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A few words about combustion



A few words about combustion
A range of applications
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Independance from fossil fuels

• Non-hydrocarbon fuels (e.g.
Hydrogen-based)

• Bio-fuels

Risks and safety

• Extinction and ignition

• Transition towards detonation

• Wildfire propagation

Process improvement

• Pollutants prediction and reduction
(Soot particules and NOx)

• Lean combustion

• Thermo-acoustic instabilities

• Plasma-assisted combustion

Transverse tools

• Experimental setups and diagnostics

• Simulation tools

A few words about combustion
The stakes of combustion research
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An example of LES at EM2C

• Light-round ignition of the
MICCA chambera

• TFLES and subgrid-scale
wrinkling model, 2-step global
chemistry

• 2M CPU-hours on 10000
cores

a
Philip et al. 2014.

A few words about combustion
Combustion simulation at EM2C
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For a typical jet flame simulation:

RANS

• ∼ 10k cells

• 1 CPU-hour

• Limited to steady
states, models a lot of
things

⇒ Cheap, but no very
precise

DNS

• ∼ 10G cells

• 100M CPU-hour

• Resolves everything

⇒ Intractable for practical
cases

LES

• ∼ 10M cells

• 10k CPU-hour

• Captures unsteady
phenomena and some
details, models small
scales

⇒ Sweet spot for
combustion simulations

A few words about combustion
Why Large Eddy Simulation ?
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Resolution issue

Problem:
The flame front (∼ 0.1 mm) is much
thinner than the typical LES mesh cell
(∼ 1 mm)

Solution:
Subgrid-scale models

”Curse” of the chemistry

Problem:

• Fluid dynamics alone: 5 transport
equations

• Fluid dynamics + CH4 combustion:
57 transport equations +325 reaction
source terms

Solution:
Chemistry reduction methods

We need approximate models to deal with combustion in LES

A few words about combustion
Dealing with combustion
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We pay for accuracy while uncertainties can be significant

Possible consequences of a deterministic
approach

• Difficult comparison of simulations
and experiment

• Poor pollution prediction

• Untimely ignition or extinction

Uncertainty sources

• Fuel composition (e.g. bio-fuels)

• Geometry (injector, swirler...)

• Operating point (Temperature,
pressure, flow rate...)

• Combustion and turbulence models

• Chemical kinetic mechanism

A few words about combustion
Uncertainties in turbulent combustion: what’s at stake ?
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Chemistry only

• aSensitivity analysis on kinetic
mechanisms

• bConsistency of a kinetic mechanism from
a UQ standpoint, 102 Uncertain
Parameters (UP)

• cdUncertain H2/O2 mechanism

a
Miller and Frenklach 1983.

b
Frenklach, Packard, and Seiler 2002.

c
Konnov 2008.

d
Bell et al. 2019.

Reactive CFD

• aLES, 1UP (chemical kinetics)

• bLES, 3UP (turbulence model)

• cRANS, 7UP (operating conditions)

• dRANS, 21UP (chemical kinetics)

The way forward

Complex UQ studies on LES

a
Mueller, Iaccarino, and Pitsch 2013.

b
Khalil et al. 2015.

c
Constantine et al. 2015.

d
Ji et al. 2019.

A few words about combustion
State of the art for UQ in combustion
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Nicolas Dumont: Mostly theoretical work on 0D
reactors, enables the use of chemistry tabulation
for uncertain LES
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Jan Mateu Armengol: Parallel approach, up to
2D DNS

Goal of the study

Scaling up to handle 3D LES with uncertain chemistry

A few words about combustion
UQ at EM2C
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1 The case study
2 Reducing the physics

3 Reducing the uncertain dimension
4 Design of experiment for the unmitigated

problem

Contents
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The case study



Configuration

• Lifted H2 diffusion flame in a vitiated co-flow

• Quantity of interest: Lift-off height

Why study this flame ?

• Simple flow configuration

• Flame stabilized in vitiated atmosphere

• Lift-off mainly piloted by auto-ignition delayab

a
Cao, Pope, and Masri 2005.

b
Masri et al. 2004.

