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A few words about combustion



A few words about combustion
A range of applications
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A few words about combustion
The stakes of combustion research

Independance from fossil fuels Process improvement

¢ Non-hydrocarbon fuels (e.g. ® Pollutants prediction and reduction
Hydrogen-based) (Soot particules and NOx)
® Bio-fuels ® |ean combustion

® Thermo-acoustic instabilities
Risks and safety ® Plasma-assisted combustion

® Extinction and ignition

.. ) Transverse tools
® Transition towards detonation

e Wildfire propagation ® Experimental setups and diagnostics

® Simulation tools
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A few words about combustion
Combustion simulation at EM2C

An example of LES at EM2C

® Light-round ignition of the
MICCA chamber?

® TFLES and subgrid-scale
wrinkling model, 2-step global
chemistry

e 2M CPU-hours on 10000

cores

Philip et al. 2014.
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A few words about combustion
Why Large Eddy Simulation ?

For a typical jet flame simulation:

RANS

® ~ 10k cells ® ~ 10G cells ® ~ 10M cells
e 1 CPU-hour e 100M CPU-hour e 10k CPU-hour
® |imited to steady ® Resolves everything e Captures unsteady
states, models a lot of phenomena and some
things details, models small
scales
= Cheap, but no very = Intractable for practical = Sweet spot for
precise cases combustion simulations
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A few words about combustion
Dealing with combustion
Resolution issue "Curse” of the chemistry

Problem: Problem:
The flame front (~ 0.1 mm) is much ® Fluid dynamics alone: 5 transport
thinner than the typical LES mesh cell equations
(~ 1 mm) ® Fluid dynamics + CHj; combustion:
5 57 transport equations +325 reaction
. > source terms
20:3““_3": I del G Solution:
dpierecals e Ek _’) Chemistry reduction methods

We need approximate models to deal with combustion in LES

6/48 Guilhem LAVABRE UQSay - 2020-06-25




A few words about combustion

Uncertainties in turbulent combustion: what's at stake ?

We pay for accuracy while uncertainties can be significant

Possible consequences of a deterministic Uncertainty sources
approach
eb ® Fuel composition (e.g. bio-fuels)

e Difficult comparison of simulations
and experiment

Geometry (injector, swirler...)

Operating point (Temperature,
® Poor pollution prediction pressure, flow rate...)

® Untimely ignition or extinction

Combustion and turbulence models

Chemical kinetic mechanism
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A few words about combustion

State of the art for UQ in combustion

Chemistry only Reactive CFD

® ?Sensitivity analysis on kinetic ® ?LES, 1UP (chemical kinetics)
mechanisms e PLES, 3UP (turbulence model)

e bConsistency of a kinetic mechanism from ® ‘RANS, 7UP (operating conditions)
a UQ standpoint, 102 Uncertain d . N
EN— ® “RANS, 21UP (chemical kinetics)

o <dUncertain Hy/ O, mechanism
2/ 0z The way forward

Complex UQ studies on LES

“Miller and Frenklach 1983.
iFrenkIaCh' Packard, and Seller 2002 “Mueller, laccarino, and Pitsch 2013.
dKon"OV 2008 thaIiI e; al. 2015.'
Bell et al. 2019. c
Constantine et al. 2015.
dJi et al. 2019.
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A few words about combustion
UQ at EM2C

Nicolas DUMONT: Mostly theoretical work on 0D Jan MATEU ARMENGOL: Parallel approach, up to
reactors, enables the use of chemistry tabulation 2D DNS
for uncertain LES
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Goal of the study

Scaling up to handle 3D LES with uncertain chemistry
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@ The case study ©® Reducing the uncertain dimension
@® Reducing the physics @ Design of experiment for the unmitigated
problem
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The case study



The case study
Experimental setup

The Cabra? setup

Configuration

Shear Layer
. oo . . Lifted
® |ifted H, diffusion flame in a vitiated co-flow — Jet Flame
a WO\
® Quantity of interest: Lift-off height (S T o/ cotiow

.. Potential Core
. ;

Why study this flame ?

® Simple flow configuration
® Flame stabilized in vitiated atmosphere

e Lift-off mainly piloted by auto-ignition delay?”

aCao, Pope, and Masri 2005.
bMasri et al. 2004.

