

Impact of cigarette butts on microbial diversity and dissolved trace metals in coastal marine sediment

Marianne Quemeneur, Sandrine Chifflet, Fourat Akrout, Amel Bellaaj-Zouari,

Malika Belhassen

▶ To cite this version:

Marianne Quemeneur, Sandrine Chifflet, Fourat Akrout, Amel Bellaaj-Zouari, Malika Belhassen. Impact of cigarette butts on microbial diversity and dissolved trace metals in coastal marine sediment. Estuarine, Coastal and Shelf Science, 2020, 240, pp.106785. 10.1016/j.ecss.2020.106785. hal-02881380

HAL Id: hal-02881380 https://hal.science/hal-02881380

Submitted on 22 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Impact of cigarette butts on microbial diversity and <mark>dissolved</mark> trace metals in coastal
2	marine sediment
3	
4	Marianne Quéméneur ^{1*} , Sandrine Chifflet ¹ , Fourat Akrout ² , Amel Bellaaj-Zouari ² , Malika
5	Belhassen ²
6	
7	Author addresses
8	¹ Aix-Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of
9	Oceanography, Marseille, France
10	² Institut National des Sciences et Technologies de la Mer, 28 rue 2 mars 1934 Salammbô 2025
11	Tunisia
12	
13	
14	* Corresponding author: Marianne Quéméneur
15	Aix-Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of
16	Oceanography, Marseille, France
17	E-mail address: <u>marianne.quemeneur@ird.fr</u>
18	
	1

19 Abstract

Cigarette butts are the most common plastic form of litter found in the marine coast, threatening the quality of the seawater and marine life. However, the impact of cigarette butts known to contain toxic chemicals has been investigated to date in very few marine species. This study aimed to evaluate the effects of cigarette filters (smoked or unsmoked) on the microbial diversity inhabiting coastal sediments by high-throughput sequencing of the 16S rRNA genes. Both bacterial structure and metals distribution were impacted by cigarette filter addition in laboratory sediment experiments, compared to control sediment incubations without filter. Both smoked and unsmoked cigarette filters decreased pH and dissolved Cd, Mo and V concentrations in marine sediment incubations, while they increased dissolved Fe, Mn, Zn levels in the surrounding environment. Smoked filters dramatically decreased the relative abundance of the phyla Bacteroidetes and Cyanobacteria, while the members of the phyla *Gammaproteobacteria*, *Firmicutes* and *Thermotogae* were enriched by smoked filters in marine sediments. Bacterial taxa associated with deep marine environments or hydrothermal seep fields were selected by smoked cigarette filters. This study demonstrated for the first time the microbial community changes and impacts from toxic cigarette filters in coastal marine sediments.

38 Keywords: cigarette butt, bacteria, diversity, marine sediments, trace metals, Mediterranean
39 Sea

1. Introduction

Cigarette butts (CB) are one of the most common plastic forms of litter found in the environment (Kadir and Sarani, 2015). From 5 to 6 trillion cigarettes were smoked worldwide every year by one billion smokers living in large majority in low- and middle-income countries (Dropp et al., 2018; Kostova et al., 2014; WHO, 2017; Zafeiridou et al., 2018). Most of them are discarded in the environment, and are transported by wind, rain, river, and marine currents to coastal areas. Nowadays, CB are the most collected item during the cleaning of beaches (Araujo and Costa, 2019; Addamo et al., 2017; Novotny et al., 2009). They can account for up to 40% of marine litter collected on beaches in some Mediterranean areas (Munari et al., 2016; Vlachogianni, 2019). CB are mainly composed of cellulose acetate, a kind of plastic, which slowly biodegrade for several years depending on environmental conditions (Benavente et al., 2019; Bonanomi et al., 2015). Moreover, CB are classified as hazardous waste according to European regulation (Rebinschung et al., 2018), mainly due to the toxic chemicals they contain, such as nicotine, metals (e.g. cadmium, arsenic) and others organic compounds derived from tobacco combustion (Shevchenko, 2012; Moriwaki et al., 2009; Moerman and Potts, 2011). Furthermore, it was estimated that a single CB could contaminate 1000 L of water (Green et al., 2014). Due to their toxicity and slow degradability, CB in marine ecosystems pose a potential human health risk through their transfer, fragmentation, accumulation in the food chain and subsequent consumption.

To date, the ecological risk due to CB pollution in marine ecosystems is largely underestimated (Kadir and Sarani, 2015). A recent review on CB pollution in coastal ecosystems has reported only a few studies involving the quantification of CB in coastal ecosystems, which are largely concentrated to American and European coasts (Araujo and Costa, 2019). Moreover, few

ecotoxicological studies have investigated the exposure and effects of CB on aquatic biota, despite the wide diversity of marine organisms. The few studies available reported that CB leachates were toxic to the marine bacterium Aliivibrio fischeri (formerly Vibrio fischeri) and the cladoceran Ceriodaphnia cf. dubia (Micevska et al., 2006), the marine fish Atherinops affinis (Slaughter et al., 2011), the polychaete worm *Hediste diversicolor* (Wright et al., 2015) and three intertidal snail species (Booth et al., 2015). It has been shown that CB were toxic to A. fischeri at 0.48 mg butts/L, and that smoked filters were more toxic than unsmoked filters (Micevska et al., 2006). However, the CB toxicity studied from a model microbial organism, such A. fischeri, could not predict the CB toxicity to the other microbial species found in the environment, because each species is involved in complex interactions and the marine environment presents a very diverse metabolically and phylogenetically microbial community (Micevska et al., 2006). Thus, studies using environmental samples with indigenous microorganisms are required to evaluate the effects of CB on marine ecosystems.

> Microbial communities play a critical role in coastal and marine ecosystems and pollutant transfer. The toxic chemicals entering marine ecosystems can seriously modify microbial diversity and their ecological functions (Zouch et al., 2018; Johnston et al., 2009; Gillan et al., 2005). Microbial diversity can also be used as a bioindicator of contaminant stress and ecological status of coastal ecosystems, because microbial communities are very sensitive to slight changes in their surrounding environment (Aylagas et al., 2017; Sun et al., 2012). Thus, microbial richness and activity of coastal sediment could be potentially affected by CB accumulation in their environments. Despite the abundant CB accumulation in the coastal ecosystems (due to their slow degradation rate), no studies have vet evaluated their potential impact on microbial diversity of marine sediments. In addition, sediments may act as an important sink for CB and associated trace metals (e.g. cadmium, lead) trapped in the cigarette

filter before being released into the environment. The composition and content of metals can
vary depending on CB (Chiba and Masironi, 1992), but only one study has evaluated the
distribution of associated trace metals released by CB in the coastal environment to date
(Dobaradaran et al., 2018).

This study aimed to evaluate for the first time the microbial community composition and diversity as a function of CB exposure and specifically the dissolved trace metals apparently leached into CB-contaminated sediments in an urban and highly frequented coastal environment. Here, the effects of both smoked and unsmoked cigarette filters were evaluated on microbial community structure, metal distribution and nutrient concentrations in laboratory sediment incubations. Microbial diversity was evaluated by high-throughput 16S rRNA gene sequencing analyses at the end of the 4-day experiments and compared to controls (without cigarette filter) as well as initial community.

104

105 2. Materials and Methods

2.1. Studied area

Sfax (with around 600,000 inhabitants) is the second largest city in Tunisia located on the southern coast of the Mediterranean Sea. Sfax is also located in the northern part of the Gulf of Gabès having the highest tides in the Mediterranean Sea (up to 2.3 m, Sammari et al., 2006), due to its large continental shelf with a very low slope. The southern coast of Sfax city, extending from the solar saltworks to the commercial harbor, is impacted by numerous polluting industrial sites discharging contaminants in coastal environments (Chifflet et al., 2019a; Zouch et al., 2017). The north coast, stretching for more than 10 km to the small village of Sidi Mansour, is more residential with the presence of beaches and small fishing ports, but it is affected by increasing urbanization in recent years due to rise in population. The studied area is in the northern coast of Sfax and corresponds to an urban beach intertidal area highly frequented by local people. This coastal area had a lot of waste including CB and other litter items (e.g. plastic bags and bottles, clothing, packaging) discarding by people or deposited by coastal currents and tides, wind and rains, as observed in most urban coastal areas frequented by people in Tunisia and other Mediterranean countries.

2.2. Sample collection

Surficial sediments (0–5-cm layer) were sampled in October 2018 from one location (34°46′05.2″N–10°48′49.9″E) at high tide and at 0.5 m from the shore with a plastic spatula and distributed in sterile plastic bags (~1 kg). Seawater was collected using a polyethylene precleaned bottle with HCl 10% v/v (analytical grade) then thoroughly rinsed with ultrapure water (R = 18.2 MΩ.cm⁻¹). Seawater and sediment samples were kept at 4°C until use (<3h after the

field sampling). The temperature and pH were measured *in situ* using the multiparameter Odeon probe (Poncel, France).