The Cabraa setup

a
Cabra et al. 2002.

The case study
Experimental setup

11/48 Guilhem Lavabre UQSay - 2020-06-25



LES of the Cabra flame
Mesh size 10M cells

CPU cost 10k hours

Turb. model WALE

Comb. model UFPV tabulation

The case study
LES of the Cabra-H2 flame
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In experimentsabc
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In simulationsabcde
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a
Stanković, Mastorakos, and Merci 2013.

b
Cao, Pope, and Masri 2005.

c
Han, Raman, and Chen 2016.

d
Naud et al. 2015.

e
Patwardhan et al. 2009.

The case study
Variance of the QoI
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Kinetic uncertainties

• Uncertain H2 − O2 kinetic mechanism:
Konnova

• Log normal distributions (eq. 2) of
Arrhenius rate constants

• The other kinetic parameters are
constant

• 33 uncertain variables

a
Konnov 2008.

Arrhenius law:

kj = AjT
βj exp

(−Eaj
RT

)
(1)

ξj =
ln(Aj/A

0
j )

1
3 ln(UFj)

∼ N (0, 1), j = 1, ..., 33

(2)

The case study
Accounting for the input uncertainties
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Co-flow temperature uncertainty

• Cabraa: 3% (±30K ) uncertainty on co-flow
temperature

• Must be taken into account to compare the
simulation with the experimental results

• Uniform distribution (eq. 3) of co-flow
temperature

a
Cabra et al. 2002.

T ∼ U(TMin,TMax) (3)

The case study
Accounting for the input uncertainties
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Cost of the Monte-Carlo approach

• Unitary simulation cost: ≈ 104h

• Thumb-rule of the number of
necessary runs with Monte-Carlo
methods: 104

• Total cost of the ”naive” approach:
108h

Cost-reduction levers

• Surrogate modelling:
Building a surrogate model of the configuration with a
few points and resample it to obtain the statistics

• Uncertain-dimension reduction
⇒ Reduce the number of runs to build the surrogate

This study

Identifying a reduced set of uncertain variables and a surrogate modelling approach
suitable for dealing with the case study.

The case study
Cost assessment of the direct study

16/48 Guilhem Lavabre UQSay - 2020-06-25



Reducing the physics



Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
Ihme and See 2010.

Auto-ignition of diffusion flamelet
Konnova mechanism
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Konnov 2008.

Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1
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Reducing the physics
Identifying a physically-representative reduced problem 1/2

17/48 Guilhem Lavabre UQSay - 2020-06-25



Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation
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• A UQ study on unsteady diffusion
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
Ihme and See 2010.
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
Ihme and See 2010.
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
Ihme and See 2010.
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Reducing the physics
Identifying a physically-representative reduced problem 1/2

17/48 Guilhem Lavabre UQSay - 2020-06-25



Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
Ihme and See 2010.
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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Auto-igniting diffusion flamelet - RP1

• Ihme et al.a: Chemistry in Cabra flame
well emulated with UFPV tabulation

• UFPV = Auto-igniting diffusion
flamelets

• A UQ study on unsteady diffusion
flamelets should be representative for
kinetic uncertainties

• Computation time / sample: ∼ 10 min

a
Ihme and See 2010.
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Reducing the physics
Identifying a physically-representative reduced problem 1/2
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An even more reduced model:
Homogeneous reactor - RP0

• Most reactive fuel/air ratio found in
the flamelet model

• Very fuel lean, very hot

• The QoI becomes the auto-ignition
delay time (τ)

• Computation time / sample: ∼ 0.1 s

0D reactor

Convection

Auto-ignition 
event

Reducing the physics
Identifying a physically-representative reduced problem 2/2
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Quasi Monte-Carlo Sampling

105 samples drawn from the 34D Sobol
sequence

Illustration of a 2D Sobol sequence
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Reducing the physics
Preliminary results on RP0
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Reducing the physics
Preliminary results on RP0
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Useful statistics

