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Abstract. In wireless communication, the full potential of multiple-input multiple-
output (MIMO) arrays can only be realized through optimization of their trans-
mission parameters. Distributed solutions dedicated to that end include iterative
optimization algorithms involving the computation of the gradient of a given ob-
jective function, and its dissemination among the network users. In the context of
large-scale MIMO, however, computing and conveying large arrays of function
derivatives across a network has a prohibitive cost to communication standards.
In this paper we show that multi-user MIMO networks can be optimized with-
out using any derivative information. With focus on the throughput maximization
problem in a MIMO multiple access channel, we propose a “derivative-free” opti-
mization methodology relying on very little feedback information: a single func-
tion query at each iteration. Our approach integrates two complementary ingre-
dients: exponential learning (a derivative-based expression of the mirror descent
algorithm with entropic regularization), and a single-function-query gradient esti-
mation technique derived from a classic approach to derivative-free optimization.

Keywords: derivative-free optimization - zeroth-order optimization - exponen-
tial learning - MIMO systems - throughput maximization- SPSA.

1 Introduction

The appeal of multiple-input and multiple-output (MIMO) technologies in wireless
communication is their ability to increase throughputs significantly and to improve the
systems’ robustness to ambient noise and channel fluctuations [1, 7]. On this account,
large-scale deployment of multiple-input and multiple-output (MIMO) terminals is per-
ceived as one of the key enabling technologies for next-generation wireless networks.

Releasing the full potential of large MIMO arrays requires, however, a principled
approach to optimization, with the aim of minimizing computational overhead and re-
lated expenditures.

* The authors are grateful for financial support from the French National Research Agency
(ANR) projects ORACLESS (ANR-16-CE33-0004-01) and ELIOT (ANR-18-CE40-0030
and FAPESP 2018/12579-7). The research of P. Mertikopoulos has also received financial sup-
port from the COST Action CA 16228 ‘European Network for Game Theory’ (GAMENET).
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An essential aspect of the emblematic throughput maximization problem resides in
the optimization of MIMO transmission parameters (such as the users’ signal covari-
ance matrices) [2, 5, 15, 16, 18]. In multi-user networks, conventional optimization
methods involve the use of water-filling (WF) techniques [13, 14, 18], which invariably
rely on the availability of perfect channel state information at the transmitter (CSIT),
and are vulnerable to observation noise, asynchronicities, and other operational imped-
iments that arise in real-world networks.

More recently proposed in [12] as an alternative to water-filling, the matrix expo-
nential learning (MXL) algorithm proceeds incrementally by combining (stochastic)
gradient steps with a matrix exponential mapping that ensures feasibility of the users’
signal covariance variables. In so doing, MXL guarantees fast convergence in cases
where WF methods demonstrably fail. On the negative side, an important implementa-
tion bottleneck of MXL is the requirement to (i) invert a relatively large matrix at the
receiver; and (if) broadcast the resulting matrix to all connected users>. In consequence,
the computation and communication overhead of MXL quickly becomes prohibitive in
larger MIMO systems.

In this paper, we focus on the problem (stated in Section 2) of throughput maxi-
mization in a MIMO multiple access channel (MAC), with the objective to overcome
the above limitations of the MXL by means of zeroth-order optimization, i.e., by mak-
ing no gradient computations whatsoever. Following a classic approach from the simul-
taneous perturbation stochastic approximation (SPSA) framework [6, 17], we devise
in Section 3 a “gradient-free” optimization algorithm by plugging into the chassis of
the original MXL method a gradient estimator based no longer on first-order feedback
but on function queries (a single one at each iteration). Our developments are followed
by a discussion on the performances and potential of gradient-free matrix exponential
learning (Section 4).

Notation We use bold capital letters for matrices, saving the letters k, [ for user assign-
ments and ¢, s for time indices, so that e.g., matrix Qy relates to user &, Q, to time ¢, and
Q. to user k at time .

2 Problem statement

Consider a MIMO network where K users are transmitting simultaneously to a wireless
receiver equipped with N antennas over a shared Gaussian vector MAC, modeled by

K
y= Z Hix; +z,
=1

where y € CV is the signal at the reception, My, x; € C¥ and H; € CV*M* respectively
denote the number of antennas, the transmitted messages and the channel matrix of
user k (k = 1,...,K), and z € C models additive zero-mean Gaussian noise with unit

3 In a MIMO array with N = 128 receive antennas, this would correspond to transmitting ap-
proximately 65 kB of data per frame, thus exceeding typical frame size limitations by a factor
of 50x to 500x depending on the specific standard [9].
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covariance. Without loss of generality, we assume every user to possess at least two
antennas (My > 2). Let P; be the maximum mean power consumption of user k due to
transmissions, and let

1 t
Q= P—k]E[Xka]

denote the normalized covariance matrix of x;. By definition, the matrix Qy is Hermitian—
we write Q; € Herm (M} )—and positive semidefinite.

