w ∈ C. By the density X proved above, there exist sequences nk and
mk of integers, with limk nk = limkmk = +∞, such that limk A

−pnkBmk = w
αpz

p
0
. This

implies that αp · (z0A−nk)pBmk = w + ok→+∞(1), and thus that(
α(z0A

−nk) +O(zp+1
0 A−(p+1)nk

)
Bmk = w + ok→+∞(1).

Since A−pnkBmk = O(1) by construction and |A| > 1 by assumption, we have

α(z0A
−nk)Bmk +O(A−nk) = w + ok→+∞(1).

We deduce that limk α(z0A
−nk)Bmk = w. The lemma is proved. �

Definition 4.5. Let M be a good Misiurewicz family, and let fn0
λ (z, c(λ)) = (z1, w1(λ))

be a persistent Misiurewicz relation satisfying the requirements of Definition 4.1.
We define the set S ⊂ M to be the set of λ∞ ∈ M for which each of the following

properties holds:
(S1) logA, logB(λ∞) and 2iπ are rationally independent over Q;
(S2) dλB(λ∞) 6= 0;
(S3) logB(λ∞) /∈ R logA;
(S4) fλ∞ has no preperiodic critical component;
(S5) c(λ∞) is a simple root of q′z,λ∞.

Note that S is indeed dense (in fact, residual) in M . Indeed, since by the assumption
(G1) in Definition 4.1 the map λ 7→ B(λ) is non-constant on M , conditions (S1), (S2)
and (S3) are satisfied in a residual subset of M . The same also holds for condition
(S4) by the assumption (G3). Condition (S5) is also a Zariski dense condition once
(G4) holds, as observed after Definition 4.1.

From now on, we fix an arbitrary λ∞ ∈ S, and we choose a one-dimensional disk in
local coordinates in M in which λ∞ = 0 (hence B′(0) 6= 0). The proof of Proposition
4.2 will mostly use local arguments in phase space. Therefore, we will work in local
linearizing coordinates near (z1, w1); in particular, in the rest of this section we will take
(z1, w1) = (0, 0), and we will treat it as a fixed point (which we can do up to passing to
an iterate).

By item (S3) of the definition of S, there are no resonances between eigenvalues of
this fixed point (0, 0) for λ close to λ∞ = 0. We may therefore assume that the fixed
point (0, 0) is linearizable for fλ; moreover the linearizing map can be chosen to depend
holomorphically on the parameter. More precisely, we can fix a neighbourhood U of
(0, 0) such that such linearising coordinates are defined for (z, w) ∈ U for all fλ with |λ|
small enough. So fλ acts in those coordinates as the linear map (z, w) 7→ (Az,B(λ)w).
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Since the graph γ(λ) = (z, w(λ)) is not exceptional, by the equidistribution of preimages
we can also assume that γ(λ) ∈ U for all λ with |λ| small enough.

Let L0 be a non-periodic postcritical component of f0 passing through (0, 0) (as in
the assumption (G3) in Definition 4.1). It follows from the Implicit Function Theorem
and (G3) that L0 is locally a smooth graph over z, and that there exists a local
holomorphic function β such that for all (λ, z) small enough, the graph w = β(λ, z) is a
local parametrization of a non-periodic component Lλ of fkλ (Crit(fλ)). The assumption
that L0 is not invariant implies that the holomorphic map z 7→ β(z, λ) is non-constantly
equal to 0.

Lemma 4.6. Let K ⊂ C∗ be compact and such that {0} × K ⊂ U , let z ∈ Jp
and (nk), (mk) be sequences such that β(zA−nk , 0)B(0)mk ∈ K. Define ϕk(λ) :=
β(zA−nk , λ)B(λ)mk . Then limk |ϕ′k(0)| =∞.

Proof. We have

ϕ′k(0) =
∂β

∂λ
(A−nkz, 0)B(0)mk + β(A−nkz, 0)mkB1B(0)mk−1

where B1 := d
dλ |λ=0

B(λ) 6= 0 by assumption. Set α(z) := β(z, 0). Writing α(z) as
α(z) = αpz

p +O(zp+1), we see that the assumption α(zA−nk)B(0)mk ∈ K implies that

(6) Ank � B(0)mk/p.

Moreover, since β(A−nkz, 0)B(0)mk ∈ K, and B1 6= 0, we have

(7) β(A−nkz, 0)mkB1B(0)mk−1 � mk.

Finally, since the Misiurewicz relation at (0, 0) is preserved for all λ ∈M , we have
β(0, λ) = 0 for all λ, and thus ∂β∂λ (0, 0) = 0. Hence, we can write ∂β

∂λ (z, 0) = c`z
`+O(z`+1)

with c` 6= 0, for some ` ≥ 1. This implies that
∂β

∂λ
(A−nkz, 0)B(0)mk � A−`nkB(0)mk .

