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(Dated: March 19, 2020)

We consider a run an tumble particle with two velocity states ±v0, in an inhomogeneous force
field f(x) in one dimension. We obtain exact formulae for its velocity VL and diffusion constant
DL for arbitrary periodic f(x) of period L. They involve the “active potential” which allows to
define a global bias. Upon varying parameters, such as an external force F , the dynamics undergoes
transitions from non-ergodic trapped states, to various moving states, some with non analyticities
in the VL versus F curve. A random landscape in the presence of a bias leads, for large L, to
anomalous diffusion x ∼ tµ, µ < 1, or to a phase with a finite velocity that we calculate.

PACS numbers: 05.40.-a, 02.10.Yn, 02.50.-r

Persistent random walks, where a walker persists in
the same direction for a finite time before changing di-
rection, have been studied extensively [1–5]. The recent
years have seen a resurgence of interest in this stochas-
tic process in a different reincarnation, namely the “run
and tumble particle” (RTP), mostly in the context of ac-
tive matter [6–15]. While several interesting collective
properties of interacting RTPs have been discovered re-
cently, it was realised that even a single RTP exhibits
rich and interesting static and dynamic behaviours [16–
28]. For example, the stationary state position distri-
bution for an RTP in an external confining potential
has been shown to deviate from the equilibrium Gibbs-
Boltzmann form [23, 24]. Other interesting questions
such as the relaxation dynamics towards the stationary
state in a confining potential [23], the first-passage prop-
erties [16, 17, 19, 20, 25, 27, 29] or the distribution of
the current of non-interacting RTP’s [30] have been re-
cently studied in the one-dimensional geometry. In this
paper, we study a single RTP subjected to an external
force periodic in space. We show that, due to the pres-
ence of a finite persistence time, the position distribution
under the periodic force exhibits a rich and nontrivial be-
haviour, compared to the ordinary diffusion. In particu-
lar, we compute explicitly the velocity and the diffusion
constant of the RTP for an arbitrary periodic force f(x).

The overdamped dynamics of the RTP is described by
the stochastic evolution equation

dx

dt
= f(x) + v0σ(t) (1)

where f(x) is an external force and σ(t) = ±1 repre-
sents a telegraphic noise which switches from one state
to another at a constant rate γ.

In free space on the line in the case where f(x) = f is
uniform, it is well known that the dynamics of the active
particle becomes diffusive at large time and can be effec-
tively described on large scale by a Langevin equation

dx

dt
= f +

√
2D0 ξ(t) (2)

where the effective diffusion constant D0 = v2
0/(2γ) and

the mean velocity is V = f . This effective description of
(1) is valid above a characteristic persistence time t∗ =
O(1/γ). In fact, the RTP dynamics (1) converges to the
Langevin dynamics (2) in the limit where both v0 → +∞,
γ → +∞ with fixed D0 [51].

A natural question is what happens to this effective
description when the RTP is subjected to an inhomoge-
neous force f(x)? In particular what is the mean velocity
V and the diffusion constant D for arbitrary f(x)? In
the case where f(x) = −U ′(x) with a confining potential
U(x), there exists a stationary solution with zero current
[18, 31–35]. This stationary state was analysed in de-
tail in [23] for potentials of the type U(x) = α|x|p and
an interesting ”shape transition” in the stationary posi-
tion distribution was found in the (α, p) plane. In that
case the RTP motion is bounded which corresponds to
V = 0 andD = 0. In fact this stationary state is typically
non-Boltzmann, which shows that the Langevin equation
approximation breaks down.

In this paper we consider the RTP dynamics in Eq. (1)
on an infinite line subjected to an arbitrary force land-
scape f(x), periodic in space, of period L, f(x) =
f(x+L) for all x ∈ R. In this case, one would anticipate
that, for small f(x), there will not be any stationary po-
sition distribution and the particle will keep on moving
with time, with a non-zero speed VL and a non-zero diffu-
sion constant DL. One of the principal goals of this paper
is to compute VL and DL. But before we do that for the
RTP, it is useful to recall what happens for a simple dif-
fusive particle (2) subjected to this periodic force, which
has been studied extensively [43–46]. In this case, the
position distribution P (x, t) satisfies the Fokker-Planck
equation

∂tP = −∂xJ , where J = −D∂xP + f(x)P , (3)

which, for bounded potential, does not have a normalis-
able steady-state solution. However, its periodised ver-
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sion,

P̃ (x, t) =

+∞∑
n=−∞

P (x+ nL, t) , (4)

which satisfies the same Fokker-Planck equation (3), is
known to reach a stationary limit P̃ (x, t) → P̃ (x) as
t → +∞ [43–46]. Indeed P̃ (x, t) corresponds to the
position distribution of a diffusive particle on a ring of
size L. This stationary periodised solution P̃ (x) can be
computed explicitly by setting ∂tP̃ = 0 in (3), looking
for a solution with a non-zero constant current J . The
constant J can be determined from the normalisation
condition

∫ L
0
P̃ (x) dx = 1. Knowing J , one can then find

the velocity VL from the general identity [44]

VL = lim
t→+∞

d

dt

∫
dxxP (x, t) = JL , (5)

where P (x, t) is the non-periodised distribution. Simi-
larly, the diffusion constant DL, defined as

DL =
1

2
lim

t→+∞
d

dt

(
x(t)2 − x(t)

2
)

(6)

where xk(t) =
∫
dxxk P (x, t), was also computed explic-

itly [43–46]. In addition, if the potential U(x) is itself
periodic, U(0) = U(L), the current vanishes, J = 0, and
the periodised solution converges to P̃ (x) = e−U(x)/D0/Z
for x ∈ [0, L] where Z is a normalisation constant. Thus
the dimensionless quantity which measures the “tilt” of
the potential landscape,

GL =
U(0)− U(L)

D0
(7)

can be interpreted as an effective measure of the global
bias which determines the sign of the velocity VL.

