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ABSTRACT

The number and refinement of gridded meteorological datasets are on the rise at the global and regional

scales. Although these datasets are now commonly used for hydrological modeling, the representation of

precipitation amount and timing is crucial to correctly model streamflow. The Génie Rural à 4 paramètres
journalier (GR4J) conceptual hydrological model combined with the CEMANEIGE snow routine

was calibrated using four temperature and precipitation datasets [Système d’analyse fournissant des

renseignements atmosphériques à la neige (SAFRAN), Mesoscale Analysis (MESAN), E-OBS, and

Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI)] on 931 French gauged

catchments ranging in size from 10 to 10 000 km2. The efficiency of the calibrated hydrological model

in simulating streamflow was higher for the models calibrated on high-resolution meteorological datasets

(SAFRAN, MESAN) compared to coarse-resolution datasets (E-OBS, WFDEI), as well as for reanalysis

(SAFRAN, MESAN, WFDEI) compared to datasets based on interpolation only (E-OBS). The

systematic decrease in efficiency associated with precipitation bias or temporality highlights that the use

of a hydrological model calibrated on meteorological datasets can assess these datasets, most particularly

precipitation. It appears essential that datasets account for high-resolution topography to accurately

represent elevation gradients and assimilate dense ground-based observation networks. This is particu-

larly emphasized for hydrological applications in mountainous areas and areas subject to finescale events.

For hydrological applications on nonmountainous regions, not subject to finescale events, both regional

and global datasets give satisfactory results. It is crucial to continue improving precipitation datasets,

especially in mountainous areas, and to assess their sensitivity to eventual corrupted observations. These

datasets are essential to correct the bias of climate model outputs and to investigate the impact of climate

change on hydrological regimes.

1. Introduction

a. The growing number of gridded meteorological
datasets: Opportunities and caveats for
hydrological studies

Over the past two decades, gridded meteorologi-

cal datasets have been increasingly used as inputs to
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hydrological studies (Habets et al. 2008; Coustau et al.

2015; Soci et al. 2016). Such datasets result from the

combination of short-term weather model forecasts

with a quite diverse number of observation sources

(weather stations, radar, buoys, and satellite products),

using different data assimilation techniques. These

datasets are continuously evolving, refining spatial cov-

erage, incorporating new data sources, using improved

atmospheric models, etc.

Easy access and the ability to mimic point-scale mea-

surements and their spatial and temporal homogeneity

(i.e., spatial grid and constant time step) has favored the

widespread use of these products in hydrology, most

particularly in hydrological modeling applications. This

has considerably modified hydrological practices. Classi-

cal observation data processing (checking and completing

missing precipitation and temperature values, estimates

of spatial averages of these variables, etc.) is now less

frequently performed by hydrologists for regional and

global applications, given that these processes are in-

cluded in the methodology to derive gridded meteoro-

logical datasets.

Gridded meteorological datasets are, however, in-

tegrated systems, and it is difficult to fully understand

the impact and sensitivity to internal processing of

observations, such as treatment of missing data and

homogenization. Users, for example, hydrologists, often

find it difficult to select one dataset or another, and the

choice is often based on pragmatic reasons, for example,

the spatial and temporal extent. Therefore, it is impor-

tant to compare hydrological outputs obtained using

different meteorological datasets.

b. Requirements of meteorological datasets
for hydrological modeling

The spatial resolution of datasets must be compatible

with the scale of each hydrological study. While most

datasets are available at the global scale (Bosilovich

et al. 2008), regional datasets at a higher spatial resolu-

tion are preferred for regional hydrological studies since

they generally assimilate more observations than global

ones; resolve physical processes at a finer scale; and

consequently account for terrain characteristics, topog-

raphy, land use, and local weather characteristics. In the

particular case of hydrological modeling, Essou et al.

(2016b) showed that using regional meteorological da-

tasets instead of global ones for U.S. catchments pro-

vided better streamflow simulations, particularly for

catchments located in humid continental and sub-

tropical regions. This was explained by a better repre-

sentation of precipitation seasonality for the regional

meteorological datasets than for the global ones.

Nevertheless, they also highlighted that, except for

humid continental and subtropical regions, global re-

analysis precipitation data were used successfully in the

United States, since biases were small enough to be

compensated for by hydrological model calibration.

Historical depth is another desirable trait of meteoro-

logical datasets. Long-term time series are required for

hydrological applications, especially for studies focusing

on the impacts of climate variability or climate change on

hydrology. For instance, in France, the Système d’analyse

fournissant des renseignements atmosphériques à la

neige (SAFRAN) reanalysis (Quintana-Seguí et al. 2008;
Vidal et al. 2010) has increasingly been used since it was

developed. This reanalysis covers metropolitan France

at a relatively fine spatial scale (8km 3 8km) and is

available for a period beginning in 1958. If historical

depth is important, the homogeneity of observation series

assimilated in reanalyses is crucial and determines the

useful length of datasets. As an example, ERA-Interim

starts in 1979 because it assimilates satellite data that

started in 1979 (Dee et al. 2011), and the ECMWF

twentieth-century reanalysis (ERA-20C), which only

assimilates observations of surface and mean sea level

pressures and surface marine winds, starts in 1900 (Poli

et al. 2016).

