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Central limit theorem and almost sure results for bivariate

empirical W1 distances

Philippe Berthet∗, Jérôme Dedecker†, Florence Merlevède ‡

Abstract

In this paper we study the behavior of the Wasserstein distance of order 1 (also called Kan-
torovich distance) between the two marginal empirical measures of a stationary sequence of bi-
variate random variables. We give sufficient conditions for the central limit theorem, the compact
law of the iterated logarithm and the Maricinkiewicz-Zygmund strong law.

Keywords. Kantorovich distance, empirical measure, central limit theorem, law of the iterated
logarithm, stationary sequences, Banach spaces
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1 Introduction

Let (Xi, Yi)i∈Z be a stationary and ergodic sequence of R2-valued random variables. Let F be the
cumulative distribution function (cdf) of the Xi’s, and let G be the cdf of the Yi’s. Let also, for
any t ∈ R,

Fn(t) =
1

n

n∑
i=1

1Xi≤t and Gn(t) =
1

n

n∑
i=1

1Yi≤t .

In this paper, we study the behavior of

W1(Fn, Gn)−W1(F,G) , (1.1)

where W1(F,G) is the Wasserstein distance of order 1 (or Kantorovich distance) between the
probabilities with cdfs F and G. Recall that W1 is a minimal distance, defined by

W1(F,G) = inf
π∈M(F,G)

∫
|x− y|π(dx, dy) , (1.2)

where M(F,G) is the set of probability measures on R2 with marginal cdfs F and G. It is well
known that W1(F,G) can also be written as

W1(F,G) =

∫ 1

0

|F−1(u)−G−1(u)|du =

∫
R
|F (t)−G(t)|dt , (1.3)

where F−1 is the generalized inverse of F . For p > 1, the distance Wp(F,G) (defined with the
cost | · |p instead of | · |) is equal to the Lp([0, 1])-distance between F−1 and G−1, which generalizes
the first equality in (1.3).
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For independent and identically distributed (i.i.d.) random vectors (Xi, Yi), the central limit
theorem for W p

p (Fn, Gn)−W p
p (F,G) (and other similar quantities, for a large class of cost func-

tions) has been studied in the two recent papers [3] and [2], starting from the exact expression
involving F−1, G−1, F−1

n and G−1
n . As a matter of fact, for the special case of W1 it is easier to

start from the second equality in (1.3), which gives an expression in terms of Fn, Gn, F and G (see
(2.8) below). We shall see that, using a first order Taylor expansion (see relation (2.5) below), we
are back to the study of partial sums in the (cotype 2) Banach space L1(dt), up to some negligible
residual terms. Following this strategy, we also prove a compact law of the iterated logarithm
and a Marcinkiewicz-Zygmund strong law for the quantity (1.1). Moreover, following [9] and [7]
we are able to extend all these results to the context of α-dependent sequences (as defined for
instance in [11]) under quite sharp conditions.

Let us quote that all the results of this paper are new. Only the central limit theorem for
i.i.d. random variables is considered in [2], but under stronger conditions than ours (see Remark
2.2 below). Moreover, all the results of Section 2 are consequences of the corresponding results
of Section 3 (dependent case); for the sake of clarity, we prefer to give the complete proofs in the
i.i.d case, and then show how they can be adapted to a dependent context.

To conclude this introduction, we wish to emphasize that this work is located at the intersection
of two of Denis Bosq’s important research fields: “Statistical methods for stochastic processes”
(see for instance [4]), and “Stochastic processes with values in Banach spaces” (see for instance
[5]).

2 The case of i.i.d. random variables

In this section, we assume that (Xi, Yi)1≤i≤n is a sequence of i.i.d. random variables with values
in R2.