• mean:
1.40 ms

• Result of nominal simulation:
1.02 ms

• 95% confidence interval:
[0.54 ms, 4.1 ms]

A bit of perspective

• H2/O2 is one of the simplest/most
studied mechanisms

• Here, CFD studies use kinetic
mechanisms that are highly uncertain

• Depending on the case, confidence in
CFD results should be carefully
weighted

Reducing the physics
Preliminary results on RP0
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Reducing the uncertain dimension



Method 1: ”Sobol” reduction
We use the Sobol’ sensitivity indices (portions of the variance of the QoI explained by
variables and groups of variables) to reduce the uncertain dimension.

Sobol-Hoeffding decomposition (hierarchical and orthogonal, unique):

F (ξ) =
∑
ι⊆D

Fι(ξι) (4)

Definition of Sobol indices:

Sι =
V[Fι]

V[F ]
≤ 1,

∑
ι⊆D\∅

Sι = 1 (5)

Reducing the uncertain dimension
”Sobol” reduction
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Method 1: ”Sobol” reduction
We use the Sobol’ sensitivity indices (portions of the variance of the QoI explained by
variables and groups of variables) to reduce the uncertain dimension.

Polynomial Chaos Expansion for 2 variables:

F (ξ1, ξ2) ≈ P(ξ1, ξ2) = P0 + P1(ξ1) + P2(ξ2) + P12(ξ1, ξ2) (4)

Approximation of Sobol indices:

Sι =
V[Fι]

V[F ]
≈ V[Pι]

V[P]
≤ 1 (5)

Reducing the uncertain dimension
”Sobol” reduction
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Obtaining the PCE of the auto-ignition delay

• We recycle the QMC samples already computed

• We generate a hybrid Legendre-Hermite polynomial basis of total order 2.

• We use a regression method to compute the PCE coefficients

What about the quality of the PCE ?

• The QoI may not be adequately emulated

• We need a proper validation of the PCE

Reducing the uncertain dimension
”Sobol” reduction

22/48 Guilhem Lavabre UQSay - 2020-06-25



−7 −6 −5 −4 −3
log(τ )

0.0

0.2

0.4

0.6

0.8

1.0

p
d

f(
lo

g(
τ

))

PDF comparison

PDF (reference)

PDF (surrogate)

The surrogate is not ideal but it still captures the main feature of the distribution.
Further validation will be necessary when reducing the uncertain dimension.

Reducing the uncertain dimension
”Sobol” reduction
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We plot the first- and second-order Sobol indices of the QoI in decreasing order:
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• Temperature uncertainty is
predominant
• The uncertainty on the 16th

reaction is next
• H + O2 = OH + O
• Explained by very high

sensitivity despite low
uncertainty factora

• Consistent with the
literatureb

a
Masten, Hanson, and Bowman 1990.

b
Ji et al. 2019.

Reducing the uncertain dimension
”Sobol” reduction
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Selection of relevant uncertainties

• ST ∼ SA16

• Every other sobol indices are at
least one order of magnitude lower
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Reducing the uncertain dimension
”Sobol” reduction
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Selection of relevant uncertainties

• ST ∼ SA16

• Every other sobol indices are at
least one order of magnitude lower

⇒ Over 95% of the variance should be
explained in a 2D uncertain space
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Validation

• We sample again RP0 in the
reduced uncertain space

• We compare the PDF of the
QoI for 34 and 2 input
random variables (RV)

• The PDF nearly collapse
⇒ The dimension reduction
is validated −7 −6 −5 −4 −3
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Method 2: Active direction detection
We sort the directions w i in which the QoI F encounters the steepest gradients, and
then retain only the most important direction.