Evaluation of meteorological datasets is crucial

(You et al. 2015) since such products bear limitations

that may originate from several sources: low spatial or

temporal resolution, a sparse observation station net-

work, misrepresentation of the impact of topography,

and atmospheric model biases. Most studies evaluate

meteorological datasets by comparing them to ground-

based observations (Jones et al. 2016; Quintana-Seguí
et al. 2008; Dahlgren et al. 2014) or observation-only-

based gridded datasets (You et al. 2015; Essou et al.

2016b; Dayon et al. 2015). These comparisons are in-

tended to detect potential biases, and consequently bias

corrections might be proposed and performed (Bastola

and Misra 2014; Piani et al. 2010). However, few studies

have investigated the ability of meteorological datasets

to mimic daily variability.

This paper argues that outputs of conceptual hydro-

logical models dynamically calibrated on a specific

meteorological dataset might be additional relevant in-

dicators to appraise the consistency of atmospheric in-

puts because an integrative variable (streamflow at the

outlet of a river basin) is used. The use of conceptual

hydrological models to assess the relevance of meteo-

rological datasets is questionable. On one hand, since

the development of hydrological models, several au-

thors have pointed out the high sensitivity of hydrolog-

ical models’ streamflow simulations to precipitation data

(see, e.g., Dawdy and Bergmann 1969). On the other

hand, catchments and hydrological models may damp
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out differences in precipitation data because of their

storage functional behavior, and model parameter cali-

bration might increase these compensations. However, if

the calibration of a conceptual model tends to modify the

model parameters to compensate bias in input data to a

certain extent, it will compensate the misrepresentation

of precipitation temporality very little (Oudin et al. 2006).

Therefore, we hypothesize in this paper that the com-

parison of relative differences between the efficiency of

each dataset/calibrated model output might be an in-

dicator of the representation of temperature and pre-

cipitation amount and temporality: greater efficiency in

streamflow simulations indicates a better representation

of temperature and precipitation. Such integrated vali-

dations of datasets are particularly relevant when the

hydrological model is used for hydrological projections

under changing climate conditions (Bourqui et al. 2011;

Essou et al. 2016b; Dayon et al. 2015) since climate pro-

jections are often downscaled on existing reanalysis grids

(Vautard et al. 2013) and since the validation of down-

scaling methods on present-day data strongly depends on

the dataset used (Dayon et al. 2015).

c. Scope of the paper

The aim of this study was to assess the sensitivity of a

hydrological model’s streamflow simulation to several

griddedmeteorological datasets. We used a daily lumped

four-parameter hydrological model [Génie Rural à 4

paramètres journalier (GR4J); Perrin et al. 2003] forced

by precipitation and potential evaporation calculated

from the air temperature. We compared the streamflow

output performance of the conceptual hydrological

model calibrated using four datasets of precipitation

and temperature of various resolutions [SAFRAN,

Mesoscale Analysis (MESAN), E-OBS, and Water and

Global Change (WATCH) Forcing Data ERA-Interim

(WFDEI)]. We examined the applicability of these me-

teorological datasets to hydrological modeling over

metropolitan France on 931 catchments with diverse

drainage areas, altitudes, and climatic settings, and we

investigated themain reasons for the differences inmodel

performance obtained with the four datasets. We finally

discussed the required characteristics of meteorological

datasets to force hydrological models, as well as the rel-

evance of using a hydrological model to provide a com-

plementary evaluation tool for these datasets.

2. Material

a. Catchment set

The catchment set consisted of 931 gauged stations

located throughout France (Fig. 1), which were selected

among more than 3500 stations available in the HYDRO

French database (http://www.hydro.eaufrance.fr/). The

catchment sizes ranged from 10 to 10000km2, with a

great diversity of characteristics in this catchment set

(e.g., topography, elevation, and climate; see Table 1).

The selection was made according to the following

criteria: 1) no significant direct human influence on flow,

2) high measurement quality, 3) less than 20% missing

values over both the 1989–2000 and 2000–10 periods,

and 4) catchment size ranging from 10 to 10 000 km2. For

the first two criteria, qualitative metadata provided

by the monitoring authorities were available in the

HYDRO database. The third criterion was chosen to

ensure robust calibration of the hydrological model, and

the focus on the 1989–2010 period was guided by the

availability of the different gridded meteorological da-

tasets tested. The fourth criterion is justified by the

lumped daily hydrological model used in this study.

b. Gridded meteorological datasets

Four different gridded datasets were used in this study,

namely, SAFRAN, MESAN, E-OBS, and WFDEI.

They cover a wide spectrum of available gridded mete-

orological products with different spatial resolutions and

different methods based on interpolation techniques or

more sophisticated assimilation systems used to derive

climate variables (Table 2).

SAFRAN is an analysis system using an optimal in-

terpolation (OI) method to compute each value ana-

lyzed by modifying a first-guess field with the weighted

mean of the difference between observed and first-guess

values at station locations within a search distance

(Durand et al. 1993; Quintana-Seguí et al. 2008; Vidal

et al. 2010). The first guess comes from the large-scale

ARPEGE operational weather prediction model at a

0.258 resolution, and the observations come from

Météo-Francemonitoring stations (n’ 4100 stations for

precipitation and n’ 1100 stations for temperature over

metropolitan France). The analysis is performed on

climatological homogeneous areas, and the variables

analyzed are projected to an 8-km regular grid ac-

counting for elevation. The orography is set from a high-

resolution 8 km 3 8km digital elevation model, and

temperature and precipitation are determined with a

vertical step of 300m (Quintana-Seguí et al. 2008).

