
HAL Id: hal-02881249
https://hal.science/hal-02881249v1

Preprint submitted on 25 Jun 2020 (v1), last revised 5 Mar 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical substructuring and parallel mesh
generation for domain decomposition methods

Yannis El Gharbi, Augustin Parret-Fréaud, Christophe Bovet, Pierre Gosselet

To cite this version:
Yannis El Gharbi, Augustin Parret-Fréaud, Christophe Bovet, Pierre Gosselet. Hierarchical substruc-
turing and parallel mesh generation for domain decomposition methods. 2020. �hal-02881249v1�

https://hal.science/hal-02881249v1
https://hal.archives-ouvertes.fr

Hierarchical substructuring and parallel mesh
generation for domain decomposition methods

Y. El Gharbi1,2, A. Parret-Fréaud2, C. Bovet3, P. Gosselet1,4

1 LMT, École Normale Supérieure Paris-Saclay / CNRS,
yannis.elgharbi@ens-paris-saclay.fr

2 Safran Tech, Modeling & Simulation, Rue des Jeunes Bois, Châteaufort, 78114
Magny-Les-Hameaux, France, augustin.parret-freaud@safrangroup.com

3 Onera — The French Aerospace Lab F-92322 Châtillon, France, christophe.bovet@onera.fr
4 LaMcube, Univ. Lille / CNRS / Centrale Lille, pierre.gosselet@univ-lille.fr

Abstract

This paper presents a new parallel mesh generation method leading to subdo-
mains of shape well-suited to Schur based domain decomposition methods such
as the FETI and BDD solvers. Starting from a coarse mesh, subdomains meshes
are created in parallel through hierarchical mesh refinement and morphing tech-
niques. The proposed methodology aims at limiting the occurrence of known
pathological situations (jagged interfaces, misplaced heterogeneity with respect
to the interfaces, . . .) that penalize the convergence of the solver. Furthermore,
it enables to distribute and parallelize the mesh generation step in the early
phases of the whole analysis. Besides its good behavior towards convergence,
the mesh generation is thus distributed. The method is assessed, on several aca-
demical and industrial test cases, for both its parallel efficiency when creating
the mesh and its capability to generate decomposition resulting in less FETI
iterations.

Keywords: Domain decomposition methods, parallel mesh generation, FETI

1. Introduction

Non overlapping domain decomposition methods provide a favorable frame-
work to define iterative solvers, such as FETI1 [12] or BDD2 [28], adapted to
the massively parallel architecture of recent supercomputers, for the resolution
of linear and nonlinear structural mechanics problems. They have been suc-
cessfully applied to solve several challenging mechanical heterogenous problems
such as a composite wing model [35] or strongly heterogeneous mockup reen-
try vehicle of a rocket ship [3]. An overview of these Schur complement based
methods is available for instance in [17].

1Finite Elements Tearing and Interconnecting
2Balanced Domain Decomposition

Preprint submitted to Elsevier March 20, 2020

It has been observed, and mathematically analyzed, that these methods
suffer from a lack of robustness in certain cases (typically jagged interfaces
[29], bad subdomain aspect ratios, strong heterogeneity misplaced with respect
to the interface [32], incompressibility). These problematic cases are inevitably
encountered when using automatic graph partitioners to generate the subdomain
decomposition of common industrial structures.

This phenomenon can be illustrated with the simple example of a stiff in-
clusion embedded in a soft matrix, as shown in Figure 1. On Figure 1d, one
can observe that the regularity of the interface and its position with respect to
the heterogeneity have a very strong influence on the convergence rate of the
original FETI solver (equipped with state-of-the art preconditioner and using
conjugate gradient).

(a) Cross section view of
the decomposition with
regular interfaces and
homogeneous domains.

(b) Cross section view of
the graph-based decom-
position obtained with
an automatic graph par-
titioner.



δ
δ
δ




(c) Boundary conditions, one
face is clamped and a longitudi-
nal and transverse displacement
is imposed on the opposite face.

0 20 40 60 80 100

10−6

10−3

100

Iterations

P
re
co
n
d
it
io
n
ed

re
si
d
u
al

regular
graph

(d) Evolution of the preconditioner-norm of the residual over FETI iterations.

Figure 1: Influence of the shape of the subdomains on the convergence of the FETI method.
The test case is a spherical rigid inclusion in a soft matrix (linear elastic behavior, the ratio
of Young modulus is 105, the Poisson coefficient is ν = 0.3, 1,2 million degrees of freedom, 13
subdomains).

This lack of robustness occurs when the classical preconditioner (correspond-
ing to a weighted sum of the inverses of subdomains operator) wrongly estimates

2

some diffused features [18]. To compensate for this lack of relevance of classi-
cal preconditioner, several solutions have been proposed. In the FETI-GenEO3

method [38], the eigenvectors of the preconditioned operator which cause bad
condition number (corresponding to the largest eigenvalues), are detected a pri-
ori and removed from the resolution by an augmentation of the Krylov solver.
Another method, called Block-FETI [18], exploits the additive structure of the
problem to generate a family of right-hand sides to be solved by a block conju-
gate gradient. A more general framework of this approach is proposed in [19].
A last family of methods, called multi-preconditioning, uses the additive struc-
ture of the preconditioner to generate a full search subspace at each iteration
instead of a single vector (see Simultaneous-FETI [18] and its adaptive version
AMPFETI4 [5]). All these fixes have shown their efficiency, but they induce
higher memory consumption (Block FETI, AMPFETI) or extra computations
(GenEO) which may become significant on large scale problems.

On the one hand, if it seems possible to tune the weighting of graph edges
in order to optimize the position of interfaces with respect to the heterogeneity
and to produce homogeneous subdomains [20], it appears impossible to guaran-
tee a regular geometric aspect of these interfaces because the graph partitioner
software does not take into account any geometrical features. A BSP-tree (such
as a KD-tree) could generate spatially localized subdomains but it could not in-
sure regular interfaces because the underlying mesh is generally not structured.
On the other hand, the traditional approach of calculations has an important
drawback in that both the mesh generation and the decomposition stage are
dominated by sequential steps which constitute a significant part of the total
computation time once the resolution is made in parallel. Specifically, the con-
formal mesh generation of complex 3D structures from geometrical data is a
process which can become very expensive and would benefit from a parallel
implementation.

Regarding this last point, several coarse grained parallel remeshing ap-
proaches have been proposed so far. In [8], repartitioning and remeshing steps
are performed by iterations in order to satisfy a given target metric on the whole
domain, but the resulting method produces irregular interfaces because of the
repartitioning at each iteration. A master-slave approach can also be employed
(see [23, 27]), where a master process is in charge of meshing the interface be-
fore distributing the volumetric filling on the subdomain’s slave processes. This
method doesn’t appear to be scalable because of the growth of the size of the
interface with the number of subdomains. Recent other methods [7, 42] are
based on the generation of an initial coarse distributed mesh which will un-
dergo local remeshing techniques. This last class of methods, where the one
presented in this paper lies in, are expected to be more efficient for large scale
mesh generation.

3Generalized Eigenproblems in the Overlaps
4Adaptive MultiPreconditioned FETI

3

The classical computational chain involving a domain decomposition solver
is summed up in the upper branch of Figure 2, where the data pre-processing
consists in the two following steps:

1. mesh generation on the global structure, possibly of large size, with a
sequential mesher (or its fine-grained parallel counterpart [26]);

2. substructuring of the associated connectivity graph with a partitioning
software (e.g. Metis [24], Scotch [34], Chaco [21]. . .) or a Binary Space
Partitioning tree of the position of elements (KD-tree [15], RP-tree, MM-
tree. . .).

Meshing

Sub-

st
ru

ct
urin

g

Solving
Erro

r es
tim

at
io

n

Solving

Mesh adaptation

Mesh adaptation

Geometry

Coarse mesh Parallel
refinement

and morphing

Figure 2: Domain decomposition computations approach: - Upper branch: classical method
- Lower branch: developed hierarchical method.

