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We study the effect of the p-Laplacian operator in the modelling of the heat equation through a porous medium Λ ⊂ R N (N ≥ 2). The case of p = 2 was recently published in (Anguiano, Mediterr. J. Math. 17, 18 (2020)). Using rigorous functional analysis techniques and the properties of Sobolev spaces, we managed to solve additional (nontrivial) difficulties which arise compared to the study for p = 2, and we prove a convergence theorem in appropriate functional spaces.

Statement of the problem and the results

Homogenization problems in perforated media for the p-Laplacian operator have been considered in the literature over the last decades. The homogenization of the equation

-div |∇v | p-2 ∇v = f (1) 
in a periodically perforated domain is considered by Labani and Picard in [START_REF] Labani | Homogenization of a nonlinear Dirichlet problem in a periodically perforated domain[END_REF] with Dirichlet boundary conditions. Such a problem is a generalization of the linear problem for Laplace's equation, which corresponds to p = 2, and was studied by Cioranescu and Murat in [START_REF] Cioranescu | Un terme étrange venu d'ailleurs[END_REF]. Donato and Moscariello in [START_REF] Donato | On the homogenization of some nonlinear problems in perforated domains[END_REF] study the homogenization of a class of nonlinear elliptic Neumann problems in perforated domains of R N . As a consequence of [START_REF] Donato | On the homogenization of some nonlinear problems in perforated domains[END_REF], we are able in particular to describe the homogenization of [START_REF] Adams | Sobolev spaces[END_REF] with Neumann boundary conditions. This result is a generalization of earlier related works, for instance, Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perforés[END_REF] and Cioranescu and Saint Jean Paulin [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]. In [START_REF] Shaposhnikova | Homogenization limit for the boundary value problem with the p-Laplace operator and a nonlinear third boundary condition on the boundary of the holes in a perforated domain[END_REF] Shaposhnikova and Podol'skii study the homogenization of (1) in an -periodically perforated domain with a nonlinear boundary condition. In [START_REF] Díaz | On the asymptotic limit of the effectiveness of reaction-diffusion equations in periodically structured media[END_REF] Díaz et al. consider [START_REF] Adams | Sobolev spaces[END_REF] with a nonlinear perturbed Robintype boundary condition in an periodically perforated domain where the size of the particles is smaller than the period , and the asymptotic behavior of the solution is studied as → 0. The closest articles to this one in the literature are [START_REF] Gómez | Homogenization for the p-Laplace operator and nonlinear Robin boundary conditions in perforated media along (n-1)-dimensional manifolds[END_REF][START_REF] Gómez | Unilateral problems for the p-Laplace operator in perforated media involving large parameters[END_REF][START_REF] Gómez | Homogenization for the p-Laplace operator in perforated media with nonlinear restrictions on the boundary of the perforations: a critical case[END_REF], where Gómez et al. consider the case 2 < p ≤ N , and [START_REF] Díaz | Non existence of critical scales in the homogenization of the problem with p-Laplace diffusion and nonlinear reaction in the boundary of periodically distributed particles in n-dimensional domains when p > n[END_REF], where Díaz et al. study the case p > N .

It has been discovered by physicists that, as far as the Allen-Cahn equation is concerned, for certain materials a dynamical interaction with the walls must be taken into account (see Fischer et al. [START_REF] Fischer | Novel surface modes of spinodal decomposition[END_REF][START_REF] Fischer | Diverging time and length scales of spinodal decomposition modes in thin films[END_REF] for more details). In this sense, in the context of heat equations, dynamical boundary conditions have been rigorously derived in Gal and Shomberg [START_REF] Gal | Coleman-Gurtin type equations with dynamic boundary conditions[END_REF] based on first and second thermodynamical principles and their physical interpretation was also given in Goldstein [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF]. We point out that these types of boundary conditions are also used for modelling various physical situations including fluid diffusion within a semi-permeable boundary (see Crank [START_REF] Crank | The Mathematics of Diffusion[END_REF], Langer [START_REF] Langer | A problem in diffusion or in the flow of heat for a solid in contact with a fluid[END_REF], and, March and Weaver [START_REF] March | The diffusion problem for a solid in contact with a stirred liquid[END_REF] for more details) or several situations when the hear flow inside the domain is subject to nonlinear heating or cooling on the boundary (see Favini et al. [START_REF] Favini | The heat equation with generalized Wentzell boundary condition[END_REF][START_REF] Favini | The heat equation with nonlinear general Wentzell boundary condition[END_REF] for more details).

In the previous literature there is no study for the homogenization of p-Laplacian parabolic models as we consider in this article. Such equations model nonlinear fluid diffusion through a semi-permeable membrane (see 1 Duvaut and Lions [25,Ch.1]) or nonlinear heat flow with radiation on the boundary causing nonlinear cooling (see Friedman [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF]Ch.7,[START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]).

Model problem.

The heat equation that we study in this paper is the following

∂ t v -∆ p v + α|v | p-2 v = -f 1 (v ) in Λ × (0, T ),
where v = v (x, t), x ∈ Λ , t ∈ (0, T ), with T > 0 and α > 0. Assume that Λ ⊂ R N (N ≥ 2) is a fixed bounded domain Λ from which a set T of holes has been removed, in particular, Λ is a periodically perforated domain with holes of the same size as the period (see [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF] for more details on the domain). Here the diffusion is modeled by the p-Laplacian operator ∆ p v := div |∇v | p-2 ∇v with p ∈ [2, N ]. On the nonlinear term f 1 , we assume that

f 1 ∈ C (R), such that p ≤ q 1 < +∞, if p = N and 2 ≤ q 1 ≤ N p N -p , if p ∈ [2, N ), (2) 
η 1 |s| q1 -λ ≤ f 1 (s)s ≤ η 2 |s| q1 + λ, for all s ∈ R, (3) 
and

(f 1 (s 1 ) -f 1 (s 2 )) (s 1 -s 2 ) ≥ -β (s 1 -s 2 ) 2 , for all s 1 , s 2 ∈ R, (4) 
where η i > 0, i = 1, 2, λ > 0, and β > 0.