SAFRAN is constructed on a dense observation net-

work and comparisons with observations, including for

precipitation and temperature. Comparative studies

between SAFRAN reanalysis and observations show a

good match (Quintana-Seguí et al. 2008; Vidal et al.

2010). SAFRAN is preferentially used by hydrologists in

France (Habets et al. 2008; Martin et al. 2016) because it

has given satisfactory results in many areas, providing
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a set of consistent meteorological data, such as 2-m

temperature and humidity, liquid and solid pre-

cipitation, incoming longwave and shortwave radiation,

and wind speed. It is also the reference product used for

national climate projections. For these reasons, we used

SAFRAN as the reference in our study.

MESAN is a European high-resolution surface re-

analysis also based on an OI technique (Häggmark et al.

2000; Landelius et al. 2016). TheOI technique is based on

1) the HIRLAM operational forecasting system forced

by ERA-Interim at the lateral boundaries (0.228 field)
downscaled to the MESAN 0.058 grid as the first guess

and 2) observations from automatic stations, including

for precipitation and temperature. Observations come

from the same dense Météo-France monitoring network

as for SAFRAN, with fewer stations for temperature.

Häggmark et al. (2000) included a quality-check pro-

cedure to remove all observations with large errors

using a standard procedure (Lorenc 1981). A high-

resolution orography (5km 3 5km) is used for this re-

analysis, but orographic effects are not taken into account

for daily precipitation (Landelius et al. 2016). We used

the datasets interpolated to 0.118 grids (http://exporter.

nsc.liu.se/620eed0cb2c74c859f7d6db81742e114/).

E-OBS is an observation-only-based gridded dataset

of daily precipitation and temperature covering the

European continent. It is interpolated using a three-step

methodology of interpolating the daily data for the

1950–present period (Haylock et al. 2008): 1) interpo-

lating the monthly mean to define underlying spatial

trends, 2) kriging anomalies with regard to the monthly

mean, and 3) applying the interpolated anomaly to the

interpolated monthly mean to obtain the final result.

The number of ground-based stations is much lower

than for SAFRAN and MESAN (n 5 189 stations for

precipitation and n 5 171 stations for temperature over

metropolitan France). In this study, we used version 14.0

aggregated on a 0.228 rotated grid, which is the finest

resolution available for end-users (http://www.ecad.eu/

download/ensembles/download.php).

WFDEI is a global meteorological forcing dataset

at 0.58 resolution obtained by bias-correcting ERA-

Interim (Weedon et al. 2014). ERA-Interim assimilates

TABLE 1. Range of catchment area, elevation, and daily observed

water flow for the 931 catchments over the 1990–2010 period.

Characteristics Median Min Max

Catchment area (km2) 616 10.1 9119

Catchment elevation (m) 283 1 2154

Areal averaged observed water

flow (mmday21)

0.57 0 381

FIG. 1. Map of the 931 catchments studied (gray polygons). Points show the location of each catchment

outlet, with a color range indicating the upstream area class. The top-right insert shows the distribution of

catchment areas.
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surface temperature and humidity observations, as well

as many other atmospheric variables, but not pre-

cipitation, which is a diagnostic variable. WFDEI then

corrects ERA-Interim for precipitation biases using

data from the Climatic Research Unit (CRU) or from

the Global Precipitation Climatology Center (GPCC).

In this study, GPCC products were preferred to CRU

because of their higher resolution linked to the higher

station density (Weedon et al. 2014). Orographic effects

on precipitation are not corrected in WFDEI products,

possibly leading to some inappropriate precipitation

phases. However, the most extreme cases of inappro-

priate precipitation phase were corrected (Weedon et al.

2014). Given the relatively low spatial resolution,

this meteorological forcing is expected to be valuable

for hydrological modeling on large catchments

ranging from 100 to 10 000 km2 (Weedon et al. 2010,

2011). This dataset has recently been shown to lead to

better streamflow estimations than no-bias-corrected

reanalysis using a global conceptual hydrological

model in humid continental and subtropical climatic

regions (Essou et al. 2016b). Conversely, these authors

also showed that using bias-corrected reanalysis de-

teriorates streamflow simulations in several catchments

located in the United States.

Each meteorological dataset was extracted at the

catchment scale. Gridded temperature and precipitation

values were weighted according to the shared surface of

each grid cell within the topographic limits of each

catchment to obtain catchment temperature and pre-

cipitation. These extractions weremade at the daily time

step and were used as inputs for the hydrological model.

c. Hydrological model

In this study we used the GR4J hydrological model

associated with the CEMANEIGE snow accounting

routine (Fig. 2).

The GR4J hydrological model is a daily lumped four-

parameter model (Perrin et al. 2003). GR4J inputs are

daily mean values of areal precipitation and potential

evaporation. Potential evaporation was derived from

the mean daily air temperature and latitude of the

catchment using an empirical temperature-based formula

TABLE 2. Description of daily gridded meteorological datasets used in this study. Asterisks indicate that the number of stations is for the

France domain only.

Acronym

Temporal

extent

Spatial

extent

Spatial

resolution

Observation

stations

Analysis method for

surface P and T References

SAFRAN 1958–present France 8 km P ; 4100 OI Durand et al. (1993);

Quintana-Seguí et al. (2008);
Vidal et al. (2010)

T ; 1100

MESAN 1989–2010 Europe 0.118 P 5 4053* OI Häggmark et al. (2000);

Landelius et al. (2016);12 km T 5 252*

E-OBS 1950–present Europe 0.228 P 5 189* Kriging Haylock et al. (2008)

;25 km T 5 171*

WFDEI 1979–2012 Europe 0.58 Variational 4D Weedon et al. (2014)

;50 km

FIG. 2. Overview of the GR4J hydrological model (Perrin et al.