Twelve smoked cigarette filters (SF) were immediately collected after burning and the remnant tobacco was removed from filters using sterile gloves. Twelve unsmoked cigarette filters (USF) were also separated from tobacco according to this protocol. The smoked and unsmoked cigarette filters were separately stored in metal-free polypropylene tubes (VWR) at room temperature until used.

2.3. Microcosm experiments

Three experimental conditions were run in parallel and in triplicate: sediment incubations without filter (NF; NF1, NF2, NF3), sediment incubations with addition of one unsmoked filter (USF; USF1, USF2, USF3) and sediment incubations with addition of one smoked filter (SF; SF1, SF2, SF3). For experiments, 4 g of sediment were mixed with 40 mL of 0.22-µm filtered seawater through a sterile cellulose acetate filter (Minisart, Sartorius) locked on plastic sterile syringes (i.e. solid/liquid ratio of 10% w/w). Samples were introduced into 50 mL metal-free polypropylene tubes (VWR) and gently shaken before incubating for 96 hours (i.e. 4 days, a duration defined from our previous results on sediment incubations described by Zouch et al., 2017; Zouch et al., 2018; Chifflet et al., 2019b) and under outdoor conditions (i.e. exposed to ambient light and temperature). All experiments were performed in triplicates. At the beginning of the experiments (T0), the seawater supernatant was filtered (0.22-µm) and stored in a metal-free polypropylene tubes at -20° C until chemical analyses (i.e. nutrients and metals). At the end of the experiments (Tf), the cigarette filters (smoked or unsmoked) were removed from the tubes and the seawater supernatant was filtered (0.22-µm) and stored in a metal-free polypropylene tubes at -20° C until chemical analyses (i.e. nutrients and metals). The pH of experiments was measured using a pH-meter (inoLab 7110, WTW) calibrated with three

standard buffers (pH 4.0, 7.0 and 10.0 at 20 °C). Subsamples of sediment (T0 and Tf) were also
kept at -20°C for DNA extraction.

2.<mark>4.</mark> Chemical analyses

Dissolved trace metals (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sb, V, Zn) concentrations were measured by Argon Gas Dilution - Inductively Coupled Plasma - Mass Spectrometry (AGD-ICP-MS, iCAP-Q, Thermo Scientific) after samples acidification (ultra-pure HNO₃ 1% v/v). Because high dissolved solid contents induce ionization suppression, the AGD technique is useful for reducing sample matrix content to about 0.2% of dissolved solids before entering the plasma (Field et al., 1999). In AGD-ICP-MS analyses, the argon (Ar) gas flow through the nebulizer is reduced while the total Ar gas flow to the plasma is maintained by the addition of a make-up Ar gas flow to the aerosol leaving the spray chamber. The sample aerosol is thereby diluted with Ar gas inside the ICP-MS sample introduction system. Analytical detection limits were below the analysed samples. Accuracy of ICP-MS measurements were controlled using certified reference nearshore seawater (CASS-6). Trace metals recoveries were between 98 and 108% except for Mn and Mo (78% and 122%, respectively; data not shown).

Inorganic nutrient concentrations were determined with a BRAN and LUEBBE Type 3 autoanalyzer according to standard methods (Tréguer and LeCorre, 1975). Dissolved Inorganic Nitrogen (DIN) is the sum of NO_2^- , NO_3^- and NH_4^+ values. Dissolved Inorganic Phosphorus (DIP) corresponds to PO_4^3 values. Dissolved Organic Nitrogen (DON) and Dissolved Organic Phosphorus (DOP) were measured after mineralization processes at high temperature (120°C). The oxidizing agents were sodium hydroxide and potassium persulfate for nitrogen and sulfuric acid and potassium persulfate for phosphorus (Aminot and Kérouel, 2007).

⁴⁶⁵ 177

2.5. DNA extraction, PCR and sequencing of 16S rRNA gene fragments

DNA extraction from triplicated initial sediment samples (without filter, NF-T0) and final sediment samples (Tf) of the three experimental conditions (NF, USF, SF), performed in biological triplicate (i.e., NF1, NF2, NF3; USF1, USF2, USF3; SF1, SF2, SF3), was carried out using the UltraClean Soil DNA Isolation Kit (MoBio Laboratories, Inc., CA), as previously described by Quéméneur et al. (2016). Bacterial and archaeal 16S rRNA gene V4 variable regions were amplified by PCR using the Pro341F/Pro805R prokarvotic universal primer set (Takahashi et al., 2014), with barcode on the forward primer, as previously described by Dowd et al. (2008), and were sequenced by the MiSeq Illumina (paired-end 2 x 300 bp) platform of the Molecular Research Laboratory (Texas, USA). Sequence data were processed using MR DNA analysis pipeline (MR DNA, Shallowater, TX, USA). In summary, sequences were joined, depleted of barcodes then sequences <150bp removed, sequences with ambiguous base calls removed. Sequences were denoised, then Operational taxonomic units (OTUs) generated and chimeras removed. OTUs were defined by clustering at 3% divergence (97% similarity). Final OTUs were taxonomically classified using BLASTn against NCBI non-redundant (NR) reference database. The 16S rRNA gene sequences of OTU have been deposited in the Genbank database under the accession numbers MN463061-MN463096.

2.<mark>6.</mark> Statistical analyses

Depending on the results of a Shapiro-Wilk normality test, experimental data were analyzed using the Analysis of Variance (ANOVA) followed by Tukey's post-hoc test or the non-parametric Kruskal-Wallis test followed by Dunn's test with Bonferroni correction to assess the effect of treatments on the nutrients, pH and trace metals, and the relative abundance of microbial taxa (classes/phyla and dominant phylotypes). P values of <0.05 were considered as statistically significant differences. A Spearman rank correlation test was chosen to investigate the relations among bacterial taxa and chemical parameters (showing significant differences

532 533		
534 535	204	between treatments), and we accepted correlation coefficients (r_s) with P values of <0.05 as
536 537	205	significant associations. Linear regression analyses were run to assess relationships between
538 539	206	log-transformed response variables (bacterial classes/phyla showing significant differences
540 541 542	207	between treatments) and the most discriminant explanatory variables (metals and pH). The data
543 544	208	obtained at the beginning and at the end of the experiments were also analyzed by heatmap,
545 546	209	Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA). The most
547 548	210	discriminant variables (among metals, microbial taxa and pH) showing significant difference
549 550	211	between the experimental conditions (i.e. P values of <0.05) and explaining the sample
551 552	212	distribution on the PCA ordination were selected and represented on the biplot. All statistical
553 554	213	analyses were performed using XLSTAT 2019.1.2 (Microsoft Excel add-in program;
555 556	214	Addinsoft, Paris, France).
556 557 558 559 560 561 562 563 564 565 566 567 568 569 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 577 580 581 582 583 584	215	
586 587 588 589		10

216 3. Results and discussion

3.1. Characteristics of initial microbial ecosystem

The initial coastal seawater used in laboratory experiments had a temperature of 20.9°C, a pH value of 8.3 ± 0.3 , and variable levels of trace elements (Table 1). Nutrients were abundant with dissolved organic nitrogen (DON) and phosphorus (DOP) concentrations around 14.52 ± 1.72 μ M and 8.54 ± 2.81 μ M, respectively. The initial microbial diversity of the sandy surficial sediment was dominated by five bacterial phyla: Proteobacteria (50.4 \pm 3.3%), Bacteroidetes $(19.0 \pm 0.9\%)$, Firmicutes $(7.5 \pm 0.4\%)$, Cyanobacteria $(4.7 \pm 2.8\%)$, Actinobacteria $(4.5 \pm 0.4\%)$ 1.3%; Figure 1). This bacterial community was diverse with only 5 abundant OTUs (>1%) belonging to classes Cyanophyceae, Gammaproteobacteria and Flavobacteriia (making up less than 10% of all reads). Archaea accounted for $7.5 \pm 1.3\%$ of the microbial community and was mainly represented by the family *Halobacteriaceae* (phylum *Euryarchaeota*; Figure 1).