We consider the following dynamical boundary conditions on the boundary of the holes

∂ νp v + ∂ t v = -f 2 (v ) on ∂T × (0, T ),
where T is the set of all the holes of this periodic distribution contained in Λ (see [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF] for more details). The "normal derivative" must be understood as

∂ νp v = |∇v | p-2 ∇v • ν,
where ν denotes the outward normal to ∂T . This boundary equation is multiplied by to compensate the growth of the surface by shrinking , where the value of v is assumed to be the trace of the function v defined for x ∈ Λ . On the nonlinear term f 2 , we assume that

f 2 ∈ C (R), such that 2 ≤ q 2 < +∞, if p = N and 2 ≤ q 2 ≤ (N -1)p N -p , if p ∈ [2, N ), (5) 
η 1 |s| q2 -λ ≤ f 2 (s)s ≤ η 2 |s| q2 + λ, for all s ∈ R, (6) 
and

(f 2 (s 1 ) -f 2 (s 2 )) (s 1 -s 2 ) ≥ -β (s 1 -s 2 ) 2 , for all s 1 , s 2 ∈ R. (7) 
Moreover, we consider Dirichlet boundary condition on the boundary of Λ v = 0, on ∂Λ × (0, T ), and the initial conditions

v (x, 0) = v 0 (x), for x ∈ Λ , v (x, 0) = φ 0 (x), for x ∈ ∂T , where (v 0 , φ 0 ) satisfies v 0 ∈ L 2 (Λ) , φ 0 ∈ L 2 (∂T ) , (8) 
and

|v 0 | 2 Λ + |φ 0 | 2 ∂T ≤ K, (9) 
where K > 0 and

| • | Λ (respectively | • | ∂T ) is the norm in L 2 (Λ ) (respectively L 2 (∂T )).
Notice that on ∂T we assume that φ 0 (x) is equal to the trace of v 0 (x).

In summary, we study in this paper the following problem

           ∂ t v -∆ p v + α|v | p-2 v = -f 1 (v ) in Λ × (0, T ), ∂ νp v + ∂ t v = -f 2 (v ) on ∂T × (0, T ), v = 0, on ∂Λ × (0, T ), v (x, 0) = v 0 (x), for x ∈ Λ , v (x, 0) = φ 0 (x), for x ∈ ∂T , (10) 
under the assumptions (2)- [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure[END_REF].

In a recent article (see [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]) we addressed the problem [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF] with p = 2 (for the physical motivation of this model, see, for instance, Timofte [START_REF] Timofte | Upscaling in dynamical heat transfer problems in biological tissues[END_REF]). More recently, in [START_REF] Anguiano | Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media[END_REF] we generalize this previous study with a Laplace-Beltrami correction term and in [START_REF] Anguiano | Reaction-Diffusion Equation on Thin Porous Media[END_REF] we carried out the first study on the asymptotic behavior of the solution of parabolic models in a thin porous media.

We would like to highlight that analyzing a p-Laplacian problem involves additional (nontrivial) difficulties compared to the study for the Laplacian. Due to the presence of p-Laplacian operator in the domain, the variational formulation of the p-Laplacian reaction-diffusion equation is different that in [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]. We have to work in the space

V p := (u, γ(u)) : u ∈ W 1,p (Λ ) , γ(u) = 0 on ∂Λ ,
where γ denotes the trace operator

u ∈ W 1,p (Λ ) → u| ∂Λ ∈ W 1-1 p ,p (∂Λ ).
New W 1,p -estimates are needed to deal with problem [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF]. To prove these estimates rigorously, we use the Galerkin approximations where we have to introduce a special basis consisting of functions in the space

V s := (u, γ(u)) : u ∈ W s,2 (Λ ) , γ(u) = 0 on ∂Λ , s ≥ N (p -2) 2p + 1,
in the sense of Lions [38, p. 161]. Therefore, thanks to the assumption made on s, we have V s ⊂ V p . We use the so-called energy method introduced by Tartar [START_REF] Tartar | Problèmes d'homogénéisation dans les équations aux dérivées partielles[END_REF] and considered by many authors (see, for instance, Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perforés[END_REF]). Finally, in order to identity the limit equation, it is necessary to use monotonicity arguments. In summary, we prove that the solution of problem [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF], properly extended to the whole Λ, converges to the unique solution of a new nonlinear problem, defined all over the domain Λ, given by a new operator and containing extra zero order terms, capturing the effect of the influence of the non-homogeneous dynamical condition imposed on the boundary of T .

Theorem 1.1 (Convergence Theorem). Assume (2)-( 4), ( 6)-( 7) and [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure[END_REF]. On the nonlinear term f 2 , we suppose that f 2 ∈ C 1 (R) and its associated exponent

q 2 satisfies p ≤ q 2 < +∞ if p = N and 2 ≤ q 2 ≤ (N -1)p N -p if p ∈ [2, N ). ( 11 
)
We suppose that (v , φ ) is the unique solution of [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF], with (v 0 , φ 0 ) ∈ V p , and where φ (t) = γ(v (t)) a.e. t ∈ (0, T ]. Let v be the W 1,p -extension of v to Λ × (0, T ). Then, we have

v (t) → v(t) in L p (Λ), as → 0, ∀t ∈ [0, T ],
where "→" denotes the strong convergence and v is the unique solution of the problem given by

