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A Multi-FoV Viewport-based Visual Saliency Model
Using Adaptive Weighting Losses for 360◦ Images

Fang-Yi Chao, Lu Zhang, Wassim Hamidouche, Member, IEEE and Olivier Déforges

Abstract—360◦ media allows observers to explore the scene in
all directions. The consequence is that the human visual attention
is guided by not only the perceived area in the viewport but also
the overall content in 360◦. In this paper, we propose a method
to estimate the 360◦ saliency map which extracts salient features
from the entire 360◦ image in each viewport in three different
Field of Views (FoVs). Our model is first pretrained with a large-
scale 2D image dataset to enable the interpretation of semantic
contents, then fine-tuned with a relative small 360◦ image dataset.
A novel weighting loss function attached with stretch weighted
maps is introduced to adaptively weight the losses of three eval-
uation metrics and attenuate the impact of stretched regions in
equirectangular projection during training process. Experimental
results demonstrate that our model achieves better performance
with the integration of three FoVs and its diverse viewport
images. Results also show that the adaptive weighting losses and
stretch weighted maps effectively enhance the evaluation scores
compared to the fixed weighting losses solutions. Comparing to
other state of the art models, our method surpasses them on
three different datasets and ranks the top using 5 performance
evaluation metrics on the Salient360! benchmark set. The code
is available at https://github.com/FannyChao/MV-SalGAN360

Index Terms—Human Eye Fixation, Saliency, Omnidirectional
Image, Convolutional Neural Network, Deep Learning.

I. INTRODUCTION

V IRTUAL Reality (VR), which is one of the fastest grow-
ing multimedia technology in the entertainment industry,

attracts many attentions due to its capability of providing
users immersive experience in surrounding visual and au-
dio environments. Omnidirectional (or panoramic) images or
videos capture all the spatial information in 360◦ longitude and
180◦ latitude as a sphere. By wearing Head-Mounted Displays
(HMDs), users can freely explore the scene in all directions
simply by rotating their heads to different point of views. This
interactive property enables users to feel like being in a virtual
world. It gives rise to various new challenges at the same time,
such as video/image production [1], [2], [3], transmission [4],
[5], compression [6], [7], [8], and quality assessments [9], [10],
[11]. Those new challenges are dissimilar to the cases in 2D
traditional media since users can actively select the content
they would like to watch with HMDs, while they are only
allowed to passively receive the given content in 2D traditional
video. Therefore, the fixation (where users pay more attention)
prediction in 360◦ content becomes essential for user behavior
analysis and could benefit 360◦ VR applications [12], [13].
By leveraging 360◦ fixation cues and user’s orientation sensed
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by HMD, the performance of 360◦ streaming system could
be significantly enhanced [14]. Saliency prediction in the
literature includes two different domains which are fixation
prediction and salient object detection. As we focus on fixation
prediction in this paper, the term “saliency model” stands for
fixation prediction only.

Visual saliency prediction in 360◦ images can be separated
into head movement prediction and head+eye movement pre-
diction [15]. The former predicts the center point in every
viewports [16] when users move their heads while watching
360◦ images. The latter predicts viewer’s eye gaze [17].
Although the hypothesis that the center of viewports are
observer’s eye fixation is followed by [18], [19], authors in
Rai et al. [20] discovered that the fixation distribution is
similar to a doughnut shape distribution which has probability
peaks far away from center by 14 degrees. In this paper,
we focus on visual fixation prediction based on head+eye
movement which outputs a gray scale saliency map presenting
the probabilities of every pixel being seen by viewers with no
specific intention.

Compared to visual attention models for 360◦ images, those
for 2D traditional images have been well developed in recent
years [21], [22], [23]. Seminal methods were proposed based
on low-level or high-level semantic feature extraction from
handcrafted filters [24], [25], [26] or Deep Convolutional
Neural Networks (DCNN) [27], [28], [29], [30], [31] thanks
to the establishment of several large scale datasets [32], [33],
[34]. Unfortunately, these models are not immediately usable
for 360◦ images because of the severe geometric distortion
on the top and bottom areas in equirectangular projection.
Furthermore, it is impractical to adjust 2D models simply
by training and testing on 360◦ images because of 1) the
lack of a sufficient large 360◦ image saliency dataset, and
2) the inherent high resolution problem in 360◦ images whose
optimal resolution is at least 3600×1800 pixels recommended
by MPEG-4 3DAV group [35] to provide favorable quality.
This image resolution excesses the computational limitation
of 2D models based on DCNN.

360◦ image has usually a high resolution as it is constituted
of omnidirectional spatial information encompassing a given
center. By wearing a HMD, the observer does not look at the
entire image at a glance but a small-scale content inside his
or her current FoV. Most of existing 360◦ saliency detection
models used the cubic projection to obtain rectilinear images
in 90◦ FoV, but the effectiveness of using 90◦ FoV has not yet
been investigated. Considering Human Peripheral Vision [36]
which indicates that 60◦ FoV is the field that humans have
the highest vision acuity, and the most common HMDs (HTC
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Vive and Oculus Rift) on the provide approximated 120◦

FoV, we first validate the influence of different FoVs in
360◦ saliency prediction models, then propose a multi-FoV
viewport-based model via the integration of salient features ex-
tracted from diverse viewport plane image in small (90◦×90◦),
middle(120◦ × 120◦), and large (360◦ × 180◦) FoV. Our model
learns higher semantic content by being pretrained in the 2D
image dataset SALICON [33], which is composed of 20000
images. We then fine-tune our model in 360◦ image dataset
with a novel loss function combined with adaptive weighted
multiple evaluation metrics to balance the impact of each
evaluation factor during the training process.

Different from previous 2D DCNN saliency models [28],
[37] trained with single loss function, e.g. Binary Cross
Entropy (BCE), Normalized Scanpath Saliency (NSS), and
Kullback-Leibler Divergence (KLD), [29], [30], [38] estab-
lished that the combination of three evaluation metrics, i.e.
KLD, NSS and Linear Correlation Coefficient (CC), pro-
vided better results in more evaluation metrics. However, the
weightings of these three components were either uniform or
manually tuned. Based on a statistical analysis, we propose an
adaptive weighting loss function to automatically update the
weights during fine-tuning. This method enhances the perfor-
mance and prevent the time-consuming handcrafted tuning.

Equirectangular projection is the most common method to
transfer 360◦ sphere image into plane image. Considering
that it severely oversamples the regions close to the poles,
we propose stretch weighted maps attached with adaptive
weighting loss function to avoid excessive impact of stretched
regions.

We evaluate our model over three public available 360◦

image datasets, namely Salient360! 2017 [39], Salient360!
2018 [40], Saliency in VR [41]. The results illustrate that
our model outperforms the state of the arts on all the tested
datasets, and the proposed adaptive weighting loss function
enhances the performance by a big margin for some evaluation
indexes. The contributions of this paper are summarized as
below:

1) Introduce a novel Multi-FoV framework to predict hu-
man visual attention: where large FoV feature extraction
from the entire 360◦ image, and middle and small FoV
feature extraction from every viewport plane image.

2) Propose an adaptively weighted combination loss func-
tion of three evaluation metrics. To the best of our
knowledge, this is the first work that dynamically bal-
ances the impact of each metric in training process in a
saliency prediction architecture.

3) Introduce stretch weighted maps dedicated to viewport-
based model with the adaptive weighting loss function
to attenuate the geometric distortion in equirectangular
format.

The rest of this paper is organized as follows. The cur-
rent state-of-the-art is discussed in Section II. Our proposed
Multi-FoV framework, adaptive weighting losses, and stretch
weighted maps are introduced in Section III. The three datasets
used for evaluation and other implementation details are
described in Section IV. Section V evaluates our proposed
model with other state of the arts, and demonstrates ablation

studies to validate each part in our architecture. Section VI
concludes this paper and presents the future work.

II. RELATED WORK

Previous works on visual saliency prediction for 360◦

images were inspired by 2D saliency models. They can be
categorized into two types: 1) the extensions from 2D models
and 2) the tailor-made models for 360◦ images.

For the models extended from 2D models, their procedures
can be comprehended as two parts: preprocessing geometry
projection and saliency estimation. Startsev et al. [42] inter-
preted numerous transformations of cubic projection to handle
discontinuity problem in saliency map predicted from 2D
models for each cube face. Maugey et al. [43] projected a 360◦

image into double cubes, then employed a face detector and a
collection of 5 low-level feature extraction models to estimate
saliency map. Considering that observers tend to look at more
the equator area, Battisti et al. [44] projected 360◦ image
into multiple viewports, then both low-level features and high-
level features are extracted and averaged to obtain a saliency
map refined by an equator-prior weighting map. Lebreton et
al. [45] proposed a framework called Projected Saliency that
combines the adaptive equator-prior map with the saliency
map predicted from two existing 2D methods, Graph-Based
Visual Saliency (GBVS) [24] and Boolean Map Saliency
(BMS) [25], on rectilinear images projected from a 360◦

image. De Abreu et al. presented a postprocessing method
motivated by the equator bias tendency in 360◦ images, called
the Fused Saliency Maps (FSM) [19]. It mitigates the unde-
sirable center prior limitation of current 2D saliency models
via averaging saliency maps predicted from four horizontal
translated 360◦ images. Zhu et al. [46] introduced saliency
prediction methods through bottom-up and top-down feature
extractions in each projected image for head+eye movement.
They applied a stronger equator bias on the head+eye saliency
maps to generate head movement saliency map according
to their experiments showing that head motions have higher
tendency to look at equator area than head+eye motions.