In this paper, we carry out a similar procedure for the
RTP (1) subjected to this periodic force f(x) = f(x+L)
which we assume to be continuous. However, due to
the competition between the periodic force f(x) and the
noise (with a persistent memory) in Eq. (1), we show
that one obtains a much richer behaviour for the pe-
riodised stationary solution leading to different phases
and transitions between them. Indeed we find four dif-
ferent phases (denoted by A, B, C andD), depending on
whether f(x) = ±v0 has real roots or not, leading to an
interesting phase diagram shown in Fig. 1. In addition,
we also compute explicitly for any L, the stationary pe-
riodised solution P̃ (x), the velocity VL and the diffusion
constant DL. Furthermore, we also compute the mean
first passage time to an arbitrary level X.

As mentioned above, the four phases are as follows (see
also Figs. 1 and 2).

Phase A: |f(x)| < v0 for all x. In this case the motion
is unbounded and the stationary measure is smooth (if

F

fmax
0

A

B

C

D

VL = 0

v0

v0

0

FIG. 1. Dynamical phase diagram of the RTP with f(x) =
f0(x)+F as a function of the driving force F and of the maxi-
mum force fmax

0 of the environment (assumed to equal minus
the minimum one). The VL versus F characteristics mea-
sured along the two dotted lines undergo different sequences
of transitions.

f(x) is smooth). We obtain a closed formula for VL (see
Eqs. (20) and (21)) and DL (see Eqs. (24) and (25)).

Phase B: f(x) > −v0 and there are roots xi (in in-
creasing order) to f(x) = v0 (see Fig. 2 top panel). Out
of these, every alternate ones (denoted by xsi in Fig. 2
top panel) are attractive fixed points for the RTP dy-
namics (1) when it is in the −v0 state. The motion is a
bit more complicated in this case. The position remains
unbounded but the stationary periodised solution P̃ (x)
has singular points (see Eq. (26) and also Fig. 3). We
also obtain a formula for VL given in Eq. (28). A similar
phase exists for the symmetric case where f(x) < v0 and
there are roots to f(x) = −v0.

Phase C: there exists roots to both f(x) = +v0, de-
noted by xi, and to f(x) = −v0, denoted by yi in in-
creasing order (see Fig. 2 bottom panel). In this case
the motion is bounded. The stationary periodised mea-
sure P̃ (x) has disjoint supports in a set of intervals with
different weights depending on the initial condition. The
dynamics is non-ergodic in this case.

Phase D: f(x) > v0 for all x. The RTP moves to the
right in both ±v0 states. A similar situation arises for
the symmetric counterpart where f(x) < −v0.

Evidently, one can make transitions between these
phases by tuning the maximum of the periodic force f(x).
One way to achieve this is to apply an additional con-
stant force F on top of a periodic force landscape f0(x) =
f0(x + L). This amounts to setting f(x) = f0(x) + F .
Let fmax

0 denote the maximum of f0(x), for x ∈ [0, L]
and, for simplicity, we assume that fmin

0 = −fmax
0 . From

our analysis, an interesting phase diagram emerges in the
plane (F, fmax

0 ) as shown in Fig. 1. The motion under-
goes transitions along the solid lines fmax

0 +F = v0 (A to
B), −fmax

0 +F = v0 (B to D) and −fmax
0 +F = −v0 (C

to B). As F is increased along different lines (dotted lines
in Fig. 1) the velocity-force characteristics exhibits tran-
sitions, with VL = 0 in phase C, and non-analyticities in
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the B phase as new fixed points appear or disappear.
Another interesting question is whether, for the RTP,

there exists a single global measure GL of the bias as in
the diffusive case in Eq. (7). For this, it is useful to
define an ”active external potential”

W (x) = −2γ

∫ x

x0

dy
f(y)

v2
0 − f2(y)

, (8)

where x0 is an arbitrary position. In the diffusive limit,

v0, γ → +∞ with fixed D0 =
v20
2γ , W (x) → U(x)/D0

converges to the standard external potential U(x) =
−
∫ x
x0
f(x)dx. We show that in phase A the dimensionless

global bias for the RTP, which determines the direction
of the velocity, can be expressed in terms of this active
potential W (x)

GL = W (0)−W (L) = 2γ

∫ L

0

dy
f(y)

v2
0 − f2(y)

. (9)

Indeed we show that the sign of VL is the same as the
sign of GL (and also VL vanishes when GL vanishes).
Clearly, in the diffusive limit, Eq. (9) reduces to Eq. (7).
In addition, we show that in the small bias limit (GL →
0), the velocity satisfies an Einstein-like relation (within
linear response in GL)

VL ' Dzb
L

GL
L

, (10)

where Dzb
L denotes the diffusion constant DL in the case

of zero bias [given below in (24)].
Let us first outline briefly our derivation of the main

results. We first define P±(x, t) as the probability densi-
ties of the RTP to be in position x at time t and in the
state σ(t) = ±1. They satisfy the pair of Fokker-Planck
equations corresponding to Eq. (1)

∂tP+ = −∂x[(f(x) + v0)P+]− γP+ + γP− (11)

∂tP− = −∂x[(f(x)− v0)P−] + γP+ − γP− . (12)

The associated periodised distributions, P̃±(x, t) =∑
n P±(x+nL, t), satisfy the same pair of equations due

to the periodicity of f(x). We also define the total prob-
ability P̃ (x, t) = P̃+(x, t) + P̃−(x, t), as well as the differ-
ence Q̃(x, t) = P̃+(x, t)− P̃−(x, t), which then satisfy the
coupled Fokker-Planck equations

∂tP̃ = −∂xJ(x, t) = −∂x[f(x)P̃ + v0Q̃] , (13)

∂tQ̃ = −∂x[f(x)Q̃+ v0P̃ ]− 2γQ̃ . (14)

At large time, assuming a stationary state to exist, we
set ∂tP̃ to zero in the first equation. This implies that
the probability current density J(x, t) = f(x)P̃ (x, t) +
v0Q̃(x, t) converges to a constant J = limt→+∞ J(x, t)
independent of x. Hence, in the stationary state, we
have f(x)P̃ + v0Q̃ = J where J is yet to be determined.
Eliminating Q̃ using this relation in Eq. (14), and setting

∂tQ̃ = 0, one obtains a first-order differential equation
for P̃

d

dx
[(v2

0 − f2(x))P̃ (x) + Jf(x)] + 2γJ − 2γf(x)P̃ (x) = 0 .