3.2. Variations of physicochemical parameters in CB experiments

The evolution of nutrients, pH and trace metals in seawater between the beginning (T0) and the end (Tf) of the 96h experiments are given in Table 1. No significant nutrient difference was observed between the studied conditions (p>0.05). Significant pH decreases were observed in both USF (unsmoked filter) and SF (smoked filter) conditions from 8.3 ± 0.3 (NF, T0) to $7.5 \pm$ 0.3 (p=0.007; USF, Tf) and 7.4 ± 0.1 (p=0.005; SF, Tf). On the contrary, no significant pH difference was observed between NF-T0 and NF-Tf controls (no filter; from 8.3 ± 0.3 at T0 to 8.0 ± 0.3 at Tf; p>0.05), indicating that CB addition decreased the pH of seawater. The variation in environmental conditions, such as pH, alters the trace metals mobility between seawater and sediments by inducing changes in dissolved trace metals concentrations (Hamzeh et al., 2014) and variations in microbial responses (Zouch et al., 2018). CB are among the most numerous

littered items in the environment and are potential sources of environmental pollution, including trace metals (Araújo and Costa, 2019; Dobaradaran et al., 2018; Novotny et al., 2011). In our experiments, different models of trace metals distribution were observed depending on cigarette filter addition (Table 1). Overall, dissolved trace metals in SF conditions were higher than USF conditions showing a higher release of trace metals from smoked than unsmoked CB. However due to specific physicochemical conditions (pH, salinity) of coastal environment and chemical behavior of trace metals, some elements (Al, As, Co, Cu, Ni, Pb and Sb) presented no significant difference between NF, USF and SF conditions at Tf. These results showed a limited impact of cigarette filters (smoked or unsmoked) on natural distribution of trace metals in this intertidal environment. Conversely, both Fe and Mn levels significantly increased in seawater at Tf in USF $(277.13 \pm 55.91 \ \mu g$ -Fe/L, p=0.01; $37.43 \pm 4.14 \ \mu g$ -Mn/L, p=0.04) and SF conditions $(376.87 \pm 176.04 \ \mu\text{g}-\text{Fe/L}, \text{p}=0.04; 37.46 \pm 1.36 \ \mu\text{g}-\text{Mn/L}, \text{p}=0.01)$, compared to controls (4.53) \pm 2.81 µg-Fe/L and 8.84 \pm 5.65 µg-Mn/L, respectively). To a lesser extent, a similar pattern was also observed for dissolved Zn. The increase in dissolved trace metals concentrations of some elements (Fe, Mn and Zn) in both USF and SF conditions compared to NF conditions at Tf, highlighted a trace metals inputs from cigarette filters in coastal environment. These results agreed with Moerman and Potts (2011) which showed that Fe, Mn and Zn in CB were highly leached (10%, 23% and 19% respectively) in water. On the contrary, significant loss of dissolved Cd was observed at Tf in both USF ($0.010 \pm 0.002 \mu g/L$) and SF conditions ($0.018 \pm$ 0.005 µg/L) compared to NF controls (0.300 \pm 0.103 µg/L; p<0.02). Similarly, high decrease in dissolved V were measured at Tf in both USF (1.80 \pm 0.15 µg/L) and SF conditions (2.02 \pm 0.23 μ g/L) compared to controls (6.31 ± 0.35 μ g/L; p<0.02). To a lesser extent, a similar pattern was also observed for dissolved Mo. The decrease in dissolved trace metals (Cd, Mo and V) concentrations may be due to adsorption processes on CB. Indeed, cigarette filters (made of cellulose acetate) are a synthetic polymer which may behave like other plastics exporting trace

metals in the marine environment (Ashton et al., 2010; Holmes et al., 2012; Holmes et al., 2014).

3.3. **Microbial diversity in CB experiments**

The microbial diversity in sediment according to USF conditions (unsmoked filter), SF conditions (smoked filter) and NF controls (no filter) were evaluated at Tf (96h) and compared to the initial microbial diversity in sediment (NF controls at T0). Changes in overall microbial structure were observed at the phylum/class level depending on experimental conditions (Figure 1). Significant differences between treatments (p < 0.05) were detected in the relative abundance of six bacterial taxa: Alphaproteobacteria, Bacteroidetes, *Cyanobacteria*, Gammaproteobacteria, Firmicutes and Thermotogae (Figure 2). A shift in relative abundance

of microbial families was also observed depending on experimental conditions (Figure 3).

Both USF and SF conditions were dominated by *Proteobacteria* ($40.2 \pm 1.4\%$ and $53.4 \pm 2.7\%$ of total reads) and *Firmicutes* ($21.5 \pm 1.2\%$ and $28.6 \pm 2.3\%$; Figure 1). Among *Proteobacteria*, Gammaproteobacteria were abundant in both USF and SF conditions, but largely predominant in SF conditions (43.7 ± 2.6% of total reads), especially *Alteromonadaceae* and *Vibrionaceae* families, indicating they were enriched by CB addition in marine sediment. Interestingly, the proportions of *Thermotogae* (represented by *Petrotogaceae* family) significantly increased with smoked filter addition (8.6 \pm 1.9% in SF vs. <0.5% of total reads in controls, p=0.007; Figures 2 and 3). Furthermore, the relative abundance of *Firmicutes* (represented by *Clostridiaceae* and *Bacillaceae* families) was 2.3 times higher in SF conditions than in controls (p=0.01). On the contrary, the relative abundance of Bacteroidetes (Flavobacteriaceae, Sphingobacteriaceae and *Saprospiraceae*) dramatically decreased in SF conditions ($2.6 \pm 1.1\%$), compared to USF conditions (15.4 \pm 3.4%, p=0.045) and controls (21.2 \pm 8.2%, p=0.017). Similarly, the relative abundance of Alphaproteobacteria (Rhodobacteraceae) was significantly lower in SF

conditions (5.7 \pm 2.6%) than in USF conditions (14.0 \pm 1.3%, p=0.007) and controls (15.0 \pm 3.3%, p=0.027). The relative abundance of *Cvanobacteria* (*Chroococcales* and *Oscillatoriales*) were also 10 to 60 times lower in USF and SF conditions (0.74 \pm 0.03 and 0.12 \pm 0.03%, respectively) than in controls (7.3 \pm 2.0%; p<0.02). These results indicated that growth of Alphaproteobacteria, Bacteroidetes and cyanobacterial species may be inhibited by CB, while growth of some species belonging to *Gammaproteobacteria*, *Firmicutes* and *Thermotogae* may be enhanced by cigarette filter addition. No significant change in relative abundance of *Archaea* (ranging from 3.3 to 10.9% of total reads and mainly represented by *Halobacteriaceae*) was observed in sediment depending of CB addition (p>0.05).

A Principal Component Analysis (PCA) was performed to identify the factors that affect the microbial community at the beginning and at the end of the experiment (Figure 4). The first two principal components explained 71.2% of the variability in the data. Two groups (with or without cigarette filter) were identified by Hierarchical Clustering Analysis (HCA). Correlations of the key bacterial taxa (classes/phyla) with environmental variables showed some dependencies on metal distribution and pH (Table S1). Significant and positive correlations were observed between the Firmicutes or Thermotogae proportions and dissolved Fe and Mn ($r_s > 0.72$, p < 0.05). In contrast, the proportions of *Bacteroidetes* and *Cyanobacteria* were significantly and negatively correlated with Fe and Mn (p < 0.05). Their relative abundances were also significantly correlated with pH values (negatively for *Firmicutes* and Thermotogae and positively for Bacteroidetes and Cyanobacteria; p < 0.05). However, such discriminant chemicals parameters (Fe, Mn and pH) were not identified as significant determinants of bacterial diversity by our multiple regression models (except Mn for *Cvanobacteria*, Table S2), suggesting that other unmeasured environmental parameters (e.g. organic compounds) could play a key role in shaping bacterial communities.

3.4. Dominant bacterial species in CB experiments

The number of abundant species (dominant OTU >1% of total reads) in sediment increased over time in 96h incubations, but it was significantly lower in SF conditions (accounting for $77.0 \pm 3.6\%$) than in NF controls (making up 42.0 ± 8.3%) at TF (p<0.05).

In USF conditions (unsmoked filter), dominant OTUs at TF were mainly affiliated to *Firmicutes* $(15.5 \pm 8.7\%)$ and Fusobacteria $(12.7 \pm 8.9\%)$; Table S1). The majority of Firmicutes OTU showed significant difference between treatments (p<0.05; Table S3). They were grouped in two families (Bacillaceae and Clostridiaceae) and related to fermentative Exiguobacterium, Alkaliphilus and Vallitalea species isolated from marine and/or hydrothermal ecosystems (Ben Aissa et al., 2014; Ben Aissa et al., 2015; Kim et al., 2005). The dominant fusobacterial OTU2 was affiliated to the thermophilic and fermentative *Hypnocyclicus thermotrophus* isolated from a microbial mat sampled near a hydrothermal vent in the Greenland Sea (Roalkvam et al., 2015). Others dominant species were affiliated to Alphaproteobacteria (e.g. Roseibacterium genus) and Gammaproteobacteria (e.g. Marichromatium genus), whose relative abundance increased significantly with the addition of unsmoked filter (p<0.05). Unlike controls, Cyanobacteria (particularly the families Chroococcales and Oscillatoriales) were not represented among dominant species in USF conditions.