The methods above have a drawback as the 2D models
they applied usually have strong center bias located in the
center area of projected image. Center bias is a phenomenon
describing that humans are used to look at the center of an
image to find the most important information [47], [48]. It is
feasible for normal 2D images but inappropriate for the images
projected from the north pole and south pole of 360◦ image,
since observers usually do not pay attention to them.

Despite of most of 2D model extensions utilizing projection
methods to attenuate geometry distortion on equirectangular
format, Y. Fang et al. [49] and Ling et al. [50] used low-level
color features extracted from the color contrast between sur-
rounding patches or sub-pixel areas directly in equirectangular
360◦ images without any projection preprocessing. Thus, these
two methods could not avoid geometric distortion inherent in
equirectangular format.

The tailor-made models for 360◦ images are developed
exclusively for 360◦ content and cannot be used for 2D
images. Monroy et al. [51] built an architecture composed
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Fig. 1. The overall diagram of our model. The architecture contains three 2D saliency models fine-tuned with our proposed adaptive weighting loss function in
three FoVs. It respectively predicts saliency maps of diverse viewport images in each FoV, then the output saliency maps are back-projected to equirectangular
format of its corresponding FoV. The final 360◦ saliency map is linearly integrated from the averaged saliency maps of three FoVs.

Fig. 2. Region of human FoV and the FoV provided by HMDs. Red circle
presents FoV of 2 eyes in HTC Vive, where two straight lines on the left and
right side are the edges of FoV of right eye and left eye, respectively. Two
green rectangle represent FoV of 2 eyes in Oculus Rift. The largest human
FoV reaches 120◦ vertically and 180◦ horizontally, but HMDs only provide
120◦ vertically and horizontally.

of 2 DCNNs. The first network SalNet [52] predicted saliency
maps from viewport plane images projected from 360◦ image.
Those saliency maps are then refined by the second network
which took account of the corresponding longitude and lati-
tude of each viewport image. As this model computed every
viewport saliency map independently, there existed apparent
discontinuity in the predicted saliency map back-projected
from viewport saliency maps. Chao et al. [53] predicted global
and local saliency map estimated from multiple cube face
images projected from equirectangular image. They fine-tuned
a 2D model SalGAN [28] with a loss function combining
three evaluation metrics. Cheng et al. [54] proposed a weekly
supervised method to predict 360◦ video saliency with Cube
Padding (CP) technique which induced no image boundary in
DCNN structures by concatenating spatial features in all the
six cube faces in the convolution, pooling and convolutional
layers of the Long Short-Term Memory (LSTM). However, the
proposed video saliency dataset which was used to train their

model, is not collected with an eye tracker under the viewing
condition of wearing HMD. It was built on the HumanEdit [55]
interface, where the annotators see the entire 360◦ videos
in an equirectangular format and use a mouse to direct the
FoV. Thus, the dataset data does not correspond to the real
user behavior when watching 360◦ videos. In addition, the
model used two image recognition networks (VGG-16 [56]
and ResNet-50 [57]) to extract static feature map in each
frame and compute the saliency map as the maximum value of
feature map. This leads to inaccurate results on other dataset
strictly defined by eye fixation map and smoothed with a small
view angle. In view of the fact that 360◦ contents are captured
as a sphere then projected to the equirectangular format, Zhang
et al. [58] proposed a spherical convolution neural network
whose kernel was defined on a spherical crown, and the
convolution involves the rotation of the kernel along the sphere
to extract spherical features without geometry distortion. It
down-samples the input image from 1920×3840 to 150×300
in order to save computational memory but leads to abundant
important features disappeared.

III. PROPOSED MODEL

Human visual saliency is highly related to image scale.
For instance, people tend to look at fine details when the
image is zoomed in and look at coarse details when the
image is zoomed out. When observers wear HMD, she/he
does not see the entire 360◦ image at a glance but only the
content inside her/his current viewport. It is similar to the
condition that she/he takes a close look to a large image and
rotates head to look at other parts of this image. Hence, user
visual attention is guided by the salient region not only within
the current viewport but also within the overall content in
360◦ image. According to human visual physiology and the
design of the most common HMD, i.e. HTC Vive [59] and
Oculus Rift [60], on the market, we propose a tailor-made
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Fig. 3. Saliency maps predicted from FoV60, FoV90, FoV120, FoV360, and our method. Saliency maps from FoV60 falsely detect many fine features while
saliency maps from FoV360 overly ignore many of them. Saliency maps from FoV90 and FoV120 are closer to the groundtruth. Our method integrates the
saliency maps from FoV90, FoV120, and FoV360 to retain both fine and coarse features.

Fig. 4. Rectilinear images of FoV60, FoV90, and FoV120 projected from the
bottom left input 360◦ image in Fig. 3. We can see that images become closer
when their FoVs become smaller. According to the designation of HMD,
images of FoV120 are closest to what observers see in the HMD.

model taking advantages of three different FoV in low, middle,
and high resolutions as input. 360◦ image is projected into
three different FoVs and down-sampled into the same size.
Each image is processed by a 2D saliency model, then back-
projected to equirectangular format with respect to its FoV
size. The estimated saliency maps are linearly integrated by
saliency maps yielded by three FoVs.

To alleviate the issue of size limitation of existing 360◦ im-
age datasets, the 2D saliency model used here is first pretrained
in a large scale 2D image saliency dataset SALICON [33], then
adjusted in a relatively small 360◦ image dataset via fine tun-
ing. We propose equirectangular weighted metrics used as loss
function to reduce the distortion problem in equirectangular
projection caused by upsampling along latitude. Previous 2D
saliency models [29], [30] simultaneously took into account
several evaluation metrics as the loss function. Instead of
manually tuning the weights of each component, we propose
an adaptive weighting loss function which updates the weights
iteratively during training process. Fig. 1 demonstrates the
overall architecture of our model.

A. Multi-FoV and Viewport basis

Fixation prediction in 360◦ image can be regarded as eye
movement in a single viewport and head movement in an entire
360◦ image. Following eye movement in the current viewport,
user’s head may rotate to neighboring viewport to look at
different contents. Fig. 21visualizes the region of human visual

FoV and the FoV provided by HTC Vive and Oculus Rift. It
shows that although the largest human visual FoV in horizontal
and vertical ranges are respectively about 180◦ and 120◦,
the FoV provided by HMD is only about 120◦ horizontally
and vertically. Considering the principle of Human Peripheral
Vision [36], which explains the vision occurs outside the
fixation point, we define four FoVs as

1) FoV60: It is defined as 60◦ × 60◦ in the light of the
fact that the highest visual acuity humans have is in the
region inside 60◦ in diameter [36].

2) FoV90: It is defined as 90◦ × 90◦ since it is the most
commonly used FoV in cubic projection to obtain rec-
tilinear images for 2D extension models.

3) FoV120: It is defined as 120◦ × 120◦, which is the FoV
that observers perceive instantly in HMD before any
movement of eyes and rotation of heads. The scope is
due to the designation of HMD.

4) FoV360: It is defined as 360◦ × 180◦. Observers are al-
lowed to rotate their head to change viewport. Therefore,
all the possible FoV they can see is the entire FoV of
360◦ images.

To enumerate all the possible points of views that users
may look at, we transform a 360◦ images from equirectangular
format to rectilinear images with respect to diverse viewports
in each FoV. All these viewport images are down-sampled to
the same rectangular size, and served as the inputs to a 2D
saliency model for both fine and course features extraction,
then the output saliency maps are back-projected to equirect-
angular format.

Fig. 3 illustrates the saliency maps predicted from 4 FoVs
with the 2D saliency SalGAN model. It shows that saliency
maps from FoV60 overly detect many fine features, while
saliency maps from FoV360 only detect coarse features.
Saliency maps from FoV90 and FoV120 are closer to the
groundtruth. Fig. 4 illustrates the rectilinear images of FoV60,
FoV90, and FoV120 projected from the bottom left input 360◦

image in Fig. 3. We can see that images of FoV120 contain
more information with larger FoV size, and are the closest
images observers see in the HMD.

Table I gives the evaluation results of 360◦ saliency maps
predicted from original SalGAN in four FoVs in the test sets of

1https://www.reddit.com/r/Vive/comments/4ceskb/fov_comparison/
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TABLE I
EVALUATION OF FOUR FOVS IN TEST SETS OF TWO DATASETS. THE

RESULTS IN BOLD AND BLUE COLOR RESPECTIVELY INDICATE THE BEST
AND THE SECOND-BEST SCORES ON EACH EVALUATION METRIC. THE

SCORES OF KLD ARE THE LOWER THE BETTER, WHILE THE OTHER
SCORES ARE THE HIGHER THE BETTER.