2.1 Central limit Theorem

Proposition 2.1. Assume that∫
R

√
Var(1X1≤t − 1Y1≤t) dt <∞ . (2.1)

Then

√
n(W1(Fn, Gn)−W1(F,G))

L−→
n→+∞

∫
F>G

B(t) dt−
∫
F<G

B(t) dt+

∫
F=G

|B(t)| dt , (2.2)

where B is a Gaussian random variable with values in L1(dt) and covariance function defined as
follows: for any f, g ∈ L∞(dt),

Γ(f, g) = Cov

(∫
f(t)B(t) dt,

∫
g(t)B(t) dt

)
=

∫∫
f(t)g(s)Cov(1X1≤t − 1Y1≤t,1X1≤s − 1Y1≤s) ds dt . (2.3)

Remark 2.1. Note that (2.1) is satisfied if both∫ ∞
0

√
P(|X1| > t) dt <∞ and

∫ ∞
0

√
P(|Y1| > t) dt <∞ . (2.4)

Note also that (2.1) and (2.4) are in fact equivalent if X1 is independent of Y1.
Now, the first condition in (2.4) implies the central limit theorem for

√
nW1(Fn, F ) as proved

in [1, Theorem 2.1]. In the same theorem, it is also proved that the sequence
√
nW1(Fn, F ) is

stochastically bounded if and only if the first condition in (2.4) is satisfied.
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Remark 2.2. In Corollary 13 of [2], a central limit theorem is proved for
√
n(W1(Fn, Gn) −

W1(F,G)) but under stronger conditions than (2.4). In particular, the assumptions in [2] imply
that X1 and Y1 both have a positive density on R, and that there exists a positive constant C
such that, for any t > 0,

P(|X1| > t) ≤ C

t6
and P(|Y1| > t) ≤ C

t6
.

Proof of Proposition 2.1. The proof is based on the central limit theorem for random variables
with values in L1 proved by Jain [12]. It follows from this theorem that

√
n ((Fn −Gn)− (F −G))

converges in distribution in L1(dt) to B if and only if (2.1) holds.
We also need a preliminary decomposition:

|x+ h| − |x| = h1x+h≥0,x>0 − h1x+h<0,x<0 + |h|1x=0

+ (|x+ h| − |x|)(1x+h≥0,x<0 + 1x+h<0,x>0),

which implies that

|x+ h| − |x| = h1x>0 − h1x<0 + |h|1x=0

− h1x+h<0,x>0 + h1x+h≥0,x<0 + (|x+ h| − |x|)(1x+h≥0,x<0 + 1x+h<0,x>0) ,

and finally
|x+ h| − |x| = h1x>0 − h1x<0 + |h|1x=0 + 2R(h, x) , (2.5)

where |R(h, x)| ≤ |h|(1x+h≥0,x<0 + 1x+h<0,x>0).
From (2.5) applied with x = F −G and h = (Fn −Gn)− (F −G), we deduce that

√
n (|Fn −Gn| − |F −G|) = sign{F −G} ×

√
n ((Fn −Gn)− (F −G)) 1F 6=G

+
√
n |(Fn −Gn)− (F −G)|1F=G + 2Rn , (2.6)

where
|Rn| ≤

√
n |(Fn −Gn)− (F −G)| (1F>G,Fn<Gn + 1F<G,Fn≥Gn) . (2.7)

Now, from (1.3) we have

√
n(W1(Fn, Gn)−W1(F,G)) =

√
n

∫
R

(|Fn(x)−Gn(x)| − |F (x)−G(x)|) dx . (2.8)

Combining (2.8), (2.6) and Jain’s result, we infer that (2.2) holds as soon as∫
R
|Rn(t)| dt converges in probability to 0 as n→∞. (2.9)

To prove this, we first note that∥∥∥∥∫
R
|Rn(t)| dt

∥∥∥∥
1

=

∫
‖Rn(t)‖1 dt ,

and

‖Rn(t)‖1 ≤ ‖Rn(t)‖2 ≤
√

Var(1X1≤t − 1Y1≤t) . (2.10)

We infer from (2.1), (2.10), and the dominated convergence theorem that, if for any t ∈ R,
‖Rn(t)‖1 converges to 0 as n→∞, then

lim
n→∞

∫
‖Rn(t)‖1 dt = 0 ,
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which implies (2.9).
Hence it remains to prove that ‖Rn(t)‖1 converges to 0 as n → ∞. Let M > 0 and let