(θ * + θ T ) ∂ t v -div b (∇v) + θ * (α|v| p-2 v + f 1 (v)) + θ T f 2 (v) = 0, in Λ × (0, T ), (12) 
with Dirichlet boundary condition v = 0, on ∂Λ × (0, T ), [START_REF] Brézis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] and initial condition

v(x, 0) = v 0 (x), for x ∈ Λ, (14) 
where

θ * = |Z * |/|Z|, θ T = |∂T |/|Z|, Z is the representative cell in R N , T is an open subset of Z, Z * = Z \ T and |Z| (respectively |∂T | and |Z * |) denotes the measure of Z (respectively ∂T and Z * ). For any ζ ∈ R N , if w(y) is the solution of the problem    Z |∇ y w(y)| p-2 ∇ y w(y) • ∇ y ϕ(y)dy = 0 ∀ϕ ∈ H per (Z * ), w ∈ ζ • y + H per (Z * ), ( 15 
)
then b is defined by b(ζ) = 1 |Z| Z * |∇ y w(y)| p-2 ∇ y w(y)dy, (16) 
where H per (Z * ) is the space of functions from W 1,p (Z * ) which have the same trace on the opposite faces of Z.

Remark 1.2. If the diffusion is modeled by the Laplacian operator (i.e. p = 2), then the limit problem ( 12)-( 14) is the problem obtained in [5, Theorem 6.1].

Remark 1.3. It seems possible to improve the regularity assumed on the functions f 1 and f 2 when they are assumed non-increasing and Hölder continuous (for more details, see the recent book [START_REF] Díaz | Nonlinear Reaction-Diffusion Processes for Nanocomposites: Anomalous Improved Homogenization[END_REF] where Díaz et al. present this improvement for the linear diffusion case).

We organize this work as follows. In the next section, we present some notations, definitions and properties of suitable spaces for the study of [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF]. Some preliminary results are established in Section 3, some estimates for the solution of ( 10) are rigorously derived in Section 4, and a convergence result is indicated in Section 5. Finally, in Section 6 we study the limit problem and a conclusion section is established in Section 7.

2 The Sobolev spaces W s,p (Λ )

In this section we recall the Sobolev spaces W s,p , which will be used in this paper (see Adams and Fournier [START_REF] Adams | Sobolev spaces[END_REF], Brézis [START_REF] Brézis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Chapter 9] and Nečas [START_REF] Nečas | Direct methods in the theory of elliptic equations[END_REF]Chapter 2] for more details about them).

For any positive integer s and p ≥ 1, we define the Sobolev space W s,p (Λ ) to be the completion of C s (Λ ), with respect to the norm

||u|| s,p,Λ =   0≤|α|≤s |D α u| p p,Λ   1/p . Observe that W s,p (Λ ) is a Banach space.
By the Sobolev embedding Theorem (see [1, Chapter 4, p. 99]), we have the embedding

W s,p (Λ ) ⊂ W 1,r (Λ ), (17) 
where s ≥ 1 and

1 p -s-1 N ≤ 1 r ≤ 1 p .
In particular, for p ≥ 1, we define the Sobolev space W 1,p (Λ ) to be the completion of C 1 (Λ ), with respect to the norm

||u|| p,Λ := |u| p p,Λ + |∇u| p p,Λ 1/p , where | • | p,Λ is the norm in L p (Λ ). We set H 1 (Λ ) = W 1,2 (Λ ).
We define

p = N p N -p if p < N, +∞ if p = N.
We have the continuous embedding

W 1,p (Λ ) ⊂ L r (Λ ) if p < N and r = p , L r (Λ ) if p = N and p ≤ r < p . (18) 
By Rellich-Kondrachov Theorem (see [13, Chapter 9, Theorem 9.16]), we have the compact embedding

W 1,p (Λ ) ⊂ L r (Λ ) if p < N and 1 ≤ r < p , L r (Λ ) if p = N and p ≤ r < p . (19) 
In particular, we have the compact embedding

W 1,p (Λ ) ⊂ L 2 (Λ ), ∀ 2 ≤ p ≤ N. (20) 
One can define a family of spaces intermediate between L p and W 1,p . More precisely for p ≥ 1 we define the fractional order Sobolev space

W 1-1 p ,p (∂Λ ) := u ∈ L p (∂Λ ); |u(x) -u(y)| |x -y| 1-1 p + N p ∈ L p (∂Λ × ∂Λ ) ,
equipped with the natural norm. We set

H 1/2 (∂Λ ) = W 1 2 ,2 ( 
∂Λ ). These spaces play an important role in the theory of traces.

The trace operator is denoted by γ such that u → u| ∂Λ . This operator belongs to L(W 1,p (Λ ), W 1-1 p ,p (∂Λ )). We denote by ||γ|| the norm of γ in this space.

We will use • p,∂Λ to denote the norm in W 1-1 p ,p (∂Λ ), which is given by

φ p,∂Λ = inf{ u p,Λ : γ(u) = φ}.
We define

p b = (N -1)p N -p if p < N, +∞ if p = N.
We have the continuous embedding

W 1-1 p ,p (∂Λ ) ⊂ L r (∂Λ ) if p < N and r = p b , L r (∂Λ ) if p = N and 1 ≤ r < p b . (21) 
By [40, Chaper 2, Theorem 6.2], we have the compact embedding

W 1-1 p ,p (∂Λ ) := γ W 1,p (Λ ) ⊂ L r (∂Λ ) if 1 ≤ r < p b . (22) 
In particular, we have the compact embedding

W 1-1 p ,p (∂Λ ) ⊂ L 2 (∂Λ ) ∀ 2 ≤ p ≤ N. ( 23 
)
Some important notations for reading the paper:

We define a few notations. For Λ , we call In this paper, it is very important the following space

H p := L p (Λ ) × L p ∂Λ (∂Λ ) ,
V p := (u, γ(u)) : u ∈ W 1,p ∂Λ (Λ ) , ∀p ≥ 2,
where