In SF conditions (smoked filter), abundant OTUs were mainly assigned to *Gammaproteobacteria*, followed by *Firmicutes*, *Alphaproteobacteria*, *Epsilonproteobacteria*, *Halobacteria* and *Thermotogeae* (Table S⁴). As detected in controls (without cigarette filter), *Gammaproteobacteria* were dominated by *Marinobacter* and *Marinobacterium* spp., as well as *Idiomarina* and *Oceanimonas* spp., but *Vibrio* spp. (accounting for 13.5 ± 2.3% of SF reads) were only predominant in presence of CB. The abundant OTU11 was closely related to Vibrio diabolicus (99.0% 16S rRNA sequence similarity), a mesophilic and polysaccharide-secreting bacterium isolated from a deep-sea hydrothermal field in the East Pacific Rise (Raguénès et al.,

1997). The other abundant and gammaproteobacterial phylotypes enriched by CB were closely affiliated with Vibrio owensii (100% similarity with OTU647 and OTU1430), isolated from diseased cultured crustaceans (Cano-Gomez et al., 2010), and Vibrio harveyi (98.9% similarity with OTU4626), a model marine and bioluminescent microorganism known as pathogen of aquatic fauna (Wang et al., 2015). Among *Firmicutes*, three OTU developed well in presence of CB and were affiliated to mesophilic and fermentative bacterial species belonging to genera Exiquobacterium (99.5% similarity), Alkaliphilus (92.7% similarity) and Serpentinicella (98.4% similarity). These species were isolated from deep South Africa gold mine and serpentinite-hosted Prony hydrothermal field in New Caledonia (Takai et al., 2001; Ben Aissa et al., 2015; Mei et al., 2016). Two others dominant phylotypes were only retrieved in presence of CB and were affiliated to the classes Epsilonproteobacteria (Arcobacter halophilus, 99% similarity) and *Thermotogeae* (family *Petrotogaceae* accounting for $8.6 \pm 1.8\%$ of SF reads represented by *Geotoga subterranea*, 99.0% similarity with OTU5). The relative abundance of this OTU5 increased significantly with the addition of smoked filter (p<0.05). The moderately thermophilic and fermentative Geotoga subterranea, was isolated from brines collected from oil fields in USA (Davey et al., 1993), while Arcobacter halophilus was isolated from hypersaline lagoon water in the Hawaiian Islands (Donachie et al., 2005) and also found in industrially multi-contaminated coastal sediment (Zouch et al., 2017).

No Cyanobacteria and Bacteroidetes, which are important in photosynthetic activities and organic matter degradation, respectively, were represented among dominant species in sediment incubations with CB (SF conditions, Table S2). The absence of such key microbial groups among dominant bacteria in our experiments with smoked filters could be explained by the release of toxic chemical compounds inhibiting their respective cell growth into surrounding medium. However, Bacteroidetes species, particularly those belonging to the class Flavobacteria, constitute a major component of the bacterial community in metal- and oil-

contaminated marine sediment (Zouch et al., 2018; Kappell et al., 2014). In marine ecosystems, Bacteroidetes were also known to growth attached to particles, surfaces or algal cells (Fernandez-Gomez et al., 2013). Moreover, Cyanobacteria were also overrepresented on plastic debris compared to the surrounding free-living and organic particle-attached fractions in 'plastisphere' studies (Jacquin et al., 2019). Thus, the depletion of *Cyanobacteria* and Bacteroidetes from sediment fraction might be also explained by: (i) the potential death of sensitive algal biomass and *Cyanobacteria*, causing hypoxia and providing competitive advantage for *Firmicutes* against *Bacteroidetes* in sediment, and/or (ii) a potential colonization of CB by Cyanobacteria and Bacteroidetes. These latter assumptions remain to be verified through future experiments analyzing both sediment and CB fractions, as previously investigated in microbial colonization studies of plastic and microplastic (Harrison et al., 2014; Dussud et al., 2018; Jacquin et al., 2019).

379 4. Conclusions

380

This study showed that CB changed the microbial diversity of coastal marine sediment, and the physicochemical parameters of its surrounding environment (e.g. pH, trace metals). Cigarette filter addition decreased the pH of seawater and the concentrations of dissolved Cd, Mo and V, whereas they increased dissolved Fe, Mn and Zn concentrations in coastal ecosystem. We also found that **smoked filter** addition to coastal sediment led to a depletion in *Cyanobacteria* and heterotrophic Bacteroidetes (especially Flavobacteriaceae and Saprospiraceae), with a concomitant enrichment in heterotrophic Gammaproteobacteria (Alteromonadaceae and Vibrionaceae), *Firmicutes* (Bacillaceae and Clostridiaceae), Thermotogae and (Petrotogaceae) related to deep and/or hydrothermal ecosystems and adapted to extreme conditions (e.g. high temperature and metals concentrations). The changes in bacterial

community diversity, and selection of specific groups by cigarette filter addition, support the
need to evaluate the effect of potential toxic substances on global bacterial diversity (e.g. 16S
rRNA PCR tests), in addition to test model marine bacterial species (e.g. *A. fischeri*bioluminescence inhibition test) in future development of ecotoxicology studies.

17 396 Acknowledgments

397 This project was financially supported by IRD (French National Research Institute for 398 Sustainable Development) in the framework of the French-Tunisian International Joint 399 Laboratory "LMI COSYS-Med". The project leading to this publication has received funding 400 from European FEDER Fund under project 1166-39417. We thank L. Causse from the AETE-401 ISO platform (OSU/OREME, Université de Montpellier) for performing trace metals analysis 402 in seawater samples. **Legends of Figures** Figure 1. Composition of microbial communities at the phylum or class level in the sediment at the beginning (T0) and (Tf) of experiments without filter (NF, control), with unsmoked filter (USF) and smoked filter (SF). Figure 2. Comparison of the relative abundance of selected bacterial taxa (showing significant difference between treatments) in the sediment between the beginning (T0) and (Tf) of incubations without filter (NF, control), with unsmoked filter (USF) and smoked filter (SF). Values are means of abundance data from biological triplicates \pm standard deviation. Figure 3. Heat map showing the relative abundance of the families in the sediment at the beginning (T0) and (Tf) of experiments without filter (NF, control), with unsmoked filter (USF) and smoked filter (SF). Each column represents an experimental condition and each row represents a family. The colour intensity for each panel corresponds to the family abundance, red indicates high level of relative abundance, while yellow indicates low relative abundance. The dendrogram was constructed from the family abundance table using Euclidean distance.

 $\frac{1}{4}$ 421 The scale represents 10% dissimilarity.

Figure 4. Principal Component Analysis (PCA) biplot showing the variation among the data (showing significant difference, i.e. with P values < 0.05) obtained from the beginning (T0) and (Tf) of experiments without filter (NF, control), with unsmoked filter (USF) and smoked filter (SF). White and black circles represent NF experiments at T0 and Tf, black square represent USF experiments and black triangles represent SF experiments. Ellipses represent the clusters

1122		
1123		
1124	428	identified with Hierarchical Clustering Analysis (HCA). Arrows indicate the direction of
1125		
1126	429	maximum increase and strength (through the length) of each variable to the overall distribution.
1127		
1128	430	The blue arrows indicate metals and pH and the red arrows represent the microbial taxa
1129	100	The onde arrows indicate metals and pri, and the red arrows represent the interooral axa.
1130	121	
1131	431	
1132		
1100		
1125		
1135		
1137		
1138		
1139		
1140		
1141		
1142		
1143		
1144		
1145		
1146		
1147		
1148		
1149		
1150		
1151		
1152		
1153		
1154		
1155		
1150		
1157		
1150		
1160		
1161		
1162		
1163		
1164		
1165		
1166		
1167		
1168		
1169		
1170		
1171		
11/2		
11/3		
11/4		
1176		
1177		2∩
1178		20
1179		
1180		

1181	
1182	
1183	432
1184	102
1185	433
1186	100
118/	434
1188	101
1109	435
1101	100
1192	436
1193	100
1194	437
1195	
1196	438
1197	
1198	439
1199	
1200	440
1201	
1202	441
1203	
1204	442
1200	
1200	443
1208	
1209	444
1210	
1211	445
1212	
1213	446
1214	
1215	447
1216	
1217	448
1218	
1219	449
1221	
1222	450
1223	
1224	451
1225	
1226	452
1227	
1228	453
1229	
1230	454
1231	
1232	
1233	
1235	
1236	
1237	
1238	
1239	

References

méthodes en flux continu. Editions Quae.

in coastal environments. Environ. Res., 172:137-149.

in the marine environment. Mar. Pollut. Bull., 60:2050-5.

hydrothermal chimney. Int. J. Syst. Evol. Micr., 64(4), 1160-1165.