Cabra et al. 2002.
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The case study
LES of the Cabra-H, flame

LES of the Cabra flame

Mesh size 10M cells

CPU cost 10k hours
Turb. model WALE
Comb. model | UFPV tabulation

femperature
27e+02 600 800 1000 1200 1.5+03
| I
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The case study

Variance of the Qol

In experiments?b¢
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Q —o— Cabra et al.
E‘:': —A— Gordon et al. (a)
404 =¥ Gordon et al. (b)
X =B Wu et al.
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Cabra et al. 2002.
bGordon et al. 2007.
“Wu, Masri, and Bilger 2006.
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aStanlxovic’, Mastorakos, and Merci 2013.
bCao, Pope, and Masri 2005.

CHan, Raman, and Chen 2016.

dNaud et al. 2015.

®Patwardhan et al. 2009.
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The case study

Accounting for the input uncertainties

Kinetic uncertainties )
Arrhenius law:

Uncertain Ho — O> kinetic mechanism:

Konnov? ki = A; T exp <_RE'I"9j ) (1)
® Log normal distributions (eq. 2) of
Arrhenius rate constants In(A-/AO)
® The other kinetic parameters are i IIJ—UFJ ~N(0,1),;=1,....33
constant 3/n(UF)) 2)
® 33 uncertain variables
aKonnov 2008.
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The case study

Accounting for the input uncertainties
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Arrhenius law:
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Arrhenius rate constants In(A~/AO)
® The other kinetic parameters are i IIJ—UFJ ~N(0,1),;=1,....33
constant 3/n(UF)) 2)
® 33 uncertain variables
aKonnov 2008.
14/48 Guilhem LAVABRE UQSay - 2020-06-25



The case study
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The case study

Accounting for the input uncertainties

Kinetic uncertainties )
Arrhenius law:

Uncertain Ho — O> kinetic mechanism:

Konnov? ki = A; T exp <_RE'I"9j ) (1)
® Log normal distributions (eq. 2) of
Arrhenius rate constants In(A-/AO)
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constant 3/n(UF)) 2
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The case study

Accounting for the input uncertainties

Co-flow temperature uncertainty

e Cabra?: 3% (£30K) uncertainty on co-flow
temperature

® Must be taken into account to compare the T ~U(TMin, Tmax)  (3)
simulation with the experimental results

¢ Uniform distribution (eq. 3) of co-flow
temperature

?Cabra et al. 2002.
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The case study
Cost assessment of the direct study

Cost of the Monte-Carlo approach Cost-reduction levers

e Unitary simulation cost: ~ 10*h ® Surrogate modelling:
Building a surrogate model of the configuration with a
few points and resample it to obtain the statistics

® Thumb-rule of the number of
necessary runs with Monte-Carlo
methods: 10* ® Uncertain-dimension reduction

e Total cost of the " naive” approach: = Reduce the number of runs to build the surrogate

10%h

Identifying a reduced set of uncertain variables and a surrogate modelling approach
suitable for dealing with the case study.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

t=0.00£+00s

e Computation time / sample: ~ 10 min

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

t=1.00E —03s

e Computation time / sample: ~ 10 min

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

t=150E —03s

e Computation time / sample: ~ 10 min

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.

17/48 Guilhem LAVABRE UQSay - 2020-06-25



Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

t=170E —03s

e Computation time / sample: ~ 10 min

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

t=190F —03s

e Computation time / sample: ~ 10 min

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

t=210E —03s

e Computation time / sample: ~ 10 min

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

500 t=230E — 035

e Computation time / sample: ~ 10 min -

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

500 t=2.50E — 035

e Computation time / sample: ~ 10 min -

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation 1500

e UFPV = Auto-igniting diffusion
flamelets

1250
1000

e A UQ study on unsteady diffusion

flamelets should be representative for

kinetic uncertainties

Temperature [K]

500 t=5.00E — 035

e Computation time / sample: ~ 10 min -

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]

Flhme and See 2010.