Salient360! 2017 [39]
FoV KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑ sAUC↑

FoV60 0.627 0.592 0.645 0.481 0.626 0.616
FoV90 0.477 0.648 0.688 0.611 0.665 0.648
FoV120 0.398 0.636 0.699 0.718 0.693 0.689
FoV360 1.236 0.452 0.598 0.810 0.708 0.752

FoV60+90+120 0.422 0.672 0.708 0.666 0.679 0.669
FoV90+120+360 0.377 0.654 0.706 0.850 0.719 0.717

Salient360! 2018 [40]
FoV60 0.961 0.547 0.609 0.816 0.701 0.629
FoV90 0.737 0.591 0.640 0.874 0.729 0.641
FoV120 0.670 0.586 0.648 0.919 0.741 0.645
FoV360 1.413 0.426 0.555 0.986 0.734 0.588

FoV60+90+120 0.711 0.617 0.654 0.927 0.738 0.649
FoV90+120+360 0.650 0.615 0.658 1.027 0.755 0.645

two datasets. All the test images are projected into rectilinear
images with densely cubic projection, which rotates cube
in every 10◦ vertically and horizontally. Then the predicted
saliency maps are back-projected into equirectangular format.
The six evaluation metrics used in Table I have different
natures depending on the definition of saliency and the rep-
resentation of groundtruth saliency map. Fig. 5 visualizes
two saliency groundtruth representations of a 360◦ image,
where fixation map is a binary map recording gaze positions
and saliency map is a continuous distribution map presenting
the probability of each pixel being seen. We follow the
suggestions in [61] to categorise KLD, CC, and Similarity
(SIM) into distribution-based metrics as they measure the
similarity between predicted saliency map and groundtruth
saliency map. NSS, AUC-J, and shuffled AUC (sAUC) are
categorised into location-based metrics as they measure how
well the predicted saliency map covers the gazes locations
in groundtruth fixation map. AUC-Judd is used here as it
provides the most accurate approximation to the continuous
curve [61], and AUCs is used here to counter the problem of
center bias in saliency map [61]. We can see from Table I
that FoV90 and FoV120 reach better results while FoV360
reaches the worst on distribution-based metrics (i.e., KLD,
CC, SIM) as the distributions of the saliency maps of FoV90
and FoV120 are more close to groundtruth saliency map than
that of FoV360. However, FoV360 obtains better results on
location-based metrics (i.e., NSS, AUC-J, sAUC) because it
covers more fixations in the predicted saliency map. To our
surprise, FoV60 generally performs the worst among four
FoVs. Its results in distribution-based metrics are worse than
that of FoV90 and FoV120 and the results in location-based
metrics are worse than that of FoV360. It overly detects
excessive fine features in small FoV region and ignores other
details on the edges. Thus, it has high false alarm rate
and fails to cover groundtruth fixations in many detected
salient regions. It does not reach any outstanding result in
six metrics. In order to achieve the highest scores in multiple
metrics, we propose to integrate multiple FoVs to satisfy
different natures of saliency. In Table I, distribution-based
metrics (i.e., KLD, CC, NSS) suggest to integrate FoV60,
FoV90, and FoV120, while location-based metrics (i.e., NSS,

Fig. 5. An example of a 360◦ image and its groundtruth fixation map and
saliency map. Compared to fixation, saliency map oversamples the top and
bottom region as it is convoluted in viewport plane and back projected to
equirectangular format in the dataset Salient360! 2018 [40].

Fig. 6. (a) Helical sphere uniform sample points back-projected to equirect-
angular format. The number of sample points decreases when it closes to the
poles, increases when it closes to equator. (b) Stretch weighted map based on
the density of sample points in # = 8 regions. The brighter color stands for
larger value. (c) Stretch weighted map (b) in cubic format.

AUC-J, sAUC) suggest to integrate FoV90, FoV120, and
FoV360. We report the performance of these two choices in
average addition in Table I. We can see that the integration of
FoV90+120+360 obtains better results than any single FoV
in numerous metrics. Comparing different integrations, the
integration of FoV90+120+360 outperforms the integration of
FoV60+90+120 in three metrics in the dataset Salient360!
2017 and in four metrics in the dataset Salient360! 2018.
It also achieves outstanding results in both distribution-base
metrics and location-based metrics. Therefore, we exclude the
results of FoV60 and propose a model integrating FoV90,
FoV120 and FoV360 together.

We separately fine tune a 2D saliency model with FoV90,
FoV120, and FoV360 rectilinear images. For each FoV, 360◦

equirectangular image is projected to cubic format with its
corresponding FoV size as training images. The cube is rotated
by every 45◦ in longitude and latitude to generate more
training images in different point of views. Predicted saliency
maps from each fine tuned model are back-projected and
averaged to equirectangular format, then these three saliency
maps are linearly integrated to produce the final saliency map.

B. Stretch Weighted Maps

As the equirectangular image is stretched in the north and
south poles of a sphere, we propose stretch weighted maps
applied in the loss function in fine tuning process to avoid
excessive impact of stretched regions. Fig. 6 demonstrates the
sample points, based on helical sphere uniform sampling [62],
back-projected to equirectangular image and its corresponding
stretch weighted maps in equirectangular and cubic formats,
respectively. The brighter color stands for larger value. The
stretch weighted map is divided into # regions, and the density
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of sample points in each region = is computed as weighted
value. It is defined as

,8 =

∑
8∈= (0<?;4=D<_=

)>C0;_(0<?;4=D<_=
, = = [1, ..., #] (1)

,8 = ,8/<0G(,) (2)

where 8 denotes each pixel in the map, # denotes the number
of regions, = denotes the region that pixel 8 belongs to,
(0<?;4_=D< and )>C0;_(0<?;4_=D< denote the number of
sample points in a region and in the entire map, respectively.
Then the entire map , is normalized with its maximum value.
Therefore, the region closer to the poles has lower weight, and
the region closer to the equator has larger weight.

Previous works [58], [63], [64] proposed spherical represen-
tations for DCNN models, where Zhang et al. [58] designed
a novel bowl-shape convolutional filter (i.e., kernel) to extract
spherical features in sphere images, Coors et al. [63] designed
convolutional kernel which samples corresponding locations of
kernel elements in equirectangular image based on longitude
and latitude, and Eder et al. [64] proposed a spherical repre-
sentation based on the icosahedral Snyder equal-area (ISEA)
projection and used kernel proposed in [63]. The advantage of
these methods is that they can extract spherical features with
less geometric distortion. However, they are not suitable in our
viewport-based framework which simulates the true viewing
scenario in HMD where observers only see viewport plane
images. Unlike them, our stretch weighted maps have two
advantages: 1) they can be directly used on any pretrained 2D
saliency models. No need to train with new kernels like [58]. 2)
they can retain high resolution in viewport images. For exam-
ple, the spherical representation methods mentioned above en-
code the entire sphere images in dimension �×, . Our method
can keep the dimension � ×, in every viewport image, and
the back-projected equirectangular map can be in dimension
2� × 4, . In particular, the spherical representation of bowl-
shape kernel [58] downsamples equirectangular images from
1920×3840 to 150×300 in saliency detection model. Table V
compares its performance in dataset Salient360! 2017 [39].
We can see that it does not outperform other state of the
arts. In this end, our stretch weighted maps can be seen as
a simple method to reduce geometric distortion in rectilinear
images trained on 2D models and retain high resolution for
360◦ images.

C. Adaptive Weighting Loss Function

Plenty of evaluation metrics are available to score the
predicted saliency map according to the definition of the
saliency and the representation of the groundtruth map [61].
The groundtruth of each 360◦ image includes a binary fixation
map recording user’s gaze positions and a continuous saliency
map presenting the probability distribution post-processed by
convoluting each fixation location via a Gaussian filter with
its standard deviation equal to human visual angle.

Fig. 5 shows a 360◦ image and its groundtruth fixation
map and saliency map. We can see that saliency map suffers
from serious geometric distortion in the bottom region as
convolution is applied on viewport plane, then back-projected

to equirectangular format in the dataset Salient360! 2018 [40].
Thus, the stretch weighted maps introduced in Section III-B
should be used with saliency maps in the loss function for
reducing the impact of geometric distortion. The KLD mea-
sures the dissimilarity under the loss of information between
predicted saliency distribution and groundtruth distribution. It
is defined as

! !� (%,&�) =
∑
8

&�8 log(
&�
8

%8 + n
+ n) (3)

where % and &� indicate the density distributions of the
predicted saliency map and the groundtruth, respectively. 8
represents the 8th pixel and n is a regularization constant.
The lower value of KLD means the higher similarity of two
distributions. As saliency map which oversamples the top
and bottom region as shown in Fig. 5, we introduce stretch
weighted map to KLD as

! ′ !� (%,&�) =
∑
8

,8&
�
8 log(

,8&
�
8

,8%8 + n
+ n) (4)

The CC symmetrically calculates the linear relationship
between two distributions. It penalizes false positives and false
negatives equally. It is defined as

!�� (%,&�) =
f(%,&�)

f(%) · f(&�) (5)

where f(%,&�) is the covariance of % and &� , f(%) and
f(&�) are the standard deviations of % and &� , respectively.
The value of CC ranges from −1 to +1, where +1 indicates
a perfect correlation, and −1 indicates a perfect correlation in
opposite direction, and 0 indicates no correlation. It can be
introduced with our weighted map as

! ′�� (%,&
�) = f(,%,,&�)

f(,%) · f(,&�) (6)

The NSS measures the correspondence between predicted
saliency map and groundtruth binary fixation map via com-
puting the average of normalized predicted saliency map at
fixation locations. NSS is defined as

!#(( (%,&�) =
1
#

∑
8

%8 − `(%)
f(%) · &�8 (7)

where &� indicates the groundtruth binary fixation map, 8
indicates the 8Cℎ pixel, and # is the total number of fixated
points. NSS of value 0 represents chance and positive value
represents the correspondence above chance and negative
value represents anti-correspondence. Note that unlike KLD
and CC whose groundtruth are saliency maps, NSS uses the
groundtruth of fixation maps which directly records the loca-
tions of gaze points in longitude and latitude in equirectangular
format without any oversampling. There is no need to apply
our stretch weighted maps in NSS.