Tn(t) =
√
n |(Fn(t)−Gn(t))− (F (t)−G(t))|. By (2.7),

‖Rn(t)‖1 ≤ E(Tn(t)1Tn(t)>M ) +MP ({F (t) > G(t)}, {Fn(t) < Gn(t)})
+MP ({F (t) < G(t)}, {Fn(t) ≥ Gn(t)}) . (2.11)

Since (Fn(t), Gn(t)) converges almost surely to (F (t), G(t)), we infer that

lim
n→∞

P ({F (t) > G(t)}, {Fn(t) < Gn(t)}) + P ({F (t) < G(t)}, {Fn(t) ≥ Gn(t)}) = 0 . (2.12)

Moreover, by standard computations,

E(Tn(t)1Tn(t)>M ) ≤ ‖Tn(t)‖22
M

≤ 1

M
, (2.13)

and consequently
lim
M→∞

lim sup
n→∞

E(Tn(t)1Tn(t)>M ) = 0 . (2.14)

From (2.11), (2.12) and (2.14), we infer that ‖Rn(t)‖1 converges to 0 as n→∞, which concludes
the proof.

2.2 Compact law of the iterated logarithm

Under (2.1), one can also describe the almost sure behavior of

√
n√

2 log logn
(W1(Fn, Gn)−W1(F,G)). (2.15)

Let ϕ be the continuous function from L1(dt) to R defined by

ϕ(x) =

∫ (
sign{F (t)−G(t)}x(t)1F (t)6=G(t) + |x(t)|1F (t)=G(t)

)
dt . (2.16)

From Sections 8 and 10 in [13] (see Theorem 10.12 in [13], since L1(dt) is of cotype 2), we know
that, under (2.1), √

n√
2 log logn

((Fn −Gn)− (F −G))

satisfies the compact law of the iterated logarithm (LIL) in L1(dt), with compact set K being the
unit ball of the reproducing kernel Hilbert space (RKHS) associated with the covariance operator
Γ defined in (2.3). Hence, starting from (2.6) and (2.8), one can prove the following result

Proposition 2.2. Assume that (2.1) holds. Then the sequence defined in (2.15) is almost surely
relatively compact, with limit set ϕ(K).

Remark 2.3. In fact, since the function ϕ satisfies |ϕ(x) − ϕ(y)| ≤ ‖x − y‖L1 , we also have a
strong invariance principle, by applying a general result in [7]: enlarging the probability space if
necessary, there exists a sequence of i.i.d. L1(dt)-valued Gaussian random variables (Zi)i≥1 with
covariance function Γ such that

n (W1(Fn, Gn)−W1(F,G))− ϕ

(
n∑
k=1

Zk

)
= o(

√
n log logn) almost surely.

This implies the compact law of the iterated logarithm of Proposition 2.2. The same remark
applies to Subsection 3.2.
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Proof of Proposition 2.2. From the above considerations, it suffices to prove that

lim sup
n→∞

1√
log logn

∫
R
|Rn(t)| dt = 0 a.s. (2.17)

Let ε > 0, and note that

1√
log logn

∫
R
|Rn(t)| dt

≤
√
n√

log logn

∫
G<F≤G+ε

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt

+

√
n√

log log n

∫
F<G≤F+ε

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt

+

√
n√

log log n

∫
G+ε<F,Fn<Gn

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt

+

√
n√

log log n

∫
F+ε<G,Gn≤Fn

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt .

By the Glivenko-Cantelli Lemma, for almost all ω, Fn (resp. Gn) converges uniformly to F
(resp. G). Hence, the two last terms on right hand are exactly 0 for almost all ω and n ≥ N(ε, ω).

Now, from the bounded LIL in the space L1({F < G ≤ F + ε}, dt) (for instance, since the
CLT holds, one can apply Theorem 8.11 in [13]), it follows that, almost surely

lim sup
n→∞

√
n√

2 log logn

∫
G<F≤G+ε

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt

≤
∫
G<F≤G+ε

√
Var(1X1≤t − 1Y1≤t) dt . (2.18)

Hence, since (2.1) holds, by the dominated convergence theorem,

lim
ε→0

lim sup
n→∞

√
n√

log logn

∫
G<F≤G+ε

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt = 0 a.s.