?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 1/2

Auto-igniting diffusion flamelet - RP1 Auto-ignition of diffusion flamelet

Konnov? mechanism

® |hme et al.?: Chemistry in Cabra flame
well emulated with UFPV tabulation

e UFPV = Auto-igniting diffusion
flamelets

1300

K
it
o
=}
S

—
=
IS
S

Temperature [K]

e A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

Temperature [K]

1000

0001 __J

a o a » 0.0 0.5 1.0 0 2
e Computation time / sample: ~ 10 min ;

lixture fraction [-] Time [s]
2

Flhme and See 2010. ?Konnov 2008.
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Reducing the physics

Identifying a physically-representative reduced problem 2/2

An even more reduced model:
Homogeneous reactor - RP0

® Most reactive fuel/air ratio found in
the flamelet model

e Very fuel lean, very hot Autosieniti
uto-ignition

® The Qol becomes the auto-ignition event
delay time (7)
e Computation time / sample: ~ 0.1 s Convection )
0D reactor
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Reducing the physics
Preliminary results on RPO

Quasi Monte-Carlo Sampling

10° samples drawn from the 34D Sobol

PDF of the auto-ignition delay 7

103
sequence
Illustration of a 2D Sobol sequence 107
1.0 —
£ o0
0.8 =
0.6 100
0.4
0.2 107!
S e e e T 0.00 0.01 0.02 0.03 0.04
ol R e . - )
0.00 0.2 0.50 0.7 1.00
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Reducing the physics
Preliminary results on RPO

Quasi Monte-Carlo Sampling

10° samples drawn from the 34D Sobol
sequence 0.8
Illustration of a 2D Sobol sequence
—0.6
=
1.0 =
2
0.8 =04
o
0.6
0.2
0.4
0.2 0.0 ,
-8 -7 -6 -5 —4 -3
0.0 log(7)

0.00 0.25 0.50 0.75 1.00
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Reducing the physics
Preliminary results on RPO

® mean: ® H,/0; is one of the simplest/most
1.40 ms studied mechanisms
® Result of nominal simulation: ® Here, CFD studies use kinetic
1.02 ms mechanisms that are highly uncertain
® 95% confidence interval: ® Depending on the case, confidence in
[0.54 ms, 4.1 ms] CFD results should be carefully
weighted
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Reducing the uncertain dimension
"Sobol" reduction

21/48

Method 1: " Sobol” reduction

We use the Sobol sensitivity indices (portions of the variance of the Qol explained by
variables and groups of variables) to reduce the uncertain dimension.

Sobol-Hoeffding decomposition (hierarchical and orthogonal, unique):

F(&) = Y Fi&) (*)
1CD
Definition of Sobol indices:
VIF]
S, = <1, S, =1 5
GRRP ®
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Reducing the uncertain dimension
"Sobol" reduction

Method 1: " Sobol” reduction

We use the Sobol sensitivity indices (portions of the variance of the Qol explained by
variables and groups of variables) to reduce the uncertain dimension.

Sobol-Hoeffding decomposition for 2 variables:

F(&1,82) = Fo + F1(§1) + Fa(&2) + F12(61,62) (4)

Definition of Sobol indices:

SL:V[F]SL Y s =1 (5)
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Reducing the uncertain dimension
"Sobol" reduction

Method 1: " Sobol” reduction

We use the Sobol sensitivity indices (portions of the variance of the Qol explained by
variables and groups of variables) to reduce the uncertain dimension.

Polynomial Chaos Expansion for 2 variables:

F(&1,8) = P(&1,&) = Po + Pi(&) + Pa(&2) + Pi2(61, &2) (4)

Approximation of Sobol indices:

S, = R~ <1 (5)
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Reducing the uncertain dimension
"Sobol" reduction

Obtaining the PCE of the auto-ignition delay

® We recycle the QMC samples already computed

® We generate a hybrid Legendre-Hermite polynomial basis of total order 2.

® We use a regression method to compute the PCE coefficients

What about the quality of the PCE ?