New Caledonia. Extremophiles, 19(1), 183-188.

snails. Mar. Pollut. Bull., 95(1), 362-364.

Addamo, A.M., Laroche, P., Hanke, G., 2017. Top Marine Beach Litter Items in Europe: a

review and synthesis based on beach litter data, EUR 29249 EN, Publications Office of the

European Union, Luwembourg, ISBN 978-92-79-87711-7, doi:10.2760/496717, JRC108181.

Aminot, A., & Kérouel, R., 2007. Dosage automatique des nutriments dans les eaux marines :

Araújo, M. C. B., & Costa, M. F., 2019. A critical review of the issue of cigarette butt pollution

Ashton, K., Holmes, L., Turner, A., 2010. Association of metals with plastic production pellets

Aylagas, E., Borja, Á., Tangherlini, M., Dell'Anno, A., Corinaldesi, C., Michell, C. T., Irigoien,

X., Danovaro, R., Rodríguez-Ezpeleta, N., 2017. A bacterial community-based index to assess

the ecological status of estuarine and coastal environments. Mar. Pollut. Bull., 114(2), 679-688.

Ben Aissa, F. B., Postec, A., Erauso, G., Payri, C., Pelletier, B., Hamdi, M., Ollivier, B.,

Fardeau, M.-L., 2014. Vallitalea pronyensis sp. nov., isolated from a marine alkaline

Ben Aissa, F. B., Postec, A., Erauso, G., Payri, C., Pelletier, B., Hamdi, M., Fardeau, M. L.,

Ollivier, B., 2015. Characterization of *Alkaliphilus hydrothermalis* sp. nov., a novel alkaliphilic

anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field,

Booth, D. J., Gribben, P., Parkinson, K., 2015. Impact of cigarette butt leachate on tidepool

1240		
1241		
1242 1243	455	Benavente, M. J., Caballero, M. J. A., Silvero, G., López-Coca, I., Escobar, V. G., 2019.
1244 1245	456	Cellulose Acetate Recovery from Cigarette Butts. In Multidisciplinary Digital Publishing
1246 1247	457	Institute Proceedings (Vol. 2, No. 20, p. 1447).
1248 1249	458	Cano-Gomez, A., Goulden, E. F., Owens, L., Høj, L., 2010. Vibrio owensii sp. nov., isolated
1250	459	from cultured crustaceans in Australia. FEMS Microbiol. Lett., 302(2), 175-181.
1252 1253 1254	460	Chiba M., & Masironi R., 1992. Toxic and trace elements in tobacco and tobacco smoke. Bull.
1255 1256	461	World Health Org., 70(2), 269-275.
1257 1258	462	Chifflet, S., Tedetti, M., Zouch, H., Fourati, R., Zaghden, H., Elleuch, B., Quéméneur, M.,
1259 1260	463	Karray, F., Sayadi, S. (2019a) Dynamics of trace metals in a shallow coastal ecosystem: insights
1261 1262	464	from the Gulf of Gabès (southern Mediterranean Sea). AIMS Environ. Sci., 6(4): 277–297.
1263 1264	465	Chifflet, S., Quéméneur, M., Barani, A., Angeletti, B., Didry, M., Grégori, G., Pradel, N.
1265 1266	466	(2019b). Impact of sterilization methods on dissolved trace metals concentrations in complex
1267 1268	467	natural samples: optimization of UV irradiation. <i>MethodsX</i> , 6, 1133-1146.
1209 1270 1271	468	Davey, M. E., Wood, W. A., Key, R., Nakamura, K., Stahl, D. A., 1993. Isolation of three
1272 1273	469	species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial
1274 1275	470	line of descent distantly related to the "Thermotogales". Syst. Appl. Microbiol., 16(2), 191-200.
1276 1277	471	Dobaradaran, S., Schmidt, T. C., Nabipour, I., Ostovar, A., Raeisi, A., Saeedi, R., Khorsand,
1278 1279	472	M., Khajeahmadi, N., Keshtkar, M., 2018. Cigarette butts abundance and association of
1280 1281	473	mercury and lead along the Persian Gulf beach: an initial investigation. Environ. Sci. Pollut. R.,
1282 1283	474	25(6), 5465-5473.
1284 1285	475	Donachie, S. P., Bowman, J. P., On, S. L., Alam, M., 2005. Arcobacter halophilus sp. nov., the
1280 1287 1288	476	first obligate halophile in the genus Arcobacter. Int. J. Syst. Evol. Micr., 55(3), 1271-1277.
1289 1290	477	Dowd, S. E., Callaway, T. R., Wolcott, R. D., Sun, Y., McKeehan, T., Hagevoort, R. G.,
1291 1292	478	Edrington, T. S., 2008. Evaluation of the bacterial diversity in the feces of cattle using 16S
1293		
1294 1205		00
1295		
1297		
1298		

1300							
1301 1302	479	rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol., 8(1),					
1303 1304	480	125.					
1305 1306	481	Drope J, Schluger N, Cahn Z, Drope J, Hamill S, Islami F, Liber A, Nargis N, Stoklosa M.,					
1307 1308 1300	482	2018. The Tobacco Atlas. Atlanta: American Cancer Society and Vital Strategies					
1310 1311	483	Dussud, C., Hudec, C., George, M., Fabre, P., Higgs, P., Bruzaud, S., et al., 2018. Colonization					
1312 1313	484	of non-biodegradable and biodegradable plastics by marine microorganisms. <i>Front</i> .					
1314 1315	485	Microbiol., 9, 1571.					
1316 1317	486	Fernández-Gomez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S. G., González, J. M.,					
1318 1319	487	Pedros-Alio, C., 2013. Ecology of marine <i>Bacteroidetes</i> : a comparative genomics					
1320 1321	488	approach. <i>ISME J.</i> , 7(5), 1026.					
1322 1323	489	Gillan, D. C., Danis, B., Pernet, P., Joly, G., Dubois, P., 2005. Structure of sediment-associated					
1324 1325	490	microbial communities along a heavy-metal contamination gradient in the marine environment.					
1326 1327	491	Appl. Environ. Microbiol., 71(2), 679-690.					
1320 1329	492	Green, A. L. R., Putschew, A., Nehls, T., 2014. Littered cigarette butts as a source of nicotine					
1331 1332	493	in urban waters. J. Hydrol., 519, 3466-3474.					
1333 1334	494	Field M.P., Cullen J.T., Sherrell R.M., 1999. Direct determination of 10 trace metals in 50 μ L					
1335 1336	495	samples of coastal seawater using desolvating micronebulization sector field ICP-MS. J. Anal.					
1337 1338	496	Atom. Spectrom., 14, 1425-1431.					
1339 1340	497	Hamzeh M., Ouddane B., Daye M., Halwani J., 2014. Trace metal mobilization from surficial					
1341 1342	498	sediments of the Seine river estuary. Water Air Soil Poll., 225, 1878-1893.					
1343 1344	499	Harrison, J. P., Schratzberger, M., Sapp, M., Osborn, A. M., 2014. Rapid bacterial colonization					
1345 1346 1347	500	of low-density polyethylene microplastics in coastal sediment microcosms. BMC					
1348 1349	501	Microbiol., 14(1), 232.					
1350 1351	502	Holmes, L. A., Turner, A., Thompson, R. C., 2014. Interactions between trace metals and plastic					
1352 1353	503	production pellets under estuarine conditions. <i>Mar. Chem.</i> , 167:25–32.					
1354		23					
1355 1356							
1357							