Of course, the same is true for the integral over the set {F < G ≤ F + ε}, and (2.17) follows.

2.3 Almost sure rates under lower order moments

We now consider the case where X1 (or Y1) is not square integrable, so that (2.4) does not hold.
Starting from the elementary remark that

|W1(Fn, Gn)−W1(F,G)| ≤W1(Fn, F ) +W1(Gn, G), (2.19)

it follows from Corollary 4.1 in [10] that:

Proposition 2.3. Assume that ‖X1‖p <∞ and ‖Y1‖p <∞ for some p ∈ [1, 2). Then

lim
n→∞

n(p−1)/p |W1(Fn, Gn)−W1(F,G)| = 0, almost surely. (2.20)

Remark 2.4. For p = 1, the result follows from the strong law of large number for integrable
L1(dt)-valued random variables. For p ∈ (1, 2), it is proved in [10] that n(p−1)/pW1(Fn, F ) con-
verges to 0 almost surely if and only if ‖X1‖p < ∞. The only if part is a consequence of the
classical Marcinkiewicz-Zygmund Theorem (see [14] and Remark 4.2 in [10]).
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Remark 2.5. Alternatively, one can also apply the Marcinkiewicz-Zygmund strong law of large
numbers for Lp-valued martingales given in Proposition 3.2 of [6]. Since

|W1(Fn, Gn)−W1(F,G)| ≤
∫
R
|(Fn −Gn)(t)− (F −G)(t)| dt ,

it follows directly from Proposition 3.2 of [6] that (2.20) holds for p ∈ (1, 2) as soon as∫
R
‖(1X1≤t − 1Y1≤t)− (F −G)(t)‖p dt <∞ . (2.21)

Note that (2.21) is the Lp-version of (2.1), but it is not comparable to the conditions given in
Proposition 2.3.

3 Extension to dependent sequences

Let (Xi, Yi)i∈Z be a stationary and ergodic sequence of R2-valued random variables. We use the
same notations as before for the cdfs Fn, Gn, F and G. Let also F0 = σ(Xi, Yi, i ≤ 0), αX,Y (0) = 1
and

αX,Y (k) = sup
t∈R
‖E(1Xk≤t − 1Yk≤t|F0)− (F (t)−G(t))‖

1
for any k ≥ 1.

Finally, set
V (t) = Var(1X1≤t − 1Y1≤t) .

3.1 Central limit Theorem

Proposition 3.1. Assume that

∫ ∞
0

√√√√ ∞∑
k=0

(αX,Y (k) ∧ V (t)) dt <∞ . (3.1)

Then

√
n(W1(Fn, Gn)−W1(F,G))

L−→
n→+∞

∫
F>G

B(t) dt−
∫
F<G

B(t) dt+

∫
F=G

|B(t)| dt ,

for a Gaussian random variable B with values in L1(dt) and covariance function: for any f, g ∈
L∞(dt),

Γ(f, g) = Cov

(∫
f(t)B(t) dt,

∫
g(t)B(t) dt

)
=
∑
k∈Z

∫∫
f(t)g(s)Cov(1X0≤t − 1Y0≤t,1Xk≤s − 1Yk≤s) ds dt . (3.2)

Remark 3.1. Note that (3.1) is satisfied if both

∫ ∞
0

√√√√ ∞∑
k=0

(αX,Y (k) ∧HX(t)) dt <∞ and

∫ ∞
0

√√√√ ∞∑
k=0

(αX,Y (k) ∧HY (t)) dt <∞ , (3.3)

where
HX(t) = P(|X1| > t) and HY (t) = P(|Y1| > t) .

Note that the first condition in (3.3) with αX instead of αX,Y (see (3.13) for the definition of αX)
implies the central limit Theorem for

√
nW1(Fn, F ), as proved in [9]. We refer to Section 5 in [9]

for sufficient conditions implying (3.3).
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Remark 3.2. Note that the coefficient αX,Y is weaker than the usual strong mixing coefficient (in
the sense of Rosenblatt [17]) of the sequence (Xi, Yi)i∈Z. It is also weaker than the α-dependence
coefficient of (Xi, Yi)i∈Z defined in [11]. We then refer to the paper [11] for many examples of
stationary processes for which αX,Y can be computed.