The method proposed in this paper is described in the lower branch of Fig-
ure 2. Bear in mind that even if we focus on making parallel the meshing
step, our objective is also to ease the solution step by limiting the need to use
the advanced strategies described previously. Our objective is thus to produce,
in a way as parallel as possible, a substructured mesh with regular interfaces,
possibly adapted to structural heterogeneity, in order to improve the condition
number of the condensed problem. To do so, the method — which appears
to be completely original in solid computational mechanics — is schematically
based on a reversal of the meshing and substructuring steps, while possibly
using hierarchical discretization.

First, from a discrete geometry (i.e. CAD or discrete CAD), a coarse mesh
is generated. This coarse mesh does not accurately represent the underlying
geometry but simply allows to define a well-proportioned partitioning. The
subdomains are then defined as unions of coarse elements and distributed on
the computing cores along with the underlying subdomain CAD information.
Thereafter, the fine mesh of the structure is carried out in parallel while keeping

4

the interface compatibility. Finally, the application of mesh deformation tech-
niques allows to ensure that the fine mesh respects the underlying geometry.

The article is organized as follows: Section 2 gives a detailed description of
the method. Numerical results on heterogeneous and homogeneous cases are
provided in Section 3. The developments presented in this section make use of
the Python interface of the Z-set5 finite element suite [2, 14]. Finally, section 4
concludes the paper.

2. Hierarchical substructuring method

The methodology proposed in this article is described in Algorithm 1, where
each step is detailed in the following subsections.

2.1. Overall methodology

(a) Coarse sd. mesh
Ωsc

(b) After line 5 (c) After line 7 (d) After line 8

(e) After line 9 (f) After line 10 (g) Volume deformation in sectional view
before (left) and after (right) line 11

Figure 3: Illustration of the parallel steps of the Algorithm 1 on a subdomain of a sphere
input geometry, where three levels of hierarchical refinement are used to generate the target
mesh.

The starting point of the method is the fine description of all the geometrical
entities required for the setting of the mechanical problem to be solved:

5https://www.zset-software.com

5

Algorithm 1: Hierarchical substructuring method

Data:
– ((Ωdφ)d,Fφ, Eφ) geometry of the computational structure;
Input:
– target number of subdomains (sd.) Ns;
– target number of hierarchical refinements Nr;
begin

1 three-dimensional coarse meshing of the geometry: (Tc,Fc, Ec);
2 partitioning of the coarse mesh into its Nφ different materials(

T dc ,Fdc , Edc
)
d∈J1,NφK;

for d ∈ J1, NφK do
3 partitioning of each material into a number Nd

s of subdomain

depending on Ns such as
∑Nφ
d=1N

d
s = Ns;

end
Data:
– partitioned coarse mesh (T sc ,Fsc , Esc)s∈J1,NsK ;

for s ∈ J1, NsK parallel do // parallel stage

4 restriction of Ωφ in the vicinity of the subdomain’s faces Fsc ;
5 subdomain’s meshes Nr hierarchical refinements (T sr ,Fsr , Esr);
6 projection of (Fsr) on (Fsφ):

7 – projection of physical edges (Esr,φ) with a curvilinear abscissa

based method;
8 – projection of remaining edges (Esr,∂) along their normals;

9 – interpolation of (Fsr) surfaces;
10 – projection of (Fsr,φ) surfaces on (Fsφ) along their normals;

11 deformation of (T sr ,Fsr , Esr) according to projection of (Fsr)
(line 6 to 10);

end

end
Output: sub-structured refined mesh (T sr ,Fsr , Esr)s respecting the

physical geometry ((Ωdφ)d,Fφ, Eφ);

• Description of the physical domains (Ωdφ)d. These are connected com-
ponents which in general are associated to constant material coefficients.
The number of physical domains is Nφ.

• Set of physical faces Fφ. It is assumed that the boundaries of the physical
subdomains can be decomposed into piecewise regular faces. Some of them
are the support of mechanical boundary conditions such as a prescribed
load (pressure), displacement or interface properties (contact, friction).

• Set of physical edges Eφ. These are the intersection of the boundaries of
physical faces. They play an important role in the representation of the

6

geometry.

This information can be provided in various formats: CAD (Computer Aided
Design) formats like BREP [31], STEP [22] or software-specific geometry file
(like GMSH’s geo file [16]) or simply —as it is done in this paper— a fine mesh
of the skin (like STL format [1]) with adapted tagging of faces and edges.

2.2. Coarse meshing

The first step of the method, illustrated in Figure 4b and occuring at line 1 of
Algorithm 1, consists in the generation of a coarse mesh of the physical geometry
((Ωdφ)d,Fφ, Eφ). This results in the discrete sets (Tc,Fc, Ec) with the following
properties:

• Coarse elements forming the set Tc are simple polyhedrons (in general
tetrahedrons, sometimes hexahedrons). Each coarse element is associated
with one physical subdomain.

• Coarse faces, gathered in the set Fc, are the boundaries of the coarse
elements. Let Fc,φ denote the subset of coarse faces associated with phys-
ical faces, note that in that case their vertexes belong to the associated
physical face.

• Coarse edges, gathered in the set Ec, are the boundaries of the coarse faces.
Let Ec,φ denote the subset of coarse edges associated with physical edges,
and let Ec,F denote the subset of coarse edges associated with physical
faces but not with physical edges (edges connecting two coarse faces asso-
ciated with the same physical surface). Note that in the latter two cases
the vertexes also belong to the associated physical edge or face.

Note that at this point, there is absolutely no need to represent the true
geometry correctly. Only the topological and physical information needs to be
stored along with by the coarse mesh.

2.3. Sequential decomposition

In the step descibed by the lines 2 and 3 of Algorithm 1, the user should pro-
vide the total number of computational subdomains Ns the geometry should be
split in. This number needs not be limited by the actual computational resource
since over-allocation of subdomains on processing units may be employed. Thus,
we assume that #Tc > Ns > Nφ.

Each coarse representation of a physical subdomain is split into computa-
tional subdomains (Ωsc)s in proportion with the objective to have, as much as
possible, a sensibly identical number of coarse elements in each computational
domain. The decomposition is achieved by a graph partitioning software (e.g.
Scotch [34], Metis [24], Chaco [21]). Please note that in the case of an heteroge-
neous structure made from materials of very different computational cost (such
as a composite material with elastic fibers and viscoplastic matrix), weights can

7

(a) Physical geometry
((Ωdφ)d,Fφ, Eφ)

(b) A resulting coarse mesh
(Tc,Fc, Ec). Red edges corre-
sponds to non-physical edges ly-
ing in Ec,F , other edges are
in Ec,φ. Here, the only non-
physical coarse face is the one
shared by the hexahedron and
the prism.

Figure 4: Definition of the different geometrical sets, each color represents a different physical

surface Ffc,φ.

be added on the elements during the graph partitioning process to achieve a
better load balancing.

Also, if trying to preserve the homogeneity of computational subdomains
leads to too many small ones, one can consider recombining them under the
quasi-monotonicity condition described in [33]. The underlying idea is to build
computational subdomains as chains of connected small coarse elements with
increasing stiffness (Young modulus). This construction allows to limit the
degradation of the constant which controls the scalability of the method.

Remark 1 (Preservation of the normal). At that point, one geometrical
piece of information needs to be preserved before distributing the data on
several processors. Non-physical coarse edges associated with physical faces
Ec,∂ = (∂Fc,φ)\Ec,φ must have the capability to project themselves on the phys-
ical surface. Since they are not physical edges, these edges are on smooth parts
of the surface where a slowly-varying normal vector can be defined. Classically,
the normal vector is approximated by the average of the normal vectors of the
two coarse physical faces united by the edge. In case the physical faces belonged
to two different computational subdomains (see Figure 5), the building of the
normal vector would require one small communication. In order to avoid that
problem, the normal vectors for edges of Ec,∂ are computed before the decom-
position (at least for edges which are on the interface between computational
subdomains).

8

n1

n2

n = n1+n2

‖n1+n2‖

e1

e2

Figure 5: Computation of the normal of an edge shared between coarse elements in neighboring
subdomains e1 ∈ T 1

c and e2 ∈ T 2
c

Remark 2 (Cutting of the underlying geometry). In order to reduce the
size of the area on which each physical face f ∈ Fc,φ and each non physical coarse
edge e ∈ Ec,∂ has to be projected, and thus to reduce the numerical cost of the
projection, it is advisable to crop the fine geometry around each of these entities
(line 4 of Algorithm 1). This cropping is performed using the space delimited
by the planes defined by the edges which are the border of the face (∂f) and
their associated normal vector as defined in Remark 1.