We now have two possibilities:

Case 1: ` ≥ p. In this case, ∂β
∂λ (A−nkz, 0)Bmk = O(1) (in fact, it tends to zero if

` > p). Together with (7), this gives ϕ′k(0) � mk.

Case 2: ` < p. In this case, by (6) we have ∂β
∂λ (A−nkz, 0)Bmk � Bmk(1−`/p). By (7)

this gives ϕ′k(0) � Bmk(1−`/p), too.

In either case, we have limk ϕ
′
k(0) = +∞, and the lemma is proved. �

Proof of Proposition 4.2. We work in the setting described before Lemma 4.6. Let
x ∈ J0 be small enough so that (0, x) ∈ U . By Lemma 4.4 applied to α := β(·, 0), there
exist sequences nk,mk → +∞ such that β(A−nkz, 0)B(0)mk → x. Let zk := zAmk−nk ;
since limk nk −mk = +∞, we have that limk zk = 0. Observe that

(8) fmkλ (A−nkz, β(A−nkz, λ)) = (zk, ϕk(λ)),

i.e., (zk, ϕk(λ)) is in the postcritical set of fλ.
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Step 1. For k large enough, there exist two distinct points yk,i, i = 1, 2, such that
(zk, yk,i) ∈ U and fnk−mk0 (zk, yk,i) = (z, w).

(Note that the orbits {f `0(zk, yk,i) : 1 < ` < nk −mk} will not a priori remain in
U .) Consider s0 such that q−s0

zA−s0
({w(0)}) contains at least 3 points y′i. By the lower

semicontinuity of z 7→ Jz we have D(x, δ) ∩ Jzk 6= ∅ for k large enough, so the family
{Qnk−s0zkA

s0 : D(x, δ) → C} is not normal. Indeed, for all k large enough we can find
wk ∈ D(x, δ) such that Gzk(wk) ≥ c > 0, for some constant c independent from k. By
Montel’s theorem, this sequence then has to take at least two of the values y′i.

Step 2. We can assume that, for any ε > 0 and k ∈ N large enough, there exist
holomorphic maps λ 7→ yk,i(λ) defined on D(0, ε) such that fnk−mkλ (zk, yk,i(λ)) =
(z, w(λ)).

Indeed, if there are λ ∈ D(0, ε) and k ∈ N∗ such that {f `λ(zk, yk,i(λ)) : 0 ≤ ` ≤
nk−mk} meets (non persistently) the critical set of fλ, then (z, w(λ)) is a non-persistent
intersection with the postcritical set of fλ and Proposition 4.2 is proved. Otherwise,
Step 2 follows from the Implicit Function Theorem and analytic continuation.

Step 3. There exists λ ∈ D(0, ε), i ∈ {1, 2} and k ∈ N∗ such that ϕk(λ) = yk,i(λ) and
the intersection is not persistent in λ.

This follows from Montel Theorem applied to {ϕk : D(0, ε)→ C}: indeed, by Lemma
4.6, this sequence is not normal, so it cannot avoid both of the two moving points
λ 7→ yk,i(λ). For the same reason, the intersection cannot be persistent, since this would
also contradict the non-normality.

In conclusion, by the steps above and (8) there is a parameter λ ∈ D(0, ε) such that

fmkλ (zA−nk , β(zA−nk , λ)) = (zk, yk,i(λ)),

so by definition of yk,i(λ), we have

fnkλ (zA−nk , β(zA−nk , λ)) = (z, w(λ)).

By the definition of β, the point (zA−nk , β(zA−nk , λ) belongs to the postcritical set
of fλ. By construction the intersection above is not persistent. Moreover, we have
zA−nk → 0 and β(zA−nk , λ) → β(0, λ) = α(λ) as k → ∞. The last assertion in the
statement follows by considering a suitable preimage. The proof is complete. �

5. Proof of the main results

5.1. Finding a first good Misiurewicz parameter. In this subsection, we prove that
there exists a good Misiurewicz parameter arbitrarily close to any λ0 ∈ Bif(Sk(p, d))
(under the assumption that p admits a moderately repelling periodic point). This
provides the first step in the proof of Theorem 1.1, that will be concluded in the next
subsection. Combined with Corollary 4.3, this fact already gives Corollary 1.2.