For accomplishing the best performance in every evaluation
element, a combination of three metrics (KLD, CC and NSS)
is used [29], [30], [38] to simultaneously take account of dif-
ferent factors. However, the weights of these three components
were either fixed to equal or manually tuned by their scales.
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Fig. 7. Standard deviation and mean of each component in loss function
in training epochs, where (a) is SalGAN trained with BCE, and (b), (c), (d)
are pretrained SalGAN fine tuned with combination loss function with fixed
weights  !� − �� − #((, 10 !� − 2�� − #((, and our adaptive
weights on training set of Salient360! 2017 [39] in FoV90, respectively.

Considering that to manually tune the weights is too time-
consuming, and actually the scale of each component keeps
changing during training process, we propose an adaptive
weighting method to dynamically balance the influence of
each component in DCNN models. Our loss function can be
interpreted as

! = 1
f !�′

! ′
 !�
(%,&�) − 1

f��′
! ′
��
(%,&�)

− 1
f#((

!#(( (%,&�) (8)

where f !�′ , f��′ , and f#(( are the standard deviations
of ! ′

 !�
, ! ′

��
, and !#(( calculated with all training images

in all iterations in current training epoch and updated in the
next training epoch. Note that the standard deviations here are
not calculated and applied to Equation (8) in current iteration
as their values could be very small in current mini batch
and cause extremely large loss in Equation (8) that results
in excessive gradient decent. Hence, our method calculated
standard deviations in all training images to attain general
scales of KLD, CC, and NSS in current epoch and apply to
Equation (8) in the next epoch. They can be regarded as the
weightings which constrain each component in Equation (8)
in the same scale and have equal impact to this loss function.
The weighted KLD and weighted CC are used here to decrease
the impact of stretched regions and increase the impact of
unstretched regions. We give positive weighting to ! ′

 !�
and

negative weighting to ! ′
��

and !#(( since ! ′
 !�

should be
minimized while ! ′

��
and !#(( should be maximized, so that

the overall loss function ! is minimized. As we measure the
standard deviations of weighted KLD, weighted CC and NSS
in each epoch, along with more training epochs are updated,
the value of standard deviation f decreases and the value
of loss function increases. An adaptive learning rate is used
here to prevent excessive gradient decent. The decay rate of

learning rate is defined as (1 − 4?>2ℎ/<0G_4?>2ℎ)_, which
becomes smaller and smaller during training.

As parameters in a DCNN model can be learned with
back-propagation according to the loss between output and
groundtruth, the mean and the standard deviation of loss
decrease in every training epoch and the predicted saliency
map gradually approaches to the groundtruth during training
process. For example, Fig. 7 (a) visualizes the standard de-
viation and the mean of BCE in every training epoch when
SalGAN [28] is trained with BCE on dataset SALICON [33]
as suggested in its paper [28]. It shows that the mean and
standard deviation of BCE keep decreasing with more and
more training epochs, and indicates that the predicted saliency
maps are getting closer to the groundtruth. Fig. 7 (b), (c),
(d) illustrate the mean and standard deviation of three com-
ponents in combination loss function with equal weights (i.e.,
 !�−��−#(() used in [30], manually tuned weights (i.e.,
10 !� − 2�� − #(() used in [29], [38], and our adaptive
weights (i.e., Equation (8)) of SalGAN model fine tuned on
dataset Salient360! 2017 [39] in FoV90. Note that the scores
of KLD are the lower the better, while the scores of CC and
NSS are the higher the better. We can see that in Fig. 7 (b)
and (c), the mean of KLD does not decrease and the mean
of CC and NSS do not increase in training epochs. It implies
that these three components are not optimized as linear sum of
losses could directly converge to zero during training process.
In contrast, Fig. 7 (d) shows that the mean of KLD decreases
and the mean of CC and NSS increase as what we expect
in training epochs. It explains that our adaptive weighting
loss function is able to successfully optimize three evaluation
metrics and simultaneously achieve the best converged results
in these three components.

D. Integration of three FoVs

With the stretch weighted maps and adaptive weighting
loss function in fine tuning, 2D saliency models can be
adopted to 360◦ images. As shown in Table I, three FoVs
have highest scores in different evaluation metrics. To achieve
good performance in all the metrics, we use the linear additive
formula to combine these maps. After the model separately
fine tuned by three FoVs generates three saliency maps, we
linearly integrate them as

( = U(�>+ 90 + V(�>+ 120 + (1 − U − V)(�>+ 360 (9)

where ( denotes the final saliency map, (�>+ 90, (�>+ 120,
and (�>+ 360 refer to saliency maps predicted from FoV90,
FoV120 and FoV360, respectively.

IV. EXPERIMENTAL SETUP

Our model is implemented on top of SalGAN [28] frame-
work due to its powerful yet simple architecture. It detects
the saliency map with Generative Adversarial Network (GAN)
including a generator to predict saliency map and a discrimi-
nator to distinguish the authenticity of predicted map. In this
section, we describe the experimental settings, datasets and
metrics used for evaluation.
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A. Datasets

To ensure a comprehensive comparison, we use 3 datasets
with different image contents, different acquisition equipments
and saliency maps generated in different ways to evaluate
our method. We list the descriptions of these datasets in the
following:

• Salient360! 2017 [39]: This dataset released 60 omni-
directional images which contains 20 images for head
movement and 40 images for head+eye movement to the
public for free-use, and 25 omnidirectional images con-
taining both head, and head+eye movement for evaluating
in ICME2017 challenge. In order to equally compare
our model with others, we follow the rules of this
challenge to train our model with free-use 40 images for
head+eye movement and evaluate with 25 images used
in the challenge. All the images are in equirectangular
format with resolutions ranged from 5376×2688 pixels to
18332×9166 pixels. Fixation locations and head positions
of each image are collected from at least 40 observers
seating in a rolling chair, wearing HMD Oculus-DK2 and
watching each image for 25 seconds. The starting position
is set in the center of images at the beginning of each
visualization. A small eye-tracking camera is embedded
in HMD to record fixation of dominant eye at 60 Hz.
A Gaussian of 3.34◦ visual angle is applied to blur all
the fixation points within the viewport plane, then back-
projected to the final equirectangular saliency map.

• Salient360! 2018 [40]: It was built similar to Salient360!
2017 but the authors improved some aspects of the
processing of raw data and generation of saliency maps
(e.g. using information for the two eyes, and some
more). That is why the provided saliency maps are very
different from the Salient360! 2017 dataset. There are 101
equirectangular omnidirectional images and their saliency
map and fixation maps in this dataset. The groundtruth
of 85 images was released to public for the training
and the validation purpose, while 26 images was kept
secretly for the test and the benchmark [65]. We give our
method to the authors to get its performance on the test
images and compare it with other state of the art methods
with known performance (on the benchmark website) but
without paper to be referred to.

• Saliency in VR [41]: 22 panoramas including indoor
and outdoor scenes are used to record 122 users’ eye
fixation under three different viewing conditions: viewed
with HMD in a standing or seating position in a non-
swivel chair, and seated in front of a desktop monitor.
We only consider the standing condition in this paper as
users are more willing to move and rotate their heads in
the standing position. All the panoramas were viewed in
30 seconds began in the different starting points. Fixations
were recorded with a pupil-labs1 stereoscopic eye tracker
installed in Oculus DK2 HMD at 120 Hz. Fixation maps
were convolved by a Gaussian with standard deviation
of 1◦ visual angle to yield continuous saliency maps.
Panoramas viewed with HMD at the same start point
standing and seating are used in our comparison.

B. Evaluation Metrics

We consider 4 evaluation metrics which are KLD, CC, NSS,
and AUC-Judd [61] here. KLD, CC, NSS are the same as
the demonstration in Section III-C. The Area Under Curve
(AUC) computes the area under the curve of true positive rate
versus false positive rate for various level-set thresholds. The
prediction ability of a saliency map is evaluated by how many
groundtruth fixations it captures in the successive thresholds.
In this paper, we use the AUC-Judd, where the saliency map
serves as a binary classifier of fixations at various thresholds,
and the threshold values are the saliency values at fixation
locations. The true positives are the summation of saliency
values at fixated pixels above threshold, and the true positive
rate is the proportion of true positives values to the total
number of fixations. The false positives are the summation
of saliency values at unfixated pixels above threshold, and the
false positive rate is the proportion of false positives values to
the total number of saliency map pixels at a given threshold.

