
HAL Id: hal-02881909
https://hal.science/hal-02881909v1

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MILP formulations for spatio-temporal thermal-aware
scheduling in Cloud and HPC datacenters

Jean-Marc Pierson, Patricia Stolf, Hongyang Sun, Henri Casanova

To cite this version:
Jean-Marc Pierson, Patricia Stolf, Hongyang Sun, Henri Casanova. MILP formulations for spatio-
temporal thermal-aware scheduling in Cloud and HPC datacenters. Cluster Computing, 2019, pp.0.
�10.1007/s10586-019-02931-3�. �hal-02881909�

https://hal.science/hal-02881909v1
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/26209

To cite this version:

Pierson, Jean-Marc and Stolf, Patricia and Sun, Hongyang and
Casanova, Henri MILP formulations for spatio-temporal thermal-
aware scheduling in Cloud and HPC datacenters. (2019) Cluster
Computing : The journal of Networks, Software Tools and
Applications. ISSN 1386-7857

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.1007/s10586-019-02931-3

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/26209
https://doi.org/10.1007/s10586-019-02931-3

MILP formulations for spatio-temporal thermal-aware scheduling
in Cloud and HPC datacenters

Jean-Marc Pierson1 • Patricia Stolf1 • Hongyang Sun2 • Henri Casanova3

Abstract
This paper focuses on scheduling problems related to the execution of computational jobs in datacenters with thermal

constraints. Mixed integer linear programming (MILP) formulations are proposed that encompass both spatial and tem-

poral aspects of the temperature evolution under a unified model. This model takes into account the dynamics of heat

production and dissipation in order to schedule jobs at appropriate times on appropriate machines. The proposed MILP

formulations are applicable to both high-performance computing (HPC) and Cloud settings, and can target several

objectives including energy and makespan minimization, while incorporating the cooling costs and dynamic voltage and

frequency scaling capabilities of servers. The applicability and usefulness of our formulations are demonstrated via several

HPC and Cloud case-studies.

Keywords HPC and Cloud datacenters � Thermal modeling � Thermal-aware scheduling � Makespan � Energy
consumption � Linear programming

1 Introduction

In this paper, we consider the problem of scheduling

computational jobs in datacenters with both energy con-

sumption and application performance objectives, while

enforcing constraints on heat production. This represents

an important problem in datacenter optimization as cooling

constitutes a significant part of the total energy consump-

tion in today’s datacenters [7, 14]. Effective thermal

management to prevent hotspots and server overheating

also plays an critical role in ensuring the application per-

formance [7, 27]. Although similar problems have been

considered in the literature (see Sect. 2 for a review of

related work), to the best of our knowledge, thermal-aware

scheduling has not been formalized as a generally appli-

cable constrained optimization problem, which is the goal

of this paper.

While prior works have proposed thermal-aware

scheduling algorithms on servers with individual and

steady-state temperature constraints, we argue that a for-

mulation based on both spatial and temporal thermal

models at the entire datacenter level is needed. More

specifically, a thermal model should account for heat

recirculation within a datacenter (i.e., spatial dispersion of

heat between servers) and temperature evolution through-

out time (e.g., temperature increases as computation is

being performed). Such behaviors have been modeled in

the literature using air flows and spatial locations of servers

(e.g., [1, 19, 34]), based on the physical characteristics

(thermal capacitance and resistance) of the processors

(e.g., [2, 28, 29]), as well as holistically linking both

temporal and spatial properties (e.g., [11, 32]). Moreover,

these models have been validated by several studies (e.g.,

[1, 21, 25, 29, 34]) using computational fluid dynamics

& Jean-Marc Pierson

jean-marc.pierson@irit.fr

Patricia Stolf

patricia.stolf@irit.fr

Hongyang Sun

hongyang.sun@vanderbilt.edu

Henri Casanova

henric@hawaii.edu

1 IRIT, University of Toulouse, CNRS, INPT, UPS, UT1,

UT2J, Toulouse, France

2 Vanderbilt University, Nashville, TN, USA

3 University of Hawaii at Manoa, Honolulu, HI, USA

http://orcid.org/0000-0001-8948-0474
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02931-3&domain=pdf

(CFD) simulations on cyber-physical systems, and thus

provide reliable means of modeling the temperature evo-

lution of servers in datacenters and of studying related

scheduling problems. The objective of this paper is to

develop a formulation for the optimization problem of job

scheduling based on these models.

Since most resource allocation problems can be framed

as constrained optimization problems with both integer and

real (in practice rational) variables, we formulate the

problem using mixed integer linear programming (MILP).

Integer variables are needed to encode the assignment of

jobs to compute resources. Due to the presence of these

integer variables, computing optimal solutions based on

MILP formulations is often infeasible in polynomial time.

Nevertheless, MILP formulations are still useful due to

several reasons: (1) They can be solved for small problem

instances, making it possible to assess the efficacy of a

polynomial heuristic, which can then be used to solve large

problem instances; (2) Most MILP solvers return an upper

bound on the distance-to-optimal of returned solutions.

Therefore, even though an optimal solution may not be

found for a large instance, in practice a solver can return a

solution that is close to optimal and quantifiably so; (3)

MILP formulations can be relaxed by making all variables

rational, and then solved in polynomial time in practice

(even though computing the optimal solution is still NP-

complete in theory). The solution to the relaxed formula-

tion is not feasible, but it can serve as a starting point to

construct a feasible solution, e.g., via rounding off rational

variables to integers [30].

In this paper, by relying on a spatio-temporal thermal

model and MILP formulations, we propose a unified

framework for thermal-aware scheduling of computational

jobs for both Cloud and HPC datacenters. This is by con-

trast with previously proposed formulations, which are

typically valid in one particular setting [7]. The proposed

formulation can be used to optimize a wide range of rele-

vant performance and energy objectives under datacenter-

wide thermal or placement constraints while incorporating

cooling costs and dynamic voltage and frequency scaling

(DVFS) capabilities of servers.

The following summarizes the main contributions of this

paper:

– We employ an analytical thermal model of datacenters

that takes into account both spatial and temporal

temperature behaviors;

– We propose MILP formulations for several scheduling

problems with various objective functions based on the

thermal model;

– We demonstrate the applicability and usefulness of our

formulations in several case-studies in both HPC and

Cloud settings.

The remainder of this paper is organized as follows: Sect. 2

discusses related work. Section 3 gives a high-level

description of our problem statement. Section 4 details our

thermal models and how they capture relevant datacenter

heat management concerns. Section 5 gives our MILP

formulations for several relevant job scheduling problems.

Section 6 presents quantitative results for an HPC and

Cloud case study and presents a comparison between the

optimal MILP solution and those from two heuristics.

Finally, Sect. 7 concludes with a brief summary of our

findings and perspectives on future work.

2 Related work

In this section, we review the literature on scheduling for

Cloud and HPC datacenters. We first review works that

have proposed MILP formulations for energy-aware

scheduling problems. We then discuss works that have

proposed thermal models of datacenters. Finally, we

review works that have proposed scheduling heuristics that

take thermal considerations into account.

2.1 MILP formulations for energy-aware
resource allocation and scheduling problems

MILP formulation, due to its usefulness, has been proposed

in many previous works to solve resource allocation and/or

job scheduling problems.

Borgetto et al. [5] have studied energy-aware resource

allocation for HPC jobs in datacenters. They have proposed

MILP formulations for several multi-objective optimiza-

tion problems, including maximizing job performance

under power consumption constraints, minimizing power

consumption under job performance constraints, as well as

optimizing a linear combination of both objectives. Kan-

tarci et al. [12] have considered Virtual Machine (VM)

allocation for cloud datacenters interconnected via a

backbone network. An MILP formulation has been pro-

posed for backbone topology virtualization and VM

placement with the objective of minimizing power con-

sumption. Sharrock et al. [26] have proposed an MILP

formulation for striking a desirable compromise between

the energy cost of network equipment in a datacenter and

the quality of service provided to applications. Gu et al. [9]

have applied an MILP formulation to the problem of

minimizing the total energy cost in green cloud datacen-

ters. Given an energy budget, requests are scheduled on

different servers and sources by accounting for time-

varying and location-varying electricity prices as well as

renewable energy options. Barkat and Capone [3] have

considered using energy storage technologies (i.e., batter-

ies) as a green energy source to reduce carbon emissions

from datacenters. They have considered geographically

distributed cloud infrastructures using batteries for energy

storage, and proposed an MILP formulation for computing

an optimal configuration that considers service scenarios,

storage capacities, as well as the energy consumed to route

requests to different datacenter locations. Haque et al. [10]

have proposed GreenPar, a scheduler for HPC jobs in

datacenters partially powered by green renewable energy.

