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Abstract—Cyber-physical systems (CPS) integrate both
physical and computational elements and their engineering
requires bridging the continuous analog real world and the
discrete digital world. User interfaces of cyber-physical
systems belong to the class of command and control systems
and their design and engineering usually follow ad-hoc craft
processes highly parametrized by the very nature of the
physical component(s). This paper proposes a systematic
approach for engineering CPS, emphasizing the problems and
possible solutions to design and assess their user interfaces
(both control and presentation). The paper first proposes a
generic architecture for CPS going from the physical
element(s) to the user interface. This architecture is then
refined, highlighting the behavior and software interfaces of
each of its component and showing how information and
control from the physical elements have to be processed and
transformed to make sense to the operator. The paper presents
extracts of the application of the proposed approach to the
command and control cockpit application of an aircraft
system.

Keywords—CPS, Interactive Systems, Command and Control

1. INTRODUCTION

While today most of Human-Computer Interaction (HCI)
research is targeting at software systems, cyber-physical
systems (CPS) deployment has increased in an anarchic way
that could be seen a CPS stampede. However, researchers
involved in the design, specification, development,
validation or maintenance of CPS have been trying to warn
about the challenges those systems are bringing. An
overview of these challenges can be found in [2] where an
interesting (and rather unique) perspective is given towards
the need of User Centered Design approaches in that domain.

Taking the Human-Computer Interaction point of view,
CPSs have a very specific characteristic: their entire user
interface is composed of two relatively independent
elements:

e The command and control system designed for allowing
operators/users to use the CPS,

e The physical (hardware) part of the CPS that might (or
might not) be perceivable or actionable by the user.

While the first aspect is usually the focus of designers
and developers, the second aspect is usually ignored even
though it might deeply interfere with the actual use of the
system. An example of such CPS system is the Philips Hue
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smart lamp [20] (see Fig. 1) which is considered one of the
typical IoT devices and the most popular smart light system.
While the command and control is located on the remote
control and/or on the mobile App, the physical device (the
light bulb) is producing both light and heat that are both
perceivable by the users. When using the remote control
(which is only an input device and has no display on it), the
user has to target the connection bridge (not the light bulb)
and the only way to know the status of the device is to look
at its hardware (physical) part.
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Fig. 1 Overview of the Philips Hue and its command and control systems

The architecture presented in Fig. / shows that, in order to
operate appropriately the CPS, users have to be provided
with a detailed and complete description of both the
hardware and software parts of the CPS but also the
connection infrastructure. Indeed, users should point the
remote control towards the Hue bridge and not the lamp as
most would do (even though new protocols such as Wibree
(Bluetooth low energy) don’t require direct pointing at the
sensor). It is also important to note that the command and
control system part (both the smartphone and the remote
control) is also a CPS featuring cyber and physical
integration. This is the case with the mobile application
when users interact with hardware tactile screen for
controlling the software part of the App.

Engineering the entire user interface of a CPS thus requires
taking into account all CPS elements in an integrated
framework to address usability issues.

This paper proposes a framework addressing various aspects
of CPS with a specific focus on the human in the loop
aspect. This aspect has been explicitly identified in the CPS
concept map [12] where this challenged is phrased as
"Many cyber-physical systems include humans as an
integral components. Humans are very difficult to model, so
understanding and validating such systems becomes
particularly challenging".



This paper is structured as follows. Section 2 highlights the
specificities of user interactions with CPS as well as the
need for model-based approaches and presents a list of
requirements to model user interactions with CPS. Section 3
presents a generic architecture for engineering the command
and control part of CPS. Section 4 presents a set of notation
and tools that fulfill the requirements. Section 5
demonstrates the advantages of breaking down CPS
complexity using the generic architecture and shows that the
modeling techniques are able to cover all the elements of the
CPS thanks to extracts from an industrial case study.
Section 6 positions the proposed contribution with respect to
previous work while section 7 concludes the paper and
highlights future directions.