Starting from now, the data are distributed on the Ns computational subdo-
mains. Each subdomain contains its coarse mesh and its associated fine geom-
etry and physical tags. The remaining part of Algorithm 1 is done in parallel.
Also, the connectivity between subdomains is known and a topological commu-
nicator can be created.

2.4. Local refinement

The coarse mesh was designed in order to distribute data, not for the actual
computation. Thus, refinement is required at line 5 of Algorithm 1. Different
strategies are possible:

Hierarchical refinement. Both h-refinement and p-refinement (with isopara-
metric elements) can be considered. In order to automatically enforce the
conformity of the fine mesh between subdomains, the same refinement
must be used on each subdomain. This is of course the simplest option.
The quality of the resulting fine mesh may depend on the quality of the
coarse mesh and on the number of successive call to h-refinement. One
advantage of this approach is to generate topologically identical refined
coarse elements, which are prone to computational acceleration like GPU-
processing [25].

9

Topological meshing. We assume that a target metric size is available at each
coarse vertex. Assuming that the same deterministic meshing algorithm
is used on each subdomain, a possibility is that each subdomain first mesh
its edges, then its faces and finally its volume.

Master-Slave approach. Using a coloring of the subdomain graph connec-
tivity, another possibility is to have some master subdomains that mesh
themselves first and then communicate their boundary to their neighbors.
These slave subdomains should use the received interfaces as imposed
nodes when their turn comes to mesh themselves. One possibility is to
reuse the methodology developed in [4].

Mortar interfaces. A last possibility is to have all subdomain meshes gener-
ated in parallel and then use one communication to build mortar assembly
operators on the interfaces [39, 11, 10]. With this solution, the mesh is
not conforming at the interface between subdomains and the domain de-
composition solver needs a special treatment.

Note that whatever the chosen strategy, only a very small amount of information
must be communicated between neighbors. For the sake of simplicity, we chose
h-refinement in the following applications, without exploiting the topological
identity of the refined coarse elements for acceleration.

Let Ωsr(see Figure 3b) denote the refined version of the coarse mesh Ωsc (see
Figure 3a). All the sets defined on Ωsc are ported on Ωsr adding the new created
nodes.

2.5. Mesh deformation

Since the mesh (Ωsr)s is sufficiently refined, and is conforming at the interface
between computational subdomains, it strongly disagrees with the exact geom-
etry described by (∪d∂Ωdφ). For each subdomain Ωsr, the final mesh is obtained
by a sequence of projections to the exact geometry which need no communi-
cation between subdomains. In that section, the superscript s referring to the
subdomain can thus be omitted.

2.5.1. Projection of physical edges Er,φ on Eφ
This step is the one described at line 7 of Algorithm 1. Each edge er ∈ Er,φ is

associated with one physical edge eφ ∈ Eφ which must be correctly represented
in the final mesh. Note that by construction, the vertexes at the end of these
edges are already matching. In order to make the appropriate projection, a
simple solution is to use a normalized curvilinear abscissa mapping between the
two edges.

Edges are considered as oriented curves to which we assign the same ori-
entation (same starting vertex, same ending vertex). Let (xr,m)16m6M be the
ordered sequence of the nodes of er. We also use a discretized description
(xφ,n)16n6N of eφ.

10

Let ` denote the normalized curvilinear abscissa, it can be computed as:

`r,i =

∑i
m=1 ‖xr,m+1 − xr,m‖∑M−1
m=1 ‖xr,m+1 − xr,m‖

, `φ,j =

∑j
n=1 ‖xφ,n+1 − xφ,n‖∑N−1
n=1 ‖xφ,n+1 − xφ,n‖

,

where the norm is the classical euclidean norm.
The nodes of er can be moved on eφ at the corresponding curvilinear abscissa

as shown in Figure 6: for the kth node of er let K be the rank such that
`r,k ∈ [`φ,K , `φ,K+1]. Thus, the linear interpolation can be written as:

xnewr,k = αxφ,K + (1− α)xφ,K+1, with α =
`r,k − `φ,K+1

`φ,K − `φ,K+1

The result of this operation is illustrated in Figure 3c.

`r = `φ = 0

`r = 0.25

`r = 0.5

`r = 0.75

`r = 1

`φ = 0.18 `φ = 0.27
`φ = 0.45

`φ = 0.54

`φ = 0.73

`φ = 0.81

er ∈ Er,φ

eφ ∈ Eφ

Figure 6: Projection of the edge of er ∈ Er,φ (in dashed black line) on the corresponding edge
eφ ∈ Eφ (in solid blue line), `r and `φ are the normalized curvilinear abscissa. The green lines
are the segments where the condition `r,k ∈

[
`φ,K , `φ,K+1

]
is satisfied.

2.5.2. Projection of the remaining boundary edges

The nodes of the remaining boundary edges Er,∂ = (Er ∩ (∂Fc,φ)) \ Er,φ need
to be projected on the physical boundary (line 8 of Algorithm 1). Thanks to
Remark 1, they are all granted a normal vector or the capability to compute it
without communication.

More precisely, the normal direction de was chosen to be the sum of the nor-
mal vectors of the two adjacent coarse physical faces of the edge. For instance,
if er ∈ Er,∂ , there exist (fe,1, fe,2) ∈ F2

c,φ such that er = ∂fe,1 ∩ ∂fe,2. Let n1

and n2 be the normal vectors associated with fe,1 and fe,2, then de = n1+n2

‖n1+n2‖ .
As said earlier, if fe,1 and fe,2 do not belong to the same computational domain,
then de has to be computed before the distribution of the data in order to avoid
extra communication between domains.

In order to move the edges, a ray-triangle intersection algorithm [30] is used.
This algorithm has the advantage to avoid the computation of the equation of

11

the plane, which can result in significant memory savings. Moreover it seems
to be the fastest existing method according to authors. The ray-triangle in-
tersection algorithm is detailed in Appendix B. Note that this method can be
vectorized for all triangles and all nodes. The result of this operation is shown
in Figure 3d.

2.5.3. Interpolation of the surfaces

Next, we wish the refined faces to have non-distorted meshes and to match
the physical surface. This is achieved in two steps. First, the faces are moved
according to the displacement already obtained on their edges. This is done by
a pointwise interpolation on each face fr ∈ Fr,φ. Second, a projection of all
surface vertices is performed along their normal.

The first step (the interpolation at line 9 of Algorithm 1) does not take into
account the underlying topology nor the physical geometry, the only input is
the displacement of all boundary edges in Er ∩ (∂Fc,φ). This interpolation is
performed using a Radial Basis Function (RBF) as described in [9]. This choice
is motivated by the simplicity of this meshless method and by the quality of the
resulting deformed elements [36].

In this method, the interpolated displacement field u of the node at the
position x can be expressed independently from others according to the relation:

u(x) =

nb∑

j=1

αjψ
(∥∥x− xbj

∥∥)+ p(x), (1)

where (xbj)16j6nb are the edge nodes whose displacements (ubj)j are known,
ψ is a radial basis function (to be chosen in the literature, see Appendix A),
and p is a polynomial (a first degree polynomial allows describing rigid body
motions of the interpolation, which is sufficient in our applications).

The coefficients (αj) of the RBF and (βk) of the polynomial are determined
by the following interpolation and compatibility conditions [6]:

u(xbj) = ubj , 1 6 j 6 nb;
nb∑

j=1

αjq(xbj) = 0, ∀q polynomial of degree lower or equal than p
. (2)

This leads to the following linear system:

[
M Pb

PT
b 0

] [
α
β

]
=

[
ub
0

]
, (3)

where α and ub are the nb × 3 matrices of unknown components (αj,k) and
known displacements (ubj,k); M is a symmetric positive conditionally definite

matrix of size nb×nb, such that Mij = ψ
(∥∥xbi − xbj

∥∥), and Pb is a rectangular

matrix of size nb × 4, whose ith row writes Pbi =
[
1 xbi1 xbi2 xbi3

]
(the

xbik are the components of xbi). Note that the interpolation does not couple

12

the physical dimensions so that the same matrix applies simultaneously to each
of the 3 directions in Equation (3), only the right-hand side changes with each
direction.