Our goal is to maximize, under the maximum available transmit power constraint
tr(Qy) < 1 for k = 1,..., K, the achievable sum rate under successive interference
cancellation (SIC),

K
R(Q) = log det (1 + Z Py HkaHZ) (1)

k=1
where the aggregate form Q = (Qy, ..., Qk) contains all the unknowns of the problem.

Since the maximum sum rate is achieved at a boundary point Q where tr(Q;) = --- =
tr(Qkx) = 1, the search domain of the problem is confined to the Cartesian product
set @ = Qp X -+ X Qg, where

Ok = {Qx € Herm (M) : tr(Qr) = 1,Qy = 0}

is a compact subset of a dy-dimensional real subspace, with d; = M,f — 1 > 0 for every
user k.
The throughput maximization problem can be stated as the convex program:

maximize R(Q)

subjectto Q € Q. (RM)

The structure of the feasible set @ makes the problem amenable to parallel optimization
settings where (RM) is regarded as a collection of K sub-problems

maximize R(Qx; Q_z)

subject to Q; € Qy (RMy)

to be solved in parallel by the users. Equivalently, (RMy) can be interpreted as maxi-
mizing the achievable transmission rate of user k when single-user decoding (SUD) is
performed at the receiver,

Ri(Qr; Q—) := R(Q) = R(Q1, ..., Qi=1,0, Qis1, - . ., Qx), (2)

given the covariance matrices of the remaining users, thus regarding the interference
due to the signals sent by other users as colored noise. Since the achievable sum rate (1)
is a concave potential function for the game defined by (2), the solutions of (RM) are the
solutions of the Nash equilibrium problem defined by (2), i.e. any solution Q* of (RM)
satisfies, fork =1,..., K,

Re(Q: Q%) = Ri(Qi: Q%) VQr € Q. (NE)

and conversely. In other words, maximizing the achievable sum rate under SIC is equiv-
alent to equilibrating the individual transmission rates (2) under SUD.
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Many optimization methods rely on derivative information. Differentiation of the
achievable sum rate (1) gives us the gradient VR = (V|R,...,VgR) where, for k =
1,...,K,

X -1
I+ Z P, H]QlH

=1

ViR(Q) = PH,' H;. A3)

Making the derivatives V;R(Q) available to the users implies the inversion of the N X
N Hermitian matrix I + Z{il P, H;QIHIT at the receiver, followed by the broadcast of
the result towards the users, which then are able to compute (3) locally. On account
that the communication overhead induced by the dissemination of the gradient may
be prohibitive, we proceed under the assumption that the gradient is not accessible to
the users, which instead are required to compute their own estimates of ViR, based no
longer on derivative information but on mere measurements of R(Q).

3 Derivative-free matrix exponential learning

3.1 The MXL algorithm

Among the existing (derivative-based) methods of solution for (RM) is the matrix ex-
ponential learning (MXL) [10], which in our developments will serve both as reference
and as a starting point. We refer to [3, 11] for a characterization of the MXL algorithm
as an instance of the mirror descent algorithm implemented with the von Neumann rela-
tive entropy for Bregman divergence Given an initial point Yo =Y; =(0,...,0) in the
space of the gradients Q" = Q] X --- X Qy, where Q; = {Y€Herm (M) : tr(Yk) = 0},
the #-th step of the algorithm is defined for # > 1 by

Qz = A(Yz),

N MXL
Y =Y, +vV, ( )

where {Q} denotes the issued sequence of estimates for the optimal configuration, {Y,}

is a sequence generated in the space of the gradients, {y,} is a sequence of positive

step sizes, V, = (V1 PR VK,) € Q" is an estimate of the gradient VR(Q;), and we set
=(Ay,...,\g), where the exponential learning mapping /Ay is defined by

exp(Yy)
tr(exp(Yy))’

in which exp denotes the (matrix) complex exponential function.

In contrast to the available implementations of MXL, which rely on full/noisy [10]
or partial [8] gradient feedback for the computation of V,, the gradient estimates V, in
this work are derived without gradient information, as explained in Section 3.2.

Aw(Yy) =

3.2 Derivative-free MXL

Description of the the gradient-free MXL. Our developments build on an early ap-
proach to derivative-free optimization [6, 17] which, in time, has been seen as the cor-
nerstone to the field of simultaneous perturbation stochastic approximation (SPSA).
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After translation into our distributed, Hermitian setting, the SPSA approach can be de-
scribed as follows.

In the absence of any gradient feedback, each user k infers an estimate V; ~ VR of
their individual gradient, derived from randomized queries of the sum rate R in the close
neighborhood of the current iterate. For k = 1, ..., K, let r, > 0 and C; € Q; such that
the ball Cy + By, is entirely contained by Q. Concretely, each user k draws randomly,
uniformly, and independently, a matrix Z; on the sphere S;,—; = {Z; € Q,’; il = 1}

living in the dj-dimensional space Q;, and we let Z = (Zy, ..., Zg) aggregate the ran-
dom matrices of all users. The gradient estimator for user k = 1,..., K is then defined
as J
Vi@ = SRQZ. (SPSA)
where Q = (Ql, e QK), and each test matrix
Qi = Qi+ £(Ci - Q) + 67, )

is derived from Qy after deviation by random quantity 6Zy, and prior shrinking of Oy
s0 as to keep the test configuration Q inside the feasible set. The presence in (SPSA)
of the factor d; = M,f — 1 can be explained as the ratio between the volumes of the
sphere 84,1 (where Z; is picked) and the containing ball By, = {Z; € Q; : || Z|» < 1}.
The distinguishing property of (SPSA) lies in that the the bias of the gradient esti-
mator can be controlled by the parameter ¢ as this bias is uniformly bounded over Q:

IEVi(Q. Z; p) = ViRQ)]II. = O(5) ®)

Besides, the norm of the gradient estimator (SPSA) satisfies

. 1
IVi(Q, Z; o)l = 0((—5) (6)

uniformly on Q. Equations (5) and (6) thus unveil a tradeoff between the O(5) bias of
the estimator and its 0(%) deviation from the true derivative. This bias—variance tradeoff
induces in the present context strict restrictions on the choice of the query radius ¢ and
of the step-size policy of the MXL algorithm, with consequences on the performance
of the algorithm, as discussed towards the end of the section.

See Algorithm 1 for a pseudocode description of the gradient-free optimization al-
gorithm obtained after combining MXL with (SPSA). Given a (typically non-increasing)
query radius sequence {0} and a step-size sequence {y,}, the task of user k at time step ¢
consists of (i) sampling a random direction Zy, € Oy, (ii) implementing the test covari-
ance matrix Qk,, obtained as in (4) by variation of the current covariance estimate Qy,
(iii) receiving the value of the achievable total transmission rate R(Q,), (iv) inferring
an estimate \A’k,, of the gradient along user direction &, and (v) updating Y, and Qy, in
accordance with (MXL).

Convergence of the gradient-free MXL. The convergence of the gradient-free ver-
sion of MXL is guaranteed with probability 1 on condition that the implementation
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Algorithm 1: Gradient-free MXL
Parameters : {y;};°, {0},
Init.: 7 < 1, Y < 0, Vk: transmit with Q; — I
1: Repeat until stopping criterion is reached
2 For k € {1,..., K} do in parallel
Sample Z; uniformly in S, _;
Transmit with Q, — Q, + %(C — Q) + 6,2
Receive feedback r — R(Q)
Voo ()
Y <Y+ %Vk
Qi — Aw(Yy)
3: te—t+1

(y — R(Qu))/(R* — R(Qu1))

1 B IRARAIL IR RRAL IR IR LT TTTTT I T LTI LI IR

1 10 102 103 104 105 106 t

Fig. 1. Convergence of the gradient-free algorithm (N = 16, K = 20, E[M;] = 3): Algorithm 1 is
run with policies (y;,6;) = (0.01£73/4,0.1 /), while MXL with full gradient feedback run with
decreasing step size policy y, = 0.0171/2,

parameters are chosen with care [3, 4]. Indeed, if Algorithm 1 is implemented with
non-increasing step-size and query-radius policies satisfying the conditions

@ Syzo 0 S L cow, (©610, @6 <min—m—— (¥,
‘ Zy Z‘ 52 ¢ ML D
™

then the sequences of estimates {Q,} and of test configurations {Q,} converge almost
surely towards the optimum Q*.

Numerical simulations. Figure 1 reports experimental results for a network with 16
antennas at the receiver and 20 homogeneous users equipped with, on average, 3 an-
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tennas. A comparison is made between the transmission rates iteratively realized by
Algorithm 1 and those of the reference MXL algorithm with perfect gradient feedback.
The gradient-free algorithm is run with decreasing step-size and query-radius sequences
chosen in accordance with (7).

It can be seen on Figure 1 that the gradient-based algorithm finds optimal config-
uration within a handful of iterations. If the gradient-free algorithm also progresses
towards the optimum, its convergence is less straightforward and much slower than
with full gradient feedback. This tendency to slowness, which can be explained by the
bias—variance tradeoff induced by the gradient estimator (SPSA), is only exacerbated
in networks of larger sizes, where high problem dimensionality creates a bottleneck
implying prohibitively slow convergence. In [3] it is shown that the convergence rate
of Algorithm 1 is at best O(1/ VT) after T iterations, in contast to the considerably
faster O(1/ NT ) rates that can be expected from the first-order methods.

4 Discussion and perspectives

Besides the very light nature of the feedback information it requires (a single query of
the objective function per iteration), the distributed, zeroth-order (derivative-free) opti-
mization methodology presented in this paper owes to the MXL algorithm the desirable
feature that it is both easy to implement, and flexible in the sense that it can be run
asynchronously for the users (cf. [3]). As seen in the previous section, its major draw-
back is slow convergence compared to gradient-based methods. The slowness issue is
addressed in detail in our more recent work [3], where the formulation of the gradient
estimator (SPSA) is revisited thoroughly in order to meet the O(1/ \NT ) convergence
rate of the first-order methods. The interested reader is referred to the developments and
discussions of [3] for an extensive analysis of the performances, possibilities, and guar-
antees of single-query zeroth-order optimization methods in the vein of Algorithm 1.
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