(15)
This equation can be explicitly solved for P̃ (x), using the
periodicity condition P̃ (x+L) = P̃ (x), see below. Know-
ing P̃ (x) and Q̃(x) from the relation f(x)P̃ + v0Q̃ = J ,
one gets the stationary distribution for each state σ = ±

P̃±(x) =
±J + (v0 ∓ f(x))P̃ (x)

2v0
. (16)

Finally, the unknown constant J is determined from

the normalisation condition
∫ L

0
P̃ (x) dx = 1 and conse-

quently the velocity VL = J L is obtained from Eq. (5).
The computation of the diffusion constant DL is a bit
more cumbersome, but it can be derived from a generali-
ation of the method used for the diffusive case [43–45].
The result for the zero-bias case GL = 0 for phase A, is
simpler and is given explicitly in Eq. (24). The detailed
derivation can be found in [47].

Phase A. Let us first consider phase A, |f(x)| < v0

for all x, in which the motion of the RTP is unbounded.
Assuming a non-zero bias, i.e. G(L) 6= 0, and following
the procedure outlined above, we obtain the stationary
distribution

P̃ (x) =
2γJ

v2
0 − f2(x)

(∫ L

0

duΦ−(x, u)

AL

−
∫ x

0

duΦ−(x, u)− f(x)

2γ

)
, (17)

where we have defined

Φ±(x, u) =
v2

0

v2
0 − f2(u)

e±(W (x)−W (u)) , (18)

AL = 1− e−(W (0)−W (L)) = 1− e−GL . (19)

In the limit of zero bias GL → 0, one can show that
P̃ (x) → ÃΦ+(0, x), for x ∈ [0, L] and Ã is a normalisa-
tion constant. For arbitrary GL, by determining J from

the normalisation condition
∫ L

0
dxP̃ (x) = 1, we get the

velocity VL from (5)

1

VL
=

1

L

∫
[0,L]2

dxduΨ(x, u)

(
1

AL
− θ(x− u)

)
− GL

2γL

(20)
where we have further defined

Ψ(x, u) =
2γv2

0 e
−(W (x)−W (u))

(v2
0 − f2(x))(v2

0 − f2(u))
. (21)

The formula (20) for VL is exact for any L [52].
To study the L → ∞ limit, it is natural to

assume that f(x) satisfies an ergodicity property,
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namely the existence of translational averages for lo-
cal observables O[f ](x), denoted as 〈O[f ](x)〉x =

limL→+∞ 1
L

∫ L
0
dxO[f ](x). In addition [see Eq. (9)] we

assume that

lim
L→+∞

GL
2γL

=
feff

v2
0

, (22)

where feff = 〈 v20f(x)

v20−f2(x)
〉x is an ”effective active force”

that arises from the global bias GL. Without loss of
generality, we assume feff > 0. Since GL → ∞ from
Eq. (22) it implies limL→+∞AL = 1 from (19). Using
AL = 1, Eq. (20) can be re-arranged in a more compact
form, leading to limL→+∞ VL = V where

1

V
=

∫ +∞

0

dz〈Ψ(x, x+ z)〉x −
feff

v2
0

. (23)

In addition, the diffusion constant Dzb
L for the case of

zero bias G(L) = 0, is obtained as (see [47] for the general
case)

D0

Dzb
L

=
1

L2

∫ L

0

duΦ+(0, u)

∫ L

0

du′Φ−(0, u′) . (24)

In the large L limit, Dzb
L → Dzb with

D0

Dzb
= v4

0

〈
e−W (x)

v2
0 − f2(x)

〉
x

×
〈

eW (x)

v2
0 − f2(x)

〉
x

. (25)

This formula is valid provided each translational average
in (25) converges. Finally, in the diffusive limit v0, γ →
+∞ with fixed D0 =

v20
2γ , one can check that our formulae

(23) and (25) for L → ∞ reduce to the diffusive results
obtained in [45].

Phase B. In this phase, there are 2n roots to the equa-
tion f(x) = v0 in a period L. Let us denote them by xsi
(stable) and xui (unstable), i = 1, . . . , n, with f ′(xsi ) < 0
and f ′(xui ) > 0 (we assume for simplicity that f(x) is dif-
ferentiable). We choose the period such that the roots are
ordered as xs1 < xu1 < xs2 < · · · < xun < xsn+1 = xs1 + L,
see Fig. 2. The xs,ui correspond respectively to stable
and unstable fixed points when the RTP is in the state
σ = −1. The motion of the RTP in the state σ = +1 is
always to the right. Hence the RTP can not cross any
of stable points to the left. Hence, we expect a net drift
with VL > 0 since the particle always spends a finite frac-
tion of its time in state +. The stationary measure can
be computed from Eq. (15) and has the form

P̃ (x) = J

n∑
j=1

1[xsj ,x
s
j+1](x)Fxuj (x) (26)

Fy(x) =
1

v2
0 − f2(x)

∫ y

x

du(2γ + f ′(u))e
2γ

∫ x
u
dy

f(y)

v20−f
2(y) .

This expression is smooth around the unstable points xui
but has singularities near the stable points xsi

P̃ (x) ∼ (xsi+1 − x)φi+1 , φi+1 = −1 +
γ

|f ′(xsi+1)| ,
(27)

xs
1 xu

1 xs
2 xu

2 xs
3 xu

3

�v0

+v0

0
L

� = +

� = �

�

f(x)

x

xs
1 xu

1 xs
2 xu

2

�v0

+v0

0
L

� = +

� = �

�

f(x)

x

ys
1 yu

1 yu
2ys

2 ys
3 yu

3

FIG. 2. Plots of f(x) in a period x ∈ [0, L] showing the
stable (s) and unstable (u) fixed points, i.e. the roots of
f(x) = −σv0, when the RTP is in the σ = −1 state (top line)
and σ = +1 state (lowest line). The RTP moves along the
arrows and changes state with rate γ. Top, phase B: In the
− state the RTP moves left or right towards the fixed points
xsi , and in the + state always to the right, leading to a mean
velocity VL > 0. Bottom, phase C: the RTP ends up in either
intervals I1 = [xs1, y

s
1] or I2 = [xs2, y

s
3], which are the supports

of the stationary measures (up to periodicity L), and VL = 0.
Starting points in [xu2 − L, yu2 ] and [xu1 , y

u
3 ] end up in I1 and

I2 respectively, with probability one. Starting in [yu2 , x
u
1 ] or

[yu3 , x
u
2 ], the RTP ends up randomly in either intervals

assuming that f ′(x) is continuous. From (16) we also ob-
tain the singularity associated to each state as P̃±(x) ∼
(xsi+1 − x)φ