II. CHALLENGES IN ENGINEERING THE COMMAND AND
CONTROL OF CYBER-PHYSICAL SYSTEMS

CPS are intended to be used by humans [4] via direct
interaction [18] and/or using a monitoring and control user
interface [23]. This section presents the main problems that
have to be taken into account when engineering user
interfaces of the command and control part of a CPS. It also
highlights the need for model-based approaches to support
the engineering of this type of system. In particular, it
presents a set of requirements for the modeling of the
command and control part of a CPS.

A. Monitoring, Command and Control of CPS

Our work takes place in the context of large-scale CPS that
the user has to monitor and control (e.g. command and
control rooms, aircraft cockpit...). However, such kind of
problematics is also studied in other application domains
such as smart home environments [22]. The user has to
perform tasks using the CPS (e.g. switching on the light) but
the user is also in charge of monitoring the state of the CPS

(e.g. checking whether the light bulb is broken or failing) to

ensure that s/he will be able to perform her/his tasks. The

two main types of tasks are:

e Mission tasks. They are tasks that have to be
accomplished by the user so that s/he can achieved
her/his goals.

e Platform monitoring and control tasks. They are the
tasks that have to be accomplished to ensure that the
current state of the CPS provides support for
accomplishing the mission tasks. They include
monitoring the physical Ul of the CPS as well as
monitoring and controlling the CPS using a dedicated
user interface.

These two types of tasks are tightly coupled and may

interfere with each other. For example, if there is a change in

the platform status, e.g. some elements of the CPS are not
working properly, the user will have to know whether s/he is
able to continue her/his mission, or which part of the mission
s/he can continue. S/he will also have to know whether some
recovery tasks have to be performed to take back the
platform in a state that is acceptable for continuing the

mission. Engineering CPS thus requires to be able to
describe systematically the user task related to the mission
and the user tasks related to monitoring and controlling the
platform.

B. The Need for Model-based Approaches

Multiple types of techniques and associated tools for
representing the CPS elements are required [1] [8] [13] [22].
This means that a single modeling technique is not able to
take into account all the aspects of CPSs. During the design
and development process, in order to analyze and to
engineer a CPS, dedicated types of techniques and tools are
used in accordance with the type of element that is
engineered [11]. Different types of representations and
artifacts are produced to describe and analyze each element
composing the CPS. Moreover, an overall view of the
elements composing the CPS is required to describe the
relationships between the heterogeneous elements of a CPS,
and thus between the representations that have been
produced for these elements [1] [22].

A representation of the interactions between the elements of

a cyber-physical system is required to ensure consistency

and integration of these elements [1] [22]. Service-oriented

architecture is suitable to represent these interactions [13]

[22].

Current literature reports about model-based approaches for

engineering the system and software of CPS but do not

explicitly take into account the user interactions with the

CPSs [10] [18]. In order to explicitly take into account this

aspect, User Centered Design approaches are required to

develop cyber-physical systems [1][8]. Note that specific
challenges in engineering CPSs arise when explicitly taking
into account user interactions with a CPS:

e There is a need for standardization of interaction
hardware, a need for toolkits and development
processes as well as a need for dedicated prototyping
tools [18].

e The possible contexts of use, with their associated
relevant or undesirable interactions have to be taken
into account at design time [2].

C. Requirements to model user interactions with CPS

We propose a set of requirements for explicitly taking into
account the user interactions with a CPS (direct user
interaction and/or user interactions with a CPS via a
command and control system). Each requirement is given a
label (e.g. “Req isml” means requirement one for
interactive system modeling).
1) Interactive system modelling

Taking into account the interactive software parts of a CPS
requires a non-ambiguous description technique of both
their interconnection and their inner behavior, and any set of
notations able to describe these two aspects can be used
while it respects the following set of requirements.
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Fig. 2 A generic architecture for supporting the engineering of command and control CPSs.