2003) combined with the CEMANEIGE snow module (Valéry
et al. 2014).
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(Oudin et al. 2005). A snow-accounting routine called

CEMANEIGE (Valéry et al. 2014) was combined with

GR4J in order to determine the solid fraction of pre-

cipitation and the temporal changes in the snowpack on

mountainous catchments, based on daily temperature

and catchment elevation. Note that this routine has two

parameters that can potentially be calibrated along with

the GR4J parameters, but in this study we used their

default values proposed by Valéry et al. (2014) for

France. Using default values was judged necessary to

avoid unrealistic parameterization of the snow module

that may occur to compensate for errors in gridded

meteorological datasets, especially in catchments not

affected by snow. The results obtained without the

CEMANEIGE routine (not shown) gave the same

conclusions as those obtained in this paper with the

CEMANEIGE routine, with greater efficiency when

using the CEMANEIGE module on snow-affected

catchments.

A detailed description of the model can be found in

Perrin et al. (2003), and only the main features of the

model are described hereafter. Net rainfall (the rainfall

amount that reaches the outlet of the catchment) and

actual evaporation are calculated as functions of the

soil moisture storage level S, the difference between

rainfall and potential evaporation (P 2 PE) and the

parameter X1 representing the maximum capacity of

the soil moisture storage. Interbasin groundwater flows

are parameterized by a second parameter X2. Positive

or negative X2 leads to a catchment water supply or

loss, respectively. X1 and X2 are the two possible

calibrated parameters that can adjust the catchment’s

water budget.

Net rainfall is divided into two flow components in the

routing function: 1) 90% are routed by a unit hydro-

graph, with a time-base parameter X4 and a nonlinear

routing storage, and 2) the remaining 10% are routed

through a unit hydrograph. The X3 parameter repre-

sents the maximum level of the routing storage. The two

flow components calculated in the routing function are

summed to obtain the simulated streamflow at the

catchment outlet.

d. Metrics to assess the differences/consistency
of meteorological datasets

All statistical analyses were performed using the R

software (https://cran.r-project.org/). Metrics were cal-

culated to evaluate 1) hydrological model performance

by comparing simulated streamflow using the four

meteorological datasets to observed streamflow and

2) meteorological dataset performance using precipita-

tion or temperature for the three datasets tested

(MESAN, E-OBS, and WFDEI) compared with the

reference precipitation or temperature (SAFRAN) for

the 931 catchments studied.

We chose to calibrate specific sets of hydrological

model parameters for each meteorological dataset

following a so-called dynamic sensitivity analysis of the

hydrological model to forcing data. Oudin et al. (2006)

highlighted that dynamic versus static calibration must

be chosen depending on the hydrological model used.

Dynamic calibration of the conceptual hydrological

model is needed on each atmospheric forcing dataset,

since a ‘‘true’’ parameter set cannot exist independently

of the calibration dataset, while static calibration is

preferred for a physical model since a true parameter set

could be derived without calibration. Note, however,

that even for physical models, Sperna Weiland et al.

(2015) highlighted the difficulty of finding optimal

parameter sets that can be applied for all atmospheric

forcing datasets.

The four parameters of the GR4J model were cali-

brated using the Kling–Gupta efficiency (KGE) co-

efficient (Gupta et al. 2009) as the objective function.

Because of the parsimony of the model, the calibration

does not face the problem of multiple optima regardless

of the calibration method (Edijatno et al. 1999; Perrin

et al. 2003). In our study, we used the steepest descent

method used by Edijatno et al. (1999).

The KGE is a decomposition enabling the estimation

of the relative importance of its components (variability

a, bias b, and correlation r) in the context of hydrological

modeling (Gupta et al. 2009). We used the R package

‘‘hydroGOF’’, which contains goodness-of-fit (GOF)

functions for numerical and graphical comparison of

simulated and observed time series, mainly focused on

hydrological modeling (Zambrano-Bigiarini 2014):

KGE5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2 1)2 1 (a2 1)2 1 (b2 1)2

q� �
.

The variance ratio a is the ratio between simulated

and reference variances:

a5
s
s

s
ref

.

The mean ratio b is the ratio between simulated and

reference means:

b5
m
s

m
ref

.

The Pearson correlation coefficient r is calculated be-

tween the simulated and reference datasets:

r5
cov

sref

s
s
3s

ref

.
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The best performance is obtained for KGE, a, b, and

r values close to 1.

While hydrological model outputs are generally vali-

dated on (nonsorted) time series, climate model outputs

are generally evaluated on (sorted) dataset quantiles. For

this reason, we also computed root-mean-square errors

(RMSEs) between simulated and observed streamflow

quantiles for each catchment.

Significant differences between meteorological data-

sets for each statistical criterion were assessed using the

Kruskal–Wallis nonparametric test for multiple com-

parisons of groups from the R package ‘‘agricolae’’. The

Kruskal–Wallis test distinguishes groups that have dif-

ferent distributions of their ranked values. The differ-

ence between groups is represented by different letters

in each subplot presented hereafter. Nonsignificant dif-

ferences are represented by the same letter. The p value

threshold is 0.05.