Based on an MILP formulation, this scheduler executes the

workload adaptively so as to maximize green energy con-

sumption and minimize grid energy consumption, while

respecting service-level agreements (SLAs). Metwally

et al. [15] have used a two-phase MILP formulation to

improve the resource utilization of cloud datacenters under

the infrastructure-as-a-service (IaaS) paradigm. Mohamma

Ali et al. [18] have presented a new datacenter design using

disaggregated server (DS) that arranges resources in dif-

ferent physical pools, and developed an MILP model to

optimize the VM allocation for DS-based datacenters.

2.2 Datacenter thermal models

Several authors have considered thermal-aware job

scheduling in datacenters. While most works rely on

thermal models that capture either the spatial correlation or

the temporal correlation, very few consider both of them

simultaneously.

A spatial thermal model characterizes the spatial cor-

relation of the temperatures in different servers of a data-

center, leading to a ‘‘thermal map’’ of the datacenter.

Moore et al. [19] have introduced the notion of heat

recirculation to capture the thermal profile of a datacenter

by taking physical layout and heat flow into account. Tang

et al. [33] formally defined a heat-distribution matrix via an

abstract heat flow model for the optimization of the cooling

cost of a datacenter. This abstract spatial model has been

successfully validated by several computational fluid

dynamics (CFD) simulations [1, 21, 25, 34] that have

shown high accuracy of the model within the natural range

of temperature fluctuation. This model has subsequently

been adopted in many thermal-aware scheduling research

works (see Sect. 2.3). In contrast to a spatial model, a

temporal thermal model accounts for the temperature of a

single server over different time intervals. Ramos and

Bianchini [24] have predicted the temperature of servers in

a datacenter based on a simple temporal model governed

by heat transfer laws. By exploring the duality between

electrical circuits and heat transfer, Skadron et al. [28] have

proposed the lumped-RC model to capture the transient

temperature variation in processors. The model has been

validated using a commercial, finite-element simulator of

3D fluid and heat flow for chips with measured errors

below 6% and usually within 3% [29]. The authors have

also developed HotSpot, a thermal modeling and simula-

tion tool for microprocessor architectures [29]. Like the

spatial model, the temporal model has also become widely

adopted by thermal-aware scheduling researchers (see

Sect. 2.3). Our prior work [11, 32] has considered a holistic

thermal model that captures both spatial and temporal

aspects of temperature distribution in datacenters. In this

work, we build on this spatio-temporal model to formulate

a variety of thermal-aware scheduling problems.

2.3 Thermal-aware scheduling heuristics

Many existing works have proposed thermal-aware

scheduling heuristics with the objective of minimizing

cooling cost, energy consumption, and/or application per-

formance. Here, we focus on works that consider the

thermal models referenced in Sect. 2.2. For a more com-

plete literature review, readers are referred to the survey [7]

on thermal-aware scheduling for datacenters.

Based on a spatial thermal model, a simple job place-

ment heuristic, often used as a baseline by researchers is

‘‘coolest first’’, which places a job on the server with the

lowest (inlet) temperature. Moore et al. [19] have proposed

several heuristics, and in particular MinHR, which assigns

each job to the server that contributes minimally to the heat

recirculation in the datacenter. Pakbaznia and Pedram [22]

have proposed to reduce the total energy consumption of a

datacenter by performing server consolidation in a way that

accounts for heat recirculation. Mukherjee et al. [17] have

considered a similar problem while taking the temporal job

placements into account (but without a temporal thermal

model). Sun et al. [31] have studied performance-energy

tradeoff in heterogeneous datacenters while considering

heat recirculation effects, and proposed server placement

strategies that minimize cooling cost. By assuming specific

heat recirculation patterns, Mukherjee et al. [20] have

designed approximation algorithms for a couple of related

thermal-aware scheduling problems. Liu et al. [13] have

designed scheduling algorithms for big-data jobs using

DVFS under a similar spatial thermal model.

In terms of works that leverage a temporal thermal

model, Wang et al. [37] have applied the lumped-RC

model to predict the temperatures of the servers in a dat-

acenter in order to make job placement decisions. Rajan

and Yu [23] have relied on the same model to maintain the

temperature of the system below a threshold by using

DVFS while maximizing application throughput. Zhang

and Chatha [40] have designed polynomial-time approxi-

mation schemes for the discrete version of the problem

(assuming a discrete set of available DVFS levels) with the

objective of minimizing application makespan. Yang et al.

[38] have proposed intelligent ordering of the jobs based on

their thermal characteristics for reducing the number of

thermal constraint violations. Mhedheb and Streit [16] have

considered thermal-aware VM management in Cloud dat-

acenters to minimize energy using migration techniques.

Van Damme et al. [36] have characterized the optimal

workload distribution in a datacenter using KKT conditions

with a thermal constraint.

In our prior work, we have considered thermal-aware

scheduling while relying a spatio-temporal model. Specif-

ically, Sun et al. [32] have proposed thermal-aware

strategies to minimize the makespan of a set of HPC jobs

by using DVFS to ensure that the temperature remains

below a threshold in a homogeneous datacenter. Herzog

and Pierson [11] have considered a similar problem but

used a multi-agent based system approach for performing

job assignment. In contrast to [32] and [11], which pro-

posed heuristic solutions in an HPC setting to optimize

makespan, we construct MILP formulations for both HPC

and Cloud settings with both makespan and energy as

objectives. As discussed previously, the solutions of our

MILP formulation make it possible to assess the quality of

solutions produced by these heuristics for small problem

instances, and to guide the design of better heuristics for

solving these thermal-aware scheduling problems for large

instances.

3 Problem statement

We consider a general thermal-aware scheduling problem:

given a datacenter platform and a workload to execute on

that platform, optimize a performance or energy objective

subject to thermal constraints. We use the following

assumptions:

– Platform the platform is a set of (heterogeneous)

servers, or nodes, in a datacenter with air cooling. We

consider a typical datacenter layout with several rows

of node racks organized in alternating cold and hot

aisles. Cold air is provided by the CRAC (Computer

Room Air Conditioning) unit and we assume that the air

temperature from the CRAC is constant. Each node is

defined by a maximum compute speed (i.e., a number

of operations per second that can be performed at full

utilization), as well as by parameters that determine its

power and thermal behaviors (see details in Sect. 4).

– Workload the workload is a set of single-node, inde-

pendent jobs, each of which is characterized by an

amount of computation to perform (i.e., a number of

operations) and a maximum utilization of a node’s

compute capacity. We do not model other resource

demands (e.g., memory, network bandwidth).

– Objectives a scheduling problem can be framed to

address different objectives, and we consider two main

objectives:

– Makespan minimization This objective corresponds

to a Service Level Agreement between datacenter

providers and users. The makespan of a workload is

defined as the time elapsed between the time when

the workload enters the system and the time when

its last job completes. Makespan minimization thus

leads to users receiving job results quickly, but it

also reduces the amount of time nodes are powered

on and computing, which can also lead to energy

consumption reduction.

– Energy consumption minimization This objective

corresponds to the environmental impact of data-

centers in terms of carbon emission as well as to

operating costs. A key motivation to reduce energy

consumption is to reduce the heat generated by the

nodes, which can thus reduce the datacenter cooling

cost.

– Constraints The minimization of the objective func-

tions above are subject to constraints on node temper-

atures. These temperatures should always be below

some datacenter specified threshold. Additional con-

straints (e.g., on the frequency of job migrations, on

space sharing policies) can also be specified depending

on the scenario at hand (i.e., HPC or Cloud). Finally,

we always minimize energy consumption under a

makespan constraint (otherwise an optimal solution

could consist in not computing anything, since an

infinite makespan has zero energy consumption).

4 Thermal models

We consider a datacenter with N nodes, fn1; n2; . . .; nNg.
Node i is characterized by the following parameters: ther-

mal resistance Ri, thermal capacitance Ci, compute speed

si, and idle power consumption Pidle
i . Time is discretized

between time t ¼ 0 and time t ¼ L with a time step Dt.
When the objective is to minimize the makespan, L is the

first timestep at which a feasible solution is reached; when

the objective is to minimize the energy consumption sub-

ject to a makespan constraint M, then L ¼ M.