Requirements for the description of the interconnection

between software elements of the CPS:

e Describe the interconnection between the architecture
components (Req_ism1).

e Describe the interface of each component of the
architecture (required methods/services and provided
methods/services, incoming and outgoing events)
(Req_ism2)

e Describe the communication kind between these
components (synchronous or asynchronous, unicast or
multicast...) (Req_ism3)

Requirements for the description of the inner behavior of
software elements of the CPS:

e  Describe the set of possible actions (Req_ism4)

e  Describe the set of operator’s actions (Req_ismJ5)

e To support the diversity of physical device, the
notations must be able to support the description of
complex behavior (true concurrency, infinite states,
both qualitative and quantitative temporal aspects, etc.)
(Req_ism6)

e Describe how user actions or inner state changes
modify the presentation (Req _ism?7)

e To be used as part of a user centered design process, it
must ease prototyping and user testing (executability,
modifiability, etc.) (Req_ism8)

2) Operator tasks modeling

Taking into account user activities for the command and
control of a CPS as well as the way they may interact with
the CPS (directly or indirectly) requires precise and
complete description of their activities. Furthermore, in
order to be able to analyze potential user errors that may
happen at runtime, the following set of requirements has to
be match:

e Identify and describe, in a complete and
unambiguous way, the user tasks with the CPS,
whether they interact in a direct way or with the
Command and Control of the CPS (Req_otmI)

e Identify and describe the Data (information,
objects, knowledge) manipulated by a user for
accomplishing her/his tasks (Req_otm2)

III. A GENERIC ARCHITECTURE TO PROVIDE AN OVERALL
VIEW ON THE ELEMENTS COMPOSING THE CPS

The proposed architecture enables the separation of a
complex system into several components. These
components are then easier to apprehend. Beside this, these
components are strongly consistent and dimly coupled. This
allows the separation of concerns (for instance, the
components related to the Uls are situated within the UI
side) and the locality of modification (a modification within
one of the components will not necessarily impact the other
components).

Fig. 2 presents a generic architecture, mixing both physical
systems and software components, illustrating how the CPS
modelling can be broken down into generic components in
order to support the model-based engineering of its
command and control system. In this Figure, we identified
three parts: i) the “Monitored and Controlled CPS”, ii) the
“Transducing and Control” and iii) the “Command and
Control System of the CPS”. Each of them is divided in one
or more components (either being hardware or software
components) with a precise role. The following paragraphs
describe each one of these components from left to right and
exemplify their usage using the Philips Hue CPS. Fig. 3
presents the instantiation of our generic architecture to the
Philips Hue CPS.
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Fig. 3 Application of the generic architecture to the Philips Hue CPS.

A. The Monitored and Controlled CPS

This part corresponds to the CPS device that is monitored

and controlled by the user.
Illustration with the Philips Hue CPS: the “Monitored and Controlled CPS”
(Fig. 3) corresponds to the Hue light bulb.



1) The CPS Physical Device
The CPS physical device is the concrete physical system
that has to be operated using a command and control user
interface. A detailed description of its inner behavior is not
always known and not always mandatory to allow
operations. The inner state of such device is usually
discovered using sensors while it can be handled using

actuators.
Illustration with the Philips Hue CPS: the “Hue light bulb” in Fig. 3)
corresponds to the physical part of the Hue CPS, i.e. the light bulb device.

2) The Physical User Interface

The physical user interface (PUI) of a CPS represents either
the physical phenomena that are not handled by the
command and control interactive system but that can be
perceived by the operator, or dedicated interactors that can
be used for emergency purpose for instance. It is for
instance incoming smoke, non-sensed vibrations, explosion
or special means to interact with the device such as the
physical crank of the landing gear for an aircraft. The
operators could have to interact with these physical
phenomena and special procedures must be created for such
abnormal situation.

Illustration with the Philips Hue CPS. This component (named “Hue PUI”
in Fig. 3) corresponds to both the light and heat produced by the light bulb
that are directly perceivable by the user. Another possible interaction that

may be described within this component is the fact that the user may decide
to unplug the light bulb.

3) The Software Interface
The software interface (SI) component of the “Monitored
and Controlled CPS” part provides a view on how to handle
the CPS physical device and how to assess its inner state.
This component provides for an external use a set of
observable parameters that are the result of the
discretization  of  potentially  continuous  physical
phenomenon (for instance, it could provide an engine speed
using sensors). It thus provides a set of observation
mechanisms whose kind depends of technologies used and a
set of commands that may be performed on the CPS
physical device (for instance starting or stopping the
device). It can push values of the handled parameters to
some listeners using dedicated communication means
(unicast or multicast, synchronous or asynchronous) or it

can require listener to pull values from it.