W 1,p ∂Λ (Λ ) := {u ∈ W 1,p (Λ ) : γ(u) = 0 on ∂Λ}, ∀p ≥ 2.
Observe that V p is a closed vector subspace of

W 1,p ∂Λ (Λ ) × W 1-1 p ,p ∂Λ (∂Λ ) , where W 1-1 p ,p ∂Λ (∂Λ ) := {u ∈ W 1-1 p ,p (∂Λ ) : u = 0 on ∂Λ}, ∀p ≥ 2.
We endow it with the norm (•, •) Vp given by (u, γ(u))

p Vp = u p p,Λ + γ(u) p p,∂T , (u, γ(u)) ∈ V p .
Let p , q 1 and q 2 be the conjugate exponents of p, q 1 and q 2 , respectively. Taking into account the continuous embeddings ( 18) and ( 21), and the assumptions (2)-( 5), we have the following useful continuous inclusions

V p ⊂ W 1,p (Λ ) ⊂ L q1 (Λ ) ⊂ L 2 (Λ ), V p ⊂ W 1-1 p ,p (∂Λ ) ⊂ L q2 (∂Λ ) ⊂ L 2 (∂Λ ), (24) 
and

L 2 (Λ ) ⊂ L q 1 (Λ ) ⊂ W 1,p (Λ ) ⊂ V p , (25) 
where W 1,p (Λ ) and V p denote the dual of W 1,p (Λ ) and V p , respectively. Note that W 1,p (Λ ) is a subspace of W -1,p (Λ ), where W -1,p (Λ ) denotes the dual of the Sobolev space W 1,p 0 (Λ ) := D(Λ )

W 1,p (Λ )
.

Taking into account the compact embeddings ( 20) and ( 23), we have the compact embedding

V p ⊂ H 2 ∀ 2 ≤ p ≤ N. (26) 
Finally, for s ≥ 1, we consider the space

V s := (u, γ(u)) : u ∈ W s,2 ∂Λ (Λ ) .
We note that V s is a closed vector subspace of

W s,2 ∂Λ (Λ ) × W s-1 2 ,2 ∂Λ (∂Λ ) .
Observe that by [START_REF] Cioranescu | Un terme étrange venu d'ailleurs[END_REF], we have that W s,2 (Λ ) ⊂ W 1,2 (Λ ) and by Rellich's Theorem (see [40, Chapter 1, Theorem 1.4]), we obtain the compact embedding

W 1,2 (Λ ) ⊂ L 2 (Λ ),
and by [40, Chapter 1, Exercise 1.2], we have the compact embedding

W s-1 2 ,2 (∂Λ ) := γ 0 W s,2 (Λ ) ⊂ L 2 (∂Λ ).
Thus, we can deduce the compact embedding

V s ⊂ H 2 . ( 27 
)
3 Preliminary results

In the latter we will need the following results:

Remark 3.1 (Additional conditions on the nonlinear terms). Observe that we have the following conditions on the nonlinear terms:

|f 1 (s)| ≤ K 1 + |s| q1-1 , |f 2 (s)| ≤ K 1 + |s| q2-1 , for all s ∈ R, K > 0. ( 28 
)
Theorem 3.2 (Existence and uniqueness of solution of ( 10)). Assume ( 2)-( 8), then there is a unique solution (v , φ ) of the problem [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF] such that, for all

T > 0, v ∈ C([0, T ]; L 2 (Λ )) ∪ L p (0, T ; W 1,p (Λ )), φ ∈ C([0, T ]; L 2 ∂Λ (∂Λ )) ∪ L p (0, T ; W 1-1 p ,p ∂Λ (∂Λ )) where γ(v (t)) = φ (t) a.e. t ∈ (0, T ].
We have that (v , φ ) satisfies

d t (v (t), w) Λ + d t (φ (t), γ(w)) ∂T + (|∇v (t)| p-2 ∇v (t), ∇w) Λ + α(|v (t)| p-2 v (t), w) Λ (29) 
+(f 1 (v (t)), w) Λ + (f 2 (φ (t)), γ(w)) ∂T = 0, ∀w ∈ W 1,p ∂Λ (Λ ), in D (0, T ), with the initial condition v (0) = v 0 , and φ (0) = φ 0 , (30) 
where (•, •) Λ is the inner product in L 2 (Λ ) or (L 2 (Λ )) N and the duality product between L r (Λ ) and L r (Λ ) if r = 2, and (•, •) ∂T is the inner product in L 2 (∂T ) and the duality product between L r (∂T ) and L r (∂T ) if r = 2.

Moreover (v , φ ) satisfies the energy equality

1 2 d t |(v (t), φ (t))| 2 H2 + |∇v (t)| p p,Λ + α|v (t)| p p,Λ +(f 1 (v (t)), v (t)) Λ + (f 2 (φ (t)), φ (t)) ∂T = 0, a.e. t ∈ (0, T ). ( 31 
)
Proof. It is based on the theory of monotonicity of Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF]. We will show that operator B p : V p → V p , given by B p ((w, γ(w))), (u, γ(u)) := (|∇w| p-2 ∇w, ∇u

) Λ + α(|w| p-2 w, u) Λ , ∀w, u ∈ W 1,p ∂Λ (Λ ) , (32) 
is coercive, that is B p ((w, γ(w)) , (w, γ(w))) (w, γ(w)) Vp → +∞ when (w, γ(w)) Vp → +∞.

We have

B p ((w, γ(w)) , (w, γ(w))) ≥ min{1, α} w p p,Λ (33) 
= 1 1 + γ p min{1, α} w p p,Λ + γ p 1 + γ p min{1, α} w p p,Λ ≥ 1 1 + γ p min{1, α} (w, γ(w)) p Vp , ∀w ∈ W 1,p ∂Λ (Λ ),
so B p is coercive. By [38, Ch.2,Th.1.4], we have that ( 29)-( 30) has a unique solution and satisfies the energy equality.