Several choices for the RBF functions are described along with their main
properties in Appendix A. We chose ψ as the CP C2 function [9, 36] with sup-
port radius r = 5 max(‖ub‖), which saves the elements quality of the resulting
meshes. The result of such an operation is illustrated in Figure 3e.

2.5.4. Projection of the surfaces

Once the nodes of a face have been interpolated according to the displace-
ment of the edges, they can be projected on the physical surface (line 10 of
Algorithm 1). Once again, the ray-triangle intersection algorithm described
in Appendix B is used. The df direction of the projection is chosen for each
surface to be the normal of the coarse faces. The resulting of the operation is
illustrated in Figure 3f.

2.6. Volume deformation

Finally, at line 11 of Algorithm 1, a volume interpolation is completed using
the RBF interpolation technique described in Section 2.5.3. Here, the given
displacements ub are the displacements of the boundary nodes of the subdomain.

Since the problem size become very large in a tridimensional context, it is
necessary to accelerate the resolution of Equation (3). To this end, [41] suggests
to interpolate the target displacement in several steps. Firstly, a coarse set of
nodes is selected into the nb border nodes. Then, the interpolation is performed
with a very large radius r, denoted by r0. Finally, the mesh is deformed again
with an enriched set of nodes chosen by various criteria, while decreasing the
influence radius r in order to increase the sparsity of the M operator. This last

process is repeated k times until the error displacement ub
(k)
max reaches a given

criterion. At each iteration k, radius r(k) is chosen to be:

r(k) = r0.10
α+β log10

(
ub

(k)
max

ub
(0)
max

)
, (4)

with α and β two coefficients influencing the decrease of r(k).
Here, drawing inspiration from [41], a natural choice to enrich the set of

selected nodes is to use the nodes introduced by the successive hierarchical re-
finements. Besides, the natural way to decrease the influence radius keeping a
constant bandwidth of M is to divide it by 2 at each iteration because the dis-
tance between two neighboring nodes is also divided by 2 between two successive
refinements, such that:

r(k) = r0
1

2k−1
. (5)

Compared to a monolithic resolution, this method allows to save many com-
putational time keeping a similar quality of elements in the resulting mesh.

13

3. Numerical Results

In this section, the parallel performance of the proposed methodology is
assessed both in terms of scalability of the mesh generation phase and in terms
of the convergence of the FETI solver. For the latter, our method is compared
to configurations obtained with classical graph-based partitioning and intuitive
decomposition in case of trivial geometry.

Three examples are provided: an academic stratified composite, a simplified
turbine blade and an academic model of solid propellant. The proposed method
has been implemented in a distributed memory parallelism framework in the
Python language, using the Z-set finite element platform [40] for finite element
computation and some meshing features together with the MPI standard for
communication between processes. All tests have been conducted on a cluster
of 2×12 cores Intel Xeon E5-2680 v3 processors of 2.50 GHz connected by an
InfiniBand Mellanox network. Only one core is allocated per subdomain (pure
MPI parallelism). For all computations, the FETI solver is used with the most
advanced preconditioner (Dirichlet operator with stiffness scaling) and first-level
projector (where the preconditioner is reused in the computation of the coarse
matrix) [17]. This configuration is expected to be the most robust possible one
with respect to heterogeneity in the absence of second level coarse problem. The
FETI convergence criterion ε is set to 10−6.

3.1. Stratified composite

First, the influence of the heterogeneity and its position with respect to the
interface between subdomains on the convergence rate is discussed. The problem
studied is a stratified composite with 8 linear elastic and isotropic layers (see
Figure 7a). The Young modulus alternates between a high value E1 and a lower
one E2. All layers share the same Poisson coefficient ν = 0.3. Several ratios
ρE = E1/E2 are used, from 1 to 105, to analyze the stability of the convergence.
One of the side is clamped and a tension and bending displacement is prescribed
on the opposite face.

In the following, we perform a weak scalability study on several material
configurations corresponding to an increasing ratio of heterogeneity. In order
to do that, an initial pattern of 16 subdomains is repeated in the two leading
dimensions of the plate. The size of the local problems remains constant (32 768
elements per subdomain) while the global problem size increases. Three kinds
of decomposition are studied:

• the graph-based decomposition, directly generated from the Metis graph
partitioner, where the subdomains are heterogeneous and have irregular
shape;

• the hierarchical decomposition which is the subject of this article, where
no deformation step is required in this simple case, leading to homogeneous
subdomains with regular shape which, however, may have very bad aspect
ratio;

14

(a) Initial pattern where the soft layers
(in red) and the stiff layers (in blue) are
reprensented.

(b) Graph-based decomposition of the ini-
tial pattern into 16 subdomains.

(c) Hierarchical decomposition of the ini-
tial pattern in 16 subdomains.

(d) Ruled decomposition of the initial pat-
tern in 16 subdomains.

Figure 7: Initial stratified composite pattern with 545 025 nodes and 524 288 elements for
different decompositions

• the ruled decomposition, where subdomains are full-thickness cuboids of
regular shape but no longer homogeneous; let us note .

Note that the choice of decomposition does not lead to extreme difference in the
number of interface degrees of freedom. For instance, the smallest case leads
to 100 000 interface degrees of freedom for the classical graph-based decompo-
sition, 112 000 for the hierarchical decomposition and 147 000 for the ruled one.
Moreover, the ruled decomposition is only used here for the sake of comparison,
but would be hard, even impossible, to generalize to realistic geometries.

The convergence results of the FETI method with the different decompo-
sitions and Young modulus ratios are presented in Figure 8. Subfigures (a–e)
refer to the 8-layers geometry, from 16 up to 400 subdomains. First, we ob-
serve that the ruled decomposition leads to a much faster convergence than
the graph-based one. Both decompositions behave similarly with respect to the
heterogeneity ratio. The FETI convergence is almost insensitive to small ratio
(ρE < 102), but it is really slowed down beyond this limit, with a significant
increase of the iteration number. These phenomena is amplified by the increase
in the number of subdomains. Conversely, the hierarchical decomposition is
almost insensitive to high stiffness ratio whereas its performance slightly de-
grades when this ratio tends to 1 (homogeneous behavior). This behavior may
be attributed to the slenderness of the subdomains which penalizes the overall
convergence. The slenderness tends to be less critical than material coefficient
jumps on the interface for higher ratio, which explains the better performance of
the hierarchical decomposition in such cases. Also note that the comparison be-
tween hierarchical and graph-based decomposition is questionable in the purely

15

100 102 104
0

1 000

2 000

ρE

It
er
a
ti
o
n
s

graph-based
hierarchical

ruled

(a) 1 pattern (16 subdomains),
∼ 1.6 million dof

100 102 104
0

1 000

2 000

ρE

It
er
a
ti
o
n
s

(b) 4 patterns (64 subdomains),
∼ 6.4 millions dof

100 102 104
0

1 000

2 000

ρE

It
er
at
io
n
s

(c) 9 patterns (144 subdomains),
∼ 14.4 millions dof

100 102 104
0

1 000

2 000

ρE

It
er
at
io
n
s

(d) 16 patterns (256 subdomains),
∼ 25.6 millions dof

100 102 104
0

1 000

2 000

ρE

It
er
at
io
n
s

(e) 25 patterns (400 subdomains),
∼ 40 millions dof

100 102 104
0

1 000

2 000

ρE

It
er
at
io
n
s

(f) 9 layers, 81 subdomains,
∼ 1.2 millions dof

Figure 8: Stratified composite structure (a-e) 8 layers, (f) 9 layers: influence of the hetero-
geneity ratio ρE on the convergence of the FETI solver for three types of decomposition and
an increasing number of subdomains.

16

homogeneous case (ρE = 1) since there are no longer physical layer in such
problems. Hence, the hierarchical decomposition would probably generate a
splitting similar to the graph-based one without the extra-instruction regarding
the physical layers.