Illustration with the Philips Hue CPS. This component (named “Hue SI” in
Fig. 3) first describes to the set of observation mechanisms allowing to
know that the light bulb is ON, OFF, what is its color, what is its intensity.
Then, it also describes the fact that the light bulb provides possibilities to
handle its state: the possibility to turn it on, to turn it off, to change its color
or its intensity...

B. The Transducing and Control

The transducing and control part is composed of a unique
component: the behavioral model (BM) of the monitored
and controlled CPS. This component is responsible for
translating both low-level information from the software
interface into higher-level operation centric data (for
instance, the availability of an electric service depends of an
engine speed that must be above a threshold) and higher
level commands from the operators into low-level

commands compatible with the device. In other words, this
component is responsible for digitizing the behavior of the
monitored and controlled CPS (which is, by definition,
analog). It is important to note that this component has been
defined, within our architecture, as a "role" and not as a
system. Indeed, following the type of CPS that will be
monitored and controlled, this component may be places
within the monitored and controlled CPS system itself,
within its command and control system or within a third

“intermediate” system.

Tllustration with the Philips Hue CPS. This component (named “Hue BM”
in Fig. 3) represents the discrete behavior of the Hue light bulb. Concretely,
the behavioral model both describes the different discrete states of the light
bulb (such as "ON", "OFF", "Turning ON", "Turning OFF"...) and the
different possibilities for state changes (e.g. how is it possible to switch
from the "ON" state to the "OFF" state, passing by the "Turning Off" state).

C. The Command and Control System of the CPS

The command and control system of the CPS corresponds to
the system that enables the user to interact with the
monitored and controlled CPS. It is important to note that
for the same monitored and controlled CPS there may be
several command and control systems (see for instance the
example of the Philips Hue CPS).

Illustration with the Philips Hue CPS. As the Philips Hue CPS provides two
command and control systems (the user can choose to use the remote
control or the smartphone), Fig. 3 presents two different command and

control systems for the Hue CPS, respectively named “Remote control” and
“Smartphone”.

The command and control system is divided in the two
following different components.

1) The Behavioral Model of the User Interface (UIBM)
The behavioral model of the user interface (UIBM: User
Interface Behavioral Model) deals with:

e the rendering of parameters provided by the
behavioral model of the monitored and controlled
CPS;

e the activation and control of the user’s actions in
order to provide commands to the behavioral
model of the monitored and controlled CPS.

This component may have some local interaction behavior
that does not directly affect the device (for instance, some
temporary states during operations before acting on the
system). As this behavior may be complex, this component
is usually broken down in smaller communicating sub-

components.

Illustration with the Philips Hue CPS. For the remote control. This
component (named “Hue UIBM - Remote Control” in Fig. 3) describes the
behavior of the remote control. For instance, it describes the fact that a key
of the remote control can have two states ("Pressed" or "Released"). For the
smartphone. This component (named “Hue UIBM - Smartphone” in Fig. 3)
describes the behavior of the application that is running on the smartphone.
For instance, this component describes the different modes of the
application.

2) The User Interface device

The user interface device (UID) is a set of input and output
devices dedicated to interact with the monitored and
controlled CPS (for instance, in an aircraft it can be
dedicated screens, keyboards, physical buttons or physical
rotators). The behavioral model of the User Interface asks



the User Interface device for rendering and actions
performed with the input devices are transmitted to and

handled by the behavioral model of the user interface.
Tllustration with the Philips Hue CPS. For the remote control. This
component (named “Hue UID - Keys of the remote control” in Fig. 3) is
the concrete remote control device: it is thus composed of the different
keys of the remote control. For the smartphone. This component (named
“Hue UID - Smartphone touch screen” in Fig. 3) is the concrete device
with which the user can interact: it is thus the smartphone touchscreen.

IV. A MULTI-MODELS BASED APPROACH TO DESCRIBE THE
DIFFERENT TYPES OF ELEMENTS IN THE CPS

We here propose a set of notations that fulfill the
requirements to model user interactions with CPS (which
have been identified in section II.C). Engineering large-
scale systems requires being able to describe a large amount
of information, computer-aided software tools are thus
required.