Note that it is incorrect to compare two saliency maps in
equirectangular format since it oversamples the points close
to the north pole and south pole. Therefore, we abide by
the comparison method used in the Challenge Salient360!
2017 [39] and Salient360! 2018 [40] which only compares
predicted saliency map and groundtruth map with the sampled
points uniformly distributing on a sphere.

C. Training and Testing

SALICON dataset is used to pretrain our method in Sal-
GAN framework. The hyper parameters follow the sugges-
tions from [28]. Our model is then fine-tuned on the dataset
Salient360! 2017 via transfer learning. 30 images are used
for training, 10 images for validation and 25 images for
evaluation. In training process, the adaptive learning rate is
set _ = 0.9 by experiment. In validation and test processes,
rectilinear images of each FoV are projected in every 10◦ along
longitude and latitude to enumerate all possible viewports
that observer may see. Then predicted viewport saliency maps
are back-projected and averaged into an equirectangular map.
Three equirectangular saliency maps predicted from FoV90
and FoV120 are linearly integrated with the saliency map
estimated from the FoV360 into a final equirectangular map.
Integration parameters here are U = 0.2, V = 0.5, (1−U− V) =
0.3 from the best result achieved in validation images. For
stretch weighted map, we sample 4 × c × 4000 points in
192 × 384 map, and set # = 8 regions.

V. EXPERIMENTAL EVALUATION

Each component in our architecture is analyzed to validate
its contribution with the dataset Salient360! 2017. Therefore,
all the evaluation results in the experiments are tested on its
25 evaluation images. The quantitative and qualitative com-
parisons with other state-of-the-art models are also performed
in this section.

A. Stretch Weighted Maps and Adaptive Weighting Loss

We evaluate the results of the models with/without fine-
tuning with adaptive weighting loss function, BCE used in
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Fig. 8. Evaluation of the models with/without fine-tuning with BCE, two fixed
weighting loss functions, and adaptive weighting loss function evaluated on
the test set of Salient360! 2017 [39]. no FT stands for no fine tuning, FT
BCE stands for fine tuning with BCE, FT Fixed1 stands for fine tuning with
 !� − �� − #((, FT Fixed10 stands for fine tuning with 10 !� −
2�� − #((, FT Adp stands for fine tuning with adaptive weighting loss,
and FT Adp + weimap stands for fine tuning with adaptive weighting loss
and stretch weighted maps. Lower KLD value indicates a better performance,
and a higher score of other metrics means a better performance.

SalGAN, and two fixed weighting loss functions, which are
 !� − �� − #(( used in [30] and 10 !� − 2�� − #((
used in [29], [38].

In Fig. 8, we can see that fine-tuning, no matter with adap-
tive weighting, or fixed weighting, enhances the performance
of the four metrics. Comparing the BCE and the combination
loss functions (adaptive weighting and the fixed weighting),
BCE only has good performance in KLD and CC, and the
combination loss functions are better in NSS and AUC-Judd.
To our surprise, fine tune with BCE has worse performance
than without fine tune in NSS and AUC-Judd in FoV360.
Comparing adaptive weighting and the fixed weighting loss

TABLE II
RESULTS OF DENSELY CUBIC PROJECTION IN THREE ROTATION ANGLES

EVALUATED ON THE TEST SET OF SALIENT360! 2017 [39]. THE RESULTS
IN BOLD INDICATE THE BEST SCORES.

Rotation
Angle

KLD↓ CC↑ NSS↑ AUC-J↑ Computation
Time (sec)

90◦ 0.653 0.666 0.839 0.706 0.02
30◦ 0.467 0.672 0.869 0.722 0.21
10◦ 0.369 0.674 0.872 0.726 1.86

Fig. 9. An example of saliency maps generated from densely cubic projection
in rotation angle 90◦, 30◦, and 10◦, respectively. We can see that there are
obvious discontinuous borderlines in saliency map generated from 90◦, slight
discontinuity in 30◦, and almost no discontinuity in 10◦.

functions, two fixed weighting loss have similar performance
in four evaluation metrics, while adaptive weighting has better
performance in NSS and AUC-Judd. For stretch weighted
maps, it improves the performance of adaptive weighting loss
in CC and NSS, but slightly worsens the performance regard-
ing KLD. In General, adaptive weighting loss function with
stretch weighted maps attains relatively superior performance
compared with others in four evaluation metrics.

Comparing three FoVs, fine tuned FoV90 with stretch
weighted maps is outperforming in KLD and CC, but under-
performing in NSS and AUC-Judd, while fine tuned FoV360
with stretch weighted maps is outperforming in NSS and
AUC-Judd, but underperforming in KLD and CC. Fine tuned
FoV120 with stretch weighted maps performs in the middle
of the other two.

B. Densely Cubic Projection

As mentioned in Section II, numerous methods proposed
different projection strategies to reduce discontinuity problem
between each viewport. Fig. 12 and Fig. 13 illustrate the
results of three state-of-the-art methods [19], [51], [42]. Un-
fortunately, we can still observe some unfavorable borderlines
of viewports in their output saliency maps. We therefore
utilize densely cubic projection which samples viewports in
every 10◦ in longitude and latitude, then back-projects view-
port saliency maps into equirectangular format and averages
equirectangular maps to output a final saliency map. In this
way, the unfavorable borderlines can be removed by averaging
viewports in different angles. Fig. 9 presents an example of
saliency maps generated from rotation angle 90◦, 30◦, and
10◦, respectively. We can see from this figure that rotation
angle 90◦ causes obvious discontinuous borderlines between
cubic faces, rotation angle 30◦ obtains smoother results but
still contains slight discontinuity when we take a closer look.
Rotation angle 10◦, which is used in our method, attains
the smoothest result compared to that of 90◦ and 30◦. As
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Fig. 10. The results of all the (U, V) combinations in equation (9) in KLD,
CC, NSS, and AUC-J evaluated on the test set of Salient360! 2017 [39].
Saliency maps from FoV90, FoV120, and FoV360 here are generated from
the model fine tuned with adaptive loss function and stretch weighted maps.
No one combination of (U, V) is able to reach the highest scores in all the
four metrics.

the smaller rotation angle is, the smoother output saliency
maps are. However, more viewport images should be generated
increasing the computation time per output saliency map. For
example, rotation angle 90◦ generates 6 viewport images,
rotation angle 30◦ generates 3×3×6 = 54 viewport images, and
rotation angle 10◦ generates 9× 9× 6 = 486 viewport images.
Table II lists the performance and computation time per output
saliency map in rotation angle 90◦, 30◦, and 10◦, respectively.
The used computer is equipped with a Intel i9-7900X CPU
processor and a 64GB RAM. Even though rotation angle 10◦

achieves the best scores in four evaluation metrics, it takes
the longest time and its performance does not improved much
from that of rotation angle 30◦, except for KLD which has 27%
improvement. Since our model is proposed for 360◦ image,
not video containing numerous frames, computation time is
not our primary consideration and 1.86 sec per saliency map
is acceptable for us. Hence, we choose rotation angle 10◦ on
account of its good performance.

C. Integration of Multiple FoVs

As three FoVs have their highest and lowest scores in
different evaluation metrics, a linear addition of three FoVs is
proposed to reach the best performance in all the metrics. In
Fig. 10, we assess all the possible combinations of integration
parameters (U, V) in Equation (9) in KLD, CC, NSS, and
AUC-Judd. In KLD, the three FoVs integration obtains lower
scores compared to two FoVs integration and one single FoV.
Although FoV360 has the highest score, it decreases the score
when it is slightly added to FoV90 + FoV120. The smallest
KLD score happens in 0.5FoV90 + 0.4FoV120 + 0.1FoV360.
In CC, FoV90 + FoV120 provides the best performance
compared to three FoVs integration and one single FoV. The
highest CC score is obtained by 0.6FoV90 + 0.4FoV120. In
NSS, high scores occur when FoV360 has large parameter

TABLE III
THE EVALUATION SCORES OF EACH FOV AND THE BEST COMBINATION OF
(U, V) IN EQUATION (9) OF ANY TWO FOVS INTEGRATION, AND THREE

FOVS INTEGRATION ON THE TEST SET OF SALIENT360! 2017 [39].
W = (1 − U − V) . R REFERS TO THE TOTAL RANKING SUMMED WITH EACH
SCORE RANKING LISTED IN PARENTHESES IN GRAY COLOR. THE RESULTS

IN BOLD INDICATE THE BEST COMBINATION WHICH HAS THE HIGHEST
RANKING.