® The Qol may not be adequately emulated
® \We need a proper validation of the PCE
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Reducing the uncertain dimension

"Sobol" reduction

Summary plot PDF comparison
1.0
] Ideal PDF (reference)
Reference samples 08 PDF (surrogate)
g4
E 06
= ;
£ 204
5 A
0]
0
0.2
—71
N 0.0 - -

8 7 6 s - 3 log(r)
Model evaluation

The surrogate is not ideal but it still captures the main feature of the distribution.
Further validation will be necessary when reducing the uncertain dimension.
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Reducing the uncertain dimension

"Sobol" reduction

Summary plot PDF comparison
] Ideal —— PDF (reference)
Reference samples PDF (surrogate)

Y
E
= i
=5
o
E}
0]
0

—71

81

8 7 6 s - 3 log(r)
Model evaluation

The surrogate is not ideal but it still captures the main feature of the distribution.
Further validation will be necessary when reducing the uncertain dimension.
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Reducing the uncertain dimension

"Sobol" reduction

We plot the first- and second-order Sobol indices of the Qol in decreasing order:

100

10714

Sobol index

10734

10—2 4

1074

® Temperature uncertainty is
predominant

® The uncertainty on the 16"
reaction is next

®* H+0,=0H+O0

® Explained by very high
sensitivity despite low
uncertainty factor?

® Consistent with the
literature®

aMasten, Hanson, and Bowman 1990.

in et al. 2019.
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Reducing the uncertain dimension

"Sobol" reduction

—
j==]
>

Selection of relevant uncertainties

[ ] ST ~ SA16
® Every other sobol indices are at
least one order of magnitude lower

Sobol index
— —
= =
b L

,_.
]
w

H
9
L
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Reducing the uncertain dimension

"Sobol" reduction

—
j==]
>

Selection of relevant uncertainties

[ ] ST ~ SA16
® Every other sobol indices are at
least one order of magnitude lower

Sobol index
— —
o o
& L

,_.
]
w

= Over 95% of the variance should be
explained in a 2D uncertain space

H
9
L
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Reducing the uncertain dimension

"Sobol" reduction

Validation PDF comparison

® \We sample again RPO in the 0sf N —— PDF (34RV)
. j PDF (2 RV)

reduced uncertain space
® \We compare the PDF of the
Qol for 34 and 2 input 204l
random variables (RV)

0.64

3(7))

pdf

® The PDF nearly collapse 0-21
= The dimension reduction
is validated

0.01
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Reducing the uncertain dimension
Active direction detection 1/4

Method 2: Active direction detection

We sort the directions w; in which the Qol F encounters the steepest gradients, and
then retain only the most important direction.

Assumptions:
® F is monotonous with each &;
® An Active Direction (AD) can be discovered

® On the AD, F is not too far from a linear function
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Reducing the uncertain dimension

Active direction detection 2/4

We can then determine the AD wj with a linear regression of F:

F(&) =bT&+bo + F(€) (6)
And:
w1 =b"/||b]: (7)
e Most of the variability should be There is no a priori quantitative guarantee
retained on the AD of the quality of the active direction

® A surrogate built on the AD should
also be a good approximation of F
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Reducing the uncertain dimension

Active direction detection 3/4

Application to the Full chemistry + Temperature (34D)

We obtain a "noisy” 1D dataset

Projection of the reference samples on the active direction

Reference samples

-

—10

—0.5
Active Variable

0.0 0.5

We can extract sensitivity indices from the

AD coordinates

1005
o Negative contribution
& O o Positive contribution
s 10 °
é
= 102
2 ° o
Z 1073 °
A o
-4
10 &~ =1 = S 5 2 a 8
< < < < < <

29/48
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Reducing the uncertain dimension

Active direction detection 4/4

Combining the two methods: Application to the Sobol-reduced dataset (2D)

We obtain a much less noisy 1D dataset We can extract sensitivity indices from the
AD coefficients

Projection of the reference samples on the active direction

=37 - Reference samples & ' 101
o Negative contribution
—41 a2 o Positive contribution
- 1
- <
) g
& £ 107!
-6 E
= o
e
7 (},}
s -2
—15 —1.0 —0.5 0.0 0.5 10 S 2
Active Variable <
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Design of experiment for the

unmitigated problem



Design of experiment for the unmitigated problem

General strategy

@ |dentify several surrogate modelling
methods

@® Benchmark them on the RPO
= Representative of the
performance on the unmitigated
physical problem (LES)