A. Notations and tools

1) Interconnection  between elements
(Req _isml, Req ism2, Req ism3)
The description of the interconnection between components
is performed using the CORBA Component Model [17] that
allows the description of the kind of communication (event
or method call based) and the observable parameters
through the definition of attributes.

2) Inner behavior of software elements (Req ism4 to
Req_ism8))
ICO (Interactive Cooperative Object) is a formal description
technique based on Petri nets and dedicated to the
specification of interactive systems [16]. It uses concepts
borrowed from the object-oriented approach (dynamic
instantiation, classification, encapsulation, inheritance,
client/server relationship) to describe the structural or static
aspects of systems, and uses high-level Petri nets [6] to
describe their dynamic or behavioral aspects. ICO is
dedicated to the modeling and the implementation of event-
driven software components, using several communicating
objects to model the system, where both behaviors of
objects and communication protocol between objects that
are described by Petri nets.
PetShop (Petri Net workshop) is a tool for creating, editing,
simulating and analyzing system models using the ICO
(Interactive Cooperative Objects) notation [16]. Petshop
provides means to analyze ICO models through the analysis
of the underlying Petri net model. The PetShop tool
provides the means to analyze ICO models by the
underlying Petri net model [7] using static analysis
techniques as supported by the Petri net theory [19]. The
ICO approach is based on high level Petri nets. As a result,
the analysis approach builds on and extends these static
analysis techniques. It is thus possible to check well-
formedness properties of the ICO model, such as absence of
deadlocks, as well as user interface properties, either
internal properties (e.g., reinitiability) or external properties
(e.g., availability of widgets). Note that it is not possible to

software

express these user interface properties explicitly — the
analyst needs to express these properties as structural and
behavioral Petri net properties that can be then analyzed
automatically in PetShop.

3) Precise and complete description of user activities
(Req otml, Req otm2)
HAMSTERS (Human centered Assessment and Modeling
to Support Task Engineering for Resilient Systems is a task
modeling notation. It provides support to describe and
structure users’ goals and sub-goals into hierarchical task
trees. Qualitative temporal relationships among tasks are
described by operators. Various notational elements support
modeling of specialized task types, explicit representations
of data and knowledge.
HAMSTERS is also the name of tool for editing and
simulating HAMSTERS task models [14]. It provides
support for describing and structuring a large amount of user
tasks. These structuring mechanisms enable the breakdown
of a task model in several ones that can be reused in the
same or different task models. The HAMSTERS task
modeling tool provides support for creating, editing, and
simulating the execution of task models.

B. Process

There is no unique process to follow in order to model the

various elements of the proposed architecture. Depending

on the purpose of the engineering of the command and
control of the CPS, some architecture components might be
considered first:

e  When designing the entire CPS (for instance when
creating a new one), typically the flow of modeling
would be from the physical system to the user interface
part (left to right on the architecture in Fig. 3). This
flow of modeling was applied in the case of the
analysis of the command and control of the APU;

e  When designing a new User Interface (UI) of the
command and control of an existing CPS, the flow of
modeling would focus on the Ul models leaving
untouched the other ones. In this case the list of
services provided by the other elements of the CPS are
considered as input for the design of the UL

V. EXTRACTS FROM THE APPLICATION OF THE APPROACH TO
AN AIRCRAFT SYSTEM

We here present extracts of models that have been produced
during the analysis of an existing command and control Ul
for aircraft systems. In this example, we focus on one
system: the Auxiliary Power Unit (APU).

The APU is a turbine that enables an aircraft to be
autonomous regarding electrical power and bleed air. The
pilots can interact with it through a user interface made up
of two distinct parts: the overhead control panel and the
control and display system. Depending on the flight phase,
if enabled, the APU can provide: bleed air for engine start
and air conditioning and electrical power, bleed air to assist



engine start, bleed air as a backup for pressurization and air
conditioning and backup for electrical power.

As presented in Fig. 4, the APU needs electrical and fuel
resources and delivers electricity and bleed to the aircraft.