Remark 3.3 (Energy inequality)

. By (31) and using (3) and ( 6), we obtain the energy inequality And since |Λ | ≤ |Λ|, we have that

d t |(v (t), φ (t))| 2 H2 + 2|∇v (t)| p p,Λ + 2α|v (t)| p p,Λ + 2η 1 |v (t)| q1 q1,Λ (34) 
|Λ | + |∂T | ≤ K, K > 0. ( 35 
)
4 Some estimates for the solution of ( 10)

If we denote F 1 (s) := s 0 f 1 (r)dr and F 2 (s) := s 0 f 2 (r)dr, we can deduce that η 1 |s| q1 -λ ≤ F 1 (s) ≤ η 2 |s| q1 + λ ∀s ∈ R, (36) 
and

η 1 |s| q2 -λ ≤ F 2 (s) ≤ η 2 |s| q2 + λ ∀s ∈ R. ( 37 
)
with η i , λ > 0, i = 1, 2.

Lemma 4.1. We suppose ( 2)-( 7) and ( 9). There is a constant K independent of , such that the solution (v , φ ) of the problem (10) satisfies

v p,Λ , T ≤ K, sup t∈[0, T ] v (t) p,Λ ≤ K, (38) 
for any initial condition (v 0 , φ 0 ) ∈ V p , and where || • || p,Λ , T is the norm in L p (0, T ; W 1,p (Λ )).

Proof. Using [START_REF] Gómez | Homogenization for the p-Laplace operator in perforated media with nonlinear restrictions on the boundary of the perforations: a critical case[END_REF] in [START_REF] Gómez | Unilateral problems for the p-Laplace operator in perforated media involving large parameters[END_REF], we obtain

d t |(v (t), φ (t))| 2 H2 + 2|∇v (t)| p p,Λ + 2α|v (t)| p p,Λ + 2η 1 |v (t)| q1 q1,Λ + 2η 1 |φ (t)| q2 q2,∂T ≤ K. (39) 
From ( 32)- [START_REF] Gómez | Homogenization for the p-Laplace operator and nonlinear Robin boundary conditions in perforated media along (n-1)-dimensional manifolds[END_REF], in particular, we can deduce

d t |(v (t), φ (t))| 2 H2 + 2 min{1, α} 1 + γ p ||(v (t), γ(v (t)))|| p Vp ≤ K. (40) 
We integrate between 0 and t and taking into account [START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure[END_REF], in particular, we have the first estimate in [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF].

In order to obtain the second estimate in [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF], we have to take the inner product in the problem (10) with v . To do this, we need that v ∈ L p (0, T ; W 1,p ∂Λ (Λ )) ∩ L q1 (0, T ; L q1 (Λ )) with γ(v ) ∈ L q2 (0, T ; L q2 ∂Λ (∂Λ )). As we do not have it for our solution, we have to use the Galerkin method with the properties of B p given by [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF].

At first, we introduce a special basis consisting of functions (u j , γ(u j )) ∈ V s with s ≥ N (p-2) 2p + 1 in the sense of [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF]Chapter 2,Remark 1.6,p. 161]. Therefore, thanks to the assumption made on s, taking into account [START_REF] Cioranescu | Un terme étrange venu d'ailleurs[END_REF], we have V s ⊂ V p . The scalar product in H 2 generates on V s ⊂ H 2 the bilinear functional ((w, γ(w)), (u, γ(u))) H2 which can be represented in the form ((w, γ(w)), (u, γ(u))) H2 = L((w, γ(w))), (u, γ(u)) Vs , where L is a self-adjoint operator. The compact embedding [START_REF] Favini | The heat equation with nonlinear general Wentzell boundary condition[END_REF] implies the compactness of the operator L. Hence, L has a complete system of eigenvectors {(u j , γ(u j )) : j ≥ 1}. These vectors are orthonormal in H 2 and orthogonal in V s . Observe that span{(u j , γ(u j )) : j ≥ 1} is dense in V p .

We use the Galerkin approximation of the solution of [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF] given by (v ,n (t), γ(v ,n (t))) = n j=1 σ nj (t)(u j , γ(u j )), n ≥ 1 [START_REF] Shaposhnikova | Homogenization limit for the boundary value problem with the p-Laplace operator and a nonlinear third boundary condition on the boundary of the holes in a perforated domain[END_REF] such that

d t ((v ,n (t), γ(v ,n (t))), (u j , γ(u j ))) H2 + B p ((v ,n (t), γ(v ,n (t)))), (u j , γ(u j )) +(f 1 (v ,n (t)), u j ) Λ + (f 2 (γ(v ,n (t))), γ(u j )) ∂T = 0, j = 1, . . . , n, (42) 
(v ,n (0), γ(v ,n (0))) = (v 0 ,n , γ(v 0 ,n )), (43) 
and