© Validation tests of the best method
on different problems

@ If conclusive, keep on with the
method for the uncertain LES

Reduction method | Short form

Sobol indices (2D) Sob

Active direction (1D) AD

Surrogate method | Short form

PCE (Projection) PCE-P

PCE (Regression) PCE-R
Kriging Kr
Spline Sp

Methodology example: Sob+PCE-P

31/48 Guilhem LAVABRE
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Design of experiment for the unmitigated problem

Sob+PCE-P 1/2

To compute the PCE coefficients, we project the

The projection method Qol on each basis polynomial. With:

P
® Based on the computation of
F(&) =~ PP = E fi -

integrals (€) (€) o ko vk(E)

® Accesible with advanced

quadrature rules We have:

f = <F7¢k> (8)

(Y, Vi)

® Should not need many sample
points to build a decent
surrogate
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Design of experiment for the unmitigated problem

Sob+PCE-P 1/2

To compute the PCE coefficients, we project the

The projection method Qol on each basis polynomial. With:

P
® Based on the computation of
F(&) =~ PP = E fi -

integrals (€) (€) o ko vk(E)

® Accesible with advanced

quadrature rules We have:
® Should not need many sample ‘ 1 / r )
- 9
points to build a decent k D) J= (x) i (x)me(x)dx (9)

surrogate
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Design of experiment for the unmitigated problem

Sob+PCE-P 1/2

To compute the PCE coefficients, we project the

The projection method Qol on each basis polynomial. With:

P
® Based on the computation of
F(&) =~ PP = E fi -

integrals (€) (€) o ko vk(E)

® Accesible with advanced

quadrature rules We have:
® Should not need many sample 1 N ) )
points to build a decent fe = s r) Z W(')F(ﬁ(/))wk(g(')) (10)

surrogate i
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Design of experiment for the unmitigated problem

Sob+PCE-P 2/2

Level 1, 5 samples

Sampling method

® Nested quadrature method: 1 o
Fejer of the second kind R
G 0 o o o
o T .
0 . —14 o
® Sparse "Smolyak” tensorisation
e Easy addition of new dimensions if ]
necessary 00 0.2 04 06 0.8 1.0
T
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Design of experiment for the unmitigated problem

Sob+PCE-P 2/2

Level 2, 17 samples

Sampling method

® Nested quadrature method: 1 ° ° °
Fejer of the second kind R °
o 0 o o o o o o o
o T . °
—14 o o o

® Sparse "Smolyak” tensorisation

e Easy addition of new dimensions if
necessary -3

0.0 0.2 0.4 0.6 0.8 1.0
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Design of experiment for the unmitigated problem

Sob+PCE-P 2/2

Level 3, 49 samples

Sampling method o
27 o o o
® Nested quadrature method: e o o . e o o
. . o
Fejer of the second kind ° ° °
3 0* 00 0O O o o o o o o o o O 0o
. . o
® Tensorisation ° ° °
o
. . . . -1 o o o o o o o
® Sparse "Smolyak” tensorisation °
o o o
.. . . . _2,
e Easy addition of new dimensions if 0
necessary 00 0.2 04 06 0.8 1.0
T
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Design of experiment for the unmitigated problem

Sob+PCE-P 2/2

Level 4, 129 samples

3 o
Sampling method ° o o
27 o o [} § o o o
e Nested quadrature method: 1l ccoe o 0o o § o o o oooo
. . o o
Fejer of the second kind °o o o o g o
3 0* ao0000 0000000 O O O 0 0 000000
1 1 o o
® Tensorisation o o ° ° ° o
o o
,, 0 . . —14{ ooo 0o o o o o o o o ooo
® Sparse "Smolyak” tensorisation ° 8 °
_27 o o [} g o o o
e Easy addition of new dimensions if 0 o o
o
-3
necessary 00 02 04 06 08 10

<
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Design of experiment for the unmitigated problem
Sob+PCE-P 2/2

Sampling method

® Nested quadrature method:
Fejer of the second kind

o T -
® Sparse "Smolyak” tensorisation

® Easy addition of new dimensions if
necessary
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Design of experiment for the unmitigated problem

Sob+PCE-P

Selection of the best PCE for a level 3 quadrature (49 samples)

PDF comparison

1.0 i
i —— Reference
0.8 i
] Based on the Wasserstein distance to the
%0'6 ,' j reference, the PCE of total order 3 is the
=) i . N
%0'4 : best performing for 49 samples with the
a projection method
0.2
00{ -
-8 -6 —4 —2
log(7)
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Design of experiment for the unmitigated problem

Sob+PCE-P

PDF comparison

—— Reference

..... Sob+PCE-P-Lvl4
_____ Sob+PCE-P-LvlI3
.......... Sob+PCE-P-LvI2

Distance to reference PDF

10!