Overhead
Control Panel

Auxiliary Power Unit (APU) System
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ECAM Control Panel

Display Unit
Fig. 4. Overview of the APU system and its command and control systems

The pilots can interact with the APU through two different
user interfaces: the overhead control panel and the display
unit (see Fig. 4).

Fig. 7 presents the application of the generic architecture to
the command and control of the APU system. As mentioned
in the introduction (using Philip Smart Hue lamp), the
physical part of the cyber physical system is also
perceivable by the operator. In the case of the APU CPS,
output information such as vibrations, smoke and noise can
be perceived by the pilot (as illustrated by the arrows
between the user and the Physical User Interface component
of the APU in Fig. 7).

A. Extract from the representation of the interconnection
between software elements

Fig. 5 presents the abstract component based representation
of the “APU SI ” element.

~ Commands Commands

offered by : "J}trv‘ggerd
_ APUsystem - ) -7 usingICP_ _
thiflzat:’;s »: ':D}Notification
provided by § . § i towards Ul
APU system D : D

Fig. 5. Abstract Corba representation of the APU HW Interface

The upper part of the component corresponds to the
command flow from the user interface to the APU system,
while the lower parts correspond to the information about

the APU system that has to be presented on the user
interface. Fig. 6 presents an excerpt of the concrete
representation of the element “APU SI .

start ) O start
starting [ starting
nSpeEdChangede —D nSpeedChanged

Fig. 6. Concrete representation of a subset of the APU HW Interface

When the operator presses the “Start APU” button, the event
flows through each element of the architecture and is
received by the “APU SI” component (start facet on top
right-hand side in Fig. 6). In turn, this component triggers the
starting of the APU physical device start receptacle (on top
left-hand side in Fig. 6).

B. Extract from the representation of the inner behavior of
the software elements

Fig. 8 presents an extract of the ICO model of the behavioral
model of the APU (“APU BM” in Fig. 7). The first ICO
model of the “APU BM” ICO model (Fig. 8§ a)) corresponds
to the switching from APU stopped to APU started. The two
places in Fig. 8 a) (round shapes) correspond to two different
states of the APU device: when a token is present within the
"FlapOpened" place (as it is the case in Figure Fig. 8 a), the
APU device is ON. When the APU device starts, the “APU
SI” sends the "starting" event. This event (if the “APU BM”
has a token in the "FlapOpened" place) triggers the firing of
the "switchToStarting" transition (rectangle shape). The
firing of this transition first sends the "apuStarting" higher-
level event (that can be used by the “APU UIBMs”) and
second consumes the token in the "FlapOpened" place and
put a new token in the "Starting_ElecRequired" place.

The second ICO model of the “APU BM” ICO model (Fig. &
b)) corresponds to the switching from APU starting to APU
started. In Fig 8 b), a token 1is present in the
"Starting_FuelRequired" place. When the APU device
rotation speed increases, the “APU SI” sends

"nSpeedChanged" events. These events are containing a
parameter named "nSpeed" corresponding to the value of
the rotation speed. When this parameter is superior or equal
to 93, the "switchToAvail" transition is fired (as stated by its
event condition).
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Fig. 7. Application of the generic architecture to the command and control of the APU
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Fig. 8. Excerpt of the “APU BM” ICO model

Fig. 9 presents an extract of the ICO model of the behavioral
model of the User Interface of the overhead control panel.
This extract is the model of the handling of user inputs
using the “START” pushbutton of the overhead control
panel. When the user presses this pushbutton, the overhead
control panel device sends the "StartPbPressed" event,
which triggers the firing of the "pressStartPb" transition.
When the user releases this pushbutton, the overhead control
panel device sends the "StarPbReleased" event that triggers
the firing of the "apuStart" transition. The firing of this
transition implies that the "start" method is called on the
“APU BM” ICO model ("apu.start()" command within the
"apuStart" transition). When the “APU BM” model receives
this method call, it transfers it to the “APU SI” that will ask

the APU system to start.
- s g

<apuBl>

StartPbRelessed >

ApuStart ::StariPbReleased | |
apuBl.start()

<« StartPbPressed >
Fig. 9. Excerpt of the “APU UIBM overhead control panel” ICO model:
handling of user inputs with the “START” PushButton

C. Extract from the representation of the user activities

Fig. 10 presents an extract of the task model describing a set
of user actions that are the first step to start the APU (named
“Perform Master sw” because the Master sw is a button that
needs to be pushed to enable the startirigﬁo_f_t_he APU).