Tin
i ðtÞ, resp. Tout

i ðtÞ, is the inlet, resp. outlet, temperature

of node i at time t. We consider Tout
i ðtÞ to be the temper-

ature of node i itself. The thermal constraint, to avoid

overheating, is then that Tout
i ðtÞ should be below a thresh-

old temperature Tthresh. Tthresh is typically determined based

on the junction temperature of the chips [8]. PiðtÞ is the

total power consumption of node i at time t. We assume

that Tin
i ðtÞ, Tout

i ðtÞ, and PiðtÞ are constant over the interval

½t; t þ DtÞ, thus the smaller the Dt the more realistic (i.e.,

approximately continuous) the model. Table 1 summarizes

the notations used throughout this paper.

With the above definitions, the temperature evolution of

node i is:

Tout
i ðt þ DtÞ ¼PiðtÞRi þ Tin

i ðtÞ

þ ðTout
i ðtÞ � PiðtÞRi � Tin

i ðtÞÞ � e
� Dt

RiCi :

ð1Þ

Given a workload allocation for node i at time t, i.e., a

power consumption, the above model makes it possible to

compute the temperature variation over the next time

interval of duration Dt. This ‘‘RC model’’ is used in many

previous works [28, 37, 40].

One of the challenges of thermal modeling is capturing

the effects of air recirculation. Air recirculation causes the

inlet temperature of a node to deviate from that provided

by the CRAC unit, i.e., its temperature is higher due to the

hot air recirculated from the outlets of other nodes in the

datacenter. The heat produced by all nodes in the data-

center, including adjacent nodes, impacts the temperature

of each node. The work by Tang et al. [33, 34] has made

advances toward modeling air recirculation, but only in the

context of steady-state execution without considering

temporal evolution (i.e., Dt ¼ 1). Let Tsup be the

Table 1 List of notations
Notation Meaning

N Number of compute nodes

Ri Thermal resistance of node n (W=�C)

Ci Thermal capacitance of node n (J=�C)

si Compute speed of node i (ops/s)

Pidle
i

Power consumption of node i when idle (W)

PiðtÞ Power consumption of node n at time t (W)

Tin
i ðtÞ Inlet temperature of node n at time t (�C)

Tout
i ðtÞ Outlet temperature of node n at time t (�C)

Tsup Temperature supplied by the CRAC unit (�C)

Tthresh Threshold temperature (�C)

Tin
�!

ðtÞ N-dimensional vector of the Tin
i ’s

Tout
��!

ðtÞ N-dimensional vector of the Tout
i ’s

Tsup��! N-dimensional vector with all components equal to Tsup

Tthresh
���! N-dimensional vector with all components equal to Tthresh

R DiagðR1; . . .;RNÞ
F Diagðe�

Dt
R1C1 ; . . .; e

� Dt
RNCN Þ

D Air recirculation matrix

J Number of jobs

wj Amount of work of job j (ops)

pj Dynamic power consumption constant over time of job j

aj Maximum node utilization of job j (%)

ai;j;t The fraction of node i used by job j at time t

ei;j True if job j runs on node i

ei;j;t True if job j runs on node i at time t

startedi;j;t True if job j has already started on node i at time t

endedi;j;t True if job j has finished on node i at time t

Poni;t True if node i is switched on at time t

CV
�! Vector of node fraction allocations for Cloud scenario

bi;j;t;v v-th value of CV
�!

chosen for job j on node i at time t

Cj Completion time of job j

M Makespan

E Energy

temperature supplied to the datacenter by the CRAC unit.

The work in Tang et al. [33, 34] gives:

Tin
�!

ðtÞ ¼ Tsup��!ðtÞ þ D� P
!ðtÞ ; ð2Þ

where Tin
�!

ðtÞ is an N-dimensional vector whose compo-

nents are the Tin
i ðtÞ’s, Tsup��!ðtÞ is an N-dimensional vector

whose components are all equal to Tsup, P
!ðtÞ is an N-

dimensional vector whose components are the PiðtÞ’s, and
D is an N-by-N air recirculation matrix, which is constant

and computed for a given datacenter configuration.

Combining the RC model and the air recirculation

model, i.e., temporal and spatial temperature evolution,

Sun et al. [32] compute all Tout values in matrix/vector

form as follows:

Tout
��!

ðt þ DtÞ ¼ P
!ðtÞ � Rþ Tin

�!
ðtÞ

þ ðTout
��!

ðtÞ � P
!ðtÞ � R� Tin

�!
ðtÞÞ � F ;

ð3Þ

where R ¼ diagðR1; . . .;RNÞ and F ¼ diagðe�
Dt

R1C1 ; . . .;

e
� Dt

RNCN Þ. Note that R and F are constant.

Let J be the number of independent jobs to be executed

on the platform. Job j is defined by an amount of work

(number of CPU cycles) wj, and a maximum fraction aj of
a compute node’s compute capacity that it can use. For

instance, a job with aj ¼ 0:5 will only utilize half of a

node’s compute capacity.

As discussed previously, we consider two objectives: the

makespan, denoted by M, which is the time when all the

jobs in the workload are completed, and the energy con-

sumption, denoted by E, which is the total energy con-

sumed during the execution of the workload. We consider

the following two execution scenarios:

– Scenario 1—high performance computing (HPC) In

this scenario, only one job can be executed on a node at

any time and no job migration is allowed, i.e., once a

job has begun executing on a node it must finish

execution on that node. Furthermore, no temporal

interleaving of job execution on a node is allowed: a job

scheduled on a node must wait for other jobs previously

scheduled on that node to complete before beginning

executing. However, a job can be temporarily sus-

pended and resumed later, so as to allow the node’s

temperature to decrease.

– Scenario 2—Cloud In this scenario, several jobs can

share the same node and job execution interleaving is

also allowed. Task migration, however, is still not

allowed. The rationale is that in real-world datacenters

jobs are rarely migrated. Migrations only happen during

scheduled resource consolidation phases, which we do

not consider in this work.

Figure 1 shows the roadmap of the overall formulation and

optimization process for both scenarios.

5 MILP formulations

In this section, we present MILP formulations for the

thermal-aware scheduling problems described in the pre-

vious section, detailing how they can be applied to both

HPC and Cloud settings.

5.1 Task placement constraints

To express generic job placement constraints we define the

following variables:

– ai;j;t: the fraction of node i used by job j at time t. We

consider two cases. If ai;j;t is declared as a binary

variable, then only one job can be allocated to one node

at a given time, which is in line with Scenario 1 (HPC).

Once a job has begun executing on a node, the only

option for decreasing the temperature of the node is

then to temporarily suspend the job’s execution. If,

instead, ai;j;t is declared as a rational variable, then

several jobs can run on one node simultaneously, and

the fraction of the node’s compute capacity that is used

by a job can be reduced in order to decrease

temperature.

– ei;j: a binary variable that equals 1 if job j runs on node

i, and 0 otherwise.

Given i 2 f1; . . .;Ng (nodes), j 2 f1; . . .; Jg (jobs), and t 2
f0; . . .; Lg (timesteps), we have the following constraints:

8i; j 0� ei;j � 1 ð4Þ

8i; j; t 0� ai;j;t � aj ð5Þ

8i; j; t ai;j;t � ei;j ð6Þ

8i; t
X

j
ai;j;t � 1 ð7Þ

8j
X

t

X

i
ai;j;tsi ¼ wj ð8Þ

8j
X

i
ei;j ¼ 1 ð9Þ

8t Tout
��!

ðtÞ�Tthresh
���! ð10Þ

– Constraint (4): the ei;j variables are binary;

– Constraint (5): a job cannot use more than its maximum

resource usage;

– Constraint (6): if a job is not running on a node, then it

is not using any of its resources;

– Constraint (7): the total compute capacity of a node is

not exceeded;

– Constraint (8): the work of each job is fully executed;

– Constraint (9): a job runs only on one node (true for all

timesteps, since there is no job migration);

– Constraint (10): the temperature threshold is respected.

In what follows we provide additional variables and con-

straints specific to HPC and Cloud settings.

5.1.1 HPC setting

In an HPC environment, a node is generally dedicated to

one application of one user, who has been allocated the

node for their need. Even if the operating system (OS) uses

some processing power, in this work we consider that the

entire processing power of a node is allocated to the user’s

job and we ignore the impact of the OS.

Hence, in an HPC setting only one job runs on a node at

a time, and we add the following binary variables

accordingly:

– ei;j;t: equals 1 if job j is running on node i at time t and 0

otherwise.