(U, V, W) KLD↓ CC↑ NSS↑ AUC-J↑ R
(1, 0, 0) 0.369 (2) 0.674 (2) 0.872 (7) 0.726 (7) 18
(0, 1, 0) 0.408 (6) 0.649 (4) 0.916 (6) 0.738 (5) 21
(0, 0, 1) 0.458 (7) 0.572 (7) 0.980 (3) 0.752 (1) 18

(0.4, 0.6, 0) 0.385 (4) 0.680 (1) 0.917 (5) 0.735 (6) 16
(0.5, 0, 0.5) 0.381 (3) 0.643 (5) 0.988 (2) 0.749 (3) 13
(0, 0.5, 0.5) 0.402 (5) 0.633 (6) 0.993 (1) 0.750 (2) 14

(0.2, 0.5, 0.3) 0.363 (1) 0.662 (3) 0.978 (4) 0.747 (4) 12

and integrated with relatively small FoV90 and small FoV120.
0.1FoV90 + 0.3FoV120 + 0.6FoV360 generates the highest
NSS score. In AUC-Judd, it is similar to NSS that a large
parameter of FoV360 combined with small FoV90 and small
FoV120 acquires high scores. The best score lies in 0.1FoV90
+ 0.1FoV120 + 0.8FoV360. We can see in Fig. 10 that there
is no one (U, V) able to reach the highest scores in all the four
metrics.

In order to achieve good results in all the evaluation metrics
and prevent biases on some factors, we rank the scores and
choose the combination which makes all the four evaluation
scores above their median values. Table III reports the perfor-
mance of each single FoV and the best combinations of any
two FoVs integration and three FoVs integration by selecting
the highest ranking sum of four evaluation metrics. W = 1−U−V
and R represents the total ranking summed by the ranks of
each score listed in parentheses in gray color. In the table,
(U, V, W) = (1, 0, 0), (0, 1, 0), and (0, 0, 1) are the results of
each single FoV, where (1, 0, 0) stands for FoV90, (0, 1, 0)
stands for FoV120, and (0, 0, 1) stands for FoV360. They can
be regarded as the upper bound performance of each FoV in
our model. Besides, (U, V, W) = (0.4, 0.6, 0) represents the best
result among all the combinations of FoV90 + FoV120, (0, 0.5,
0.5) represents the best result among all the combinations of
FoV120 + FoV360, and (0.5, 0, 0.5) represents the best result
among all the combinations of FoV90 + FoV360. They can
also be regarded as the upper bound performance of any two
FoVs integration in our model. The best result among all the
combinations of three FoVs integration is also listed here as
(0.2, 0.5, 0.3). We rank all the scores in each metric and give
a ranking sum in the column R to compare their results in
general. We observe that the integration of FoV90 + FoV120
improves CC but impairs NSS and AUC-J, the integration
of FoV120 + FoV360 improves NSS but impairs KLD and
CC. However, when we integrate three FoVs, it achieves the
best KLD and keeps other metrics from decreasing too much.
Therefore, we select (U, V, W) = (0.2, 0.5, 0.3) as our best
result as it has the highest total ranking and the scores of
metrics are better than or equal to their medians.

D. Comparison with end-to-end structure

In our proposed framework, we separately fine tune a
2D saliency model with rectilinear images in three different
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TABLE IV
COMPARISON OF END-TO-END STRUCTURE AND OUR METHOD ON

SALIENT360! 2017 DATASET [39] TEST SET. THE RESULTS IN BOLD
INDICATE THE BEST SCORES ON EACH EVALUATION METRIC.

Method KLD↓ CC↑ NSS↑ AUC-J↑
End-to-end structure 0.390 0.633 0.918 0.730

Our method 0.363 0.662 0.978 0.747

Fig. 11. Three examples of saliency maps generated from end-to-end
structure, our framework, and groundtruth on Salient360! 2017 [39] test set.
We can observe that saliency maps generated from end-to-end structure have
obvious discontinuity and more blurry compared to that generated from our
method.

FoVs, back-project the outputs into equirectangular format
and combine them with linear integration. For improving
computational efficiency, we also designed an end-to-end
structure which is able to input rectilinear images of three
FoVs in the same time, detect saliency features and output a
360◦ saliency map. The architecture of end-to-end structure
is similar to Fig. 1, while the last sigmoid layers, which
output the saliency map of three 2D models, are removed and
a combinator with two convolutional layers and a sigmoid
layer is attached to fuse saliency features detected from three
FoVs. Hence, the output of each 2D model is 64-channel
salient features. The salient features of FoV90 and FoV120
are back-projected to equirectangular format and concatenated
with salient features of FoV360 to form 192-channel salient
features. Then the combinator fuses these 192-channel features
and outputs a 360◦ saliency map. Other implementation details
are the same as that in our framework. This structure avoids
the computational cost in densely cubic projection and linear
integration of multiple FoVs. However, its performance, as
shown in Table IV, is inferior to that of our framework
proposed in this paper. We can see in Table IV that our method
outperforms end-to-end structure by 7.4%, 4.6%, 6.5%, and
2.3% in KLD, CC, NSS, and AUC-J, respectively. Fig. 11 il-
lustrates three examples of saliency maps generated from end-
to-end structure, our proposed framework and corresponding
groundtruth on the test set of dataset Salient360! 2017 [39]. We
observe that there is obvious discontinuity in the saliency maps
generated from end-to-end structure compared to that from our
framework. It is due to cubic projection in end-to-end structure
only rotates every 45◦ while that in our framework rotates
every 10◦ in testing. From the results shown in Section V-B,
smaller rotation angle achieves smoother saliency map in
equirectangular format, but the more rectilinear images should
be computed. Hence, the computational limitation of our 64GB
computer only allows end-to-end structure to take rotation
angle 45◦ as minimum. Besides, the computational limitation
also constraints the input resolution of combinator in end-to-

TABLE V
COMPARISON ON THE TEST SET OF SALIENT360! 2017 DATASET [39].

THE RESULTS IN BOLD AND BLUE COLOR RESPECTIVELY INDICATE THE
BEST AND THE SECOND-BEST SCORES ON EACH EVALUATION METRIC.

Method KLD↓ CC↑ NSS↑ AUC-J↑
Maugey et al. [43] 0.585 0.448 0.506 0.644

Zhang et al.[58] - 0.409 0.699 0.659
SalNet360 [51] 0.458 0.548 0.755 0.701
SalGAN [28] 1.236 0.452 0.810 0.708

Startsev et al. [42] 0.42 0.62 0.81 0.72
GBVS360 [45] 0.698 0.527 0.851 0.714
BMS360 [45] 0.599 0.554 0.936 0.736

SalGAN&FSM [19] 0.896 0.512 0.910 0.723
Zhu et al. [46] 0.481 0.532 0.918 0.734
Ling et al. [50] 0.477 0.550 0.939 0.736

SalGAN360 [53] 0.431 0.659 0.971 0.746
Our method 0.363 0.662 0.978 0.747

TABLE VI
RESULTS ON THE TEST SET OF SALIENT360! 2018 BENCHMARK [65].

THE RESULTS IN BOLD AND BLUE COLOR RESPECTIVELY INDICATE THE
BEST AND THE SECOND-BEST SCORES ON EACH EVALUATION METRIC.

Method KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑
SJTU model 1.238 0.520 0.573 1.397 0.820

Wuhan University 0.899 0.607 0.612 1.617 0.822
SalGAN360 [53] 0.739 0.642 0.635 1.585 0.820

Our method 0.726 0.653 0.644 1.646 0.829

TABLE VII
COMPARISON ON THE TEST SET OF SALIENCY IN VR - STANDING

DATASET [41]. THE RESULTS IN BOLD AND BLUE COLOR RESPECTIVELY
INDICATE THE BEST AND THE SECOND-BEST SCORES ON EACH

EVALUATION METRIC.

Method KLD↓ CC↑ NSS↑ AUC-J↑
Startsev et al. [42] 5.666 0.431 1.148 0.754

SalNet360[51] 5.849 0.390 1.200 0.772
SalGAN[28] 5.280 0.361 1.236 0.783

SalGAN&FSM [19] 5.333 0.375 1.286 0.794
SalGAN360 [53] 4.659 0.488 1.530 0.829

Our method 4.325 0.507 1.551 0.830

end structure to 256 × 512 as maximum, so that the output
salient features should be downsampled as 128× 128. It leads
to end-to-end structure ignores important features and makes
saliency maps more blurry as shown in Fig. 11. In contrast,
our framework conserves the original resolution 256 × 256 of
the output from 2D models, and generates the 360◦ saliency
map in 512 × 1024, where the length and width is twice of
that of the output from 2D models.

E. Comparison with the State-of-the-arts

We take our model of three-FoV SalGAN learned with
adaptive weighting loss function and stretch weighted maps
as our best-performed model and compare it with the state-of-
the-arts in Salient360! 2017, Salient360! 2018, and Saliency
in VR datasets.