32 e

Pesform Master sw

MSW Bumenate 't:-;!\' Display APU sd page
* N\ v

Perceive "ON°  Perceve AP sdpage’

iloD _ ,.,‘/

Fig. 10. Extract of the “Start APU” task model

The user first has to push the “Master sw” button, then the
button illuminates (interactive output task labeled “MSW
illuminate “ON”). Simultaneously, the APU sd page is
displayed in the command and control interface (interactive
output task labeled “Display APU sd page”). Ultimately, the
user perceives that the button is ON (user perceptive task
labeled “Perceive “ON””) and perceives the sd page

displayed (user perceptive task labeled “Perceive APU sd
page”).

VI. RELATED WORK

A. Prototyping and Validation Approaches for Engineering
Command and Control of CPS

Mueller et al. [15] have coined a toolset for virtual
prototyping of CPS that provides support for modeling the
whole set of components composing a CPS: from physical
environment to the monitoring and control user interface,
including the modeling of mechanical hardware, electronics
and software. It aims at reaching a time performance that is
close to the real life usage of the analyzed CPS, in order to
provide support for verification and validation. Schirner et
al. [21] propose a prototyping environment for exploring
interactions between users and assistive robots, in order to
provide support for augmenting user interactions with the
physical world. These kind of approaches are not model-
based and the produced artefacts cannot be directly reused
in a development process. Tan et al. [24] present the
principle of a prototype architecture for CPSs which covers
some aspects not covered in this paper (for instance the
elements dealing with security). However, [24] misses the
point that the human might be in control of the CPS and that
the CPS "raison d’étre" might be to support operators in the
performance of their tasks.

B. Model-based Engineering the Specification and
Development of Command and Control of CPS

Seiger et al. [22] propose a business process modeling
approach to design and develop workflows in smart
environments, based on UML and Petri nets modeling
notations. Bhave et al. [1] focus on representing a CPS and
on the importance of having a central representation for
connecting the different required types of models. Franke et
al. [5] focus on the middleware components of smart home
environments. They propose a semantic and model-based
approach for specifying and executing the middleware
components of CPS, where devices can be added or
removed by a user. However, these approach does not
provide support for engineering user interactions with the
CPS. Jensen et al. [9] propose a ten steps method for
designing a CPS and to ensure that requirements are met.
This approach details the modeling of the physical
components but does not provide insights neither on
software specification and modeling, nor about how the
different types of models may be integrated. Yue et al. [25]
show that event-based approaches provide support for
ensuring consistency between different levels of events
generated by the different components of a CPS. They
propose an event based modeling technique for specifying
the behavior of a CPS but do not provide information about
how these models can be integrated with other types of
models such as physical, electronic or user interface ones.



VII. CONCLUSION AND FUTURE WORK

The proposed generic architecture and model-based
approach gives a holistic view of the CPS and enables the
integration of the Ul models of the CPS (e.g. the “APU
UIBMSs” in the illustrative example) with the system models
of the CPS (e.g. the “APU SI” and the “APU BM” in the
illustrative example) and thus provides support for:

e  Specifying the components of the APU CPS;

e  Ensuring consistency between all of the components of
the CPS, and then between the Uls of the CPS and all
of the other components of the CPS;

e  Producing high-fidelity prototypes of the CPS and of
its Uls;

e  Validating the behavior of each of the components of
the CPS, as well as its behavior as a whole.

In addition, the proposed architecture and its associated
models provide support for ensuring consistency between
the context of use (e.g. the activities that have to be
performed by the pilots and in which contexts) and the
possible interactions.

While this article focuses on providing support for
analyzing usability of the CPS, other properties require to be
taken into account. For example, the proposed approach
supports the assessment of the reliability of the CPS if using
a formal notation for the description of the CPS behavior.
We argue that there is a clear need to follow a holistic
approach building on previous work done in domains such
as dependability [1] and security [3], and to integrate them.
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