In the 8-layers case of Figure 8(a–e), the ruled decomposition most fre-
quently outperforms the two other ones. By just adding one layer, it is possible
to strongly degrades its performance, as illustrated in Figure 8(f) for the case
of 81 subdomains. Indeed, in that case, the ruled decomposition (9× 9 subdo-
mains “in the plane”) contains much more “bad heterogeneity patterns” (3 stiff
“3D-channels” per subdomain) known to impede the convergence, according to
the GENEO-theory [38] Thus, we expect that the hierarchical decomposition
would perform even better with respect to the two other decomposition when
increasing the number of material layers. However, the 8-layers configuration
remains interesting in the sense that it clearly shows that the hierarchical ap-
proach must be used with good sense when dealing with small heterogeneity
ratio.

This study has highlighted that, from a convergence point-of-view, the hier-
archical decomposition is not of much interest in the quasi-homogeneous case. It
however becomes interesting in the presence of sufficiently strong (ρE > 103) and
numerous heterogeneities. By comparing the ruled and graph-based decompo-
sitions, we see that regular interfaces can significantly improve the convergence
(except when the gap of material coefficients becomes too high).

3.2. Aircraft engine turbine blade

The previous section has shown the good behavior of the method when the
heterogeneity becomes important compared to a graph-based domain decompo-
sition, despite subdomains with slender shape. Since the previous geometry was
made of planar surfaces, no mesh deformation was performed and the parallel
efficiency of the mesh generation process could not be demonstrated. We thus
propose to demonstrate the meshing performance by a strong scalability study
in the case of an aircraft engine turbine blade of a homogeneous material whose
geometry was simplified (see Figure 9).

The coarse mesh is represented in Figure 9b. The fine mesh is obtained
after four levels of refinement, leading to approximately 1.7 million nodes (5.1
millions of degrees of freedom). For the hierarchical approach, the coarse mesh
was divided in 10, 25, 50, 100, 200, 400 computational subdomains. For the
graph-based approach, the fine mesh was decomposed in as many subdomains.
Some decompositions are illustrated in Figures 10 and 11. Let us note that the
computational mesh is unique and used by all decompositions, such that only
the number and the shape of the subdomains vary between configurations. The
strategies are evaluated both in terms of parallel processing of the mesh and in
terms of performance of the solver.

17

X
Y

Z

(a) CAD geometry of the
blade

(b) Initial Coarse mesh
with 400 hexahedral ele-
ments

(c) Fine surface mesh
with 135 079 nodes

Figure 9: Initial data for the method

18

(a) 10 subdomains (b) 25 subdomains (c) 400 subdomains

Figure 10: Hierarchical decompositions of the turbine blade

(a) 10 subdomains (b) 25 subdomains (c) 400 subdomains

Figure 11: Graph-based decompositions of the turbine blade

19

10 25 50 100 200 400
0

200

400

subdomains

E
la

p
se

d
ti

m
e

[s
]

Cutting Refin.
Update Surface
Volume Seq.

Figure 12: Elapsed time of the meshing process versus the number of subdomains for a
constant size of the global problem

10 25 50 100 200 400
0

500

1 000

1 500

2 000

subdomains

E
la
p
se
d
ti
m
e
[s
]

Meshing Partitioning

Figure 13: Elapsed time of the sequential meshing and partitioning of the blade with approx-
imately 1.6M of nodes

The execution elapsed time of Algorithm 1 is described for each decompo-
sition in Figure 12 and Table 1. The code is instrumented by six timers (line
numbers refer to Algorithm 1):

• Seq. is the time spent in the sequential steps (lines 2 and 3);

• Cutting is the time spent in the restriction of the fine geometry (line 4);

• Refin. and Update represent respectively the time spent in the real refine-
ment of the mesh and in the update of the interface data (their sum is the
time of line 5);

• Surface represents the time corresponding to the surface mesh deformation
on the boundaries (line 6 to 10)

20

1025 50 100 200 400

0

10

20

30

40

50

subdomains

S
p

ee
d

u
p

Linear Cutting
Refin. Update

Surface Volume

(a) Speedups of all individual timers

1025 50 100 200 400

0

10

20

30

40

subdomains

S
p
ee
d
u
p

Total Parallel
Linear

(b) Speedup of cumulated timers (Parallel={Cutting, Refin., Update, Surface, Volume},
Total={Parallel, Seq.})

Figure 14: Speedup of the parallel mesh generation process for the blade example

• Volume represents the duration of the volumetric RBF mesh interpolation
(line 11).

Figure 14a plots the speedup for the different timers. The speedup is computed

21

Elapsed time [s]

Ns Full Seq. Total Seq. Cutting Refin. Update Surface Volume

10 1 567.5 550.97 0.49% 16.32% 0.4% 0.17% 9.97% 62.76%

25 1 580.52 145.33 1.55% 20.25% 0.75% 0.39% 7% 62.56%
50 1 566.53 70.44 3.22% 27.91% 0.99% 1.05% 6.65% 51.68%

100 1 583.47 31.26 8.17% 34.8% 1.27% 3.07% 4.99% 42.57%

200 1 644.28 22.74 13.79% 50.21% 1.87% 8.24% 3.57% 18.39%
400 1 709.77 15.71 24.64% 33.36% 4.47% 24.38% 1.84% 8.93%

Table 1: Elapsed time of the blade’s meshing process for different Ns number of subdomains.
The first column ’Full Seq.‘ is the elapsed time of a full sequential meshing and partitioning
from the input geometry.

with respect to the 10-subdomain (sd) configuration according to the following
formula:

speedup(Ns sd) =
Elapsed time(10 sd)

Elapsed time(Ns sd)
.

First, we observe that the total elapsed time decreases quickly when the
number of subdomains increases. However, the time spent in the sequential
part of the process still increases with the number of subdomains, becoming the
major time of the meshing process as can be seen on the last line of Table 1. This
increase of the sequential part also causes the saturation of the Total speedup
curve of Figure 14a. This may be explained by the partitioning steps of lines 2
and 3 in Algorithm 1, where a union of all coarse domains is performed in order
to generate the interface data. The reader may note that this union step could
be further improved. Cutting and Surface timers, which represent a large part
of the total time, have almost linear speedups, unlike Refin. and Update which
involve MPI exchanges (Neighbor-All-to-All). We also note that the Volume
speedup is super-Linear, where a sparse problem has to be solved with at least
quadratic complexity.

Then, we compare the elapsed time of the whole generation procedure (mesh
and splitting) corresponding to our hierarchical approach with the “classical”
one consisting in generating the fine mesh directly from the CAD definition prior
to its (sequential) splitting (see Figure 13). For the time measurements of the
classical approach, Abaqus 6.13-1 [37] is used as a mesher and Z-set interfaced
with Scotch [34] is used as mesh partitioner. We notice from Figure 12 and
Table 1 a significant improvement of the proposed approach on the total return
time, even when the number of subdomains is low.

Finally, in order to investigate the efficiency of the FETI resolution, finite ele-
ment computations are conducted on the various mesh configurations generated.
The mechanical problem is linear (small strain) elastic isotropic with a Young’s
modulus of 200 GPa and a Poisson’s coefficient of 0.3, with a thermal expansion
coefficient of 12 · 10−6 K−1 and a mass density of 8 000 kg m−3. A centrifugal
force is applied corresponding to a rotation around an axis placed 100 mm under
the foot along the Z-axis (see Figure 9a) at a rate of 3 · 106 rad s−1. A homoge-
neous thermal strain, due to a temperature increase of 980 K, is applied together

22

with pressure on the intrados of the blade. Displacement on the bottom face
along the Z-axis is set to 0 and an edge on this face is clamped to remove all
rigid body motions. Figure 15 shows that the convergence of the FETI solver

1025 50 100 200 400
40

60

80

100

subdomains

It
er
at
io
n
s

graph-based
hierarchical

Figure 15: Number of iterations of the FETI method with a relative convergence ratio of 10−6

for the turbine blade case for increasing number of subdomains.

on a decomposition resulting from the method described in this paper is bet-
ter than a graph-based decomposition when the subdomains coincide with few
coarse elements (large Ns) or when the structure is decomposed into a very few
number of subdomains. These configurations indeed lead to the most regular
interfaces for the hierarchical approach.