Proof of Proposition 3.1. We follow the scheme of the proof of Proposition 2.1. To prove the
convergence in distribution of

√
n ((Fn −Gn)− (F −G)), we apply Corollary 6.1 in [9]. It suffices

then to prove that

∫ ∞
0

√√√√ ∞∑
k=0

‖E (1Xk≤t − 1Yk≤t|F0)− (F (t)−G(t))‖
1
dt <∞ . (3.4)

Let S(t) = E(|1X1≤t−1Y1≤t− (F (t)−G(t))|). By definition of αX,Y , we see that (3.1) is satisfied
as soon as ∫ ∞

0

√√√√ ∞∑
k=0

(αX,Y (k) ∧ S(t)) dt <∞ . (3.5)

To see that (3.5) is equivalent to (3.1), one needs the following remark:

E(|1X1≤t − 1Y1≤t − (F (t)−G(t))|) ≤ 2V (t) ≤ 4E(|1X1≤t − 1Y1≤t − (F (t)−G(t))|) . (3.6)

The first inequality in (3.6) is not completely obvious, and can be proved as follows. Let Z be a
random variable taking values 0, 1 or −1. Assume without loss of generality that a = E(Z) ≥ 0,
and let p1 = P(Z = 1) and p−1 = P(Z = −1). Clearly

E(|Z − E(Z)|) = p1(1− a) + (1 + a− 2p1)a+ (p1 − a)(1 + a) = 2p1(1− a) ,

and
Var(Z) = p1(1− a)2 + (1 + a− 2p1)a2 + (p1 − a)(1 + a)2 = 2p1 − a(1 + a) .

Hence, it is enough to verify that 2p1 − a(1 + a) ≥ p1(1− a), which is clearly true since p1 ≥ a =
p1 − p−1.

To see that the covariance function of the Gaussian process B can be expressed as in (3.2), it
suffices to follow the proof of Proposition 2 in [9].

To conclude the proof, it remains to prove that ‖Rn(t)‖1 converges to 0 as n → ∞ (recall
that Rn has been defined in (2.6)). Clearly (2.11) and (2.12) hold, so that we only need to prove
(2.14). By standard computations

E(Tn(t)1Tn(t)>M ) ≤ ‖Tn(t)‖22
M

≤ 2

M

∞∑
k=0

|Cov(1X0≤t − 1Y0≤t,1Xk≤t − 1Yk≤t)| .

Clearly,

|Cov(1X0≤t − 1Y0≤t,1Xk≤t − 1Yk≤t)|
≤ ‖E(1Xk≤t − 1Yk≤t|F0)− (F (t)−G(t))‖

1
≤ αX,Y (k)

in such a way that

E(Tn(t)1Tn(t)>M ) ≤ ‖Tn(t)‖22
M

≤ 2

M

∞∑
k=0

αX,Y (k) . (3.7)

Since (3.1) implies that
∑∞
k=0 αX,Y (k) <∞, we infer from (3.7) that (2.14) holds. This completes

the proof of Proposition 3.1.
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3.2 Compact law of the iterated logarithm

Proposition 3.2. Assume that

∞∑
k=0

1√
k + 1

∫ ∞
0

√
αX,Y (k) ∧ V (t) dt <∞ . (3.8)

Then √
n√

2 log logn
((Fn −Gn)− (F −G))

satisfies the compact LIL in L1(dt), with compact set K being the unit ball of the RKHS associated
with the covariance operator Γ defined in (3.2). Moreover the sequence

√
n√

2 log logn
(W1(Fn, Gn)−W1(F,G))

is almost surely relatively compact, with limit set ϕ(K) (where ϕ is the function defined in (2.16)).

Remark 3.3. As in Section 5 of [9], one can prove that the condition (3.8) is slightly more
restrictive than (3.1). For instance, if ‖X1‖∞ <∞ and ‖Y1‖∞ <∞ (bounded case), then (3.8) is
equivalent to

∑
k>0

√
αX,Y (k)/k <∞, while (3.1) is equivalent to

∑
k>0 αX,Y (k) <∞. Hence, a

reasonable question is: does the conclusion of Proposition 3.2 still hold under (3.1)?
Note that, in the bounded case and for strongly mixing sequences in the sense of Rosenblatt

[17], it follows from [15] that the conclusion of Proposition 3.2 still holds under the condition∑
k>0 α(k) < ∞ (where α(k) is the usual strong mixing coefficient of the sequence (Xi, Yi)i∈Z).