To assess the temporal robustness of the model pa-

rameters calibrated using each meteorological dataset,

we followed a split-sample test procedure (Kleme�s

1986), also called ‘‘cross validation.’’ For each catch-

ment and each dataset, the model parameter values

are calibrated on the 1989–2000 period, and the

streamflow simulations are compared to observations

on the 2000–10 period. Then the 2000–10 period is

used as the calibration period and the 1989–2000 period

as the validation period. In doing such dynamic sensitiv-

ity analysis, we allow the calibrated model parameters

to eventually adjust their value to the rainfall and tem-

perature inputs.

3. Results

This section is structured as follows: the efficiency of

the streamflow outputs of the hydrological model cali-

brated on four gridded meteorological datasets is

assessed, and then the reasons for the different levels of

efficiency questioning the impact of geographic loca-

tions, catchment areas, elevation, and their climatic

specificities are investigated.

a. Evaluation of streamflow simulation using
the different gridded meteorological datasets
as inputs

The distributions of the KGE streamflow Q values

and its three components were investigated over the

931 catchments studied and for the four meteorological

datasets tested (Fig. 3). The hydrological model forced

with SAFRAN and MESAN high-resolution datasets

showed the highest statistical efficiencies compared

to E-OBS and WFDEI low-resolution datasets re-

gardless of the criteria (Fig. 3). The KGE Q median

values in validation were higher than 0.75 nomatter the

meteorological dataset used, with significantly better

values for SAFRAN and MESAN (0.84) compared to

WFDEI (0.78) and E-OBS (0.75). Then we compared

the median values of the three components of this cri-

terion, that is, the variance ratio a, the mean ratio b,

and the Pearson correlation coefficient on streamflow

rQ. The median of the variance ratio a showed that the

variance was well represented using SAFRAN and

MESAN (0.99) and was slightly lower with E-OBS and

WFDEI (0.97). The median values of the mean ratio

b were close to 1 for all datasets, which indicated no

general bias of simulated streamflow over the valida-

tion periods. Even if not significant, a larger bias was

observed for E-OBS compared with other datasets, and

much lower first quartile values were observed. The

median values of the Pearson correlation coefficient rQ

were significantly higher for SAFRAN (0.91) and

MESAN (0.90) than for E-OBS (0.85) and WFDEI

(0.84). For all criteria, lower first quartile values were

generally observed for E-OBS, and to a lesser extent,

for WFDEI.

KGE Q distributions were not significantly different

for SAFRAN and MESAN, but different for E-OBS

andWFDEI (Fig. 4, left). Comparing the KGEQ values

obtained with each meteorological dataset (E-OBS,

MESAN, WFDEI) to the SAFRAN reference dataset

(Fig. 4, right), the absence of difference between

FIG. 3. Statistical criteria (the KGE and its components a,

b, and r) on simulated vs observed streamflow Q for each

gridded meteorological dataset (E-OBS, MESAN, SAFRAN,

WFDEI) at a daily resolution for the 931 studied catchments.

For each criterion, the letters above the box plot indicate

dataset groups of significantly different criteria distributions

(Kruskal–Wallis test).
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SAFRAN and MESAN was confirmed by the points

following the 1:1 line, while many catchments showed

lower performance for WFDEI and much lower for

E-OBS.

We then calculated RMSE values on simulated versus

observedQ quantiles (Fig. 5). TheRMSEmedian values

calculated onQ quantiles were not significantly different

for SAFRAN and MESAN (0.087mmday21), E-OBS

(0.095mmday21), and WFDEI (0.092mmday21).

b. Potential factors controlling hydrological model
efficiency forced by meteorological datasets

To investigate possible areas with poor streamflow

simulation efficiency for some meteorological datasets,

we analyzed the spatial distribution of KGE Q for

SAFRAN (the reference) and the KGE Q anomalies

of MESAN, E-OBS, and WFDEI datasets compared

to the reference (Fig. 6). Most KGE Q values were

.0.6 (green) when using SAFRAN precipitation and

temperature as atmospheric forcing (Fig. 6a), which

confirms the quality of the GR4J/CEMANEIGE hy-

drological model calibrated on SAFRAN. Most of the

lowest hydrological model efficiency values were ob-

served in mountainous areas. As expected from the re-

sults presented in Fig. 4, MESAN showed the lowest

(negative and positive) anomalies to SAFRAN, while

WFDEI and even more E-OBS showed the highest

negative anomalies, especially in mountainous regions

(Figs. 6b–d).

We investigated the influence of the mean catch-

ment altitude on the KGE Q values for the SAFRAN

reference and on the KGE Q anomalies of each mete-

orological dataset compared to SAFRAN (Fig. 7).

KGE Q values for the SAFRAN reference significantly

decreased for high-elevation catchments (Fig. 7a). In-

creasing mean altitude significantly decreased KGE Q

for MESAN (Fig. 7b), but even more for E-OBS and

WFDEI (Figs. 7c,d).

We then investigated the influence of catchment size

on the KGE Q values for the SAFRAN reference and

on the KGEQ anomalies of each meteorological dataset

compared to SAFRAN (Fig. 8). KGE Q values for the

SAFRAN reference significantly decreased when catch-

ment size decreased (Fig. 8a). While the altitude had a

stronger influence for MESAN, E-OBS, and WFDEI

compared to the SAFRAN reference, the influence of

catchment size was similar for MESAN, E-OBS, and

WFDEI compared to the reference (Figs. 8b–d).

FIG. 4. (left) Distribution of calibrated KGE on simulated vs

observed Q for each gridded meteorological dataset. The SA-

FRAN reference is in blue. (right) Comparison of each dataset

KGE Q with the SAFRAN KGE Q reference. The 1:1 line is

dashed blue; n 5 931 catchments.