3.3. Multi-inclusion solid propellant

The previous two subsections showed a heterogeneous case without mesh
deformation and a homogeneous one with mesh deformation. We now asses the
method on a heterogeneous case with mesh deformation. We consider a solid
propellant model (see Figure 16) obtained by the replication of the inclusion
pattern presented in Figure 1, where the position and the radius of inclusions
are randomly selected using a uniform distribution. Additionnaly, the radius
of the inclusions is bounded between 25% and 75% of the replicated cubes
size. Two linear elastic isotropic materials are used. The inclusions have a
Young modulus E1 = 69 000 MPa and a Poisson coefficient ν1 = 0.346. The
matrix is quasi-incompressible with a Poisson coefficient of ν2 = 0.499 and a
softer Young Modulus E2 = 0.96 MPa, which leads to a ratio of heterogeneity
ρE = E1/E2 = 7.2.105). The resulting cubic structure is clamped on one face
and a displacement in the three directions is prescribed on the opposite one.
Since, the matrix is quasi-incompressible, three fields mixed elements [44] are
used in it (pressure and volumetric variation are the additional fields).

A weak scalability study is performed. The initial pattern of Figure 1 is
divided into 13 subdomains and replicated in the three space directions to obtain
a set of global structures with a total number of subdomains of 13 × N3

c , Nc
being the number of replications in one direction).

23

Figure 17 and Table 2 display the convergence of the FETI solver for both the
hierarchical method and the graph-based one (directly applied on each global
mesh) for values of Nc between 1 and 4. We observe that the hierarchical
decomposition always makes the FETI solver converge faster than the graph-
based one. Depending on the case, the number of iteration saved ranges between
20% and 55% and continuously increases with the problem size.

The elapsed time of the mesh generation process is plotted in Figure 18 and
detailed in Table 3 for Nc between 1 and 3. Note that the results for Nc = 4
has been obtained by oversubscription of MPI process on the computing hosts
so that the associated timers are not relevant. We notice that the Surface
and Volume timers associated to the mesh deformation part, which represent a
significant part of the total time but involving local problems of constant size,
remains constant. The Refin. and Update are slightly increasing, which may
be explained by the MPI data exchanges involved in those steps. Indeed, the
MPI latency is expected to increase from Nc = 1, where each MPI process
remains on the same host, to Nc = 3, where the 351 MPI process spread over
15 computing host, interconnected at least by two level of Infiniband switches.
Given the elapsed time’s order of magnitude, this latency may be significant.
Finally, the increase of the Cutting counter is due to the increase of the 2D skin
mesh (storing the global geometry) as the geometry of the total problem also
increases, making the cutting step (line 4 of Algorithm 1) more expensive.

(a) Hierarchical decomposition (b) Graph-based decomposition

Figure 16: The solid propellant containing 2× 2× 2 inclusions, the different colors represent
the different subdomains; the transparent elements represent the matrix and the others are
in the inclusions

4. Conclusion

This paper has presented a new parallel hierarchical substructuring approach
for non-overlapping domain decompostion computations. The main principle of

24

1,28 10,3 34,6 80

Dofs (.106)

13 104 351 832
0

200

400

600

800

subdomains

It
er
at
io
n
s

graph-based
hierarchical

Figure 17: Convergence of the solid propellant test case for a constant size of local problems

Iterations

Ns Graph-based Hierarchical

13 100 45

104 314 254

351 489 395
832 849 554

Table 2: Number of iterations to reach convergence for the solid propellant test case

1,28 10,3 34,6

Dofs (.106)

13 104 351
0

10

20

30

subdomains

E
la

p
se

d
ti

m
e

[s
] Surface Volume

Refin. Update
Cutting

Figure 18: Time of the meshing process of the solid propellant versus the number of subdo-
mains for a constant size of local problems

this method is, schematically, to swap the splitting and fine mesh generation
steps compared to the classical preprocessing approach. In order to do that, the
domain splitting step is done at the very beginning of the whole process, us-

25

Elapsed time [s]

Ns Total Cutting Refin. Update Surface Volume

13 15.9 1.73% 2.66% 1.31% 9.36% 84.94%

104 20.61 8.22% 5.55% 9.86% 8.87% 67.5%
351 28.25 18.83% 6.74% 15.43% 7.32% 51.68%

Table 3: Elapsed time of the solid propellant’s meshing process for different Ns number of
subdomains.

ing a coarse mesh that takes the underlying material distribution into account.
Thereafter, a fine conforming mesh is generated in parallel on each subdomain
followed by a final morphing step to ensure an accurate representation of the
input geometry. As a result, this method produces regular-shaped and homoge-
neous subdomains. These subdomains are well suited to Domain Decomposition
Method such as FETI or BDD because they reduce the condition number of the
system to be solved, leading to faster convergence of the solver compared to clas-
sical graph-based partitioning. Also, a significant part of the mesh generation
can be conducted in parallel, with very few neighbors exchanges.

Our numerical experiments confirm that, in most cases, the proposed decom-
position improves the convergence rate of FETI resolutions on homogeneous and
strongly heterogeneous test cases compared to automatic decompositions arising
from graph partitioning software. However, in some few situations, the hierar-
chical decomposition may lead to worse convergence compared to the classical
graph-based approach. Those situations may be encountered on cases where,
either subdomains are built from the aggregation of too many coarse elements
leading to poor geometrical shapes, or hierarchical subdomains have too slen-
der aspect ratio which are not legitimated by sufficiently strong heterogeneity.
Regarding the parallel mesh generation, the method exhibits good strong scal-
ability and promising weak scalability that could be extensively tested on an
higher number of computing cores (several thousands).

From the author’s point of view, this work opens up two outlooks. The first
one could be to directly partition the geometry when it is available, for instance
in CAD format, which enables to avoid handling a too fine discretized descrip-
tion of the geometry. The second one is to investigate alternative refinement
methods, as suggested in Section 2.4, to obtain meshes of better quality when
dealing with complex geometries.

Appendix A. RBF functions

Table A.4 presents the 14 RBF functions which allow the use of a 1-degree
polynomial function p [9] to make the system unconditionally definite.

These functions are generally scaled by the influence radius of the RBF r,
using the change of variable ξ ≡ x/r. In Table A.4, the first eight functions
are of compact support on the [0, 1] interval. Referring to [43], they are defined
such that:

f(ξ) =

{
f(ξ) if ξ ∈ [0, 1],

0 else.

26

No. Name f(ξ)
1 CP C0 (1− ξ)2

2 CP C2 (1− ξ)4(4ξ + 1)
3 CP C4 (1− ξ)6(35

3 ξ
2 + 6ξ + 1)

4 CP C6 (1− ξ)8(32ξ3 + 25ξ2 + 8ξ + 1)
5 CTPS C0 (1− ξ)5

6 CTPS C1 1 + 80
3 ξ

2 − 40ξ3 + 15ξ4 − 8
3ξ

5 + 20ξ2 log(ξ)
7 CTPS C2

a 1− 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ3 log(ξ)
8 CTPS C2

b 1− 20ξ2 + 80ξ3 − 45ξ4 − 16ξ5 + 60ξ4 log(ξ)

9 TPS x2 log(x)

10 MQB
√
a2 + x2

11 IMQB
√

1
a2+x2

12 QB 1 + x2

13 IQB 1
1+x2

14 Gaussian e−
x2

2

Table A.4: Radial Basis Functions (CP: Continous Polynomial, TPS: Thin Plate Spline,
CTPS: Continuous TPS, MQB: Multiquadratic Biharmonics, IMQB: Inverse Multiquadratic
Biharmonics, QB: Quadratic Biharmonics, IQB: Inverse Quadratic Biharmonics) [9, 43]

With these functions, only the nodes inside the r-radius sphere are affected
by the displacement of its center. Moreover, this choice of compact support
functions leads to an unconditionally definite matrix M [13]. Higher values
for r lead generally to more accurate solutions. However, higher values of the
support radius also result in denser matrix M, whereas lower values of r result
in sparser matrix M which can be solved more efficiently (for instance by a
Krylov solver).