Indeed, in the bounded case, the compact law of the iterated logarithm in L2([−M,M ], dt) can
be applied, since the L1 norm is a continuous function for the L2([−M,M ], dt) topology.

Proof of Proposition 3.2. To prove the first part of the proposition, we apply Theorem 1.1 in
[7], with p = 1. It suffices to prove that

∞∑
k=0

1√
k + 1

∫ ∞
0

‖E (1Xk≤t − 1Yk≤t|F0)− (F (t)−G(t))‖
2
dt <∞ . (3.9)

Using that

‖E (1Xk≤t − 1Yk≤t|F0)− (F (t)−G(t))‖
2

≤
(
‖E (1Xk≤t − 1Yk≤t|F0)− (F (t)−G(t))‖

1

)1/2
,

we easily infer from the proof of Proposition 3.1 that (3.8) implies (3.9).
For the second part of Proposition 3.2, we follow the proof of Proposition 2.2. It suffices to

prove that

lim
ε→0

lim sup
n→∞

√
n√

log logn

∫
G<F≤G+ε

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt = 0 a.s. (3.10)

(and the same for the integral over the set {F < G ≤ F + ε}). Applying again Theorem 1.1 in [7]
to the the space L1({F < G ≤ F + ε}, dt), we get that, almost surely,

lim sup
n→∞

√
n√

2 log logn

∫
G<F≤G+ε

|(Fn(t)−Gn(t))− (F (t)−G(t))| dt

≤ C
∞∑
k=0

1√
k + 1

∫
G<F≤G+ε

√
α(k) ∧ V (t) dt , (3.11)

for some universal constant C > 0. Since (3.8) holds, (3.10) follows from (3.11) and the dominated
convergence theorem.
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3.3 Almost sure rates of convergence

In this sub-section, we do not assume that the stationary sequence (Xi, Yi)i∈Z is ergodic. Let
F0,X = σ(Xk, k ≤ 0) and F0,Y = σ(Yk, k ≤ 0), and define

αX(k) = sup
t∈R
‖E(1Xk≤t|F0,X)− F (t)‖

1
, (3.12)

αY (k) = sup
t∈R
‖E(1Yk≤t|F0,Y )−G(t)‖

1
. (3.13)

Proposition 3.3. Let p ∈ (1, 2). Let QX (resp. QY ) be the cadlag inverse of t → P(|X1| > t)
(resp. t→ P(|Y1| > t)). Assume that

∞∑
k=0

1

(k + 1)2−p

∫ αX (k)

0

QpX(u) du <∞ and

∞∑
k=0

1

(k + 1)2−p

∫ αY (k)

0

QpY (u) du <∞ . (3.14)

Then
lim
n→∞

n(p−1)/p|W1(Fn, Gn)−W1(F,G)| = 0 almost surely. (3.15)

Remark 3.4. If (Xi, Yi)i∈Z is ergodic, or if αX(n) → 0 and αY (n) → 0 as n → ∞, then (3.15)
is true for p = 1 by the ergodic theorem. The first condition in (3.17) implies that

lim
n→∞

n−1/p
n∑
i=1

(Xi − E(Xi)) = 0 a.s. (3.16)

as proved in [8]. As will be clear form the proof, it also implies that n(p−1)/pW1(Fn, F ) converges
to 0 almost surely as n → ∞, which may be seen as a uniform version of (3.16) over the class
of Lipschitz functions (thanks to the dual formulation of W1(Fn, F )). The optimality of this
condition with respect to (3.16) is studied in [16] (case of strongly mixing sequences in the sense
of Rosenblatt [17]) and in [8].