FIG. 5. RMSEs (mmday21) on streamflow quantiles; n 5 931

catchments.
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Wefinally investigated if the loss or gain in hydrological

efficiency (KGE Q) was related to the properties of the

atmospheric forcing inputs (precipitation P and temper-

ature T) tested: MESAN, E-OBS, andWFDEI compared

to the SAFRAN reference (Fig. 9). The characteristics of

atmospheric forcing were investigated by comparing each

component of the KGEP andKGET calculated between

each dataset and the SAFRAN reference over the entire

simulation period (1989–2010) for precipitation and air

temperature, respectively.

For precipitation, variance and mean ratios (a and b)

differed significantly between the three datasets

(Fig. 9, upper panel). They were close to 1 for MESAN

(median 5 1.01 and 1.00, respectively), indicating not

significantly different variance and mean compared

to SAFRAN. Variance and mean were much lower

for E-OBS than for SAFRAN, with lower a and

b values (0.88 and 0.87). For WFDEI, a was lower

(0.97) and b slightly higher (1.03) than for SAFRAN.

The correlation coefficient rP showed a different pat-

tern, with a significantly decreasing correlation co-

efficient from higher values for MESAN (0.98) to

lower values for E-OBS (0.92) and even lower for

WFDEI (0.71). Therefore, the low performance of the

hydrological model is likely due primarily to bias in

precipitation for E-OBS and to poor correlation in

precipitation for WFDEI.

For temperature, fewer interdataset differences were

observed for each component of theKGET (Fig. 9, lower

panel). The variance ratioawas high and not significantly

different for MESAN and E-OBS (median5 0.996), and

for E-OBS and WFDEI (0.994), indicating similar vari-

ance compared to SAFRAN. Themean ratio bwas equal

to 1 for MESAN and significantly higher for E-OBS

(1.04) and WFDEI (1.07). The rT Pearson correlation

coefficient was quite high for MESAN (median 5 0.996)

and slightly but significantly lower for E-OBS (0.991) and

WFDEI (0.987).

FIG. 6. (a) KGE values obtained on simulated vs observed Q for the SAFRAN reference and (b)–(d) KGE Q

anomalies of each gridded meteorological dataset (MESAN, E-OBS, WFDEI) compared to the SAFRAN ref-

erence. Negative anomalies compared to SAFRAN account for 51%, 80%, and 79% of the 931 studied catchments

for MESAN, E-OBS, and WFDEI, respectively.
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4. Discussion

a. Main requirements of gridded meteorological
datasets for hydrological modeling

The hydrological model used in this study appears

sensitive to the choice of the gridded meteorological

datasets since the datasets lead to different levels of

efficiency in terms of streamflow simulations. Disen-

tangling the factors explaining these differences is

not easy as more than one characteristic is different

between each dataset (e.g., the resolution, the assimi-

lation method, the number of monitoring stations, the

type of observations, the temporal coverage), but it is

possible to identify which factors have a major impact

(i.e., high-resolution accounting for topography and

high observation density).

Accounting for topography is essential to improve

the representation of precipitation and temperature gra-

dients with altitude and is one of the most constraining

factors in actual meteorological datasets. This implies

high spatial resolution datasets, either based on dense

observation networks or on models representing small-

scale processes and accounting for elevation gradients.

This is highlighted by comparing the hydrological model

efficiency obtained with the 8-km SAFRAN and the

50-km WFDEI. The high resolution of SAFRAN ac-

counts for catchment topography down to 64km2 and

calculates temperature and precipitation with a 300-m

vertical step, leading to high model efficiency. On the

contrary, the low-resolution WFDEI does not integrate

correction of precipitation for orographic effects and

shows lower model efficiency. Accounting for topog-

raphy is particularly essential in mountainous catch-

ments to have adequate estimations of snow. SAFRAN

gives the best hydrological model efficiencies in moun-

tainous catchments, most probably because it takes into

account a high-resolution topography, as well as the ele-

vation gradient to compute temperature and precipitation

variables. Limitations can, however, arise for small catch-

ments. Indeed, regardless of the meteorological datasets

used, the efficiency to model streamflow is lower for

catchments with surface area lower than 100km2 (Fig. 7),

FIG. 7. (a) KGE values on simulated vs observedQ for the SAFRAN reference and (b)–(d) KGE Q anomalies

for the other gridded meteorological datasets (MESAN, E-OBS, WFDEI) compared to the SAFRAN reference.

Values are given for three altimetric classes (,400m, 400–1000m,.1000m). The dashed blue line represents zero

differences of KGE Q values for each gridded meteorological dataset compared to the KGE Q values computed

with SAFRAN, and n 5 931 catchments.

3036 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/18/11/3027/4774132/jhm

-d-17-0018_1.pdf by guest on 26 June 2020



as the resolution of the meteorological dataset becomes

coarse compared to the catchment size. Conversely, the

systematic increase of efficiency of the calibrated hydro-

logical model with increasing catchment size may be due

to the increased damping effect of large catchments

(explaining their lower sensitivity to forcing data).