Among these eight functions, the four first are minimal degree polynomials
which are Cn with n ∈ {0, 2, 4, 6} (CP≡Continuous Polynomial). The four
subsequent are Thin Plate Spline based function series (CTPS≡Continuous Thin
Plate Spline). Similarly, these functions have the minimal form for the Cn
continuity with n ∈ {0, 1, 2}. In this theory [43], two C2 continuous functions
are possible; they are subscripted by a and b.

The other six global support functions cover the entire interpolation domain,
which leads to dense operator M. MQB and IMQB functions has a shape
parameter a which controls the thickness of these functions.

Appendix B. Ray-triangle intersection algorithm

This algorithm, presented in [30], allows to find, from a node xr,k and an
oriented direction dϕ, the intersection of the ray (xr,k,dϕ) with a triangular
mesh.

Let us consider nodes (xr,k)k belonging to an edge of Er,∂ (in Section 2.5.2)
or a face of Fr,φ (in Section 2.5.4), and let dϕ be the associated normal vector.

27

The new positions are sought under the form:

xnewr,k = xr,k + `kdϕ, ∀k

Moreover, the node xnewr,k has to be in a triangle defined by its 3 vertices
(v0,v1,v2), so that its position in barycentric coordinates (uk, vk) can be writ-
ten as:

xnewr,k (uk, vk) = (1− uk − vk)v0 + ukv1 + vkv2,

The node is inside the triangle if and only if uk > 0 and vk > 0 and uk+vk 6 1.
This leads to solving the following equation:

[
−dϕ (v1 − v0) (v2 − v0)

]


`k
uk
vk


 = xr,k − v0. (B.1)

This 3× 3 system can be solved algebraically using Cramer’s rule. The solution
can be written using the notations e1 = v1−v0, e2 = v2−v0 and er,k = xr,k−v0,
as: 


`k
uk
vk


 =

1

det (−dϕ, e1, e2)




det (er,k, e1, e2)
det (−dϕ, er,k, e2)
det (−dϕ, e1, er,k)


 . (B.2)

Moreover, with the relation between determinant and cross product, introducing
p1 = er,k × e1 and p2 = de × e2, the previous system can be rewritten as:



`k
uk
vk


 =

1

(de × e2) · e1



−(e1 × er,k) · e2

(dϕ × e2) · er,k
(er,k × e1) · dϕ


 =

1

p2 · e1




p1 · e2

p2 · er,k
p1 · dϕ




The resulting algorithm corresponds to Algorithm 2.

Algorithm 2: Ray-triangle intersection algorithm

Data: direction dϕ and node xr,k
for triangle {(v0,v1,v2)i} ∈ (Fφ) do

e1 = v1 − v0, e2 = v2 − v0, er,k = xr,k − v0

p2 = dϕ × e2, p1 = er,k × e1

∆ = p2 · e1

uk =
p2 · er,k

∆ , vk =
p1 ·dϕ

∆
if uk > 0 and vk > 0 and (uk + vk) 6 1 then

return `k = p1 · e2

∆ // The projection is in the triangle
end

end

References

[1] 3D Systems, Inc. StereoLithography Interface Specification. 3D Systems,

28

Inc., July 1988.

[2] J. Besson and R. Foerch. Large scale object-oriented finite element code
design. Computer Methods in Applied Mechanics and Engineering, 142(1-
2):165–187, Mar. 1997. doi:10.1016/S0045-7825(96)01124-3.

[3] M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson, and D. Rixen.
Application of the FETI method to ASCI problems/scalability results on
1000 processors and discussion of highly heterogeneous problems. Inter-
national Journal for Numerical Methods in Engineering, 47(1-3):513–535,
Jan. 2000. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<513::AID-
NME782>3.0.CO;2-V.

[4] C. Bovet, O. Ciobanu, A. Parret-Freaud, and V. Chiaruttini. A parallel
mesh refinement process tailored to domain decomposition methods. In
Proceedings of the Sixth International Conference on Parallel, Distributed,
GPU and Cloud Computing for Engineering, page 20, Pollack Mihály Fac-
ulty of Engineering and Information Technology, University of Pécs, Hun-
gary, June 2019. doi:10.4203/ccp.112.20.

[5] C. Bovet, A. Parret-Fréaud, N. Spillane, and P. Gosselet. Adap-
tive multipreconditioned FETI: Scalability results and robust-
ness assessment. Computers & Structures, 193:1–20, Dec. 2017.
doi:10.1016/j.compstruc.2017.07.010.

[6] M. D. Buhmann. Radial basis functions. Acta Numerica, 9:1–38, Jan. 2000.
doi:10.1017/S0962492900000015.

[7] J. Chen, Z. Xiao, Y. Zheng, J. Zou, D. Zhao, and Y. Yao. Scalable gen-
eration of large-scale unstructured meshes by a novel domain decomposi-
tion approach. Advances in Engineering Software, 121:131–146, July 2018.
doi:10.1016/j.advengsoft.2018.04.005.

[8] T. Coupez, H. Digonnet, and R. Ducloux. Parallel meshing and
remeshing. Applied Mathematical Modelling, 25(2):153–175, Dec. 2000.
doi:10.1016/S0307-904X(00)00045-7.

[9] A. De Boer, M. S. Van Der Schoot, and H. Bijl. Mesh deformation based on
radial basis function interpolation. Computers & Structures, 85(11-14):784–
795, June 2007. doi:10.1016/j.compstruc.2007.01.013.

[10] M. Dryja. A Neumann-Neumann algorithm for a mortar discretization of
elliptic problems with discontinuous coefficients. Numer. Math., 99(4):645–
656, Feb. 2005. doi:10.1007/s00211-004-0573-2.

[11] M. Dryja and W. Proskurowski. A FETI-DP Method for the Mortar Dis-
cretization of Elliptic Problems with Discontinuous Coefficients. In T. J.
Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, T. Schlick,
R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and

29

https://doi.org/10.1016/S0045-7825(96)01124-3
https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3C513::AID-NME782%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3C513::AID-NME782%3E3.0.CO;2-V
https://doi.org/10.4203/ccp.112.20
https://doi.org/10.1016/j.compstruc.2017.07.010
https://doi.org/10.1017/S0962492900000015
https://doi.org/10.1016/j.advengsoft.2018.04.005
https://doi.org/10.1016/S0307-904X(00)00045-7
https://doi.org/10.1016/j.compstruc.2007.01.013
https://doi.org/10.1007/s00211-004-0573-2

J. Xu, editors, Domain Decomposition Methods in Science and Engineer-
ing, volume 40, pages 345–352. Springer-Verlag, Berlin/Heidelberg, 2005.
doi:10.1007/3-540-26825-1 34.

[12] C. Farhat and F.-X. Roux. A method of finite element tearing and in-
terconnecting and its parallel solution algorithm. International Jour-
nal for Numerical Methods in Engineering, 32(6):1205–1227, Oct. 1991.
doi:10.1002/nme.1620320604.

[13] G. E. Fasshauer. Meshfree Approximation Methods with Matlab: (With
CD-ROM), volume 6 of Interdisciplinary Mathematical Sciences. WORLD
SCIENTIFIC, Apr. 2007. doi:10.1142/6437.

[14] F. Feyel. Some new technics regarding the parallelisation of ZéBuLoN,
an object oriented finite element code for structural mechanics. ESAIM:
M2AN, 36(5):923–935, 2002. doi:10.1051/m2an:2002040.

[15] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding
Best Matches in Logarithmic Expected Time. ACM Trans. Math. Softw.,
3(3):209–226, Sept. 1977. doi:10.1145/355744.355745.

[16] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for
Numerical Methods in Engineering, 79(11):1309 – 1331, 2009.

[17] P. Gosselet and C. Rey. Non-overlapping domain decomposition methods in
structural mechanics. Archives of Computational Methods in Engineering,
13(4):515–572, Dec. 2006. doi:10.1007/BF02905857.

[18] P. Gosselet, D. J. Rixen, F.-X. Roux, and N. Spillane. Simultaneous FETI
and block FETI: Robust domain decomposition with multiple search di-
rections. International Journal for Numerical Methods in Engineering,
104(10):905–927, May 2015. doi:10.1002/nme.4946.

[19] L. Grigori, S. Moufawad, and F. Nataf. Enlarged krylov subspace conjugate
gradient methods for reducing communication. SIAM J. Matrix Anal. &
Appl, 2016.