±
i+1 with φ−i+1 = φi+1 + 1 and φ+

i+1 =
φi+1. The velocity is then obtained from normalisation∫ xs1+L

xs1
dx P̃ (x) = 1 and J = VL/L leading to the result

for phase B

1

VL
=

1

L

n∑
j=1

∫ xsj+1

xsj

dxFxuj (x) . (28)

To illustrate phase B we consider a simple example,
f(x) = 4|x − 1

2 | − 1 + F with period L = 1 (setting
v0 = 1). We first study the case F = 1. The period
is [xs1, x

s
1 + 1] with xs1 = 1

4 and x1
u = 3

4 (see Fig. 3).
We set γ = 4, which leads to the simplest expressions.
By directly solving (13), (14) one finds that, due to the
angular points of f(x) at x = 1

2 and x = 1, the solution
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P̃ = P̃I takes different forms depending on the interval I
(see Fig. 3)

P̃[ 14 ,
1
2 ](x) = c1 +

J

2
log

3− 4x

4x− 1
, P̃[ 12 ,1](x) =

4Jx

(1− 4x)2

P̃[1, 54 ](x) = c2 +
J

2
log

7− 4x

5− 4x
(29)

with c1 = 2J , c2 = J
18 (8 − 9 log 3) from continuity of

P̃ at the angular points. Normalisation then leads to
VL = J = 18

14+9 log(3) . One can check these results agree

with a direct evaluation of the formula (26) and (28) [53].
The result (29) is compared in Fig. 3 with a numerical
simulation of Eq. (1). The exponent (27) predicted for
the singularity at x = xs1 = 1

4 is φ = γ−4
4 , in agreement

with the logarithmic divergence in (29) for γ = 4. The
case of general γ is solved in [47].

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

P̃ (x)

x

0 0.5 1

1

2

f(x)

x

FIG. 3. Stationary distribution P̃ (x) versus x, for f(x) =
4|x− 1

2
| (inset), γ = 4, v0 = 1. Squares: numerical simulation

of the RTP (shown in period [0, 1]). Solid line: analytical
prediction (29). Note the logarithmic divergence at x = 1/4.
The angular point at x = 1/2 arises from the cusp in f(x).

Phase C. In this phase, within the period L, there are
2n solutions to f(x) = v0, called xs,ui , i = 1, . . . , n or-
dered as in phase B, and 2m roots to f(x) = −v0, called
ys,uj , j = 1, . . . ,m ordered similarly with f ′(ysj ) < 0 and
f ′(yuj ) > 0. The roots ys,uj correspond respectively to
stable and unstable fixed points when the RTP is in
the state σ = +1. As a result the particle motion is
now bounded, as one can check in the bottom panel of
Fig. 2. We now detail the structure of the possible sta-
tionary states. Let us define S the subset of indices i
such that [xsi , x

u
i ] contains at least one ysj , and define

k(i) = min(j|xsi < ysj < xui ). The stationary distribu-

tion P̃ (x) has zero current J = 0, and both the velocity
VL and the diffusion constant DL are zero. It reads

P̃ (x) =
∑
i∈S

Ai
1[xsi ,y

s
k(i)

](x)

v2
0 − f2(x)

e
2γ

∫ x
ui
dy

f(y)

v20−f
2(y) , (30)

where ui can be chosen as the midpoint ui =
xsi+y

s
k(i)

2 .
The stationary measure has a support made of a collec-

tion of disjoint intervals and is zero elsewhere, which cor-
respond to “downwards travels” of f(x), as represented
in the bottom panel of Fig. 2. The coefficients Ai, i ∈ S,
are however determined by the initial condition, together
with the normalisation condition. Hence if there is more
than one element in S the system is non-ergodic.

Phase D. In this case there are no roots to f(x) = ±v0.
However there is a global bias and the velocity VL 6= 0.
It turns out that both the stationary P̃ (x) and VL are
given by exactly the same formula as in phase A, namely
by Eqs. (17) and (20) respectively.

In the limit γ → 0+, transitions being rare, the velocity
simplifies (in all phases) as VL ' 1

2 (V+ + V−), where

Vσ = L/
∫ L

0
dx

f(x)+v0σ
is the velocity of an RTP frozen in

state σ = ±1, with Vσ = 0 if a root to f(x) = −v0σ
exists [47].

Transitions and velocity force characteristics. As men-
tioned earlier, dynamical transitions can occur between
these phases as some external parameters are varied, such
that f(x) crosses the levels ±v0, see e.g. Fig. 1. Let us
give a concrete example of this transition for the model
f(x) = f0(x) + F with f0(x) = 4|x− 1

2 | − 1 for x ∈ [0, 1]
and we set v0 = 1 as well as L = 1. Clearly, in this case,
fmax

0 = v0 = 1. If we now vary F , we move along the
horizontal line fmax

0 = v0 in the phase diagram in Fig. 1.
For any F > 0, the system is in phase B, a special case of
this was discussed before for F = 1. However, exactly at
F = 0 the system is in phase C. Thus the critical point
in this example is exactly at F = Fc = 0. As F → 0,
the velocity VL vanishes as a power law VL ∼ (F − Fc)β
where the exponent β = β(γ) depends continuously on
γ. For example, we find β(4) = 2 and β(2) = 1 [47].