– startedi;j;t: equals 1 if job j has already started on node

i at time t and 0 otherwise.

– endedi;j;t: equals 1 if job j has completed on node i at

time t and 0 otherwise.

We can then add the following constraints:

8i; t
X

j
ei;j;t � 1 ð11Þ

8i; j; t startedi;j;t � ai;j;t ð12Þ

8i; j; t startedi;j;tþ1 � startedi;j;t ð13Þ

8i; j; t endedi;j;tþ1 � endedi;j;t ð14Þ

8i; j; t ei;j;t ¼ startedi;j;t � endedi;j;t ð15Þ

8i; j; t startedi;j;t þ endedi;j;t þ ai;j;t � 2 ð16Þ

8i; j; t startedi;j;t � ei;j ð17Þ

8i; j; t endedi;j;t � ei;j ð18Þ

8i; j; t ei;j;t � ei;j ð19Þ

– Constraint (11): only one job is running on a node at a

given time;

– Constraint (12): a job can be started only if it is given

sufficient resources;

– Constraint (13): when a job has already started at time t,

it also has already started at time t þ 1;

– Constraint (14): when a job is finished at time t, it is

also finished at time t þ 1;

– Constraint (15): a job runs only when it is started and

not finished;

– Constraint (16): a job is not given resources once it is

finished;

– Constraint (17): a job can only be started on a node

where it is allocated;

– Constraint (18): a job can only be finished on a node

where it is allocated;

– Constraint (19): a job can only run on a node where it is

allocated.

Constraints (12) to (18) aim to compute the time interval

during which a job is executing, possibly with some idle

periods to decrease a node’s temperature. In an HPC set-

ting, constraint (11) prevents interleaving of job execu-

tions: another job cannot be executed during an idle period

due to a running job being temporarily suspended.

5.1.2 Cloud setting

In a Cloud computing environment, several virtual

machines share the processor. Virtual cores are dedicated

to virtual machines, and these virtual cores are mapped on

physical processor cores, depending on the virtualization

layer. In any case, several virtual machines share the node

MILP formula�on for thermal-
aware scheduling

� Min Makespan
� Min Energy subject to Makespan
subject to a temperature threshold
in HPC or Cloud scenario

Set of jobs
(amount of work,

dynamic power, etc.)

Set of nodes
(thermal parameters,

idle power, etc.)

HPC scenario
� No migra�on
� Whole CPU alloca�on
� Jobs can be suspended

but no interleaving

Cloud scenario
� No migra�on
� Frac�onal CPU alloca�on
� Jobs can be suspended

and interleaved

Datacenter
(supplied temperature,
air recircula�on matrix)

Fig. 1 Roadmap of our overall

approach for both scenarios

at the same time, and some virtual machines can be sus-

pended temporarily to allow other virtual machines to

access the physical resources. Similarly to the HPC setting,

we ignore the usage of the processor by the OS and the

virtualization layer.

In a Cloud setting, we allow interleaving of job execu-

tions on a node and allow several jobs per node at any time.

Therefore Constraint (11) defined in the previous section is

not necessary. All other constraints are maintained.

We introduce two variables to represent that jobs can

use an arbitrary fraction of a node’s compute capacity:

– CV
�!

: is a vector of node allocations, which contains the

fraction of node compute capacities that can be

allocated to jobs;

– bi;j;t;v: is a binary variable which is equal to 1 if the v-th

value of CV
�!

is chosen for job j on node i at time t and 0

otherwise.

We then need a single constraints to guarantee that, at any

time for one job on one node, only one CV
�!

value can be

chosen:

8i; j; t
X

v
bi;j;t;v ¼ 1 : ð20Þ

Then, ai;j;t is computed as follows:

ai;j;t ¼ CV
�!½v� � bi;j;t;v :

For example, if fractions of a node’s computational power

are allocated in 10% increments, we would have:

CV
�! ¼ ð0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1Þ ;

and we could then express the fact that job j ¼ 0 on node

i ¼ 0 at time t ¼ 0 uses 90% of the node’s computational

power as:

b0;0;0;9 ¼ 1 :

5.2 Objective functions

5.2.1 Minimize makespan

The makespan M is defined as the time when all job in the

workload are completed. The completion time of each job j

is computed as follows:

Cj ¼
X

N

i¼1

ei;j;0 þ
X

L

t¼1

ei;j;t þ t � ðstartedi;j;t � startedi;j;t�1Þ
� �

!

8j M�Cj : ð22Þ

In other words, minimizing the makespan is equivalent to

minimizing the maximum Cj.

5.2.2 Minimize energy consumption

The energy consumption comes from two sources: com-

puting and cooling. The computing energy is given by the

total computing power of all nodes integrated over time,

which is usually composed of a static part (when nodes are

powered on but idle) and a dynamic part (when nodes are

on and computing). In [19], the cooling energy consump-

tion is given as a function of the energy consumed by

computing, which makes it possible to express the total

energy consumption of the datacenter as:

E ¼ Dt �
X

t

X

i

PiðtÞ
!

� 1þ 1

CoPðTsupÞ

� �

; ð23Þ

where CoP is a quadratic function, i.e.,

CoPðTsupÞ ¼ aðTsupÞ2 þ bTsup þ c, with a, b and c

depending on the performance of the cooling device. Note

that when Tsup is a variable, the problem is no longer linear

because E is not linear in Tsup. However, this difficulty can

be resolved by approximating E as a step function of Tsup.

If Tsup is a constant, as assumed in this work, the cooling

energy turns out to be a fixed overhead on top of the

computing energy, so the total energy consumed by the

system can be minimized by only considering the energy

due to computing.

We consider that a node consumes no power when no

job is running, i.e., we assume that when no job is running

on the node then the node is either powered off or put into a

suspended mode. The power consumption and the time to

switch from the suspended mode to the running mode are

neglected. If at least one job is running on node i, then a

fixed Pidle
i power consumption is added to the power con-

sumption due the job execution. In terms of our MILP

formulation, we add the following binary variable

– Poni;t: equals 1 if node i is powered on at time t

and the two following constraints:

8i; t Poni;t ¼
X

j
ai;j;t (for HPC setting) ð24Þ

8i; t Poni;t �
X

j
ai;j;t (for Cloud setting) : ð25Þ

– Constraints (24) and (25): at any time, if at least one

job has been allocated resources on one node, the node

is powered on. Note that Constraint (25) does not force

Poni;t to be equal to zero when the node is idle. This

ð21Þ

We can then write the following constraint, specifying that
the makespan is greater than the completion time of each
job:

will be realized by the linear program solver when

minimizing the energy consumption.

We consider that each job j has a power consumption pj
that is constant over time. Hence, the power consumption

of node i at any time t is a function of the fractions of node

i’s compute capacity allocated to jobs running on node i,

the power consumption of these jobs, and the idle power

consumption of node i if it is powered on:

PiðtÞ ¼
X

j

ai;j;t � pj þ Pidle
i � Poni;t : ð26Þ

A constraint on makespan can be added to formulate the

‘‘Optimize E subject to M’’ problem. It says that the

makespan should be at most a factor of x larger than a

target makespan value M, which could be a job’s deadline

or Mopt obtained by the ‘‘Optimize M’’ problem. A trade-

off between performance (makespan) and energy con-

sumption can be obtained:

8j Cj � x�M : ð27Þ

5.3 Accounting for DVFS capabilities

Some nodes may have DVFS capabilities, which makes it

possible to dynamically manage their power consumption.

The dynamic power consumption of a node is usually a

convex function of its variable speed [6, 39]. In practice,

nodes only provide a relatively small set of discrete speeds

to choose from. The node speeds are variables represented

by si;t which corresponds to the DVFS level of node i at

time t. The dynamic power consumption of a node exe-

cuting a job j at speed si;t can be approximated by s
b
i;tpj,

where b[1 denotes the power parameter (usually 2 or 3

for CMOS-based processors), and the execution time of the

job is wj=si;t.

Accounting for DVFS capabilities in our MILP formu-

lation can be done by modeling the power consumption of

node i at time t as follows:

PiðtÞ ¼
X

j

ai;j;t � s
b
i;t � pj þ Pidle

i � Poni;t : ð28Þ

With this modification, however, the formulation for the

energy consumption would no longer be a linear function.

As a result, the optimization problem is no longer a linear

program. One option is, again, to approximate the energy

as a step function. In all experiments that follow, we do not

consider this DVFS model and instead use the constant

dynamic power model in Eq. (26).