If the resolution is high but the observation network is

sparse and/or the physical model used to create rean-

alyses does not represent small-scale processes, high

spatial heterogeneity will not be accounted for. Using

SAFRAN 8km or MESAN 12km, both built on a

large number of observations, gives similarly high effi-

ciencies of the hydrological model outputs. However,

when comparing SAFRAN (8km) or MESAN (12km)

to E-OBS (25 km), we observe a significant decrease in

the efficiency of the hydrological model to estimate

streamflow with E-OBS. This might be related to the

limited number of available monitoring stations in

France for E-OBS (n5 171 for temperature; n5 189 for

precipitation) compared to the large number of obser-

vations used for SAFRAN and MESAN (n ; 1100 and

250 for temperature; n ; 4100 for precipitation). Based

on the available monitoring stations, E-OBS cannot

achieve a spatial representation as good as SAFRAN

and MESAN. The hydrological model efficiency using

E-OBS was especially low in mountainous regions, thus

reinforcing the findings of Isotta et al. (2015) that

showed higher daily precipitation RMSE for E-OBS

than for MESAN in the French Alps, mostly due to

lower station density. In addition, the lowest model

performance using SAFRAN is often observed in

mountainous regions where weather stations are often

sparse, and precipitation events are spatially heteroge-

neous and not often captured by the gauge network

(Durand et al. 1993; Prein and Gobiet 2017). This raises

the question of the representativeness of sparse obser-

vations in mountainous regions. Even if accounting for

quality-controlled observations is better than not doing

it, analyses of precipitations based on sparse observa-

tions in mountainous regions could lead to larger errors

in precipitation estimations than with dense observation

networks. In addition, stations are not all located at the

same altitude. Therefore, reconstruction of the pre-

cipitation field at a given elevation needs to account for

stations at different altitudes, and a correction of the

precipitation amount with altitude should usually be used

FIG. 8. As in Fig. 7, but values are given for three catchment area classes (small,,100 km2; medium, 100–1000 km2;

large, .1000 km2).
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in the analysis of precipitation. Thus, underlying dense

networks of ground-based observation stations in mete-

orological datasets with correction for station altitude,

particularly in mountainous areas, appear essential to

correctly account for spatial heterogeneities and give a

fine description of the meteorological situation (Garcia

et al. 2008). This is particularly crucial in order to cor-

rectly capture the phases of precipitation, that is, to dis-

tinguish between rain and snow, which will impact

streamflow simulations.

The use of assimilation schemes and/or meteorologi-

cal model outputs to create meteorological datasets can

possibly have an impact on the efficiency of hydrological

outputs. As an example, the better efficiency calculated

using WFDEI compared to E-OBS shows that, even

if the resolution of WFDEI is coarse, accounting for

processes in the forecast model and using bias correc-

tion give better results than gridded observations only.

This particularly leads to better precipitation mean and

variance. This is in agreement with recent findings in

eastern U.S. catchments showing that bias-corrected

dynamic downscaling of global reanalysis gave better

streamflow estimations than biased ones, global re-

analysis, or synthetically generated meteorological

forcing from a weather generator (Bastola and Misra

2014). However, we also show that, even if precipitation

mean and variance are better for WFDEI than for

E-OBS, the correlation of daily amounts to reference

SAFRAN precipitations is much lower, indicating that

the temporality of precipitation events is less accu-

rately represented in WFDEI. The ineffectiveness of

WFDEI to represent daily temporality of precipitation

might be explained by the lack of assimilation of

ground-based precipitation observations with the

physical weather model (Weedon et al. 2014). The

weather model is implemented at a coarse resolu-

tion, which does not account for fine spatial and

temporal scale processes. Indeed, this product

FIG. 9. Statistical criteria (a, b, and r) computed between each gridded meteorological dataset (E-OBS, MESAN, WFDEI) and for the

SAFRAN reference for the 931 catchments for daily (top) precipitation and (bottom) temperature.
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results from a forecast model at the global scale,

which is appropriate for the representation of global-

scale processes but not for local processes.

The use of gridded meteorological datasets for hy-

drological purposes is often based on pragmatic reasons,

such as the time period covered by the dataset or the

spatial and temporal resolution, and intercomparisons

to select the most adequate product are often left out

because of time constraints. However, our results show

the necessity of evaluating meteorological datasets be-

fore using them, especially for models like GR4J that

are sensitive to meteorological forcing.

b. On the use of a hydrological model to assess
the relevance of meteorological datasets

Using a conceptual hydrological model dynamically

calibrated on meteorological datasets highlights how

crucial the quality of precipitation and temperature

datasets is to correctly simulate streamflow. Precipita-

tion is particularly different among the tested datasets,

most probably because of the difficulty of capturing

or modeling the spatial distribution of precipitation com-

pared to more continuous variables like temperature.

Given the high sensitivity of hydrological model outputs to

precipitation, the efficiency of a hydrological model de-

pends strongly on the accuracy of the precipitation dataset

used. This confirms the recent findings of Essou et al.