1072

—+— Sob+PCE-P

10

102
Number of samples
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Design of experiment for the unmitigated problem
Sob+Kr 1/3

Sampling method Kriging settings

Quasi Monte-Carlo method: Sobol Beginner's choice:

sequence ® Matérn covariance kernel

Because very few points and: ® Linear trend

® Not really interested in randomization

® Very interested in filling the uncertain
space
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0.6

3(7))

0.4

pdf(lo

0.2

0.0

Design of experiment for the unmitigated problem

Sob+Kr 2/3

PDF comparison 10!
—+— Sob+PCE-P
— Reference Sob-LKr
----- Sob+Kr-129s
''''' Sob+Kr-49s

""""" Sob+Kr-17s

1072

Distance to reference PDF

102
Number of samples
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Design of experiment for the unmitigated problem
Sob+Kr 3/3

Surrogate Surrogate

Reference samples

Reference samples
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Design of experiment for the unmitigated problem

Sob+PCE-R 1/2

Global fit = more relevant for non-polynomial Qol

Sampling method PCE-R settings

Quasi Monte-Carlo method: Sobol ® Parametric study on total degree
T UEEE _ (Fixed basis)
BleEaEe ey iy [REllils ewel ® | east-square optimisation to find the
® Not really interested in randomization coefficients, K-fold cross validation
® Very interested in filling the uncertain
space

39/48 Guilhem LAVABRE UQSay - 2020-06-25



Design of experiment for the unmitigated problem

Sob+PCE-R 2/2

PDF comparison 107!
—— Sob+PCE-P
0.8 — Reference —e— Sob+Kr
----- Sob+PCE-R-129s & —— Sob+PCE-R
osd 1 A T Sob+PCE-R-49s 5
= |1 N e Sob+PCE-R-17s i
\%0.4 43 10—2
& =
0.2 z
0.0 e N
-8 —6 —4 -2 10! 10°
log(7) Number of samples
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Design of experiment for the unmitigated problem

Making use of an AD 1/3

There is no guarantee the AD stays strictly the same when we change the physical model
= We need to determine a new AD for each physical problem.

Situation 1: Direct AD Situation 2: Sob+-AD

® The original uncertain space has 34D ® The reduced uncertain space has only
® \We consider sampling a few tens of 2D
realisations ® We consider sampling a few tens of
= The direct determination of an AD on realisations
the original uncertain space (linear = The direct AD is well over-determined

regression) is not over-determined enough
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Design of experiment for the unmitigated problem

Making use of an AD 2/3

With spline surrogates

PDF comparison 107!
1.0
i — Reference
081  fy Sob+AD+Sp-129s f
————— Sob+AD-+Sp-49s 0;
2061 A e Sob+AD-+Sp-17s g
04 <107
= z —— Sob+PCE-P
0.2 A —— Sob+Kr
—— Sob+PCE-R
0.0 _ o —=— Sob+AD+Sp
-8 —6 —4 -2 10! 10
log(7) Number of samples
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pdf(log(7))

0.2
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Design of experiment for the unmitigated problem

Making use of an AD 3/3

With kriging surrogates

PDF comparison

— Reference
Sob+AD+Kr-129s
Sob+AD+Kr-49s
Sob+AD+Kr-17s

Distance to reference PDF

107!

1072

Sob+PCE-P
Sob+Kr

Sob+PCE-R
Sob+AD+Sp
Sob+AD+Kr

10!