6 Experimental case-study

To evaluate the correctness and usefulness of our proposed

MILP formulations, we solve formulations for small

problem instances in the HPC and Cloud settings. We use

the commercial Gurobi solver (version 6.5) with a Gurobi

gap of 0.01%, which represents the difference between the

computed solution and a computed bound on the optimal

solution. In the rest of this section, we simply call this

value the ‘‘gap’’. Note that the evaluation of the spatio-

temporal model of temperature evolution is not part of this

work, since they have been already evaluated in previous

works [19, 29, 34]. We run the experiments on an Intel

Xeon E5-2603 processor with a 1.60GHz CPU and 32 GB

of RAM.

6.1 Experimental setup

Workload – We consider a set of 12 jobs to be executed on

6 homogeneous nodes. Because the nodes are homoge-

neous, for each node i, Ri ¼ R and Ci ¼ C. Thermal

parameters are based on those in [29, 38]: we set R ¼ 0:7

and the values of F are constant and defined to be e�
Dt
RC ¼

0:5 (which determines the value of C). For each job j, we

generate values for the work (wj), resp. the dynamic power

consumption (pj), via sampling from a uniform probability

distribution with range 1–10 timesteps, resp. 50–120 W

according to typical node power consumption [35]. In this

manner, we generate 40 different instances for which we

solve the MILP formulations in Sect. 5.

We set aj ¼ 1 for both HPC and Cloud contexts,

meaning that jobs can fully utilize nodes. In the HPC

context ai;j;t can be 0 or 1. In the Cloud context ai;j;t takes
discrete values between 0 and 1 in 0.1 increments (as

specified by the CV
�!

vector), which represents realistic

partial node allocation schemes in typical clouds.

Datacenter – We adopt a classical air recirculation

matrix configuration (denoted by D) that is representative

of typical datacenters [4]. The maximum node temperature

Tthresh is typically between 85�C and 100�C [8]. We opt for

Tthresh ¼ 100�C for the output temperature of all nodes.

The static power of a node, Pidle
i , varies among architec-

tures but is typically in the range of 10-50 Watts. We

assume it contributes 15�C to the temperature of each

processor [8]. Since power and temperature are linked by

Equation (3) (thermal model), with the chosen thermal

resistance R and capacitance C, a temperature increase of

15�C gives an idle power of 42 Watts. Hence, we set

Pidle
i ¼ 42 Watts.

6.2 Node resource allocation examples

Before describing objective functions and results obtained

when solving our 40 problem instances, we illustrate pat-

terns of job executions and node temperature variations in

typical solutions both in HPC and Cloud settings.

6.2.1 HPC setting

The top part of Fig. 2 depicts the load (vertical axis) of a

typical node for 15 time steps (on the horizontal axis). At

each time step, the node executes a single job, as dictated

by the HPC setting. Among the 12 jobs in the workload, 3

are executed on this node (job IDs are shown above each

bar). Job 5 is the first to execute at time step 0. Due to the

increase in temperature, the node is suspended during the

next time step, to avoid exceeding the temperature

threshold. Job 5 then resumes at time step 2, followed by

two idle time steps, again to allow for the node temperature

to decrease. Then jobs 8 and 10 execute in sequence

without the node being suspended due to its temperature

being below threshold (e.g., because nearby nodes have

lower temperature than at earlier time steps). According to

the constraints in the HPC setting, jobs execute one after

the other and the compute capacity of a node is either

allocated entirely to a job or not allocated at all. The bot-

tom part of Fig. 2 shows the node temperature (vertical

axis) at each time step (horizontal axis). As expected we

see valleys corresponding to time steps in which the node is

suspended, and we see temperature increases as the node

computes (e.g., from time step 5 onward).

6.2.2 Cloud setting

Figure 3 shows a similar example as in the previous sec-

tion, but for the Cloud setting. Jobs are allowed to share the

(a)

(b)

Fig. 2 Example workload execution and temperature variation on a

node in the HPC setting

(a)

(b)

Fig. 3 Example workload execution and temperature variation on a

node in the Cloud setting

node during the same time step. For example, at time step

3, jobs 5 and 8 share the compute capacity of the node (job

5 uses 10%, job 8 uses 90%). Also, the node’s compute

capacity is not necessarily used fully at each time step. For

instance, at time step 0, job 8 uses only 80% of the

capacity. This makes it possible to manage the node’s

temperature without introducing idle periods but instead by

merely reducing the node usage. As a result, the evolution

of the node’s temperature (bottom of Fig. 3) is smoother

than in the HPC setting (bottom of Fig. 2).

6.3 Optimization objectives

We consider the following two optimization problems, for

which we have given MILP formulations in Sect. 5:

– Minimize the makespan M;

– Minimize the energy E, subject to a makespan

constraint.

Both optimization problems are subject to thermal con-

straints. The reason why we impose an additional make-

span constraint for optimizing E is as follows. Recall that

we consider that when a node is idle it can be powered

off/suspended, thus making its power consumption zero.

Optimizing solely the energy without considering the

makespan can thus lead to arbitrarily many idle time steps

(since this does not increase energy consumption and in

fact helps with thermal constraints). But in practice, this

can lead to unacceptably large makespans. To the extreme,

if the only objective is the energy, then one should keep all

nodes powered off.

To illustrate this point, for one of our instances, we ran

our solver to optimize the makespan and to optimize the

energy without any makespan constraint, in an HPC set-

ting. Makespan and energy Results are shown in Table 2.

These results show that, when optimizing the makespan

(the ‘‘OptimizeM’’ column), our solver produces a solution

with a makespan of 8 and an energy consumption of

4107.28 . When optimizing the energy (the ‘‘Optimize E’’

column), our solver leads to the same energy, but a

makespan of 20 (more than twice longer than the optimal

makespan). When running the solver to minimize the

energy but adding the constraint that the makespan should

be below or equal to 8, we obtain the same energy con-

sumption of 4107.28 (the ‘‘Optimize E subject to M’’ col-

umn). In this particular case, all optimization problems

have solutions with the same energy.

To better understand the above we pick a node and plot

its load and power consumption throughout the execution

in the HPC setting for the ‘‘Optimize M’’ (Fig. 4), ‘‘Opti-

mize E’’ (Fig. 5), and ‘‘Optimize E subject to M’’ (Fig. 6)

approaches. In all three figures the node is either fully

utilized by a single job or idle, which is consistent with the

assumptions of the HPC setting (and the fact that we set

ai;j;t ¼ 1 for each job j). In Fig. 4 we see that out of the 8

timesteps that make up the makespan, the compute node is

kept idle during 2 timesteps so as to reduce temperature.

During each non-idle timestep, the node executes job 5

then job 2. Figure 5 shows a very different picture, in

which there are many more idle timesteps. And yet, it is

possible to have fewer idle timesteps while respecting

thermal constraints (as in Fig. 4). The reason for this

behavior is that since there is no incentive to finish earlier

in the ‘‘Optimize E’’ problem, the solver finds an ‘‘easy’’

solution with a much higher makespan. The energy spent

during the unnecessary time steps is zero based on our

assumption when no jobs runs on a node. The results in

Fig. 6, for ‘‘Optimize E subject to M’’, show that it is

possible, in this case, to optimize the energy and achieve

the same energy consumption (see Table 2) with much

fewer time-steps. The produced solution is different from

that in Fig. 4 for ‘‘Optimize M’’ (different jobs are exe-

cuted. But it results in similar makespan and energy

consumption.

The power depends on the jobs power consumption.

Each job as a dynamic power consumption (pj). In HPC,

the power consumed during a time-step depends on which

job is executed. When a job is executing it has the whole

CPU so the power is equal to job’s consumption. In the

cloud, if a job only has a ratio ai;j;t of the CPU of a node,

the power on that node due to that job is equal to the ai;j;t
ratio of the job consumption.

Figure 7 shows results for ‘‘Optimize E’’ but in the

Cloud setting. We see that the node is idle for only one

timestep, but the node is shared by different jobs during

two time-steps. This flexibility, in contrast to the HPC

setting, makes it possible to perform more computation per

time unit while managing the temperature so as to closely

respect thermal constraints. In this case, it turns out that a

better makespan (of 7) can be achieve in the Cloud setting

than in HPC setting.