σ nj (t) = (v ,n (t), u j ) Λ + (γ(v ,n (t)), γ(u j )) ∂T . As (v 0 , φ 0 ) ∈ V p , there is (v 0 ,n , γ(v 0 ,n )) ∈ span{(u j , γ(u j )) : 1 ≤ j ≤ n}, such that ||(v 0 ,n , γ(v 0 ,n ))|| Vp ≤ K, K > 0. ( 44 
)
We multiply by σ nj in ( 42), we sum from j = 1 to n, and we obtain

|(v ,n (t), γ(v ,n (t)))| 2 H2 + 1 p d t ( B p ((v ,n (t), γ(v ,n (t)))), (v ,n (t), γ(v ,n (t))) ) +(f 1 (v ,n (t)), v ,n (t)) Λ + (f 2 (γ(v ,n (t))), γ(v ,n (t))) ∂T = 0. ( 45 
)
Now, we integrate between 0 and t, using ( 33) and ( 35)-( 37), we can deduce

t 0 |(v ,n (s), γ(v ,n (s)))| 2 H2 ds + min{1, α} 1 + γ p 1 p ||(v ,n (t), γ(v ,n (t)))|| p Vp + η 1 |v ,n (t)| q1 q1,Λ + |γ(v ,n (t))| q2 q2,∂T ≤ max{1, α} p ||(v 0 ,n , γ(v 0 ,n ))|| p Vp + η 2 |v 0 ,n | q1 q1Λ + |γ(v 0 ,n )| q2 q2,∂T + 2 λK,
for all t ∈ (0, T ). In order to estimate the right hand side of the last inequality we use [START_REF] Donato | On the homogenization of some nonlinear problems in perforated domains[END_REF] together with (44) and 1. In particular, we can deduce

t 0 |(v ,n (s), γ(v ,n (s)))| 2 H2 ds + min{1, α} 1 + γ p 1 p ||(v ,n (t), γ(v ,n (t)))|| p Vp ≤ K, (46) 
for all t ∈ (0, T ). Now, if we argue as in the proof of [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]Lemma 4.5], we can deduce

sup t∈[0, T ] (v (t), γ(v (t))) Vp ≤ K,
and, in particular, the second estimate in ( 38) is proved. Now, we use the following extension result given by Donato and Moscariello [24, Lemma 2.4]:

Let v ∈ W 1,p 0 (Λ) be a W 1,p -extension of v , that satisfies the following condition |∇v | p,Λ ≤ K|∇v | p,Λ , K > 0. ( 47 
)
Corollary 4.2. We suppose the assumptions in Lemma 4.1. Then, there are a constant K independend on and a W 1,p -extension v of the solution v of (10) into Λ × (0, T ), such that

v p,Λ, T ≤ K, sup t∈[0, T ] v (t) p,Λ ≤ K, (48) 
where || • || p,Λ, T is the norm in L p (0, T ; W 1,p (Λ)) and || • || p,Λ is the norm in W 1,p (Λ).

Convergence result

Proposition 5.1. We suppose the assumptions in Lemma 4.1. Then, there is a function v ∈ L p (0, T ; W 1,p 0 (Λ)) such that, at least after extraction of a subsequence, we obtain

v (t) v(t) in W 1,p 0 (Λ), ∀t ∈ [0, T ], ∀ T > 0, (49) v 
(t) → v(t) in L p (Λ), ∀t ∈ [0, T ], ∀ T > 0, (50) 
|v (t)| p-2 v (t) → |v(t)| p-2 v(t) in L p (Λ), ∀t ∈ [0, T ], ∀ T > 0, (51) 
f 1 (v (t)) → f 1 (v(t)) in L q 1 (Λ), ∀t ∈ [0, T ], ∀ T > 0, (52) 
where " " denotes the weak convergence and "→" denotes the strong convergence.

Moreover, there is a function ρ ∈ L p (0, T ; L p (Λ)) such that, at least after extraction of a subsequence, we obtain

ρ ρ in L p (0, T ; L p (Λ)), ∀ T > 0, ( 53 
)
where ρ is given by

ρ = ρ in Λ × (0, T ), 0 in (Λ \ Λ ) × (0, T ), ( 54 
)
with ρ := |∇v | p-2 ∇v .
Finally, we suppose that f 2 ∈ C 1 (R). Then, we obtain

f 2 (v (t)) → f 2 (v(t)) in L r (Λ), ∀t ∈ [0, T ], ∀ T > 0, (55) 
f 2 (v (t)) f 2 (v(t)) in W 1,r 0 (Λ), ∀t ∈ [0, T ], ∀ T > 0, (56) 
where r > 1 is given by

r ∈ (1, p) if p = N, r = N p (N -p)(q 2 -2) + N if p < N,
with q 2 satisfying (11).

Proof. If we argue as in the proof of [5, Proposition 5.1], we obtain (49)-( 50) and ( 52)-(53).

On the other hand, observe that ||w| p-2 w| ≤ C(1 + |w| p-1 ).

Using [START_REF] Conca | Homogenization in chemical reactive flows[END_REF]Theorem 2.4] with G(x, w) = |w| p-2 w, t = p and r = p, we can deduce that w ∈ L p (Λ) → |w| p-2 w ∈ L p (Λ) is continuous in the strong topologies. And, using (50), we can deduce (51).

For the nonlinear term f 2 , we separate the cases p < N and p = N . We argue as in the proof of [START_REF] Anguiano | Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media[END_REF]Proposition1] in order to obtain (55)-(56).

Study of the limit problem

Let w ∈ D(Λ) be a test function. We multiply (10) by w and integrating by parts, we can deduce, in D (0, T ), the following variational formulation

d t Λ ω Λ v (t)wdx + d t ∂T γ(v (t))wdσ(x) + Λ ρ • ∇wdx +α Λ ω Λ |v (t)| p-2 v (t)wdx + Λ ω Λ f 1 (v (t))wdx + ∂T f 2 (γ(v (t)))wdσ(x) = 0,
where ω Λ is the characteristic function of the domain Λ . Observe that the main difference with [5, Theorem 6.1] is the presence of the term

Λ ω Λ |v (t)| p-2 v (t)wdx.
We use ϑ ∈ C 1 c ([0, T ]) with ϑ( T ) = 0 and ϑ(0) = 0. We multiply by ϑ and we integrate between 0 and T , in order to obtain