107
Number of samples
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Design of experiment for the unmitigated problem
Comparison of the different approaches

® The global fit provided by PCE-R is
always better than PCE-P in this case

® The surrogates built on active
directions are not performing as well
as expected

Sob+PCE-P
—e— Sob+Kr

—»— Sob+PCE-R
—=— Sob+AD+Sp
—+— Sob+AD+Kr

Distance to reference PDF

® Kriging and PCE-R are performing
better than the other methods for
nearly every dataset size

10! 102
Number of samples
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Design of experiment for the unmitigated problem

Validation of the approach

Check #1: RPO bis

1500
1250

1000
RPO

~
(S
o

Temperature [K]

250

0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]
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Design of experiment for the unmitigated problem

Validation of the approach

Check #1: RPO bis

1500
® We change the fuel-air ratio of the 250 R0 PIS

reactor -

£ 1000
B
2

£ 750
=

500

250

00 02 04 056 038 10
Mixture fraction [-]
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Design of experiment for the unmitigated problem

Validation of the approach

Check #1: RPO bis

e We change the fuel-air ratio of the

reactor
® The distribution of the Qol becomes

bimodal

PDF comparison

0.3

0.2

pdf(log(7))

0.1

—— QMC-34RV

UQSay - 2020-06-25
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Design of experiment for the unmitigated problem

Validation of the approach

Check #1: RPO bis

e We change the fuel-air ratio of the 0o
reactor
® The distribution of the Qol becomes 202
bimodal %?50
® The uncertain dimension reduction 201
still holds '
0.0

PDF comparison

—— QMC-34RV
----- QMC-2RV
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Design of experiment for the unmitigated problem

Validation of the approach

Check #1: RPO bis

e We change the fuel-air ratio of the

|

8
reactor &
® The distribution of the Qol becomes :
bimodal B
® The uncertain dimension reduction 210
still holds e Sob-+Kr
—— Sob+PCE-R
e Kriging on the 2D space is still the —+— Sob+AD+Kr
best performing method o o
. . Number of samples
® Regression PCE is not robust enough e e

for this configuration
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Design of experiment for the unmitigated problem

Validation of the approach

Kriging response surface

Check #1: RPO bis Surrogate

® We change the fuel-air ratio of the - Reference samples
reactor

® The distribution of the Qol becomes
bimodal

® The uncertain dimension reduction
still holds

e Kriging on the 2D space is still the
best performing method

® Regression PCE is not robust enough
for this configuration
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Design of experiment for the unmitigated problem

Validation of the approach

Check #2: RP1

1500
® Now we look at the whole flamelet 1950
model (RP1) =
51000
2
2
E 750
=
500
RP1
250
0.0 0.2 0.4 0.6 0.8 1.0
Mixture fraction [-]
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Design of experiment for the unmitigated problem

Validation of the approach

Check #2 RP1 PDF comparison

— QMC-34RV
® Now we look at the whole flamelet 06 Q
model (RP1)
%0.4
=
0.2
0.0
-8 -7 -6 -5 —4 -3 —2
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Design of experiment for the unmitigated problem

Validation of the approach

Check #2 RP1 PDF comparison

- —— QMC-34RV
® Now we look at the whole flamelet Q ,
Y L U QMC-2RV
model (RP1)
® The uncertain dimension reduction ®
) 0.4
still holds =
=
0.2
0.0
-8 -7 -6 -5 -4 -3 -2
log(7)
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Design of experiment for the unmitigated problem

Validation of the approach

Check #2: RP1

® Now we look at the whole flamelet
model (RP1)

® The uncertain dimension reduction
still holds

e Kriging on the 2D space is still the
best performing method

rence PDF

H
9

1072

—e— Sob+Kr
—+— Sob+AD+Kr

10

102
Number of samples
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Conclusion

Dimension reduction

® \We used a representative reduced
problem to perform sensitivity analysis

® A 2D uncertain space has been found in
which most of the variance is reproduced

® When such preliminary study is not
doable for some variables, one can still
try to reduce the uncertain dimension
with active directions
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Conclusion

Surrogate modelling

® We used a representative reduced ® Quadrature sampling can be ruled out in this case
problem to perform sensitivity analysis as PCE-P is performing worse than every other

® A 2D uncertain space has been found in method
which most of the variance is reproduced ® Kriging seems to be the best candidate for efficient