Assumptions:

• F is monotonous with each ξi
• An Active Direction (AD) can be discovered

• On the AD, F is not too far from a linear function

Reducing the uncertain dimension
Active direction detection 1/4
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We can then determine the AD w1 with a linear regression of F :

F (ξ) = bTξ + b0 + F̃ (ξ) (6)

And:
w1 = bT/‖b‖2 (7)

Expectations

• Most of the variability should be
retained on the AD

• A surrogate built on the AD should
also be a good approximation of F

Warning

There is no a priori quantitative guarantee
of the quality of the active direction

Reducing the uncertain dimension
Active direction detection 2/4
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Application to the Full chemistry + Temperature (34D)

We obtain a ”noisy” 1D dataset We can extract sensitivity indices from the
AD coordinates
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Combining the two methods: Application to the Sobol-reduced dataset (2D)

We obtain a much less noisy 1D dataset We can extract sensitivity indices from the
AD coefficients
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Design of experiment for the

unmitigated problem



Roadmap

1 Identify several surrogate modelling
methods

2 Benchmark them on the RP0
⇒ Representative of the
performance on the unmitigated
physical problem (LES)

3 Validation tests of the best method
on different problems

4 If conclusive, keep on with the
method for the uncertain LES

Reduction method Short form
Sobol indices (2D) Sob

Active direction (1D) AD

Surrogate method Short form
PCE (Projection) PCE-P

PCE (Regression) PCE-R

Kriging Kr

Spline Sp

Methodology example: Sob+PCE-P

Design of experiment for the unmitigated problem
General strategy
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The projection method

• Based on the computation of
integrals

• Accesible with advanced
quadrature rules

• Should not need many sample
points to build a decent
surrogate

To compute the PCE coefficients, we project the
QoI on each basis polynomial. With:

F (ξ) ≈ Pp(ξ) =

p∑
k=0

fk · ψk(ξ)

We have:

fk =
〈F , ψk〉
〈ψk , ψk〉

(8)

Design of experiment for the unmitigated problem
Sob+PCE-P 1/2
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The projection method

• Based on the computation of
integrals

• Accesible with advanced
quadrature rules
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points to build a decent
surrogate

To compute the PCE coefficients, we project the
QoI on each basis polynomial. With:

F (ξ) ≈ Pp(ξ) =

p∑
k=0

fk · ψk(ξ)

We have:

fk =
1

〈ψk , ψk〉

∫
Ξ
F (x)ψk(x)πξ(x)dx (9)
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The projection method

• Based on the computation of
integrals

• Accesible with advanced
quadrature rules

• Should not need many sample
points to build a decent
surrogate

To compute the PCE coefficients, we project the
QoI on each basis polynomial. With:

F (ξ) ≈ Pp(ξ) =

p∑
k=0

fk · ψk(ξ)

We have:

fk ≈
1

〈ψk , ψk〉
N∑
i=1

w (i)F (ξ(i))ψk(ξ(i)) (10)

Design of experiment for the unmitigated problem
Sob+PCE-P 1/2
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Sampling method

• Nested quadrature method:
Fejer of the second kind

• Tensorisation

• Sparse ”Smolyak” tensorisation

• Easy addition of new dimensions if
necessary
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Level 1, 5 samples

Design of experiment for the unmitigated problem
Sob+PCE-P 2/2
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Sampling method

• Nested quadrature method:
Fejer of the second kind

• Tensorisation
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• Easy addition of new dimensions if
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Sampling method

• Nested quadrature method:
Fejer of the second kind

• Tensorisation

• Sparse ”Smolyak” tensorisation

• Easy addition of new dimensions if
necessary
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Sampling method

• Nested quadrature method:
Fejer of the second kind

• Tensorisation

• Sparse ”Smolyak” tensorisation

• Easy addition of new dimensions if
necessary
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Sampling method

• Nested quadrature method:
Fejer of the second kind

• Tensorisation

• Sparse ”Smolyak” tensorisation

• Easy addition of new dimensions if
necessary
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Selection of the best PCE for a level 3 quadrature (49 samples)

−8 −6 −4 −2
log(τ )

0.0

0.2

0.4

0.6

0.8

1.0

p
d

f(
lo

g(
τ

))