(2016b), who showed the sensitivity of a global conceptual

model to precipitation inputs on 370 U.S. catchments of a

similar size range (104–10325km2). However, the accu-

racy of precipitation datasets may not be optimal for all

regions. For SAFRAN, which is the meteorological

reanalysis reference in France, the lowest hydrologi-

cal model efficiencies are observed in mountainous

catchments. This is linked to the inability of SAFRAN

to represent intrazone variability and strong hori-

zontal gradients in mountainous regions and by high

spatial variability of convective precipitation along

the Rhone and on the Mediterranean border of the

Massif Central (Quintana-Seguí et al. 2008).
In this paper, we use a dynamic approach consisting

of calibrating the model parameters for each of the

meteorological datasets. This is warranted both by the

conceptual nature of the hydrological model and by

the fact that no dataset can be considered a priori as a

reference for the calibration. Consequently, the cali-

bration of the model parameters might compensate for

certain errors in the meteorological forcing. However,

we show that even if conceptual hydrological models

are dynamically tuned on each atmospheric forcing,

the calibration procedure does not offset biased or

out-of-phase precipitation datasets. Indeed, even if

WFDEI shows a precipitation mean and variance close

to SAFRAN, the misrepresentation of temporality

(i.e., low correlation on daily precipitation values) is

the main factor leading to worse streamflow simula-

tions. For E-OBS, the underestimation of the pre-

cipitation mean is not compensated for by model

calibration, and the model efficiency strongly de-

creases. Our results based on 931 catchments in France

strengthen the findings of Oudin et al. (2006), who

showed that the dynamically calibrated GR4J model

efficiency had a very high sensitivity to corrupted

precipitation inputs compared with temperature for 12

U.S. catchments.

Interestingly, Essou et al. (2016a) showed that their

conceptual hydrological model was able to compensate

for errors of four gridded datasets of various resolution

levels in the United States. The results might be partly

explained by the larger number of calibrated parameters

in their hydrological model (23 parameters) compared

with our study (four parameters). This suggests that

conceptual hydrological models with a limited number of

calibrated parameters would possibly be more likely to

evaluate and intercompare meteorological datasets be-

cause of their lower degree of freedom. However, com-

parisons between the two calibratedmodels forced by the

same datasets are needed to confirm this statement.

Further comparisons with a mechanistic approach, that

is, a distributed hydrological model, would be interesting

to evaluate the impact of the spatialization of the mete-

orological inputs on the spatial patterns of streamflow.

Quantifying hydrological modeling efficiency driven by

meteorological forcing appears to be an interesting tool to

evaluate meteorological datasets for two main reasons.

First, the sensitivity of hydrological model outputs to me-

teorological inputs allows identifying the most appropriate

meteorological datasets. Second, as hydrological processes

are related to the daily covariation of precipitation and

temperature and are characterized by an important

memory effect, using a hydrological model forced by me-

teorological datasets is an integrative tool to evalu-

ate precipitation and temperature datasets and their

covariation, as well as the memory effect. For these rea-

sons, we argue that, in addition to the necessary evaluation

of meteorological inputs for hydrological purposes, this

evaluation may be also useful for climate impact studies.

Indeed, climate model outputs, particularly precipitation,

are not assessed on time series but rather on sorted, av-

eraged, or event values, for example, event frequency, in-

tensity, total, and duration (Loikith et al. 2017). This type

of validation for precipitation is mostly explained by

the lower confidence in model estimates for precipita-

tion than for temperature (Randall et al. 2007). In our

study, we show that the RMSE on (sorted) streamflow

quantiles does not allow discrimination between gridded
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meteorological datasets, contrary to statistical criteria cal-

culated on (unsorted) time series. We thus stress that cli-

mate impact studies need evaluations on unsorted variables,

as the timing of events is important to quantify impacts, for

example, hydrological and biogeochemical impacts.

5. Conclusions

In this paper, we show that for hydrological applications,

it appears essential that gridded meteorological datasets

account for high-resolution topography to accurately rep-

resent elevation gradients and assimilate dense ground-

based observations. This is emphasized for mountainous

areas and/or areas subject to finescale events while accept-

able streamflow simulations were obtained for low-altitude

catchments, regardless of the meteorological input used.

Even if the calibration of hydrological model param-

eters is dynamic, using a dataset that misrepresents

precipitation amount or timing results in a decrease in

streamflow output efficiency. Therefore, our method-

ology based on dynamic calibration of a conceptual

model on meteorological datasets appears to be an in-

teresting tool to assess the consistency of meteorological

datasets for hydrological applications, complementary

to classical validation procedures of these datasets.

More precisely, using hydrological modeling allows

the evaluation of the covariability of precipitation and

temperature, as well as their temporality, because of the

relative inertia of the catchments.

In this paper, the similar efficiencies of the model

calibrated using SAFRAN and MESAN highlight the

possible use of both reanalyses to model hydrology at the

scale of France. Even if the hydrological model efficiency

is not tested outside of France in our study, reanalyses

like MESAN are expected for hydrological studies cov-

ering Europe, as MESAN is the most complete homo-

geneous temperature and precipitation dataset available

for Europe (Landelius et al. 2016). Landelius et al. (2016),

however, stressed the need for open national databases,

the lack of which leads to limitations for high-resolution

datasets in large areas of Europe.

Both SAFRAN and MESAN seem to be useful as a

reference to validate atmospheric outputs of climate

models over their respective coverage period, at least

for France. This strengthens the use of SAFRAN and

MESAN reanalyses to correct biases of atmospheric

outputs of regional climate models at the scale of France,

for example, DRIAS (http://www.drias-climat.fr) or

at the European scale, for example, CORDEX (www.

cordex.org) for climate change impact studies.

Quantifying the sensitivity of this approach to known

gridded meteorological dataset errors would allow

reaching more quantitative conclusions. ERA5, at a

30-km resolution, has just been launched and will

provide a set of approximately 10 runs with perturbations

of initial conditions and observations in order to provide

uncertainty estimation. It would be advantageous to test

the response of simulated streamflow to these perturba-

tions in order to evaluate their sensitivity to known errors

in atmospheric forcing. It would be even more useful to

also perform the same test on higher-resolution meteo-

rological datasets.
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