Remark 3.5. In the same way as for Remark 2.5 of Section 2, one can also apply the Marcinkiewicz-
Zygmund strong law of large numbers for Lp-valued random variables given in Proposition 4.5 of
[6] (see also Section 8.2 in [6] for an application to the empirical distribution function). It follows
that, if

∞∑
k=0

1

(k + 1)1/p

∫ ∞
0

(αX,Y (k) ∧ V (t))1/p dt <∞ , (3.17)

for some p ∈ (1, 2), then (3.15) holds. Note that (3.17) is the Lp-version of (3.8), but it is not
comparable to the conditions given in Proposition 3.3.

Proof of Proposition 3.3. Starting from the inequality (2.19), it suffices to prove that

lim
n→∞

n(p−1)/pW1(Fn, F ) = 0, and lim
n→∞

n(p−1)/pW1(Gn, G) = 0 almost surely. (3.18)

Hence, it suffices to prove that the first condition of Proposition 3.3 implies the first statement in
(3.18). To do so, we need a maximal version of Proposition 5.1 in [9]: let

α−1(u) = min{q ∈ N∗ : αX(q) ≤ u}, R(u) = α−1(u)QX(u),

and R−1(x) = inf{u ∈ [0, 1] : R(u) ≤ x} .

For any positive integer n, any x > 0, and any η ∈ [1, 2), the following inequality holds

P
(

max
1≤k≤n

kW1(Fk, F ) ≥ 6x

)
≤ c1

n

x

∫ R−1(x)

0

QX(u)du

+ c2
n

xη

∫ 1

R−1(x)

Rη−1(u)QX(u)du , (3.19)
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where c1 = 36 and c2 = 128(2− η)−2. This inequality is stated in [9] for P (nW1(Fn, F ) ≥ 6x) in-
stead of P (max1≤k≤n kW1(Fk, F ) ≥ 6x). The maximal version can be stated by following exactly
the proof in [9].

Let us now complete the proof of Proposition 3.3 with the help of Inequality (3.19). By the
direct part of the Borel-Cantelli Lemma, it suffices to prove that, for any η > 0,∑

n≥1

P
(

max
1≤k≤2n

kW1(Fk, F ) ≥ 2n/pη

)
<∞ ,

which is equivalent to: for any ε > 0,∑
n≥1

1

n
P
(

max
1≤k≤n

kW1(Fk, F ) ≥ 6n1/pε

)
<∞ . (3.20)

Let η ∈ (p, 2). Applying (3.19) with x = n1/pε, we get that

P
(

max
1≤k≤n

kW1(Fk, F ) ≥ 6n1/pε

)
≤ c1

n(p−1)/p

ε

∫ R−1(n1/pε)

0

QX(u)du

+ c2
n(p−η)/p

εη

∫ 1

R−1(n1/pε)

Rη−1(u)QX(u)du .

Hence, it remains to prove that

∑
n≥1

1

n1/p

∫ R−1(n1/pε)

0

QX(u)du <∞ ,
∑
n≥1

1

nη/p

∫ 1

R−1(n1/pε)

Rη−1(u)QX(u)du <∞ . (3.21)

By definition of R−1(u),∫ R−1(n1/pε)

0

QX(u)du =

∫ ∞
0

1n1/pε<R(u)QX(u)du .

Hence, interverting the sum and the integral

∑
n≥1

1

n1/p

∫ R−1(n1/pε)

0

QX(u)du

≤ K1

εp−1

∫ ∞
0

R(u)p−1QX(u)du =
K1

εp−1

∫ ∞
0

(α−1(u))p−1QpX(u)du , (3.22)

for some positive constant K1. The same kind of computations gives∑
n≥1

1

nη/p

∫ 1

R−1
n (n1/pε)

Rη−1(u)QX(u)du ≤ K2ε
η−p

∫ ∞
0

(α−1(u))p−1QpX(u)du , (3.23)

for some positive constant K2. From (3.22) and (3.23), we infer that (3.21) is true provided that∫ ∞
0

(α−1(u))p−1QpX(u) du <∞,

which is in fact equivalent to

∞∑
k=0

1

(k + 1)2−p

∫ αX (k)

0

QpX(u) du <∞ ,

as quoted for instance in [9]. This completes the proof of Proposition 3.3.
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