PDF comparison

Reference

Deg-1

Deg-2

Deg-3

Deg-4

Based on the Wasserstein distance to the
reference, the PCE of total order 3 is the
best performing for 49 samples with the
projection method

Design of experiment for the unmitigated problem
Sob+PCE-P
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Sampling method

Quasi Monte-Carlo method: Sobol
sequence
Because very few points and:

• Not really interested in randomization

• Very interested in filling the uncertain
space

Kriging settings

Beginner’s choice:

• Matérn covariance kernel

• Linear trend

Design of experiment for the unmitigated problem
Sob+Kr 1/3
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Design of experiment for the unmitigated problem
Sob+Kr 3/3
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Global fit ⇒ more relevant for non-polynomial QoI

Sampling method

Quasi Monte-Carlo method: Sobol
sequence
Because very few points and:

• Not really interested in randomization

• Very interested in filling the uncertain
space

PCE-R settings

• Parametric study on total degree
(Fixed basis)

• Least-square optimisation to find the
coefficients, K-fold cross validation

Design of experiment for the unmitigated problem
Sob+PCE-R 1/2
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There is no guarantee the AD stays strictly the same when we change the physical model
⇒ We need to determine a new AD for each physical problem.

Situation 1: Direct AD

• The original uncertain space has 34D

• We consider sampling a few tens of
realisations

⇒ The direct determination of an AD on
the original uncertain space (linear
regression) is not over-determined enough

Situation 2: Sob+AD

• The reduced uncertain space has only
2D

• We consider sampling a few tens of
realisations

⇒ The direct AD is well over-determined

Design of experiment for the unmitigated problem
Making use of an AD 1/3
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With spline surrogates
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With kriging surrogates
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Remarks

• The global fit provided by PCE-R is
always better than PCE-P in this case

• The surrogates built on active
directions are not performing as well
as expected

• Kriging and PCE-R are performing
better than the other methods for
nearly every dataset size

Design of experiment for the unmitigated problem
Comparison of the different approaches
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Check #1: RP0 bis

•

Design of experiment for the unmitigated problem
Validation of the approach
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Check #1: RP0 bis

• We change the fuel-air ratio of the
reactor
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Check #1: RP0 bis

• We change the fuel-air ratio of the
reactor

• The distribution of the QoI becomes
bimodal
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Check #1: RP0 bis

• We change the fuel-air ratio of the
reactor

• The distribution of the QoI becomes
bimodal

• The uncertain dimension reduction
still holds
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Check #1: RP0 bis

• We change the fuel-air ratio of the
reactor

• The distribution of the QoI becomes
bimodal

• The uncertain dimension reduction
still holds

• Kriging on the 2D space is still the
best performing method

• Regression PCE is not robust enough
for this configuration
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Check #1: RP0 bis

• We change the fuel-air ratio of the
reactor

• The distribution of the QoI becomes
bimodal

• The uncertain dimension reduction
still holds

• Kriging on the 2D space is still the
best performing method

• Regression PCE is not robust enough
for this configuration

Kriging response surface

Design of experiment for the unmitigated problem
Validation of the approach
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Check #2: RP1

• Now we look at the whole flamelet
model (RP1)

Design of experiment for the unmitigated problem
Validation of the approach
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Check #2: RP1

• Now we look at the whole flamelet
model (RP1)

• The uncertain dimension reduction
still holds

• Kriging on the 2D space is still the
best performing method
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Conclusion



Dimension reduction

• We used a representative reduced
problem to perform sensitivity analysis

• A 2D uncertain space has been found in
which most of the variance is reproduced

• When such preliminary study is not
doable for some variables, one can still
try to reduce the uncertain dimension
with active directions

Conclusion
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Dimension reduction

• We used a representative reduced
problem to perform sensitivity analysis

• A 2D uncertain space has been found in
which most of the variance is reproduced

• When such preliminary study is not
doable for some variables, one can still
try to reduce the uncertain dimension
with active directions

Surrogate modelling

• Quadrature sampling can be ruled out in this case
as PCE-P is performing worse than every other
method