1359		
1360 1361	504	Holmes, L. A., Turner, A., Thompson, R.C., 2012. Adsorption of trace metals to plastic resin
1362 1363	505	pellets in the marine environment. <i>Environ. Pollut.</i> , 160:42–8.
1364 1365	506	Jacquin, J., Cheng, J., Odobel, C., Pandin, C., Conan, P., Pujo-pay, M., Barbe, V.,
1366 1367	507	Meisterzheim, AL., Ghiglione, JF., 2019. Microbial ecotoxicology of marine plastic debris:
1368 1369	508	a review on colonization and biodegradation by the 'plastisphere'. <i>Front. Microbiol.</i> , 10, 865.
1370 1371 1372	509	Johnston, E. L., & Roberts, D. A., 2009. Contaminants reduce the richness and evenness of
1373 1374	510	marine communities: a review and meta-analysis. <i>Environ. Pollut.</i> , 157(6), 1745-1752.
1375 1376	511	Kadir, A. A., & Sarani, N. A., 2015. Cigarette butts pollution and environmental impact-A
1377 1378	512	review. In Applied Mechanics and Materials (Vol. 773, pp. 1106-10). Trans Tech Publications.
1379 1380	513	Kappell, A. D., Wei, Y., Newton, R. J., Van Nostrand, J. D., Zhou, J., McLellan, S. L., Hristova,
1381 1382	514	K. R., 2014. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico
1384 1385	515	native coastal microbial communities after the Deepwater Horizon oil spill. Front.
1386 1387	516	Microbiol., 5, 205.
1388 1389	517	Kim, I. G., Lee, M. H., Jung, S. Y., Song, J. J., Oh, T. K., Yoon, J. H., 2005. Exiguobacterium
1390 1391	518	aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the
1392 1393	519	Yellow Sea in Korea. Int. J. Syst. Evol. Micr., 55(2), 885-889.
1394 1395	520	Mei, N., Postec, A., Erauso, G., Joseph, M., Pelletier, B., Payri, C., Ollivier, B., Quéméneur,
1396 1397	521	M., 2016. Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic
1398 1399	522	bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int.
1400 1401	523	J. Syst. Evol. Micr., 66: 4464-4470.
1402 1403 1404	524	Micevska, T., Warne, M. S. J., Pablo, F., Patra, R., 2006. Variation in, and causes of, toxicity
1405 1406	525	of cigarette butts to a cladoceran and microtox. Arch. Environ. Con. Tox., 50(2), 205-212.
1407 1408	526	Moerman, J. W., & Potts, G. E., 2011. Analysis of metals leached from smoked cigarette litter.
1409 1410	527	<i>Tob. Control, 20</i> (Suppl 1), i30-i35.
1411		
1413		24
1414		
1415		
1416		

1417 1418		
1419 1420	528	Moriwaki, H., Kitajima, S., Katahira, K., 2009. Waste on the roadside, 'poi-sute'waste: its
1421 1422	529	distribution and elution potential of pollutants into environment. <i>Waste manage.</i> , 29(3), 1192-
1423 1424	530	1197.
1425 1426	531	Novotny, T., Lum, K., Smith, E., Wang, V., Barnes, R., 2009. Cigarettes butts and the case for
1427 1428 1429	532	an environmental policy on hazardous cigarette waste. Int. J. Environ. Res. Public health, 6(5),
1430 1431	533	1691-1705.
1432 1433	534	Novotny, T. E., Hardin, S. N., Hovda, L. R., Novotny, D. J., McLean, M. K., Khan, S., 2011.
1434 1435	535	Tobacco and cigarette butt consumption in humans and animals. Tob. Control, 20(Suppl 1),
1436 1437	536	i17-i20.
1438 1439	537	Quéméneur, M., Garrido, F., Billard, P., Breeze, D., Leyval, C., Jauzein, M., Joulian, C., 2016.
1440 1441	538	Bacterial community structure and functional <i>arrA</i> gene diversity associated with arsenic
1442 1443	539	reduction and release in an industrially contaminated soil. <i>Geomicrobiol. J.</i> 33, 839–849.
1445 1446	540	Raguénès, G., Christen, R., Guezennec, J., Pignet, P., Barbier, G., 1997. Vibrio diabolicus sp.
1447 1448	541	nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent
1449 1450	542	polychaete annelid, Alvinella pompejana. Int. J. Syst. Evol. Micr., 47(4), 989-995.
1451 1452	543	Roalkvam, I., Bredy, F., Baumberger, T., Pedersen, R. B., Steen, I. H., 2015. Hypnocyclicus
1453 1454	544	thermotrophus gen. nov., sp. nov. isolated from a microbial mat in a hydrothermal vent
1455 1456	545	field. Int. J. Syst. Evol. Micr., 65(12), 4521-4525.
1457 1458	546	Rebischung, F., Chabot, L., Biaudet, H., Pandard, P., 2018. Cigarette butts: A small but
1459 1460 1461	547	hazardous waste, according to European regulation. Waste manage., 82, 9-14.
1462 1463	548	Sammari, C., Koutitonsky, V.G., Moussa, M., 2006. Sea level variability and tidal resonance in
1464 1465	549	the Gulf of Gabes, Tunisia. Cont. Shelf Res. 26, 338–350.
1466 1467	550	Slaughter, E., Gersberg, R. M., Watanabe, K., Rudolph, J., Stransky, C., Novotny, T. E., 2011.
1468 1469	551	Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. <i>Tob</i> .
1470 1471	552	<i>Control, 20</i> (Suppl 1), i25-i29.
1472 1473		25
14/4 1475		

1476		
1477		
1478 1479	553	Sun, M. Y., Dafforn, K. A., Brown, M. V., Johnston, E. L., 2012. Bacterial communities are
1480 1481	554	sensitive indicators of contaminant stress. Mar. Pollut. Bull. 64, 1029–1038.
1482 1483	555	Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., Nishijima, M., 2014. Development of a
1484 1485	556	prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-
1486 1487 1488	557	generation sequencing. <i>PloS one</i> , 9(8), e105592.
1489 1490	558	Takai, K., Moser, D. P., Onstott, T. C., Spoelstra, N., Pfiffner, S. M., Dohnalkova, A.,
1491 1492	559	Fredrickson, J. K., 2001. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely
1493 1494	560	alkaliphilic bacterium isolated from a deep South African gold mine. Int. J. Syst. Evol.
1495 1496	561	<i>Micr.</i> , <i>51</i> (4), 1245-1256.
1497 1498	562	Treguer, P., & LeCorre, P., 1975. Manuel D'Analyse des sels nutritifs dans l'eau de mer
1499 1500 1501	563	(Utilisation de l'Autoanalyser II Technicon). Lab. d'Oceanologie Chim., Univ. de Bretagne
1502 1503	564	Occidentale, Brest, France.
1504 1505	565	Vlachogianni, Th., 2019. Marine Litter in Mediterranean coastal and marine protected areas -
1506 1507	566	How bad is it. A snapshot assessment report on the amounts, composition and sources of marine
1508 1509	567	litter found on beaches, Interreg Med ACT4LITTER & MIO-ECSDE.
1510 1511	568	Wang, Z., Hervey, W. J., Kim, S., Lin, B., Vora, G. J., 2015. Complete genome sequence of the
1512 1513	569	bioluminescent marine bacterium Vibrio harveyi ATCC 33843 (392 [MAV]). Genome
1514 1515 1516	570	<i>Announc.</i> , <i>3</i> (1), e01493-14.
1517 1518	571	WHO Report on the Global Tobacco Epidemic, 2017: Monitoring tobacco use and prevention
1519 1520	572	policies. Geneva: World Health Organization; 2017.
1521 1522	573	Wright, S. L., Rowe, D., Reid, M. J., Thomas, K. V., Galloway, T. S., 2015. Bioaccumulation
1523 1524	574	and biological effects of cigarette litter in marine worms. Sci. Rep., 5, 14119.
1525 1526	575	Zafeiridou, M., Hopkinson, N.S., Voulvoulis, N., 2018. Cigarette smoking: an assessment of
1527 1528	576	tobacco's global environmental footprint across its entire supply chain, and policy strategies to
1529 1530 1531	577	reduce it. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.
1532 1533 1534		20

1535		
1536 1537	570	Zarah II. Kamara E. Amarana E. Chifflat S. Himahlar Dás A. Khamat II. Kamara I
1538	578	Zouch, H., Karray, F., Armougom, F., Chimet, S., Hirschier-Rea, A., Kharrat, H., Kamoun, L.,
1539 1540	579	Ben Hania, W., Ollivier, B., Sayadi, S., Quéméneur, M., 2017. Microbial Diversity in Sulfate-
1541 1542 1543	580	Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation
1544	581	of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia). Front. Microbiol., 8, 1583.
1545 1546 1547	582	Zouch, H., Cabrol, L., Chifflet, S., Tedetti, M., Karray, F., Zaghden, H., Sayadi, S. &
1548 1549	583	Quéméneur, M., 2018. Effect of acidic industrial effluent release on microbial diversity and
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1567 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1577 1578 1579 1580 1577 1578 1579 1580 1581 1582 1583 1584 1582 1583 1584 1582 1583 1584 1585 1580 1577 1578 1576 1577 1578 1576 1577 1578 1578	584	trace metal dynamics during resuspension of coastal sediment. <i>Front. Microbiol.</i> , <i>9</i> , 3103.
1588		
1589 1590		27
1591 1592		
1593		

Relative abundance of prokaryotic taxa

Table 1. Chemical properties (pH) and dissolved parameters (nutrients and trace metals) measured at the beginning (T0) and at the end (Tf) of experiments without filter (NF, control), with unsmoked filter (USF) and smoked filter (SF). Values are means of data from biological triplicates ± standard deviation.