[20] P. Have, R. Masson, F. Nataf, M. Szydlarski, H. Xiang, and T. Zhao. Alge-
braic Domain Decomposition Methods for Highly Heterogeneous Problems.
SIAM Journal on Scientific Computing, 35(3):C284–C302, 2013. URL
https://hal.archives-ouvertes.fr/hal-00611997.

[21] B. Hendrickson. Chaco. In D. Padua, editor, Encyclopedia of Parallel Com-
puting, pages 248–249. Springer US, Boston, MA, 2011. doi:10.1007/978-
0-387-09766-4 310.

[22] ISO/TC 184/SC 4 Industrial data. Industrial automation systems and inte-
gration – Product data representation and exchange – Part 21: Implemen-
tation methods: Clear text encoding of the exchange structure. ISO 10303-
21, International Organization for Standardization, Geneva, CH, 2016.

30

https://doi.org/10.1007/3-540-26825-1_34
https://doi.org/10.1002/nme.1620320604
https://doi.org/10.1142/6437
https://doi.org/10.1051/m2an:2002040
https://doi.org/10.1145/355744.355745
https://doi.org/10.1007/BF02905857
https://doi.org/10.1002/nme.4946
https://hal.archives-ouvertes.fr/hal-00611997
https://doi.org/10.1007/978-0-387-09766-4_310
https://doi.org/10.1007/978-0-387-09766-4_310

[23] Y. Ito and K. Nakahashi. Direct surface triangulation using stereolithog-
raphy data. AIAA Journal, 40(3):490–496, 2002. doi:10.2514/2.1672.

[24] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and
G. Karypis. Improving Graph Partitioning for Modern Graphs and Archi-
tectures. In Proceedings of the 5th Workshop on Irregular Applications: Ar-
chitectures and Algorithms, IA3 ’15, pages 14:1–14:4, New York, NY, USA,
2015. ACM. doi:10.1145/2833179.2833188. event-place: Austin, Texas.

[25] J.-M. Le Gouez. Numerical properties and gpu implementation of a high
order finite volume scheme. In NASA Advanced Modeling & Simulation
(AMS) Seminar Series, 2016.

[26] A. Loseille, V. Menier, and F. Alauzet. Parallel Generation of
Large-size Adapted Meshes. Procedia Engineering, 124:57–69, 2015.
doi:10.1016/j.proeng.2015.10.122.

[27] R. Löhner. Recent Advances in Parallel Advancing Front Grid Generation.
Archives of Computational Methods in Engineering, 21(2):127–140, June
2014. doi:10.1007/s11831-014-9098-8.

[28] J. Mandel. Balancing domain decomposition. Communications
in Numerical Methods in Engineering, 9(3):233–241, Mar. 1993.
doi:10.1002/cnm.1640090307.

[29] J. Mandel and B. Soused́ık. Adaptive selection of face coarse degrees of
freedom in the BDDC and the FETI-DP iterative substructuring methods.
Computer Methods in Applied Mechanics and Engineering, 196(8):1389–
1399, Jan. 2007. doi:10.1016/j.cma.2006.03.010.

[30] T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle
Intersection. Journal of Graphics Tools, 2(1):21–28, Jan. 1997.
doi:10.1080/10867651.1997.10487468.

[31] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press,
Inc., New York, NY, USA, 1987.

[32] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale
PDEs. Part II: interface variation. Numerische Mathematik, 118(3):485–
529, July 2011. doi:10.1007/s00211-011-0359-2.

[33] C. Pechstein and R. Scheichl. Weighted Poincaré inequalities. IMA Journal
of Numerical Analysis, 33(2):652–686, 2013.

[34] F. Pellegrini and J. Roman. Scotch: A software package for static map-
ping by dual recursive bipartitioning of process and architecture graphs.
In G. Goos, J. Hartmanis, J. van Leeuwen, H. Liddell, A. Colbrook,
B. Hertzberger, and P. Sloot, editors, High-Performance Computing and
Networking, volume 1067, pages 493–498. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996. doi:10.1007/3-540-61142-8 588.

31

https://doi.org/10.2514/2.1672
https://doi.org/10.1145/2833179.2833188
https://doi.org/10.1016/j.proeng.2015.10.122
https://doi.org/10.1007/s11831-014-9098-8
https://doi.org/10.1002/cnm.1640090307
https://doi.org/10.1016/j.cma.2006.03.010
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1007/s00211-011-0359-2
https://doi.org/10.1007/3-540-61142-8_588

[35] D. J. Rixen and C. Farhat. A simple and efficient extension of
a class of substructure based preconditioners to heterogeneous struc-
tural mechanics problems. International Journal for Numerical Meth-
ods in Engineering, 44(4):489–516, Feb. 1999. doi:10.1002/(SICI)1097-
0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z.

[36] M. Selim and K. Komullil. Mesh Deformation Approaches A Survey. Jour-
nal of Physical Mathematics, 7(2), 2016. doi:10.4172/2090-0902.1000181.

[37] Simulia. Abaqus 6.13-1, 2013. URL http://dsk.ippt.pan.pl/docs/

abaqus/v6.13/books/usi/default.htm.

[38] N. Spillane and D. J. Rixen. Automatic spectral coarse spaces for robust
finite element tearing and interconnecting and balanced domain decompo-
sition algorithms. International Journal for Numerical Methods in Engi-
neering, 95(11):953–990, 2013. doi:10.1002/nme.4534.

[39] D. Stefanica. A Numerical Study of FETI Algorithms for Mortar Finite
Element Methods. SIAM Journal on Scientific Computing, 23(4):1135–
1160, Jan. 2001. doi:10.1137/S1064827500378829.

[40] Transvalor S.A. Z-set 9.0 user manual, 2019. URL http://www.

zset-software.com/.

[41] G. Wang, X. Chen, and Z. Liu. Mesh deformation on 3d complex configura-
tions using multistep radial basis functions interpolation. Chinese Journal
of Aeronautics, 31(4):660–671, Apr. 2018. doi:10.1016/j.cja.2018.01.028.

[42] X.-q. Wang, X.-l. Jin, D.-z. Kou, and J.-h. Chen. A Parallel Approach
for the Generation of Unstructured Meshes with Billions of Elements on
Distributed-Memory Supercomputers. International Journal of Parallel
Programming, 45(3):680–710, June 2017. doi:10.1007/s10766-016-0452-3.

[43] H. Wendland. Piecewise polynomial, positive definite and compactly sup-
ported radial functions of minimal degree. Advances in Computational
Mathematics, 4(1):389–396, Dec. 1995. doi:10.1007/BF02123482.

[44] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. Chapter 10 - Incom-
pressible Problems, Mixed Methods, and Other Procedures of Solution. In
O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, editors, The Finite Element
Method: its Basis and Fundamentals (Seventh Edition), pages 315–359.
Butterworth-Heinemann, Oxford, Jan. 2013. doi:10.1016/B978-1-85617-
633-0.00010-1.

32

https://doi.org/10.1002/(SICI)1097-0207(19990210)44:4%3C489::AID-NME514%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1097-0207(19990210)44:4%3C489::AID-NME514%3E3.0.CO;2-Z
https://doi.org/10.4172/2090-0902.1000181
http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usi/default.htm
http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/usi/default.htm
https://doi.org/10.1002/nme.4534
https://doi.org/10.1137/S1064827500378829
http://www.zset-software.com/
http://www.zset-software.com/
https://doi.org/10.1016/j.cja.2018.01.028
https://doi.org/10.1007/s10766-016-0452-3
https://doi.org/10.1007/BF02123482
https://doi.org/10.1016/B978-1-85617-633-0.00010-1
https://doi.org/10.1016/B978-1-85617-633-0.00010-1

	Introduction
	Hierarchical substructuring method
	Overall methodology
	Coarse meshing
	Sequential decomposition
	Local refinement
	Mesh deformation
	Projection of physical edges on
	Projection of the remaining boundary edges
	Interpolation of the surfaces
	Projection of the surfaces

	Volume deformation

	Numerical Results
	Stratified composite
	Aircraft engine turbine blade
	Multi-inclusion solid propellant

	Conclusion
	RBF functions
	Ray-triangle intersection algorithm