Equation (27) expresses a general constraint for the

‘‘Optimize E subject to M’’ problem. The makespan should

be at most a factor x larger than the makespan obtained by

Table 2 Example makespan and

energy values when solving

optimization problems in an

HPC setting

Optimize M Optimize E Optimize E subject to M

Makespan (M) 8 20 8

Energy (E) 4107.28 4107.28 4107.28

on the makespan is obtained by assuming that the workload

is perfectly balanced across the nodes and that all jobs are

executed at full speed (ai;j;t ¼ aj for each timestep t during

which a job is executed). This lower bound cannot be

achieved because load balancing is not perfect and because

of thermal constraints. An upper bound on the energy is

obtained by assuming that all nodes are powered on during

the execution of the workload.

6.4 Case-study results

6.4.1 HPC setting

Figure 8 shows average results over the 40 instances as

obtained by the solver in the HPC setting, with makespan

results in Fig. 8a and energy results in Fig. 8b. In this

figure, ‘‘The objective’’ refers to the case where the shown

metric coincides with the optimization objective and ‘‘Not

(a)

(b)

(a)

(b)

Fig. 5 Workload execution and power consumption on a node when

optimizing energy (HPC setting)

Fig. 4 Workload execution and power consumption on a node when
optimizing makespan (HPC setting)

solving the ‘‘Optimize M’’ problem. Picking a particular
value of x would then achieve a particular trade-off
between application performance and energy consumption.
For instance, picking x ¼ 2 would mean that one is willing
to reduce the energy consumption at the cost of having a
makespan twice as large as the optimal makespan. In all
our experiments in this work, we use x ¼ 1, which corre-
sponds to not tolerating any increase in makespan for the
sake of saving extra energy. The rationale for this strategy
is that makespan and energy are tied anyway (a shorter
makespan can reduce energy consumption because nodes
are used for a shorter period of time). As in the example
above, our results show that energy can be minimized with
this stringent makespan constraint (i.e., inserting additional
idle steps increases the makespan but does not reduce
energy consumption in our results).

For both optimization problems, we consider theoretical
(i.e., ideal) bounds on the optimal solution. A lower bound

the objective’’ is when it does not. For instance, in Fig. 8a,

the ‘‘Not the objective’’ bar is the average makespan values

obtained when optimizing the energy. First, we observe

that the makespan is the same in both optimization prob-

lems. This is because the energy is optimized under the

makespan constraint discussed earlier. Moreover, the

energy is also the same in both optimization problems. It

turns out that, in HPC settings, makespan and energy are

equivalent objectives. This is because we have homoge-

neous nodes and a node’s compute capacity is allocated

either fully to a job or not at all, in which case the node is

powered off. The allocation of jobs to nodes could vary

when optimizing one objective or the other, but the energy

is always directly proportional to the makespan (see

Equation (23)).

On average, the makespan found by the MILP solver is

greater than the lower bound by 35.9%, which is expected

since the lower bound cannot be achieved due to the

scheduling and temperature constraints. Conversely, the

energy found by the solver is lower than the upper bound

by 41.7% on average.

6.4.2 Cloud setting

In the Cloud setting, solving the linear program takes

longer than in the HPC setting. This is because the search

space is larger: Fractions of node compute capacity can be

allocated to jobs (from 0 to 1 in steps of 0.1). Furthermore,

unlike in the HPC setting, the energy takes continuous

values, which renders the energy minimization more time

consuming. When minimizing the energy, for most

instances, a solution with a gap of 0.01% is not produced

within 10 h. Figure 9 plots the gap for each instance, as

well as the average value. For 11 out of the 40 instances,

the gap is below 1%. The maximum gap among all

(a)

(b)

Fig. 6 Workload execution and power consumption on a node when

optimizing energy subject to makespan (HPC setting)

(a)

(b)

Fig. 7 Workload execution and power consumption on a node when

optimizing energy subject to makespan (Cloud setting)

(a)

(b)

Fig. 9 Gap of each instance and mean gap for energy optimization

results in the Cloud setting

(a)

(b)

Fig. 10 Makespan and energy for different optimization problems in

the Cloud setting

Fig. 8 Makespan and energy for different optimization problems in
the HPC setting

instances is just under 5%, and the mean gap is 1.87% with
a fairly low standard deviation below 0.32%.

Figure 10a shows makespan results. Like in Fig. 8a, the
makespan value is the same when the optimization objec-
tive is the makespan or the energy (due to the use of a
makespan constraint when optimizing energy). Here the
makespan is greater than the lower bound by 28.9% on
average.

Figure 10b shows energy results. The achieved average
energy is lower when the optimization objective is the
energy. In other words, when optimizing for the makespan
one ends up consuming more energy than the minimum
achievable energy consumption. This is because the energy
is not directly proportional to the makespan, since in the
Cloud setting a node can be partially allocated to a job (or
several jobs), thus leaving some compute capacity unused.
On average, the optimized energy value is lower than the

upper bound by 39% while the energy obtained by opti-

mizing the makespan is lower than the upper bound by only

30%.

Figure 11 shows, for each instance, the difference

between the energy when it is the optimization objective

and the energy when the optimization objective is the

makespan. It also plots the gap for each instance since the

energy optimization in the Cloud setting gives results with

non-zero gap values. The maximum difference for the

energy metric in both optimizations among all instances is

above 12%, and the mean energy difference is 6.7%. The

mean gap is around 2%, meaning that it does not explain

the above differences. The results show that for the optimal

makespan it is possible to achieve better energy con-

sumption, which was not possible in the HPC setting. In the

Cloud setting there is more flexibility to allocate resources:

the execution can benefit from sharing the same node

among multiple jobs so that energy consumed due to static

power can be saved by optimizing the resource sharing.

Thus, optimizing energy under the makespan constraint

produces the best solutions in this context.

6.4.3 HPC versus Cloud settings

In both HPC and Cloud settings, the aim is to optimize

either the makespan or the energy, while respecting a

temperature threshold. The Cloud setting is more general

since an HPC solution is essentially a more constrained

Cloud solution (zero or full node allocation, no job exe-

cution interleaving). In this section, we compare the

makespan and the energy obtained when optimizing either

objective in both HPC and Cloud settings.

Figure 12 shows results for each metric (makespan or

energy) when that metric is the optimization objective, in

both HPC and Cloud settings. Figure 12a shows the

makespan results. We can see that the makespan is lower

(by 11%) in the Cloud setting. This is because being able to

allocate less than 100% of a node’s compute capacity

makes it possible to complete all tasks earlier while

respecting temperature constraints. Indeed, utilizing frac-

tions of a node allows to decrease the temperature without

ever powering down the node, whereas in an HPC setting

idle periods are needed to decrease the temperature.

Moreover, in the Cloud setting, job interleaving is allowed,

which also helps to handle the nodes’ temperatures without

introducing idle periods (i.e., jobs that consume less power
Fig. 11 Gurobi gap and the difference of energy consumption

between optimizing energy and optimizing makespan in the Cloud

setting

(a)

(b)

Fig. 12 Makespan and energy in both HPC and Cloud settings with

matching objectives

can be selected for execution). Figure 12b is similar to

Fig. 12a, but shows average energy results. In the Cloud

setting, the energy is slightly higher (by 1.9%). This is due

to the gap in the energy optimization solution, which is 0%

in an HPC setting but has an average value of 2% in the

Cloud setting.

Figure 13 shows results for each metric (makespan or

energy) when that metric is not the optimization objective,

in both HPC and Cloud settings. Figure 13a shows make-

span results. The results are identical to those in Fig. 12a.

Again, this is because the energy is always optimized

subject to a makespan constraint. Figure 13b shows that

when the objective is the makespan, the energy achieved in

the Cloud setting is 8.7% higher than the one achieved in

the HPC setting. Note that the makespan is lower in the

Cloud setting than in the HPC setting when the makespan

is the optimization objective (Fig. 12a). A better makespan

is achieved in the Cloud setting by allocating fractions of

the nodes’ compute capacities, which leads to temperature

decreases. This is in contrast to the HPC setting, where idle

periods are introduced, which saves energy (e.g., a node’s

static power consumption) but increases the makespan

significantly. Overall, the results confirm the intuition that,

in the Cloud setting, the best approach is to optimize

energy subject to a makespan constraint.