Parameters	NF (T0)	NF (Tf)	USF (Tf) SF (Tf)		Difference ¹	
pH 8.3 ± 0.3		8.0 ± 0.3	7.5 ± 0.3	7.4 ± 0.1	NF > USF # SF	
Nutrients (µM)						
DIN ²	11.70 ± 0.70	9.89 ± 0.97	12.27 ± 1.54	11.51 ± 1.94		
DIP ³	0.77 ± 0.30	0.62 ± 0.42	0.22 ± 0.18	0.47 ± 0.37		
DON	14.51 ± 1.72	14.75 ± 1.69	17.57 ± 1.86	17.10 ± 1.15	NF # USF # SF	
DOP	8.54 ± 2.81	6.36 ± 3.64	2.95 ± 1.64	5.18 ± 3.47		
SiO ₂	2.94 ± 0.50	2.26 ± 0.14	2.47 ± 0.51	2.88 ± 0.58		
Dissolved Meta	als (µg/L)					
Al	8.15 ± 2.61	8.14 ± 1.48	8.94 ± 0.35	9.93 ± 3.60		
As	3.33 ± 0.59	6.37 ± 1.50	6.43 ± 1.97	6.39 ± 1.25		
Со	0.10 ± 0.02	0.88 ± 0.27	0.55 ± 0.09	0.85 ± 0.19		
Cu	2.02 ± 2.96	6.14 ± 1.62	2.42 ± 2.46	4.98 ± 3.83	NF # USF # SF	
Ni 1.02 ± 0.9		2.36 ± 0.67	2.25 ± 0.85	3.57 ± 1.59		
Pb 0.04 ± 0.01		0.03 ± 0.01	0.04 ± 0.01	0.07 ± 0.05		
Sb	0.40 ± 0.06	1.86 ± 0.17	1.83 ± 0.34	2.01 ± 0.13		
Cd	0.01 ± 0.00	0.30 ± 0.10	0.01 ± 0.00	0.02 ± 0.00		
Мо	10.25 ± 1.57	14.45 ± 0.17	10.52 ± 0.96 11.69 ± 0.81		NF > USF # SF	
V	1.85 ± 0.25	6.31 ± 0.35	1.80 ± 0.15	2.02 ± 0.23		
Fe	Fe 4.82 ± 0.43 4.53 ± 2.81		277.13 ± 55.91	376.87 ± 176.04		
Mn	9.77 ± 0.42	8.84 ± 5.65	37.43 ± 4.14	37.46 ± 1.36	NF < USF # SF	
Zn	4.06 ± 2.66	4.12 ± 1.54	6.22 ± 3.00	4.66 ± 0.89^3		

¹ Difference significantly higher (>) or lower (<) or no difference (#) between conditions (NF, USF and SF) evaluated using ANOVA or Kruskal-Wallis tests (P<0.05).

² Dissolved Inorganic Nitrogen (DIN) values correspond to the sum of NO₂⁻, NO₃⁻ and NH₄⁺ values.

³ Dissolved Inorganic Phosphorous (DIP) values correspond to PO₄³ values.

⁴ Values (mean ± standard deviation) obtained from two samples.

Declaration of interests

¹ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Author statement

MQ designed and performed experiments. FA, MQ and SC helped for data acquisition. AZ, MB, MQ and SC contributed to the analysis and interpretation of data. MQ wrote the manuscript in collaboration with SC. All authors read and commented on the draft manuscript. All authors agreed to the final version.

Table S1. Spearman's Rank correlation coefficients between the relative abundance of selected bacterial taxa and chemical parameters (showing significant difference between treatments) in sediment experiments. Values in bold are significant at $p \leq 0.05$.

Variables	Cd	Fe	Mn	Мо	V	Zn	pН
Alphaproteobacteria	0,014	-0,713	-0,608	-0,133	-0,056	-0,385	0,503
Bacteroidetes	0,245	-0,881	-0,776	0,000	0,091	-0,385	0,685
Cyanobacteria	0,42	-0,916	-0,839	0,266	0,385	-0,266	0,650
Gammaproteobacteria	0,476	0,287	0,133	0,294	0,189	0,224	-0,343
Firmicutes	-0,294	0,72	0,783	0,168	0,140	0,231	-0,692
Thermotogae	-0,189	0,867	0,783	0,196	0,077	0,224	-0,664

Table S2. Regression coefficients between the relative abundance of bacterial taxa (response variables) and selected chemical parameters (explanatory variables) in sediment experiments. Values in bold are significant at $p \le 0.05$.

Response variables	Predictors	Coefficient	Standard error	t	$\Pr > t $
Alphaproteobacteria	Constante	0,763	45,664	0,017	0,987
	Fe	-0,015	0,015	-0,997	0,352
	Mn	-0,014	0,203	-0,069	0,947
	pH	1,926	5,504	0,350	0,737
Bacteroidetes	Constante	-4,235	74,735	-0,057	0,956
	Fe	-0,014	0,024	-0,592	0,573
	Mn	-0,189	0,333	-0,568	0,588
	pH	3,313	9,007	0,368	0,724
Cyanobacteria	Constante	25,692	20,593	1,248	0,252
	Fe	-0,001	0,007	-0,119	0,909
	Mn	-0,236	0,092	-2,568	0,037
	pН	-2,175	2,482	-0,876	0,410
	Constante	113,393	130,556	0,869	0,414
Cammanuataahaatania	Fe	0,041	0,043	0,970	0,364
Gammaproteobacteria	Mn	-0,506	0,582	-0,870	0,413
	pH	-10,279	15,735	-0,653	0,534
Firmicutes	Constante	60,890	71,262	0,854	0,421
	Fe	-0,001	0,023	-0,023	0,982
	Mn	0,374	0,317	1,178	0,277
	pH	-6,656	8,589	-0,775	0,464
Thermotogae	Constante	11,623	34,674	0,335	0,747
	Fe	0,017	0,011	1,483	0,182
	Mn	-0,061	0,154	-0,392	0,707
	pH	-1,339	4,179	-0,320	0,758

Table S³. Blast analysis on the dominant microbial species (OTUs >1% of total sequences) in sediment at the end of the experiments (Tf) with unsmoked filter (USF, in bold), compared to conditions with smoked filter (SF, Tf) or no filter (NF, controls, T0 and Tf). Values are means of data from biological triplicates ± standard deviations.