Similarly, by varying fmax
0 in Fig. 1 one can induce

a transition from phase A to phase C along the ver-
tical line at F = 0. Here we provide a concrete ex-
ample of this transition by considering the attractive
logarithmic potential, f(x) = f0(x) = − αx

x2+a2 , on the
interval [−L/2,+L/2], of period L � a [54]. Note
that in this case the global bias in Eq. (9) vanishes,
GL = W (−L/2) −W (L/2) = 0, due to f(x) being an
odd function. To proceed, we look for the possible real
roots of f(x) = ±v0. It is easy to verify that the four
roots are given by a

(
∓r ±

√
r2 − 1

)
where r = α/(2v0a).

Clearly, if r < 1, there is no real root – this corresponds
to phase A. In contrast when r > 1 there are four real
roots – this corresponds to phase C. Thus, by tuning r
across the critical value r = 1, the system can go from
phase A to C.

• For r > 1, in phase C, following our general discus-
sion before (see also Fig. 2 bottom panel), there is only
one region of space [xs, ys] with xs = a(−r +

√
r2 − 1)

and ys = a(r−
√
r2 − 1), where the particle gets trapped

in the stationary state, irrespective of the initial condi-
tion (since L � 2ys). Thus in this phase, both VL and
DL vanish and the particle position is always localised
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r =
↵

2v0a
0

1

1

g =
2�↵

v2
0

bound A

unbound A

bound C

DL = 0

DL

D0
= 1 � g2

DL

D0
/ L1�g

FIG. 4. Dynamical phase diagram of the attractive logarith-
mic potential model, in terms of r (activity parameter) and
g (potential strength), exhibiting two binding transitions of
different nature. In the A bound phase g > 1, r < 1, the
stationary measure P̃ (x) becomes bimodal for g < 8r2.

(bound) at long times.
• In contrast, for r < 1, i.e. in phase A, the parti-

cle position at long times may or may not be localised
in the limit L → ∞. This can be clearly seen by ex-
amining the zero-bias (GL = 0) stationary distribution
P̃ (x) = ÃΦ+(0, x) where Φ+ is given in (18). It is easy
to check that, for large 1 � |x| < L/2, P̃ (x) ∝ |x|−g
with the exponent g = 2γα/v2

0 . If g > 1, the station-
ary distribution P̃ (x) becomes independent of L in the
large L limit, since it can be normalised on the interval
(−∞,+∞). Thus the particle position is bound in the
large L limit. This can also be seen from the asymp-
totic behaviour of DL for large L, where Eq. (24) pre-
dicts DL ∼ dr L1−g, with dr some r-dependent constant.
Thus for g > 1, the diffusion constant vanishes asymp-
totically for large L, confirming the bound state. On
the other hand, if g < 1, there is no stationary distri-
bution in the large L limit and the diffusion constant,
for large L, approaches a constant DL = D0(1 − g2).
This leads to the phase diagram in the (r, g) plane as
shown in Fig. 4. For g > 1, as r → 1− from below
(from phase A), the DL has an essential singularity [47],
i.e. DL ∼ exp(−πg/

√
8(1− r)) as r → 1−. It would be

interesting to investigate the behaviour of the diffusion
constant DL around the multicritical point in Fig. 4.

Mean first passage time. One can calculate the mean
first passage time at a fixed level X, T±(x), for a RTP
starting from x in the state ±. In phase A, for an infi-
nite line (not assuming periodicity) assuming W (−∞) =
+∞, it reads

T−(x) =

∫ X

x

2γdy

v0 − f(y)

∫ y

−∞

eW (y)−W (z) dz

v0 + f(z)
+ T−(X)

(31)

Here T−(X) = 1
γ + 2

∫X
−∞

eW (X)−W (y)dy
v0+f(y) is the mean first

return time to level X, which, for an RTP started in
the − state is non-zero, while T+(X) = 0. In fact the
difference is given for general x by

T−(x)− T+(x) = 2

∫ x

−∞

dy eW (x)−W (z)

v0 + f(z)
+

1

γ
(32)

Note that in the diffusive limit T−(X) → 0, T+(x) −
T−(x) → 0 and one recovers the formula given in
[46]. These are thus purely active quantities. We have
checked [47] that the velocity in (23) can also be obtained
from the limit limX→+∞ T±(0)/X = 1/V .

All our results extend to inhomogeneous transition
rates γ → γ(x) and velocity v0 → v0(x), see [47] for
details. For example, in the absence of an external force
f(x) = 0, the velocity vanishes and the diffusion constant
is given by

DL =
L2(∫ L

0
dx 2γ(x)

v0(x)

)(∫ L
0
dx 1

v0(x)

) . (33)

Random landscape: velocity. Consider now f(x) a ran-
dom force where each realisation is periodic f(x + L) =
f(x), but the probability distribution of f(x) is indepen-
dent of x. We restrict to the phase A in the large L
limit. Let us define f̃(x) = v2

0f(x)/(v2
0 − f2(x)), with

f̃(x) = feff , the effective bias defined in (22), which we
choose to be non negative (overbars denote averages over
the random force). We assume that the translational av-
erage 〈. . .〉x coincides with the disorder average. This
implies from (23) that the velocity is given by

V −1 =

∫ +∞

0

dz K(z)− feff

v2
0

(34)

in terms of the two point correlator

K(z) =
2γv2

0 e
−(W (0)−W (z))

(v2
0 − f2(0))(v2

0 − f2(z))
(35)

There are thus two possible phases separated by a thresh-
old force fc: (i) if

∫ +∞
0

dzK(z) < +∞ there is a non
zero velocity V > 0 since the bias is positive, and (ii)∫ +∞

0
dz K(z) = +∞, for which the velocity vanishes.

The first case occurs for large enough feff > fc since
W (0)−W (z) = feffz/D0.

Random landscape: anomalous diffusion. The exis-
tence of a V = 0 phase is a signature of anomalous
diffusion. By tuning the random force we first con-
sider the case feff = 0. Consider the case where f(x)
is short range correlated. Then W (x) performs an un-
biased random walk as a function of x. From (24), a
good estimate, which is also a lower bound log DL

D0
≥

−[maxx∈[0,L]W (x) − minx∈[0,L]W (x)] + c, with c =

log minx∈[0,L](1 − f(x)
v20

). If W (x) has bounded mo-

ments, it behaves, under rescaling, as a Brownian mo-
tion, growing typically as W (x) ∼ ±σ̂√x, with σ̂2 =
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∫ +∞
−∞ dxf̃(0)f̃(x). This lower bound then leads to the es-

timate 1√
L

logDL ' −2γσ̂ω, where the PDF of ω > 0

is known. The diffusion time TL on scale L, is thus
log TL = log(L2/DL) ∼ 2γσ̂

√
L. This is similar to the

Sinai problem [48] for a passive particle, as noted in [28].