Table V compares our model with 11 saliency prediction
models trained and validated with 40 images and tested on
25-image test set in Salient360! 2017 dataset. SalGAN is
compared here to present the performance of 2D model used
in 360◦ images without any modification. The other 7 models
listed in Table V, which are Maugey et al. [43], SalNet360[51],
GBVS360 [45], BMS360 [45], Startsev et al. [42], Ling et
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al. [50] and Zhu et al. [46], are the participants of the
Grand Challenge Salient360! ICME2017. The performance is
evaluated by the organizers of the challenge. We follow the
suggestion from MIT Saliency Benchmark [66] to rank all
the models according to NSS scores. Our model outperforms
the others on the 4 evaluation metrics, especially on KLD,
which surpasses the second-best model by 15.1%. On the other
metrics, our model is 0.4%, 0.7%, and 0.1% better than the
second best on CC, NSS, and AUC-J, respectively.

Table VI compares our model with the other three models
participated in ICME2018 Grand Challenge. Our model and
theirs are all trained and validated on 85 images in the
Salient360! 2018 dataset, tested on 26-image test set which the
groundtruth is kept secretly, and submitted to the benchmark
built by the challenge organizers. Thus, all the performance
is evaluated by them with their private test dataset. Our
model achieves the best result on all the 5 indexes by 1.8%,
1.7%, 1.4%, 1.8%, 0.9% on KLD, CC, SIM, NSS, AUC-J,
respectively compared to the second-best model.

Table VII presents the performance of our model and other
5 state of the art methods in Saliency in VR dataset. All the
models listed here use the same training dataset as those listed
in Table V and tested on all 22 images in Saliency in VR
dataset (i.e., all 22 images serve as test set). Our model
surpasses all of these 5 models on KLD, CC, and NSS by
7.7%, 3.9%, 1.4% respectively compared to the second-best
method.

F. Qualitative comparison

Fig. 12 and Fig. 13 illustrate the qualitative results obtained
by our model and other state-of-the-art models on Salient360!
2017 evaluation set, and Saliency in VR dataset. We can see
that [19] overlooks abundant important features, because it
directly downsamples the whole high resolution 360◦ images
into small size 192 × 256 for 2D DCNN saliency model. [42]
and [51] use viewport-based method which allow them be able
to extract fine features in high resolution 360◦ images. How-
ever, their methods still have serious defects on the border of
cube faces maps. Our model is capable of capturing both fine
and coarse features via multi-FoVs method, and concentrating
on the salient parts in equator area via fine tuning with adaptive
weighting loss function attached with stretch weighted maps.
Compared to the groundtruth, the saliency maps of our model
are still blurry on the salient regions. It should be improved
on how to detect finer yet more accurate salient features in
high resolution 360◦ images in the future work.

G. Comparison with SalGAN360

From Table V, Table VI, and Table VII, we can see that the
performance of our method are close to that of our previous
work SalGAN360 [53]. It is due to the identical 2D saliency
model, and the similar training and testing strategy of cubic
projection on the limited scale of training datasets (i.e., 40 im-
ages in Salient360! 2017 and 85 images in Salient360! 2018).
The improvements from SalGAN360 to our method are three-
FoV integration and adaptive weighting loss function with
stretch weighted maps. In order to validate their contributions,

we take a deeper look into the results of SalGAN360 and our
method in every image in test sets of three datasets. Fig. 14,
Fig. 15, and Fig. 16 illustrate the scores of KLD, CC, and NSS
of each test image in dataset Salient360! 2017, Salient360!
2018, and Saliency in VR. As SalGAN360 integrates FoV90
and FoV360, these figures also show our method of FoV90
and FoV360 integration as “Our method (2FoVs)”. Thus, the
contribution of adaptive weighting loss function with stretch
weighted maps can be seen by comparing SalGAN360 with
our method (2FoVs), and the contribution of three FoVs inte-
gration can be seen by comparing our method (2FoVs) and our
method. In Fig. 14, we can see that adaptive weighting losses
with stretch weighted maps drastically decrease KLD scores
in most of test images and three FoVs integration further
deceases KLD in some amount, while they decrease CC scores
in the same time but three FoVs integration further increases
CC. Adaptive weighting losses with stretch weighted maps
also improve NSS, while three FoVs integration improves NSS
in some images but reduces NSS in other images. In Fig. 15
and Fig. 16, adaptive weighting loss function with stretch
weighted maps and three FoVs integration decrease KLD,
increase CC and NSS in most of test images. By observing
Fig. 14, Fig. 15 and Fig. 16, we can conclude that adaptive
weighting loss function with stretch weighted maps generally
improves KLD, CC and NSS in three datasets but the only
exception of CC in the Salient360! 2017. Besides, three FoVs
integration also generally improves KLD, CC and NSS in three
datasets but the only exception of NSS in the Salient360! 2017.
The small scale of Salient360! 2017 (30 images to train, 10
images to validate and 25 images to test) could limit the effect
of adaptive weighting losses and the integration of three FoVs
by improving some evaluation metrics while sacrificing other
metrics in the same time. In Fig. 15 and Fig. 16, we can see
more consistent improvements on adaptive weighting losses
and the integration of three FoVs in a larger scale dataset
Salient360! 2018 (65 images to train, 20 images to validate
and 26 images to test).

H. Discussion

In Table IV, we prove that the end-to-end structure is not
superior to linear combination of multi-FoV saliency maps
due to the discontinuity between viewports and computational
limitation. Inspired by [67], which detected salient objects
in 2D images with an adjustable combination weight of two
models via reinforcement learning, and [68], which estimated
saliency maps of 360◦ images with a fusion DCNN to combine
saliency from different rotation viewports, it is promising for
us to establish a more efficient method than linear combination
for future work. On the basis of saliency prediction in 360◦

images, we can also follow the work in [14], [69] to extend
our framework for 360◦ videos to predict head movement in
the forthcoming frames.

VI. CONCLUSION

In this paper, we proposed a novel saliency prediction model
for 360◦ images which considers the entire 360◦ image in
three FoVs and its diverse viewport images. Our experiments
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Fig. 12. Qualitative results and comparison with other state of the art models on Salinet360! 2017 [39] test set.

Fig. 13. Qualitative results and comparison with other state of the art models on Saliency in VR dataset [41] test set. The view angle of Gaussian blur is set
to 1◦ in this dataset, so that the saliency regions in the groundtruth are much smaller than that in Salinet360! 2017 [39] dataset (view angle is 3.34◦).
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Fig. 14. Comparison with SalGAN360 in every test image in Salient360! 2017 [39] test set.
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Fig. 15. Comparison with SalGAN360 in every test image in Salient360! 2018 [40] test set.
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Fig. 16. Comparison with SalGAN360 in every test image in Saliency in VR [41] test set.

showed that the FoV size 90◦ × 90◦ is not always the best
choice for viewport based 360◦ saliency method in line with
the fact that different FoV size has different effect on evalua-
tion metrics. A better result on multiple evaluation metrics
can be achieved in the same time by integrating saliency
maps of FoV size 90◦ × 90◦, 120◦ × 120◦, and 360◦ × 180◦.
The other novelty of the proposal is an adaptive weighting
loss function which dynamically balances the contribution of
each evaluation metrics. It prevents the weights from manually
tuning, and also outperforms the fixed weighting solutions.
The same idea can be potentially applied on other combination
loss functions. Stretch weighted maps were also introduced

to lessen the impact of stretched regions in equirectangular
images. Each component in our method has been validated
to demonstrate its effectiveness. We also showed that our
method outperforms other state of the arts on three public
available datasets. Compared the saliency maps predicted from
our model to the groundtruth, our model is not concentrated
enough on the salient regions. In our future work, we plan
to improve the model on detecting finer yet more accurate
features in high resolution 360◦ images.
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[18] E. Upenik, M. Řeřábek, and T. Ebrahimi, “Testbed for subjective
evaluation of omnidirectional visual content,” in 2016 Picture Coding
Symposium (PCS), Dec 2016, pp. 1–5.

[19] A. De Abreu, C. Ozcinar, and A. Smolic, “Look around you: Saliency
maps for omnidirectional images in VR applications,” in 2017 Ninth In-
ternational Conference on Quality of Multimedia Experience (QoMEX),
May 2017, pp. 1–6.

[20] Y. Rai, J. Gutiérrez, and P. Le Callet, “A dataset of head and eye
movements for 360 degree images,” in Proceedings of the 8th ACM
on Multimedia Systems Conference, ser. MMSys’17. New York, NY,
USA: ACM, 2017, pp. 205–210.

[21] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 1, pp. 185–207, Jan 2013.

[22] W. Wang, J. Shen, F. Guo, M. Cheng, and A. Borji, “Revisiting video
saliency: A large-scale benchmark and a new model,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, June 2018, pp.
4894–4903.

[23] A. Borji, “Saliency prediction in the deep learning era: An empirical
investigation,” CoRR, vol. abs/1810.03716, 2018. [Online]. Available:
http://arxiv.org/abs/1810.03716

[24] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in
Advances in Neural Information Processing Systems 19, Proceedings
of the Twentieth Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 4-7, 2006,
2006, pp. 545–552.

[25] J. Zhang and S. Sclaroff, “Saliency detection: A boolean map approach,”
in 2013 IEEE International Conference on Computer Vision, Dec 2013,
pp. 153–160.

[26] N. Imamoglu, W. Lin, and Y. Fang, “A saliency detection model using
low-level features based on wavelet transform,” IEEE Transactions on
Multimedia, vol. 15, no. 1, pp. 96–105, Jan 2013.