-ϑ(0) Λ ω Λ v (0)wdx - T 0 d dt ϑ(t) Λ ω Λ v (t)wdx dt -ϑ(0) ∂T γ(v (0))wdσ(x) - T 0 d dt ϑ(t) ∂T γ(v (t))wdσ(x) dt + T 0 ϑ(t) Λ ρ • ∇wdxdt + α T 0 ϑ(t) Λ ω Λ |v (t)| p-2 v (t)wdxdt (57) + T 0 ϑ(t) Λ ω Λ f 1 (v (t))wdxdt + T 0 ϑ(t) ∂T f 2 (γ(v (t)))wdσ(x)dt = 0.
We separately analyze the special term

T 0 ϑ(t) Λ ω Λ |v (t)| p-2 v (t)wdxdt.
Taking into account (51), using [START_REF] Cioranescu | An Introduction to Homogenization[END_REF]Theorem 2.6] and Lebesgue's Dominated Convergence Theorem, we can deduce

T 0 ϑ(t) Λ ω Λ |v (t)| p-2 v (t)wdxdt → θ * T 0 ϑ(t) Λ |v(t)| p-2 v(t)wdxdt, if → 0, where θ * = |Z * |/|Z|.
For the other terms we reason as in the proof of [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]Theorem 6.1]. Then, as → 0 in (57), we have

-ϑ(0) (θ * + θ T ) Λ v(0)wdx -(θ * + θ T ) T 0 d dt ϑ(t) Λ v(t)wdx dt + T 0 ϑ(t) Λ ρ • ∇wdxdt + α θ * T 0 ϑ(t) Λ |v(t)| p-2 v(t)wdxdt (58) +θ * T 0 ϑ(t) Λ f 1 (v(t))wdxdt + θ T T 0 ϑ(t) Λ f 2 (v(t))wdxdt = 0, where θ T = |∂T |/|Z|.
We observe that the function ρ satisfies

(θ * + θ T ) ∂ t v-divρ+θ * α|v| p-2 v+f 1 (v) +θ T f 2 (v) = 0, in Λ × (0, T ). ( 59 
)
Following the proof of [24, Theorem 3.1], we can deduce that

ρ = b (∇v) a.e. in Λ × (0, T ), ( 60 
)
where b is defined by [START_REF] Cioranescu | An Introduction to Homogenization[END_REF].

We observe that v satisfies ( 12) using ( 59) and (60). The boundary condition ( 13) is obviously satisfied. Moreover, taking into account (60) in (58), we obtain exactly the variational formulation of the limit problem ( 12)-( 14), so we get the initial condition [START_REF] Cioranescu | The periodic Unfolding Method in Homogenization[END_REF]. A weak solution v of ( 12)-( 14) satisfies v ∈ C([0, T ]; L 2 (Λ)) ∪ L p (0, T ; W 1,p 0 (Λ)), for all T > 0, and

(θ * + θ T ) d t (v(t), w) Λ + (b (∇v(t)) , ∇w) Λ + θ * α(|v(t)| p-2 v(t), w) Λ (61) +θ * (f 1 (v(t)), w) Λ + θ T (f 2 (v(t)), w) Λ = 0, ∀w ∈ W 1,p 0 (Λ),
in D (0, T ) and with the initial condition

v(0) = v 0 , (62) 
where (•, •) Λ is the inner product in L 2 (Λ) or (L 2 (Λ)) N and the duality product between L r (Λ) and L r (Λ) if r = 2.

The existence and uniqueness of solution of ( 12)-( 14) is based on the theory of monotonicity of Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF]. We give a sketch of a proof.

We take into account the structure properties of b, in particular, from [24, Lemmas 2.10-2.13]), for any

ζ ∈ R N , we have |b(ζ)| ≤ c(1 + |ζ|) p-1 , (63) 
where c > 0, and for

ζ 1 , ζ 2 ∈ R N , we have (b(ζ 1 ) -b(ζ 2 ), ζ 1 -ζ 2 ) ≥ κ|ζ 1 -ζ 2 | p , if p ≥ 2, (64) 
where κ > 0.

On the space W 1,p 0 (Λ) we define the nonlinear monotone operator B p : W 1,p 0 (Λ) → (W 1,p 0 (Λ)) , given by

B p (w), u := C 1 (b(∇w), ∇u) Λ + C 1 θ * α(|w| p-2 w, u) Λ , ∀w, u ∈ W 1,p 0 (Λ) , (65) 
where

C 1 = (θ * + θ T ) -1 .
Taking into account (64) with ζ 1 = ∇w and ζ 2 = 0, we can deduce

B p (w) , w = C 1 (b(∇w), ∇w) Λ + C 1 θ * α|w| p p,Λ (66) 
≥ C 1 κ|∇w| p p,Λ + C 1 Λ b(0)∇wdx + C 1 θ * α|w| p p,Λ , ∀w ∈ W 1,p 0 (Λ), where | • | p,Λ is the norm in L p (Λ).
On the other hand, using (63) with ζ = 0 and Young's inequality, we can deduce

Λ b(0)∇wdx ≤ Λ c|∇w|dx ≤ 2 pκ c p p |Λ| + κ 2 |∇w| p p,Λ , (67) 
where |Λ| denotes the measure of Λ and p is the conjugate exponent of p.