Let us return to the case of non zero bias, feff > 0, not
studied in [28]. As discussed above, V = 0 for feff < fc.
The Brownian approximation for W (x) allows to char-
acterise the anomalous behaviour. Discarding the pre-
exponential factors in (35) one obtains V ∼ feff − fc

for feff > fc, with fc = γσ2

v20
. In the zero velocity

phase, anomalous diffusion x ∼ tµ is expected, as in
the Sinai problem [48]. Qualitatively, from Eq. (20),
1/VL ∼

∫
x<u

eW (u)−W (x) ∼ e∆m ∼ Lµ−1, where ∆m is
the maximum drawdown of the Brownian motion with
∆m = µ logL where µ = σ2

2m = feff/fc [49].

In conclusion, we have obtained analytical expressions
for the stationary measure, the velocity and the diffusion
constant for a single RTP in an arbitrary 1D periodic
force field with period L. We obtained exact results both
for finite L and in the large L limit. We showed that,
even for a single particle, the dynamics exhibits inter-
esting phase transitions, with power law or exponential
singularities in these observables. We also investigated
[47] how the Fick’s law gets modified for non-interacting
RTP’s subjected to a concentration gradient. It would
be interesting to explore how these results are modified
for interacting RTP’s.
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Supplementary Material for Active particle in a one dimensional force field

We give the principal details of the calculations described in the main text of the Letter.

A. Calculation of the velocity

Stationary distribution. As in the text we consider a RTP moving on the infinite line according to Eq. (1), and
submitted to a periodic force f(x) = f(x + L). One defines P±(x, t) as the probability densities of the RTP to be
in position x at time t and in the state σ(t) = ±1, which obey the equations (53), (12). One defines the periodised
distributions, P̃±(x, t) =

∑
n P±(x + nL, t), and the total probability P̃ (x, t) = P̃+(x, t) + P̃−(x, t), as well as the

difference Q̃(x, t) = P̃+(x, t)− P̃−(x, t).
Let us first obtain the stationary distributions in the phase A, i.e. |f(x)| < v0. Inserting the stationarity condition

∂tP̃ (x) = ∂tQ̃(x) = 0 in (13) we recall that the first one is solved as f(x)P̃ (x) + v0Q̃(x) = J , where J is a constant,
equal to the total current. Solving for Q̃(x) and inserting in (14) one obtains that P̃ (x) must satisfy

d

dx
[(v2

0 − f2(x))P̃ (x) + Jf(x)] + 2γJ − 2γf(x)P̃ (x) = 0 (36)

We then obtain the stationary distribution P̃ (x) as

P̃ (x) =
J

v2
0 − f2(x)

(
Ke

2γ
∫ x
0
dy

f(y)

v20−f
2(y) −

∫ x

0

du(2γ + f ′(u))e
2γ

∫ x
u
dy

f(y)

v20−f
2(y)

)
(37)

Imposing P̃ (0) = P̃ (L) one obtains

K =

∫ L
0
du(2γ + f ′(u))e

−2γ
∫ u
0
dy

f(y)

v20−f
2(y)

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

(38)

One can recapitulate the formula in the form

P̃ (x) =
J

v2
0 − f2(x)

∫ L

0

du(2γ + f ′(u))e
2γ

∫ x
u
dy

f(y)

v20−f
2(y)

 1

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

− θ(x− u))

 (39)

There is a useful alternative formula for P̃ (x) which does not contain derivatives of the force. Integrating by part
the above formula one obtains

P̃ (x) = J p(x) with p(x) =
2γ

v2
0 − f2(x)


∫ L

0
du

v20
v20−f(u)2

e
2γ

∫ x
u
dy

f(y)

v20−f
2(y)

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

−
∫ x

0

du
v2

0

v2
0 − f(u)2

e
2γ

∫ x
u
dy

f(y)

v20−f
2(y) − f(x)

2γ


(40)

which is the formula given in the text in (17), together with the definitions (18) for Φ−(x, u), (19) for AL and the
definition (8) of W (x). Note that although we have used here the interval [0, L] as the elementary period, a similar
formula exists for any other choice of the elementary interval (such as [−L/2, L/2] see below).
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Diffusive limit for the stationary distribution. In the limit v0, γ → +∞ with v2
0/(2γ) = D0 this formula becomes

P̃ (x) =
J

D0

(∫ L
0
due−

1
D0

∫ u
x
dyf(y)

1− e− 1
D0

∫ L
0
dyf(y)

−
∫ x

0

due
1
D0

∫ x
u
dyf(y)

)
(41)

which is exactly the equation (7) in [45].

Velocity. We now calculate the velocity VL = limt→+∞ d
dt

∫
dxxP (x, t). We assume that P±(x, t) vanishes fast

at x → ±∞, i.e. localised initial condition. Let us define P (x, t) = P+(x, t) + P−(x, t), as well as the difference
Q(x, t) = P+(x, t) − P−(x, t). The mean instantaneous velocity of the particle (irrespective of its internal state) is
calculated as follows

d

dt
x(t) =

d

dt

∫
dxxP (x, t) = −

∫
dxx

d

dx
[f(x)P (x, t) + v0Q(x, t)] (42)

=

∫
dx[f(x)P (x, t) + v0Q(x, t)] =

∫ L

0

dx[f(x)P̃ (x, t) + v0Q̃(x, t)]→t→+∞

∫ L

0

dx[f(x)P̃ (x) + v0Q̃(x)] = JL ,

where in the last line we have considered the large time limit and used that f(x)P̃ (x) + v0Q̃(x) = J in the stationary
state, where the current J is a constant. This shows Eq. (5), i.e. that the velocity is VL = JL. Since the current J

is obtained by imposing the normalisation condition
∫ L

0
dxP̃ (x) = 1, we obtain VL by integrating the formula (40) as

1
VL

= 1
L

∫ L
0
dxp(x). This leads to (20) in the text.