[27] X. Huang, C. Shen, X. Boix, and Q. Zhao, “Salicon: Reducing the
semantic gap in saliency prediction by adapting deep neural networks,”
in 2015 IEEE International Conference on Computer Vision (ICCV),
Dec 2015, pp. 262–270.

[28] J. Pan, C. Canton, K. McGuinness, N. E. O’Connor, J. Torres, E. Sayrol,
and X. a. Giro-i Nieto, “SalGAN: Visual saliency prediction with
generative adversarial networks,” in arXiv, January 2017.

[29] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human
eye fixations via an LSTM-based saliency attentive model,” IEEE
Transactions on Image Processing, vol. 27, no. 10, pp. 5142–5154, Oct
2018.

[30] S. Jia, “EML-NET: an expandable multi-layer network for saliency
prediction,” CoRR, vol. abs/1805.01047, 2018. [Online]. Available:
http://arxiv.org/abs/1805.01047

[31] C. Bak, A. Kocak, E. Erdem, and A. Erdem, “Spatio-temporal saliency
networks for dynamic saliency prediction,” IEEE Transactions on Mul-
timedia, vol. 20, no. 7, pp. 1688–1698, July 2018.

[32] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict
where humans look,” in 2009 IEEE 12th International Conference on
Computer Vision, Sep. 2009, pp. 2106–2113.

[33] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “Salicon: Saliency in
context,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 1072–1080.

[34] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets
of salient object segmentation,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, June 2014, pp. 280–287.

[35] A. Smolic and H. Kimata, “Applications and requirements for 3DAV,”
2003.

[36] H. Strasburger, I. Rentschler, and M. Jüttner, “Peripheral vision and
pattern recognition: A review,” Journal of Vision, vol. 11, no. 5, pp.
13–13, 12 2011.

[37] N. Liu and J. Han, “A deep spatial contextual long-term recurrent con-
volutional network for saliency detection,” CoRR, vol. abs/1610.01708,
2016. [Online]. Available: http://arxiv.org/abs/1610.01708

[38] K. Zhang and Z. Chen, “Video saliency prediction based on spatial-
temporal two-stream network,” IEEE Transactions on Circuits and
Systems for Video Technology, pp. 1–1, 2018.

[39] University of Nantes, “Salient360!: Visual attention modeling for 360
images grand challeng,” in the IEEE International Conference on Mul-
timedia and Expo (ICME), 2017.

[40] J. Gutiérrez-Cillán, E. J. David, Y. Rai, and P. L. Callet, “Toolbox
and dataset for the development of saliency and scanpath models for
omnidirectional/360◦ still images,” Sig. Proc.: Image Comm., vol. 69,
pp. 35–42, 2018.

[41] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masia,
and G. Wetzstein, “Saliency in VR: How do people explore virtual envi-
ronments?” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 4, pp. 1633–1642, April 2018.

[42] M. Startsev and M. Dorr, “360-aware saliency estimation with conven-
tional image saliency predictors,” Signal Processing: Image Communi-
cation, vol. 69, pp. 43 – 52, 2018.

[43] T. Maugey, O. Le Meur, and Z. Liu, “Saliency-based navigation in
omnidirectional image,” in 2017 IEEE 19th International Workshop on
Multimedia Signal Processing (MMSP), Oct 2017, pp. 1–6.

[44] F. Battisti, S. Baldoni, M. Brizzi, and M. Carli, “A feature-based
approach for saliency estimation of omni-directional images,” Signal
Processing: Image Communication, vol. 69, pp. 53 – 59, 2018.

[45] P. Lebreton and A. Raake, “GBVS360, BMS360, prosal: Extending
existing saliency prediction models from 2d to omnidirectional images,”
Signal Processing: Image Communication, vol. 69, pp. 69 – 78, 2018.

[46] Y. Zhu, G. Zhai, and X. Min, “The prediction of head and eye movement
for 360 degree images,” Signal Processing: Image Communication,
vol. 69, pp. 15 – 25, 2018.

http://arxiv.org/abs/1810.03716
http://arxiv.org/abs/1805.01047
http://arxiv.org/abs/1610.01708


ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3003642, IEEE
Transactions on Multimedia

16

[47] B. W. Tatler, “The central fixation bias in scene viewing: Selecting
an optimal viewing position independently of motor biases and image
feature distributions,” Journal of Vision, vol. 7, no. 14, pp. 4–4, 11 2007.

[48] P.-H. Tseng, R. Carmi, I. G. M. Cameron, D. P. Munoz, and L. Itti,
“Quantifying center bias of observers in free viewing of dynamic natural
scenes,” Journal of Vision, vol. 9, no. 7, pp. 4–4, 07 2009.

[49] Y. Fang, X. Zhang, and N. Imamoglu, “A novel superpixel-based
saliency detection model for 360-degree images,” Signal Processing:
Image Communication, vol. 69, pp. 1 – 7, 2018.

[50] J. Ling, K. Zhang, Y. Zhang, D. Yang, and Z. Chen, “A saliency predic-
tion model on 360 degree images using color dictionary based sparse
representation,” Signal Processing: Image Communication, vol. 69, pp.
60 – 68, 2018.

[51] R. Monroy, S. Lutz, T. Chalasani, and A. Smolic, “SalNet360: Saliency
maps for omni-directional images with CNN,” Signal Processing: Image
Communication, vol. 69, pp. 26 – 34, 2018.

[52] J. Pan, E. Sayrol, X. Giro-I-Nieto, K. McGuinness, and N. E. O’Connor,
“Shallow and deep convolutional networks for saliency prediction,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 598–606.

[53] F. Chao, L. Zhang, W. Hamidouche, and O. Deforges, “SalGAN360:
Visual saliency prediction on 360 degree images with generative adver-
sarial networks,” in 2018 IEEE International Conference on Multimedia
Expo Workshops (ICMEW), July 2018, pp. 01–04.

[54] H. Cheng, C. Chao, J. Dong, H. Wen, T. Liu, and M. Sun, “Cube padding
for weakly-supervised saliency prediction in 360◦ videos,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
June 2018, pp. 1420–1429.

[55] Y.-C. Su, D. Jayaraman, and K. Grauman, “Pano2vid: Automatic cin-
ematography for watching 360◦ videos,” in Computer Vision – ACCV
2016, S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato, Eds. Cham:
Springer International Publishing, 2017, pp. 154–171.

[56] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv e-prints, p. arXiv:1409.1556,
Sep 2014.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[58] Z. Zhang, Y. Xu, J. Yu, and S. Gao, “Saliency detection in 360◦ videos,”
in The European Conference on Computer Vision (ECCV), September
2018.

[59] “HTC VIVE Specs,” https://www.vive.com/us/product/
vive-virtual-reality-system/, accessed: 2020-06-17.

[60] “Oculus Rift,” https://www.oculus.com/rift/, accessed: 2020-06-17.
[61] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What

do different evaluation metrics tell us about saliency models?” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 3, pp. 740–757, March 2019.

[62] C. Carlson, “How I made wine glasses from sunflowers,” http://blog.
wolfram.com/2011/07/28/how-i-made-wine-glasses-from-sunflowers/,
accessed: 2020-06-17.

[63] B. Coors, A. P. Condurache, and A. Geiger, “SphereNet: Learning spher-
ical representations for detection and classification in omnidirectional
images,” in European Conference on Computer Vision (ECCV), Sep.
2018.

[64] M. Eder and J.-M. Frahm, “Convolutions on spherical images,” in CVPR
Workshops, 2019.

[65] J. Gutiérrez, E. J. David, A. Coutrot, M. P. D. Silva, and P. L. Callet,
“Introducing UN salient360! benchmark: A platform for evaluating
visual attention models for 360◦ contents,” 2018 Tenth International
Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3,
2018.

[66] Z. Bylinskii, T. Judd, F. Durand, A. Oliva, and A. Torralba, “MIT
saliency benchmark,” http://saliency.mit.edu/.

[67] “Quality-aware dual-modal saliency detection via deep reinforcement
learning,” Signal Processing: Image Communication, vol. 75, pp. 158 –
167, 2019.

[68] I. Djemai, S. A. Fezza, W. Hamidouche, and O. Deforges, “Extending
2D Saliency Models for Head Movement Prediction in 360-degree
Images using CNN-based Fusion,” in IEEE International Symposium
on Circuits and Systems (ISCAS), vol. IEEE International Symposium
on Circuits and Systems (ISCAS), Seville, Spain, May 2020.

[69] A. Nguyen, Z. Yan, and K. Nahrstedt, “Your attention is unique:
Detecting 360-degree video saliency in head-mounted display for head
movement prediction.” New York, NY, USA: Association for Comput-
ing Machinery, 2018.

https://www.vive.com/us/product/vive-virtual-reality-system/
https://www.vive.com/us/product/vive-virtual-reality-system/
https://www.oculus.com/rift/
http://blog.wolfram.com/2011/07/28/how-i-made-wine-glasses-from-sunflowers/ 
http://blog.wolfram.com/2011/07/28/how-i-made-wine-glasses-from-sunflowers/ 