Then, taking into account (67) in (66), we obtain

B p (w) , w + C 1 2 pκ c p p |Λ| ≥ C 1 κ 2 |∇w| p p,Λ + C 1 θ * α|w| p p,Λ ≥ min{C 1 κ 2 , C 1 θ * α}||w|| p p,Λ , ∀w ∈ W 1,p 0 (Λ), so B p is coercive.
Now, we consider the following spaces and operators

V 1 = W 1,p 0 (Λ), V 2 = L q1 (Λ), V 3 = L q2 (Λ), B 1 (v) = B p , B 2 (v) = C 1 θ * f 1 (w), B 3 (v) = C 1 θ T f 2 (w).
We observe that from (28), we can deduce that B i :

V i → V i for i = 2, 3.
Taking into account the continuous embedding [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF] for Λ, and the assumptions ( 2) and ( 11), we have the following useful continuous inclusions

W 1,p 0 (Λ) ⊂ W 1,p (Λ) ⊂ L q1 (Λ) ⊂ L 2 (Λ), W 1,p 0 (Λ) ⊂ W 1,p (Λ) ⊂ L q2 (Λ) ⊂ L 2 (Λ), (68) 
and

L 2 (Λ) ⊂ L q 1 (Λ) ⊂ W 1,p (Λ) ⊂ W 1,p 0 (Λ) , L 2 (Λ) ⊂ L q 2 (Λ) ⊂ W 1,p (Λ) ⊂ W 1,p 0 (Λ) , (69) 
where W 1,p (Λ) and W 1,p 0 (Λ) denote the dual of W 1,p (Λ) and W 1,p 0 (Λ), respectively.

Finally, if we apply [38, Ch.2,Th.1.4], we have that ( 61)-( 62) has a unique solution. As v is uniquely determined, the whole sequence v converges to v and this completes the proof of Theorem 1.1.

Conclusions

In this paper, we consider a parabolic model in a perforated media Λ ⊂ R N (N ≥ 2) with periodically distributed holes of size . The p-Laplacian operator appears in wide range of scientific fields, for instance in fluid dynamics (e.g. flow in a porous media), nonlinear elasticity, glaciology and image restoration. In this sense, in Λ × (0, T ), with T > 0, we consider the p-Laplace heat equation 

∂ t v -∆ p v + α|v | p-2 v = -f 1 (v ),
and taking into account that

d t Λ F 1 (v (t))dx = (f 1 (v (t)), v (t)) Λ ,
then, we observe that this energy functional is decreasing.

In this paper, instead of Dirichlet or Neumann boundary condition, we consider a boundary condition, which depends on the time, on the boundary of the holes. In this sense, we add to (70) the following energy functional

E ∂T (v (t)) := ∂T F 2 (v (t))dx, ( 71 
)
where T is the set of all the holes contained in a bounded open set Λ ⊂ R N and F 2 is a nonlinear function such that F 2 = s 0 f 2 (r)dr. Then, we obtain a total energy functional E(v (t)) = E Λ (v (t)) + E ∂T (v (t)), which, using integration by parts, is decreasing for all time t ≥ 0 if we consider the following dynamic boundary condition on the boundary of the holes

∂ νp v + ∂ t v = -f 2 (v ),
where ∂ νp v = |∇v | p-2 ∇v • ν, with ν the outward normal to ∂T , and Dirichlet boundary condition on the boundary of Λ.

We extend the results of [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF] obtained for p = 2 to the case 2 ≤ p ≤ N . The main result of this paper (Theorem 1.1) could be summarized by the following expansion for v v ∼ v, where v is the W 1,p -extension of v to Λ and v is the solution of a parabolic model coming the homogenization in the porous media.

Using the present study as a starting point, various improvements can be proposed. The first one is the generalization of the asymptotic study to a other types of nonlinear diffusion (and not only p-Laplacian operator). For instance, it is very interesting if the operators ∆ p v and ∂ νp v from [START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF] Another possible way is to study this parabolic model in a thin porous media (see, for instance, [START_REF] Anguiano | On the non-stationary non-Newtonian flow through a thin porous medium[END_REF][START_REF] Anguiano | Carreau law for non-Newtonian fluid flow through a thin porous media[END_REF][START_REF] Anguiano | The Transition Between the Navier-Stokes Equations to the Darcy Equation in a Thin Porous Medium[END_REF][START_REF] Anguiano | Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium[END_REF][START_REF] Suárez-Grau | Mathematical modeling of micropolar fluid flows through a thin porous medium[END_REF][START_REF] Suárez-Grau | Theoretical derivation of Darcy's law for fluid flow in thin porous media[END_REF] for more details on the importance of this type of domains). Finally, another problem could be to consider a porous media containing a thin fissure. This type of domain is very interesting because it models cracks in geological strata (see, for instance, [START_REF] Anguiano | Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure[END_REF][START_REF] Anguiano | Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure[END_REF][START_REF] Anguiano | Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure[END_REF][START_REF] Anguiano | Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium[END_REF] for more details). Mathematical models of such domains include several small parameters, one is connected to the domain height or the width of a thin fissure and the others to the microstructure. This approach could be very interesting.

+2η 1

 1 |φ (t)| q2 q2,∂T ≤ 2λ (|Λ | + |∂T |) , where |Λ | (respectively |∂T |) denotes the measure of Λ (respectively ∂T ).

Remark 3 . 4 (

 34 Estimates for the measures of Λ and ∂T ). Taking into account the number of holes, we can deduce (see[START_REF] Anguiano | Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media[END_REF] Section 4] for more details)|∂T | ≤K , K > 0.

  where ∆ p v := div |∇v | p-2 ∇v , and f 1 is the derivative of a potential function F 1 , that is, F 1 (s) = s 0 f 1 (r)dr. The usual boundary conditions considered in the literature are Dirichlet or Neumann. With this standard boundary condition, if we consider the following energy functionalE Λ (v (t)) := Λ 1 p |∇v (t)| p + α p |v (t)| p + F 1 (v (t)) dx,

  are replaced by the operators div (a (|∇v |) ∇v ) and b(x)a (|∇v |) ∇v • ν, where b ∈ L ∞ (∂T ), b ≥ b 0 > 0 and a ∈ C 1 R N , R is a monotone nondecreasing function such that there are two positive constants c 1 , c 2 such that |a(y)| ≤ c 1 (1 + |y| p-2 ), a(y)|y| 2 ≥ c 2 |y| p , ∀y ∈ R N .