We now show that, as announced in the text the sign of VL is the same as the sign of W (0)−W (L). Assume first

that
∫ L

0
dy f(y)

v20−f2(y)
> 0. Since we consider phase A) one has f(x) < v0 for all x. The following inequalities hold

f(0) < v0 = v0

2γ
∫ L

0
du f(u)

v20−f(u)2
e
−2γ

∫ u
0
dy

f(y)

v20−f
2(y)

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

<
2γ
∫ L

0
du

v20
v20−f(u)2

e
2γ

∫ x
u
dy

f(y)

v20−f
2(y)

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

(43)

where the equality in the middle is obtained by integration. This implies that p(0) given by (40) is strictly positive.

Since we know that as a probability density P̃ (x) ≤ 0, it implies J > 0, hence VL > 0. Similarly if
∫ L

0
dy f(y)

v20−f2(y)
< 0

one has the inequalities

f(0) > −v0 = −v0

2γ
∫ L

0
du f(u)

v20−f(u)2
e
−2γ

∫ u
0
dy

f(y)

v20−f
2(y)

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

>
2γ
∫ L

0
du

v20
v20−f(u)2

e
2γ

∫ x
u
dy

f(y)

v20−f
2(y)

1− e−2γ
∫ L
0
dy

f(y)

v20−f
2(y)

(44)

which implies p(0) < 0 and hence VL < 0. Note that since the point x = 0 has nothing special one can similarly show
that P̃ (x) > 0 for all x in phase A.

Limit γ → 0. In the limit γ → 0 the particle changes state only rarely. If the particle is frozen in state σ = ±1, i.e.
never changes state, it is easy to see that its velocity is

Vσ =
L∫ L

0
dx

f(x)+v0σ

(45)

Since the particle spends on average the same time in each state σ = ±1, in the limit γ → 0 its total velocity is

lim
γ→0

VL =
1

2
(V+ + V−) =

L

2
∫ L

0
dx

v0+f(x)

− L

2
∫ L

0
dx

v0−f(x)

(46)

a formula which is valid in all phases, provided one interprets it by setting Vσ = 0 if there is at least one root to the
equation f(x) = −v0σ with σ = ±1.

Stationary current for a collection of independent RTP’s. Let us study a collection of independent RTP’s
between two reservoirs in a segment [0, L] (with no assumption here of periodicity) and determine the stationary
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current J when the concentrations denoted P (0) and P (L) are fixed. We can use the formula as (37). The constant
K is then determined by another condition. We have

P (0) = K
J

v2
0 − f(0)2

(47)

P (L) = − J

v2
0 − f(L)2

(∫ L

0

du(2γ + f ′(u))e
2γ

∫ L
u
dy

f(y)

v20−f
2(y) −Ke2γ

∫ L
0
dy

f(y)

v20−f
2(y)

)
(48)

= − J

v2
0 − f(L)2

(∫ L

0

du(2γ + f ′(u))e
2γ

∫ L
u
dy

f(y)

v20−f
2(y)

)
+
v2

0 − f(0)2

v2
0 − f(L)2

P (0)e
2γ

∫ L
0
dy

f(y)

v20−f
2(y) (49)

The current is then

J = − (v2
0 − f(L)2)P (L)∫ L

0
du(2γ + f ′(u))e

2γ
∫ L
u
dy

f(y)

v20−f
2(y)

+
(v2

0 − f(0)2)P (0)∫ L
0
du(2γ + f ′(u))e

2γ
∫ 0
u
dy

f(y)

v20−f
2(y)

. (50)

This result, which gives back the standard formula in the diffusive limit [50], allows to study the modification of Fick’s
law J ∼ 1/L, induced by an arbitrary force landscape for a RTP.

B. Calculation of the diffusion constant

General formula

In addition to the functions defined in the text, to calculate the diffusion constant for an infinite periodic medium,
we need the additional periodic functions defined as

S̃±(x, t) =
∑
n

(x+ nL)P±(x+ nL, t) (51)

where P±(x+ nL, t) satisfy the evolution equations (12). One easily show that the functions S± satisfy the following
equations

∂tS̃+ = −∂x[(f(x) + v0)S̃+]− γS̃+ + γS̃− + (f(x) + v0)P̃+ (52)

∂tS̃− = −∂x[(f(x)− v0)S̃−] + γS̃+ − γS̃− + (f(x)− v0)P̃− . (53)

It is also convenient to define

S̃(x, t) = S̃+(x, t) + S̃−(x, t) , R̃(x, t) = S̃+(x, t)− S̃−(x, t) (54)

which satisfy

∂tS̃ = − d

dx
[f(x)S̃ + v0R̃] + f(x)P̃ + v0Q̃ (55)

∂tR̃ = − d

dx
[f(x)R̃+ v0S̃]− 2γR̃+ f(x)Q̃+ v0P̃

where P̃ and Q̃ are defined in the text. One expects that in the large time limit, as is the case in the diffusive
problem [44]

P̃ (x, t)→ P̃ (x) , Q̃(x, t)→ Q̃(x) (56)

S̃(x, t)→ a(x)t+ s(x) , R̃(x, t)→ b(x)t+ r(x) (57)

Note that all these functions are periodic in x of period L.
Injecting this form into (55) and collecting the terms proportional to t, we see that a(x) and b(x) satisfy the same

equation as the stationary solutions P̃ (x) and Q̃(x) given in the text in (13). Hence we set

a(x) = A P̃ (x) , b(x) = AQ̃(x) (58)
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where A is for now un unknown constant.
The equations which determine s(x) and r(x) are then

AP̃ = − d

dx
[f(x)s+ v0r] + f(x)P̃ + v0Q̃ (59)

AQ̃ = − d

dx
[f(x)r + v0s]− 2γr + f(x)Q̃+ v0P̃ . (60)