Proposition 5.1. Let λ0 ∈ Bif(Sk(p, d)) for some polynomial p admitting a moderately
repelling point z1. For all ε > 0, there exists λ1 ∈ B(λ0, ε) with a Misiurewicz relation
fn0
λ1

(z, c) = (z1, w1) such that M(z,c),n0
is a good Misiurewicz family.
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We emphasize here that we only prove the existence of a good Misiurewicz family in
Sk(p, d); we do not claim that the arguments used here work in arbitrary subfamilies
of Sk(p, d). In order to prove Proposition 5.1, we need to find λ1 satisfying all the
requirements (G1-4) of Definition 4.1. We will need the following elementary lemma.

Lemma 5.2. Let (fλ)λ∈M be a holomorphic family of skew-products, and take λ0 ∈
Bif(M). Let (z1, w1) be any repelling periodic point of fλ0, which we locally follow
as (z1, w1(λ)). Then, arbitrarily close to λ0, there exists λ1 ∈ M such that fλ1 has a
Misiurewicz relation of the form fnλ1(z, c) = (z1, w1(λ1)) with z 6= z1.

Proof. By [AB18, Proposition 3.5], we may find λ′0 arbitrarily close to λ0 for which a
critical point of the form (y, c) is active, where y is in the strict backward orbit of z1 by
p. By Montel Theorem, we can further slightly perturb λ′0 to a λ1 with the property that
some iterate of (y, c) by fλ1 coincides with (z, w1(λ1)). This completes the proof. �

Proof of Proposition 5.1. We will replace λ0 by a a finite sequence of arbitrarily small
perturbations, making sure that at every step we stay inside Bif(Sk(p, d)).

By assumption, p has a moderately repelling periodic point z1. Lemma 2.12 gives a
vertical-like repelling point (that we can follow holomorphically in a neighbourhood of
λ0) and Lemma 5.2 a Misiurewicz relation satisfying item (G2).

Consider now the algebraic hypersurfaceM of Sk(p, d) where the Misiurewicz relation
constructed above is preserved. By Lemma 2.3, the map λ 7→ B(λ) is non-constant on
M . This takes care of item (G1). Moreover, by Lemma 2.5, we can perturb λ0 inside
M to ensure that (G4) holds, too.

Finally, Lemma 2.4 implies that the set of λ ∈M for which fλ has a periodic critical
component is meager in the sense of Baire. This ensures that (G3) holds, and completes
the proof. �

5.2. Conclusion. We can now conclude the proof of Theorem 1.1. We will need two
further lemmas. The first is an improvement of Lemma 2.12.

Lemma 5.3. Let (fλ)λ∈M be an algebraic family of polynomial skew products over
a fixed base p with a moderately repelling periodic point z1, and let λ0 ∈ M . Then
there exists w1 ∈ C such that (z1, w1) is a vertical-like repelling periodic point for
fλ0. Moreover, if dimM ≥ 2 and F is a given algebraic holomorphic codimension 1
foliation of M , we may chose w1 such that F and the foliation given by the level sets of
(Qnz1,λ)′(w1(λ) do not have common leaves near λ1.

Proof. Lemma 2.12 gives the first part of the statement. More precisely, for asymptoti-
cally all periodic point w1 for Q := Qmz1,λ0 , the point (z1, w1) is vertical-like. We need
to prove the second assertion.

First, assume for the sake of contradiction that each of the vertical-like repelling
periodic points constructed above have vertical multipliers that are constant on the
leaf L of F passing through λ0. Then, by [BDM08], the Lyapunov exponent of the
first return maps Qnz1,λ is constant for λ ∈ L. In particular, the family (Qnz1,λ)λ∈L is a
non-isotrivial stable algebraic family of polynomials. This is impossible by [McM87].

Therefore, we may chose w1 so that (z1, w1) is vertical-like and its vertical multiplier
is non-constant on L. In other words, the leaves passing through λ0 of F and of
the foliation induced by this vertical multiplier are different; so in a small enough
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neighbourhood of λ0, these two foliations cannot have common leaves. The proof is
complete. �

Lemma 5.4. Let (fλ)λ∈M be a holomorphic family of polynomial skew-product over
a fixed base p and assume that there exists λ0 ∈ M and c ∈ C such that c is an
escaping simple critical point for qλ0,z0 for some n0-periodic repelling point z0 for p.
Then there exist an open neighbourhood Ω of λ0, a positive ε, and a holomorphic map
c : Ω× D(z0, ε)→ C such that

(1) c(λ0, z0) = c;
(2) for all λ ∈ Ω and z ∈ D(z0, ε), q′λ,z(c(λ, z)) = 0;
(3) for all λ ∈ Ω, the critical component of fλ containing all c(λ, z) (z ∈ D(z0, ε))

is not preperiodic.