6.4.4 MILP versus heuristics

As mentioned in Sect. 2.1, one use of an MILP formulation

for a resource allocation problem is to assess, on small

instances, the effectiveness of polynomial time heuristics in

an absolute sense. In this section, we demonstrate this use

by evaluating two heuristics that have been proposed in the

HPC setting (to the best of our knowledge no usable

thermal-aware heuristic has been proposed in the Cloud

setting). Specifically, we consider the Coolest heuristic

[19, 33] and the Spatio-Temporal heuristic [32]:

– Coolest: a simple thermal-aware scheduling heuristic

that places a job on the node with the lowest

temperature at the time of assignment. This heuristic

is not designed to be aware of the temperature

threshold. To ensure that the threshold is not exceeded,

we augment the heuristic so that it suspends a node

when further execution would make the node’s tem-

perature exceed the threshold, and resumes it as soon as

it is safe to do so.

– Spatio-Temporal: a thermal-aware scheduling heuristic

that aims at minimize the makespan subject to a

temperature threshold while taking both spatial and

temporal temperature evolution into account. A job is

placed on a node to balance the loads of all nodes in a

thermal-aware manner (e.g., with potential idle steps

included to avoid violation of the temperature thresh-

old). The nodes’ temperatures are regulated via DVFS,

in a concerted manner based again on their thermal-

aware loads. Nodes are ensured to remain below the

threshold temperature by choosing at which frequency

each job should run or, in the case without DVFS

capabilities, when a node should be temporarily

suspended. In our experiments, we do not consider

DVFS capabilities.

Neither heuristic aims to minimize energy, and Coolest

does not even aim to minimize makespan, but both

heuristics aim to schedule the workload from a thermal-

aware perspective: Coolest aims to have a homogeneous

thermal map in a datacenter while Spatio-Temporal aims to

maintain the temperature below a threshold. Here, we only

report on makespan results, since the energy obtained by

the MILP and the two heuristics is the same. This is

(a)

(b)

Fig. 13 Makespan and energy in both HPC and Cloud settings with

opposite objectives

because, in the HPC setting, each job consumes a fixed

amount of energy regardless of the schedule (due to using

0% or 100% of a node’s compute capacity).

Figure 14a plots the makespan of the solution obtained

by the MILP and those achieved by the two heuristics for

each of our 40 problem instances, while Fig. 14b shows

average makespans. We can see that the results of the two

heuristics are close: Spatio-Temporal is about 9.5% better

than Coolest on average. Spatio-Temporal performs

slightly better than Coolest because it is makespan-aware

and regulates the temperatures of all nodes in a concerted

way as compared to the distributed temperature regulation

employed by Coolest. MILP is better by 21% compared to

Spatio-Temporal and by 28.6% compared to Coolest (the

average makespans computed by MILP, Coolest and Spa-

tio-Temporal over the 40 instances are 15, 21 and 19,

respectively). Neither heuristic attempts to solve the

problem optimally: Coolest chooses the node with the

lower temperature while Spatio-Temporal makes load

balancing based on the concept of thermal-aware load [32].

These results quantify the ‘‘room for improvement’’ for

both heuristics, at least on small instances. For these par-

ticular heuristics, the room for improvement is non-negli-

gible, at about 21%, suggesting that striving for better

heuristics may be a worthwhile endeavor.

7 Conclusion and future work

In this paper, we have proposed MILP formulations for

datacenter resource allocation problems with thermal

constraints. These formulations are the first to take into

account both spatial and temporal aspects of heat produc-

tion and dispersion. Through several case-studies, we have

shown the usefulness of these formulations for both

makespan and energy optimizations in HPC and Cloud

settings. Although the size of the problem instances is

limited by the capabilities of our linear program solver and

large instances are out of reach, the proposed MILP for-

mulations are valuable for several reasons. In this paper,

we have compared the optimal solutions obtained by MILP

to the solutions computed by two polynomial-time

heuristics [19, 32] that were previously proposed for

makespan minimization in HPC setting. Our comparison

provides an absolute measure of the efficacy of these

heuristics.

Our main future direction is to work on improved

mathematical formulations in order to find shortcuts and

prune the search tree of the Gurobi solver (possibly assisted

by computational intelligence design frameworks that are

being utilized in smart design process), so as to be able to

solve significantly larger problem instances. Designing

improved heuristics, possibly inspired and informed by the

MILP formulations (e.g., using relaxation techniques), is

another future direction that is worth investigating.

References

1. Bai, Y., Gu, L., Qi, X.: Comparative study of energy performance

between chip and inlet temperature-aware workload allocation in

air-cooled data center. Energies 11(3), 669 (2018)

2. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage

energy and temperature. J. ACM 54(1), 3:1–3:39 (2007)

3. Barkat, A., Capone, A.: Effective management of green cloud

data centers using energy storage technologies. In: Proceedings of

the 23rd International Conference on Software, Telecommuni-

cations and Computer Networks (SoftCOM) (2015)

(a)

(b)

Fig. 14 Makespan obtained by solving the MILP and by the coolest

and spatio-temporal heuristics

4. BlueTool. http://impact.asu.edu/BlueTool/

5. Borgetto, D., Casanova, H., Da Costa, G., Pierson, J.M.: Energy-

aware service allocation. Future Gener. Comput. Syst. 28(5),
94–125769–779 (2012)

6. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva,

P.N., Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta,

M., Cook, P.W.: Power-aware microarchitecture: design and

modeling challenges for next-generation microprocessors. IEEE

Micro 20(6), 26–44 (2000)

7. Chaudhry, M.T., Ling, T.C., Manzoor, A., Hussain, S.A., Kim, J.:

Thermal-aware scheduling in green data centers. ACM Comput.

Surv. 47(3), 39:1–39:48 (2015)

8. Ebrahimi, K., Jones, G.F., Fleischer, A.S.: A review of data

center cooling technology, operating conditions and the corre-

sponding low-grade waste heat recovery opportunities. Renew.

Sustain. Energy Rev. 31(C), 622–638 (2014)

9. Gu, C., Zhang, L., He, Z., Huang, H., Jia, X.: Minimizing energy

cost for green cloud data centers by using ESDs. In: Proceedings

of the 34th IEEE International Performance Computing and

Communications Conference (2015)

10. Haque, M.E., Goiri, I., Bianchini, R., Nguyen, T.D.: GreenPar:

Scheduling parallel high performance applications in green dat-

acenters In: Proceedings of the 29th ACM International Confer-

ence on Supercomputing (ICS) (2015)

11. Herzog, C., Pierson, J.: A generic learning multi-agent-system

approach for spatio-temporal-, thermal- and energy-aware

scheduling. In: Proceedings of the Euromicro International

Conference on Parallel, Distributed and Network-based Pro-

cessing (PDP) (2018)

12. Kantarci, B., Foschini, L., Corradi, A., Mouftah, H.T.: Inter-and-

intra data center VM-placement for energy-efficient large-scale

cloud systems. In: Proceedings of the First International work-

shop on Management and Security technologies for Cloud

Computing (2012)

13. Liu, H., Liu, B., Yang, L.T., Lin, M., Deng, Y., Bilal, K., Khan,

S.U.: Thermal-aware and DVFS-enabled big data task scheduling

for data centers. IEEE Trans. Big Data 2(4), 177–190 (2018)

14. Meijer, G.I.: Cooling energy-hungry data centers. Science

5976(328), 318–319 (2010)

15. Metwally, K., Jarray, A., Karmouch, A.: MILP-based approach

for efficient Cloud IAAS Resource Allocation. In: Proceedings of

the IEEE 8th International Conference on Cloud Computing

(2015)

16. Mhedheb, Y., Streit, A.: Energy-efficient task scheduling in data

centers. In: Proceedings of the 6th International Conference on

Cloud Computing and Services Science (2016)

17. Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K.S.,

Rungta, S.: Spatio-temporal thermal-aware job scheduling to

minimize energy consumption in virtualized heterogeneous data

centers. Comput. Netw. 53(17), 2888–2904 (2009)

18. Mohammad Ali, H.M., El-Gorashi, T.E.H., Lawey, A.O.,

Elmirghani, J.M.H.: Future energy efficient data centers with

disaggregated servers. J Lightwave Technol 35(24), 5361–5380
(2017)

19. Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making

scheduling ‘‘cool’’: temperature-aware workload placement in

data centers. In: USENIX Conference (2005)

20. Mukherjee, K., Khuller, S., Deshpande, A.: Algorithms for the

thermal scheduling problem. In: Proceedings of the IEEE Inter-

national Parallel & Distributed Processing Symposium (IPDPS)

(2013)

21. Nada, S.A., Said, M.A.: Effect of CRAC units layout on thermal

management of data center. Appl. Therm. Eng. 118, 339–344
(2017)

22. Pakbaznia, E., Pedram, M.: Minimizing data center cooling and

server power costs. In: Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design

(ISLPED) (2009)

23. Rajan, D., Yu, P.S.: Temperature-aware scheduling: when is

system-throttling good enough? In: Proceedings of the Interna-

tional Conference on Web-Age Information Management

(WAIM) (2008)

24. Ramos, L., Bianchini, R.: C-Oracle: predictive thermal manage-

ment for data centers. In: Proceedings of the IEEE International

Symposium on High Performance Computer Architecture

(HPCA) (2008)

25. Sansottera, A., Cremonesi, P.: Cooling-aware workload place-

ment with performance constraints. Perform. Eval. 68(11),
1232–1246 (2011)

26. Sharrock, R., Monteil, T., Stolf, P., Brun, O.: Autonomic com-

puting to manage green Core networks with Quality of Service.