® When such preliminary study is not surrogate modelling on very reduced dataset
doable for some variables, one can still ® |f an active direction can be found, 1D surrogates
try to reduce the uncertain dimension on this direction can also perform quite well

with active directions
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Conclusion

Surrogate modelling

® We used a representativg .re.duced ] ® Quadrature sampling can be ruled out in this case
problem to perform sensitivity analysis as PCE-P is performing worse than every other

® A 2D uncertain space has been found in method
which most of the variance is reproduced ® Kriging seems to be the best candidate for efficient

® When such preliminary study is not surrogate modelling on very reduced dataset
doable for some variables: Il _Sti” ® |f an active direction can be found, 1D surrogates
try to reduce the uncertain dimension on this direction can also perform quite well

with active directions

Conclusion

® For the uncertain LES, a limited Sobol-sequence sampling will be performed on the 2D uncertain
space

® On this small dataset, Kriging will be performed to obtain a surrogate of the lift-off height of the
Cabra flame
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Conclusion

Now we "only” need to compute a few tens of LES !
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Backup slides
Sobol indices from PCE 1/2

Let (F : € € Z) € RY — R be the physical model where & = (&1, ... ,&q) are independent
real valuded random variables of joint-PDF pg

Let {1} be the set of d-variate orthogonal polynomials

d

va(€) = [] v9(&) (11)

i=1

If F € L5(=,pe), it has a (spectrally) convergent PC expansion:

d
FE) = lim > va(@Fe ol =2_lail (12)
i=1

llafl<N
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Backup slides
Sobol indices from PCE 2/2

With the Sobol-Hoeffding decomposition written as:

F(&) =D F(&) (13)

1CD

We get the approximate S-H functionals as truncated PC terms:

Fué)m Y tal€)Fa (14)

lofje A,

With A, = {a € A, a; >0forici,aj =0fori¢ i} C A Then:

Paca, Falta, o)
ZQEA Fg <1/}On ¢a>

S.(F)~ (15)
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Backup slides
Active subspace determination 1/4

Finding an active subspace (AS) starts with performing a base change on the uncertain
space:

Where W = (w1, ..., wy) is a unitary matrix and :

A= Diag()\l, ...,)\d),\Vi S |I1, d— 1]],)\,‘ > A1

Goal of the operation

Sort the directions w; in which the Qol F encounters the greatest gradients
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Backup slides
Active subspace determination 2/4

Basis truncature Expectations

Truncature possible at rank r whenever e Most of the variability should be
Ar > Ar+1 retained on the AS
Span(wi, ..., w,) is called the active

® A surrogate built on the AS should

subspace also be a good approximation of F

[llustration of AS eigenvalues?

0 Warnin

[ 10'1 . . . . .

= There is no a priori quantitative guarantee

> 10~

§ 100 of the adequacy of the reduced space

g

10
5 10 15 20
index

“Ji et al. 2010.
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Backup slides
Active subspace determination 3/4

Practical obtention of the active subspace

M is the necessary number of samples, d the initial dimension of the problem, a an
over-sampling factor, 3 the largest dimension acceptable for the AS

15t Scenario 2" Scenario

Gradient obtained " for free” with each Gradient information computed with finite

sample (adjoint simulation) differences
M=a-3-log(d) M=a«a-p-d-log(d)
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3" Scenario

Assumptions:
® [ is monotonous with each &;
® A 1D AS can be discovered (Active Direction)
® On the AD, F is not too far from a linear function

We can then determine the AD with a linear regression of F:
F(€) = bT&+ bo + F(€) (17)

And:
wi=b"/|b| (18)

With the cost: M =« - d
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Surrogates on the AD - RPO

Spline, 129 samples Kriging, 129 samples
—31 —— Surrogate f--'. =31 —— Sob+AD+Kr129 o
Reference samples . 1 - Reference samples
4 —41

Construction samples .
Construction samples

°
c
61
—6 1
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78 1 T T T T ‘r
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—i.G —1I,[) —6,5 0.0 05 Active variable
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— Sob+AD+Kr17

Surrogates on the AD - RPObis

Reference samples

Construction samples

—— Sob+AD+Kr49
b - Reference samples
—4
&
-6
-8
—L5 -10

—0.5

Construction samples

Active variable
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