OTU name [NCBI Phylum/C	Dhulum/Class		Relative abundance (%)			Taxonomy closest cultivates [NCBI Accession	Identity
Accession number]		NF (T0)	NF (Tf)	USF (Tf)	SF (Tf)	number]	(%)
OTU_8 [MN463083] <mark>*</mark>	Alphaproteobacteria	0.34 ± 0.03	2.14 ± 0.63	$\textbf{3.17} \pm \textbf{0.79}$	0.46 ± 0.33	Roseibacterium beibuensis [MG383386]	100
OTU_35 [MN463084] <mark>*</mark>	Alphaproteobacteria	0.03 ± 0.01	0.08 ± 0.05	1.20 ± 0.20	0.08 ± 0.07	Rhodovulum marinum [AM696692]	99.53
OTU_19 [MN463085]	Bacteroidetes	0.19 ± 0.04	0.98 ± 1.10	1.42 ± 1.13	0.01 ± 0.002	Phaeodactylibacter xiamenensis [NR_134132]	90.97
OTU_30 [MN463086]	Bacteroidetes	0.02 ± 0.004	0.11 ± 0.11	$\textbf{0.69} \pm \textbf{0.68}$	0.59 ± 0.50	Marinilabilia nitratireducens [NR_132609]	96.84
OTU_16 [MN463087]	Balneolaeota	0.19 ± 0.03	1.76 ± 1.56	1.01 ± 0.33	0.05 ± 0.02	Gracilimonas halophila [NR_158001]	97.07
OTU_50 [MN463088]	Deltaproteobacteria	0.02 ± 0.01	0.02 ± 0.02	$\textbf{0.63} \pm \textbf{0.61}$	0.07 ± 0.10	Desulfovibrio psychrotolerans [NR_042581]	92.05
OTU_60 [MN463089]	Epsilonproteobacteria	0.00 ± 0.01	0.01 ± 0.001	$\textbf{0.64} \pm \textbf{0.66}$	0.01 ± 0.004	Sulfurovum lithotrophicum [CP011308]	88.24
OTU_1 [MN463064] <mark>*</mark>	Firmicutes	0.43 ± 0.06	4.38 ± 1.67	4.33 ± 1.81	6.17 ± 1.22	Alkaliphilus transvaalensis [NR_024748]	92.69
OTU_14 [MN463090]*	Firmicutes	0.04 ± 0.01	0.05 ± 0.01	$\textbf{3.36} \pm \textbf{2.30}$	0.06 ± 0.01	Vallitalea pronyensis [NR_125677]	96.93
OTU_21 [MN463091]*	Firmicutes	0.38 ± 0.04	0.19 ± 0.22	$\textbf{2.04} \pm \textbf{0.29}$	0.33 ± 0.30	Pontibacillus litoralis [NR_116372]	84.48
OTU_4 [MN463065]	Firmicutes	0.19 ± 0.01	0.16 ± 0.05	4.25 ± 4.52	5.60 ± 4.60	Pontibacillus litoralis [NR_116372]	84.00
OTU_31 [MN463092]*	Firmicutes	0.08 ± 0.02	0.18 ± 0.20	$\textbf{0.82} \pm \textbf{0.45}$	0.09 ± 0.08	Pontibacillus salicampi [MH283830]	87.28
OTU_3 [MN463063] <mark>*</mark>	Firmicutes	0.10 ± 0.01	0.20 ± 0.15	$\textbf{0.61} \pm \textbf{0.89}$	8.72 ± 6.31	Exiguobacterium aestuarii [MH881394]	99.55
OTU_2 [MN463093]	Fusobacteria	0.11 ± 0.01	0.12 ± 0.03	12.68 ± 9.94	0.15 ± 0.05	Hypnocyclicus thermotrophus [NR_145867]	92.96
OTU_22 [MN463094] <mark>*</mark>	Gammaproteobacteria	0.03 ± 0.01	0.04 ± 0.01	10.88 ± 0.87	0.31 ± 0.26	Marichromatium gracile [LT991979]	99.55
OTU_7 [MN463071]	Gammaproteobacteria	0.28 ± 0.04	3.18 ± 2.03	$\textbf{2.11} \pm \textbf{0.85}$	3.54 ± 1.11	Marinobacter hydrocarbonoclasticus [MK131324]	100
OTU_28 [MN463095]	Gammaproteobacteria	0.10 ± 0.02	0.30 ± 0.03	1.03 ± 0.78	0.07 ± 0.07	Alteromonas marina [MH746022]	99.55
OTU_25 [MN463096]	Gammaproteobacteria	0.10 ± 0.02	2.06 ± 1.72	1.02 ± 0.85	0.09 ± 0.03	Idiomarina taiwanensis [KM407758]	99.55
OTU_5 [MN463085] <mark>*</mark>	Thermotogae	0.09 ± 0.02	0.31 ± 0.36	0.98 ± 1.37	8.55 ± 1.88	Geotoga subterranea [NR_029145]	99.00

* Significant differences between treatments using ANOVA or Kruskal-Wallis tests (P<0.05)

Table S4. Blast analysis on the dominant microbial species (OTUs >1% of total sequences) in sediment at the end of the experiments (Tf) with smoked filter (SF, in bold), compared to conditions with unsmoked filter (USF, Tf) or no filter (NF, controls, T0 and Tf). Values are means of data from biological triplicates ± standard deviations.

OTU name [NCBI	Dhylum/Class	Relative abundance (%)				Taxonomy of closest cultivates [NCPI Accession n°]	Identity
Accession n°]	Pliyluiii/Class	NF (T0)	NF (Tf)	USF (Tf)	SF (Tf)	Taxonomy of closest cultivates [NCBI Accession if]	%
OTU_12 [MN463061]	Alphaproteobacteria	0.06 ± 0.01	0.06 ± 0.01	0.16 ± 0.19	$\textbf{3.10} \pm \textbf{2.76}$	Thalassospira australica [MH304396]	99.29
OTU_13 [MN463062]	Epsilonproteobacteria	0.04 ± 0.01	0.04 ± 0.01	0.06 ± 0.03	3.05 ± 2.85	Arcobacter halophilus [MG195897]	99.53
OTU_3 [MN463063] <mark>*</mark>	Firmicutes	0.10 ± 0.01	0.20 ± 0.15	0.61 ± 0.89	8.72 ± 6.31	Exiguobacterium aestuarii [MH881394]	99.55
OTU_1 [MN463064] <mark>*</mark>	Firmicutes	0.43 ± 0.06	4.38 ± 1.67	4.33 ± 1.81	6.17 ± 1.22	Alkaliphilus transvaalensis [NR_024748]	92.69
OTU_4 [MN463065]	Firmicutes	0.19 ± 0.01	0.16 ± 0.05	4.25 ± 4.52	5.60 ± 4.60	Pontibacillus litoralis [NR_116372]	80.00
OTU_56 [MN463066]	Firmicutes	0.01 ± 0.00	0.02 ± 0.01	0.02 ± 0.01	$\textbf{0.61} \pm \textbf{0.89}$	Serpentinicella alkaliphila [NR_152685]	98.35
OTU_46 [MN463067] <mark>*</mark>	Firmicutes	0.01 ± 0.01	0.01 ± 0.00	0.05 ± 0.04	$\textbf{1.54} \pm \textbf{0.87}$	Halolactibacillus miurensis [AB681280]	99.11
OTU_36 [MN463068]	Firmicutes	0.12 ± 0.01	0.11 ± 0.04	0.14 ± 0.08	$\textbf{0.84} \pm \textbf{0.68}$	Tissierella creatinini [NR_117155]	95.04
OTU_9 [MN463069]	Gammaproteobacteria	0.09 ± 0.03	0.10 ± 0.03	0.35 ± 0.47	$\textbf{5.02} \pm \textbf{8.47}$	Oceanimonas doudoroffii [NR_114185]	99.33
OTU_10 [MN463070]	Gammaproteobacteria	0.14 ± 0.03	1.68 ± 2.18	0.45 ± 0.42	3.70 ± 2.55	Idiomarina seosinensis [MG575737]	100
OTU_7 [MN463071]	Gammaproteobacteria	0.28 ± 0.04	3.18 ± 2.03	2.11 ± 0.85	3.54 ± 1.11	Marinobacter hydrocarbonoclasticus [MK131324]	100
OTU_6 [MN463072] <mark>*</mark>	Gammaproteobacteria	0.20 ± 0.01	1.44 ± 0.72	0.76 ± 0.20	7.85 ± 3.27	Marinobacterium sediminicola [NR_044529]	100
OTU_42 [MN463073]	Gammaproteobacteria	0.06 ± 0.01	0.06 ± 0.03	0.17 ± 0.10	1.02 ± 1.39	Marinobacter vinifirmus [KX418471]	99.55
OTU_11 [MN463074]	Gammaproteobacteria	0.16 ± 0.00	0.26 ± 0.10	0.25 ± 0.11	5.35 ± 4.53	Vibrio diabolicus [MK308588]	100
OTU_647 [MN463075]	Gammaproteobacteria	0.09 ± 0.01	0.12 ± 0.04	0.17 ± 0.08	2.69 ± 2.27	Vibrio owensii [CP033138]	100
OTU_3745 [MN463076]	Gammaproteobacteria	0.03 ± 0.01	0.05 ± 0.02	0.05 ± 0.01	1.37 ± 1.39	Marinobacterium georgiense [MH044627]	98.88
OTU_24 [MN463077]	Gammaproteobacteria	0.03 ± 0.01	0.06 ± 0.02	0.04 ± 0.02	1.34 ± 1.28	Marinobacterium georgiense [NR_114163]	98.66
OTU_47 [MN463078]	Gammaproteobacteria	0.01 ± 0.00	0.02 ± 0.00	0.02 ± 0.01	1.11 ± 1.20	Pseudomonas aestusnigri [MF155916]	99.78
OTU_1430 [MN463079]	Gammaproteobacteria	0.05 ± 0.03	0.05 ± 0.02	0.07 ± 0.03	1.05 ± 0.89	Vibrio owensii [CP033137]	100
OTU_4626 [MN463080]	Gammaproteobacteria	0.04 ± 0.01	0.05 ± 0.03	0.05 ± 0.02	$\boldsymbol{0.91 \pm 0.77}$	Vibrio harveyi [EU834007]	98.86
OTU_5 [MN463081] <mark>*</mark>	Thermotogae	0.09 ± 0.02	0.31 ± 0.36	0.98 ± 1.37	8.55 ± 1.88	Geotoga subterranea [NR_029145]	100
OTU_15 [MN463082]	Archaea/Halobacteria	0.75 ± 0.04	1.21 ± 0.83	0.59 ± 0.27	1.11 ± 0.38	Halogranum amylolyticum [NR_113451]	99.51

* Significant differences between treatments using ANOVA or Kruskal-Wallis tests (P<0.05)