In: Proceedings of the Energy Efficiency in Large Scale Dis-

tributed Systems Conference (EE-LSDS) (2013)

27. Sarood, O., Miller, P., Totoni, E., Kale, L.V.: ‘‘Cool’’ load bal-

ancing for high performance computing data centers. IEEE Trans.

Comput. 61(12), 1752–1764 (2012)

28. Skadron, K., Abdelzaher, T., Stan, M.R.: Control-theoretic

techniques and thermal-RC modeling for accurate and localized

dynamic thermal management. In: Proceedings of the Interna-

tional Symposium on High-Performance Computer Architecture

(HPCA) (2002)

29. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W.,

Velusamy, S., Tarjan, D.: Temperature-aware microarchitecture:

modeling and implementation. ACM Trans. Archit. Code Optim.

1(1), 94–125 (2004)

30. Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H.:

Resource allocation algorithms for virtualized service hosting

platforms. J. Parallel Distrib. Comput. 70(9), 962–974 (2010)

31. Sun, H., Stolf, P., Pierson, J.-M., Da Costa, G.: Energy-efficient

and thermal-aware resource management for heterogeneous dat-

acenters. Sustain. Comput.: Inform. Syst. 4(4), 292–306 (2014)

32. Sun, H., Stolf, P., Pierson, J.-M.: Spatio-temporal thermal-aware

scheduling for homogeneous high-performance computing data-

centers. Future Gener. Comput. Syst. 71C, 157–170 (2017)

33. Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient

thermal-aware task scheduling for homogeneous high-perfor-

mance computing data centers: a cyber-physical approach. IEEE

Trans. Parallel Distrib. Syst. 19(11), 1458–1472 (2008)

34. Tang, Q., Mukherjee, T., Gupta, S.K.S., Cayton, P.: Sensor-based

fast thermal evaluation model for energy efficient high-perfor-

mance datacenters. In: Proceedings of the Fourth International

Conference on Intelligent Sensing and Information Processing

(ICISIP) (2006)

35. Villebonnet, V., Da Costa, G., Lefevre, L., Pierson, J.M., Stolf,

P.: Dynamically building energy proportional data centers with

heterogeneous computing resources (short paper). In: IEEE

International Conference On Cluster Computing (CLUSTER

2016), Taipei, Taiwan (2016)

36. Van Damme, T., De Persis, C., Tesi, P.: Optimized thermal-aware

job scheduling and control of data centers. IFAC-PapersOnLine

50(1), 8244–8249 (2017)

37. Wang, L., Khan, S.U., Dayal, J.: Thermal aware workload

placement with task-temperature profiles in a data center. J. Su-

percomput. 61(3), 780–803 (2012)

38. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic

thermal management through task scheduling. In: Proceedings of

the IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS) (2008)

39. Yao, F., Demers, A., Shenker, S.: A scheduling model for

reduced CPU energy. In: Proceedings of the Annual Symposium

on Foundations of Computer Science (FOCS) (1995)

http://impact.asu.edu/BlueTool/

40. Zhang, S., Chatha, K.S.: Approximation algorithm for the tem-

perature-aware scheduling problem. In: Proceedings of the IEEE/

ACM International Conference on Computer-Aided Design

(ICCAD) (2007)

Jean-Marc Pierson serves as a

Full Professor in Computer Sci-

ence at the University of Tou-

louse (France) since 2006. He

received his PhD from the ENS-

Lyon, France in 1996. He was an

Associate Professor at the

University Littoral Cote-d’Opale

(1997–2001) in Calais, then at

INSA-Lyon (2001–2006). He is a

member of the IRIT Laboratory

and Chair of the SEPIA Team on

distributed systems. His main

interests are related to large-scale

distributed systems. He serves on

several PCs and editorial boards in the Cloud, Grid, Pervasive, and

Energy-aware computing area. Since the last years, his researches focus

on energy aware distributed systems, in particular monitoring, job

placement and scheduling, virtual machines techniques, green network-

ing, autonomic computing, mathematical modeling. Hewas chairing the

EU funded COST IC804 Action on ‘‘Energy Efficiency in Large Scale

Distributed Systems’’ and participates in several national and European

projects on energy efficiency in large scale distributed systems. He is

leading the ANR Datazero project aiming at operating datacenters with

only renewable energies. For more information, please visit http://www.

irit.fr/*Jean-Marc.Pierson/

Patricia Stolf is an Associate

Professor in Computer Science

at the University of Toulouse.

She received her PhD from

INSA (Toulouse, France), in

2004. She is a member of the

IRIT Laboratory. Her main

interests are related to large

scale distributed systems like

grid or clouds, distributed algo-

rithms and autonomic comput-

ing. Her research currently

focuses on resources manage-

ment, load-balancing, energy

aware and thermal aware

placement. She has been involved in different research projects: in the

ACTION COST IC0804 ‘‘Energy Efficiency in Large Scale

Distributed Systems’’, in the European CoolEmAll project and in the

national ANR SOP project. She is currently working on the ANR

Datazero project studying how to manage the electricity and IT ser-

vices in a datacenter operated with several green energy sources. She

is leading the ANR e-Flooding project on handling fast floods with

autonomic computing paradigms.

Hongyang Sun is currently a

Research Assistant Professor at

Vanderbilt University, USA. He

received his Ph.D. in Computer

Science from Nanyang Techno-

logical University, Singapore,

and has previously held research

positions at IRIT, ENS-Lyon

and INRIA, France. His main

research interests include high-

performance computing, big

data, resource scheduling, fault

tolerance, and energy efficiency.

He has published over 30 papers

in peer-reviewed conferences

and journals, and has served as PC members for several international

conferences on high-performance computing and parallel processing

(SBAC-PAD’15, IPDPS’16, ICS’17, HiPC’17). For more information

about his research, please visit https://my.vanderbilt.edu/

hongyangsun/

Henri Casanova is a Professor in

the Information and Computer

Science Dept. at the University

of Hawaii at Manoa, and an

visiting professor at the

National Informatics Institute in

Japan. He obtained his B.S.

from the Ecole Nationale

Superieure d’Electronique,

d’Electrotechnique, d’Informa-

tique et d’Hydraulique de Tou-

louse, France in 1993, his M.S.

from the Universite Paul Saba-

tier, Toulouse, France in 1994,

and his Ph.D. from the Univer-

sity of Tennessee, Knoxville in 1998. His research is in the area of

parallel and high performance computing, with particular interests in

application scheduling, resource management, simulation of dis-

tributed applications, and interconnection networks. He has severed

on over one hundred program committees for international confer-

ences. For more information see http://henricasanova.github.io/

http://www.irit.fr/%7eJean-Marc.Pierson/
http://www.irit.fr/%7eJean-Marc.Pierson/
https://my.vanderbilt.edu/hongyangsun/
https://my.vanderbilt.edu/hongyangsun/
http://henricasanova.github.io/

	MILP formulations for spatio-temporal thermal-aware scheduling in Cloud and HPC datacenters
	Abstract
	Introduction
	Related work
	MILP formulations for energy-aware resource allocation and scheduling problems
	Datacenter thermal models
	Thermal-aware scheduling heuristics

	Problem statement
	Thermal models
	MILP formulations
	Task placement constraints
	HPC setting
	Cloud setting

	Objective functions
	Minimize makespan
	Minimize energy consumption

	Accounting for DVFS capabilities

	Experimental case-study
	Experimental setup
	Node resource allocation examples
	HPC setting
	Cloud setting

	Optimization objectives
	Case-study results
	HPC setting
	Cloud setting
	HPC versus Cloud settings
	MILP versus heuristics

	Conclusion and future work
	References