Proof. The existence of c satisfying the first two properties follows from the Implicit
Function Theorem. Let us prove the last item. Denote by C̃λ the critical component for
fλ containing all c(λ, z). By the continuity of the Green function G, we may assume
that for all λ ∈ Ω, c(λ, z0) is also escaping. Assume for the purpose of a contradiction
that there is λ ∈ Ω such that fn+kλ (C̃λ) = fkλ (C̃λ) for some (n, k) ∈ N × N∗. Then
the projection πz :

⋃
j≥0 f

j
λ(C̃λ) → C on the first coordinate has finite degree. In

particular, the sequence (fn0j
λ ϕ(λ, z0))j≥0 is finite. This contradicts the fact that

c(λ, z0) is escaping. �

Proof of Theorem 1.1. Fix λ0 ∈ Bif(Sk(p, d)) and ε > 0. Set M0 := Sk(p, d). We will
prove by induction on 1 ≤ k ≤ dimV that there exists a family Mk which is ε-close to
λ0 and satisfies the following properties:
(I1) Mk =

⋂
1≤j≤kM(yi,ci),ni is the intersection of k distinct Misiurewicz loci

(I2) Mk has codimension k in Sk(p, d)
(I3) if k < dimSk(p, d), among the k persistent Misiurewicz relations defining Mk,

at least one is good in the sense of Definition 4.1.
The case k = 1 is exactly the content of Proposition 5.1.

Before going into the argument of the induction, we start by choosing λ1 ∈ M1

(ε-close to λ0) such that for all λ in a neighbourhood of λ1 in M1, all maps fλ have at
least one non-periodic post-critical component passing through the repelling cycle. To
find such λ1, we choose a point (z, w), where z is a periodic repelling point of p and such
that Gz,λ0(w) > 0. Applying Proposition 4.2 to the constant graph λ 7→ (z, w), we find
λ1 ∈ B(λ0, ε) ∩M1 such that (z, w) is still escaping for fλ1 , and is also a postcritical
point. Then Lemma 5.4 gives the desired result.

Now assume that Mk is constructed, and let λk ∈ Mk be kε close to λ0. Let
fnλ (z, c(λ)) = (zk, wk(λ)) be the persistently good Misiurewicz relation on Mk. By
Lemma 5.3, there exists a vertical-like repelling periodic point (zk+1, wk+1) for fλk , which
we may locally follow as (zk+1, wk+1(λ)). Moreover, we choose it so that the foliations
given by the level sets of the vertical multipliers of (zk, wk(λ)) and (zk+1, wk+1(λ)) do
not share leaves near λk. By Proposition 4.2, there exists λk+1 ∈ B(λk, ε) such that
fλk+1

has a Misiurewicz relation of the form f
nk+1

λk+1
(yk+1, ck+1) = (zk+1, wk+1(λk+1))

that is not persistent on Mk. We let Mk+1 := Mk ∩M(yk+1,ck+1),nk+1
. Moreover, we

may assume that zk+1 is close enough to zk (and hence z0) that qzk+1,λk+1
still has only
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simple critical points. By construction codimMk+1 = k + 1. Thus the requirements
(I1) and (I2) are satisfied. We need to check (I3).

If k = dimSk(p, d) − 1 the condition is empty. Otherwise, it only remains to
prove that Mk+1 has at least one locally good persistent Misiurewicz relation at λk+1.
Items (G2), (G3) and (G4) of Definition 4.1 hold on Mk+1 for both (zk, wk(λ)) and
(zk+1, wk+1(λ)), provided ε is small enough (this is clear for (G2) and (G4), and it
was proved above for item (G3)). The difficulty here is that it may be the case that the
vertical eigenvalue of either (zk, wk(λ)) or (zk+1, wk+1(λ)) is constant on Mk+1. But
we will prove that our choice of (zk+1, wk+1) implies that it cannot be the case for both.
This will complete the induction step.

If we denote by Lk and Lk+1 the level sets passing through λk+1 of the vertical
multipliers of (zk, wk(λ)) and (zk+1, wk+1(λ)) respectively, then we know that Lk and
Lk+1 intersect properly at λk+1. Therefore, Mk cannot be contained in Lk ∩Lk+1, since
codim(Lk ∩Lk+1∩Mk) = k+ 2 and codim(Mk+1) = k+ 1. In other words, at least one
of the two repelling cycles has non-constant vertical eigenvalue on Mk+1. This ensures
that (G1) in Definition 4.1 holds. The induction is complete.

Finally, once MDd=dimSk(p,d) is constructed, we can apply Proposition 3.1. The proof
is complete. �

Proof of Corollary 1.4. By Theorem 1.1 it is enough to check that the same property is
true for the bifurcation locus. By [AB18], the bifurcation loci associated to periodic
fibres are dense in the bifurcation locus. By [McM00] all these loci have full Hausdorff
dimensions. The assertion follows. �
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