• Kriging seems to be the best candidate for efficient
surrogate modelling on very reduced dataset

• If an active direction can be found, 1D surrogates
on this direction can also perform quite well

Conclusion
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Dimension reduction

• We used a representative reduced
problem to perform sensitivity analysis

• A 2D uncertain space has been found in
which most of the variance is reproduced

• When such preliminary study is not
doable for some variables, one can still
try to reduce the uncertain dimension
with active directions

Surrogate modelling

• Quadrature sampling can be ruled out in this case
as PCE-P is performing worse than every other
method

• Kriging seems to be the best candidate for efficient
surrogate modelling on very reduced dataset

• If an active direction can be found, 1D surrogates
on this direction can also perform quite well

Conclusion

• For the uncertain LES, a limited Sobol-sequence sampling will be performed on the 2D uncertain
space

• On this small dataset, Kriging will be performed to obtain a surrogate of the lift-off height of the
Cabra flame

Conclusion
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Perspectives

Now we ”only” need to compute a few tens of LES !

Conclusion
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Questions ?
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Let (F : ξ ∈ Ξ) ∈ Rd → R be the physical model where ξ = (ξ1, . . . , ξd) are independent
real valuded random variables of joint-PDF pξ
Let {ψα} be the set of d-variate orthogonal polynomials

ψα(ξ) =
d∏

i=1

ψ(i)
αi

(ξi ) (11)

If F ∈ L2 (Ξ, pξ), it has a (spectrally) convergent PC expansion:

F (ξ) = lim
N→∞

∑
‖α‖≤N

ψα(ξ)Fα, ‖α‖ =
d∑

i=1

|αi | (12)
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With the Sobol-Hoeffding decomposition written as:

F (ξ) =
∑
ι⊆D

Fι(ξι) (13)

We get the approximate S-H functionals as truncated PC terms:

F ι(ξι) ≈
∑
‖α‖∈Aι

ψα(ξι)Fα (14)

With Aι = {α ∈ A, αi > 0 for i ∈ ι, αi = 0 for i /∈ ι} ( A Then:

Sι(F ) ≈
∑

α∈Aι
F 2
α〈ψα, ψα〉∑

α∈A F 2
α〈ψα, ψα〉

(15)
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Finding an active subspace (AS) starts with performing a base change on the uncertain
space:

CF =

∫
Ξ

(∇ξF (x)) (∇ξF (x))Tπξ(x)dx = W ΛW T (16)

Where W = (w1, ...,wd) is a unitary matrix and :

Λ = Diag(λ1, ..., λd), \∀i ∈ J1, d − 1K, λi > λi−1

Goal of the operation

Sort the directions w i in which the QoI F encounters the greatest gradients
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Basis truncature

Truncature possible at rank r whenever
λr � λr + 1
Span(w1, ...,w r ) is called the active
subspace

Expectations

• Most of the variability should be
retained on the AS

• A surrogate built on the AS should
also be a good approximation of F

Illustration of AS eigenvaluesa

a
Ji et al. 2019.

Warning

There is no a priori quantitative guarantee
of the adequacy of the reduced space
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Practical obtention of the active subspace

M is the necessary number of samples, d the initial dimension of the problem, α an
over-sampling factor, β the largest dimension acceptable for the AS

1st Scenario

Gradient obtained ”for free” with each
sample (adjoint simulation)
M = α · β · log(d)

2nd Scenario

Gradient information computed with finite
differences
M = α · β · d · log(d)

Backup slides
Active subspace determination 3/4

48/48 Guilhem Lavabre UQSay - 2020-06-25



3rd Scenario

Assumptions:

• F is monotonous with each ξi
• A 1D AS can be discovered (Active Direction)

• On the AD, F is not too far from a linear function

We can then determine the AD with a linear regression of F :

F (ξ) = bTξ + b0 + F̃ (ξ) (17)

And:
w1 = bT/‖b‖2 (18)

With the cost: M = α · d
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Spline, 129 samples Kriging, 129 samples
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