We will study these equations below. If one knows the solution, one can obtain the diffusion constant as follows. One
can write the instantaneous velocity, and its large time limit as

x(t) =

∫ +∞

−∞
dxxP (x, t) =

∫ L

0

dxS̃(x, t)→ t

∫ L

0

dx a(x) +

∫ L

0

dx s(x) (61)

where we have used that S̃(x, t) =
∑
n(x+ nL)P (x+ nL, t). The above equations allows to identify both A and JL

with the velocity V ,

JL = V =

∫ L

0

dxa(x) = A

∫ L

0

dx P̃ (x) = A (62)

Note that
∫ L

0
dxs(x) is a shift at large time. Next, we have

d

dt
x(t)2 =

∫
dxx2∂tP (x, t) = −

∫
dxx2∂x(f(x)P + v0Q) (63)

= 2

∫
dxx[f(x)P + v0Q] = 2

∫ L

0

dx[f(x)S̃(x, t) + v0R̃(x, t)] (64)

→ 2

∫ L

0

dx[f(x)a(x) + v0b(x)]t+ 2

∫
dx[f(x)s(x) + v0r(x)] (65)

= 2A

∫ L

0

dx[f(x)P̃ (x) + v0Q̃(x)]t+ 2

∫
dx[f(x)s(x) + v0r(x)] = 2A2t+ 2

∫
dx[f(x)s(x) + v0r(x)] (66)

The diffusion constant DL is now given by

DL =
1

2
lim

t→+∞

(
d

dt
x(t)2 − d

dt
x(t)

2
)

=

∫
dx[f(x)s(x) + v0r(x)]−A

∫ L

0

dxs(x) (67)

hence it requires the knowledge of s(x) and r(x).

Diffusion constant in phase A, and in the absence of a bias

Let us first study the phase A, i.e. |f(x)| < v0, with zero bias, i.e. W (L) = W (0) i.e.
∫ L

0
dy f(y)

v20−f2(y)
= 0, for which

VL = JL = A = 0. The stationary distribution is given by

P̃ (x) = Ã
v2

0

v2
0 − f2(x)

e
2γ

∫ x
0
dy

f(y)

v20−f
2(y) ,

1

Ã
=

∫ L

0

dx
v2

0

v2
0 − f2(x)

e
2γ

∫ x
0
dy

f(y)

v20−f
2(y) (68)

where the equation for Ã is determined by the normalisation condition
∫ L

0
dxP̃ (x) = 1. Using that f(x)P̃ (x) +

v0Q̃(x) = J = 0, the equations (59), (60), simplify into

0 = − d

dx
[f(x)s+ v0r] (69)

0 = − d

dx
[f(x)r + v0s]− 2γr +

v2
0 − f2(x)

v0
P̃ (70)

The first equation gives

f(x)s(x) + v0r(x) = c (71)
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where c is a constant. From c one obtains from (67) (with A = 0) the diffusion constant as D = cL. Solving for s(x)
and inserting in (70) we obtain an equation for r(x)

0 = − d

dx
[
f2(x)− v2

0

f(x)
r(x)] + cv0

f ′(x)

f2(x)
− 2γr(x) + Ãv0e

2γ
∫ x
0
dy

f(y)

v20−f
2(y) (72)

Let us define the auxiliary function r̃(x) as

r(x) = r̃(x)
f(x)

v2
0 − f2(x)

e
2γ

∫ x
0
dy

f(y)

v20−f
2(y) . (73)

Note that since r(x) and f(x) are periodic and W (L) = W (0), the function r̃(x) is also periodic of period L. From
(72) we see that it satisfies

r̃′(x) = cv0
d

dx

[
1

f(x)

]
e
−2γ

∫ x
0
dy

f(y)

v20−f
2(y) − Ã v0 . (74)

We find by integrating from 0 to L and using r̃(0) = r̃(L)

c =
DL

L
=

Ã L∫ L
0
dx d

dx

[
1

f(x)

]
e
−2γ

∫ x
0
dy

f(y)

v20−f
2(y)

(75)

which can be integrated by parts (with a vanishing boundary term since the bias is zero). Using the formula (68) for
Ã we finally obtain

DL =
L2

2γ

(∫ L
0
dx 1

v20−f2(x)
e
−2γ

∫ x
0
dy

f(y)

v20−f
2(y)

)(∫ L
0
dx

v20
v20−f2(x)

e
2γ

∫ x
0
dy

f(y)

v20−f
2(y)

) (76)

This gives the formula (24) of the text, where we used D0 =
v20
2γ . For f(x) = 0 one recovers DL = D0. In the diffusive

limit, v0, γ →∞ with D0 fixed, this formula becomes

DL = D0
L2(∫ L

0
dxe−

1
D0

∫ x
0
dyf(y)

)(∫ L
0
dxe

1
D0

∫ x
0
dyf(y)

) (77)

which is the standard formula in the diffusive case.

Diffusion constant in phase A, and in the presence of a bias

Let us consider now the case where the bias is non zero, i.e. VL 6= 0. Let us recall the expression (67) for the
diffusion constant where we use that A = VL, namely

DL =

∫ L

0

dx[f(x)s(x) + v0r(x)]− VL
∫ L

0

dxs(x) (78)

Let us also recall that the equations which determine s(x) and r(x) are

VLP̃ = − d

dx
[f(x)s+ v0r] + f(x)P̃ + v0Q̃ (79)

VLQ̃ = − d

dx
[f(x)r + v0s]− 2γr + f(x)Q̃+ v0P̃

and that we can use that f(x)P̃ + v0Q̃ = J . We should also remember that r(x) and s(x) are periodic of period L.
The first equation gives

f(x)s(x) + v0r(x) = J

∫ x

0

dy(1− LP̃ (y)) + c (80)
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where c is an integration constant. We will see below that its value is immaterial for calculating DL, but for now
we keep it. We can thus express r(x) as a function of s(x) and insert its expression in the second equation in (79).
Replacing VL = JL, we obtain the following equation for s(x)

0 = − d

dx
[(v2

0 − f2(x))s(x)] + 2γf(x)s(x)− c(f ′(x) + 2γ) +B(x) (81)

B(x) = − d

dx
[Jf(x)

∫ x

0

dy(1− LP̃ (y))))] (82)

−2γJ

∫ x

0

dy(1− LP̃ (y)) + (v2
0 − f2(x) + JLf(x))P̃ (x) + f(x)J − LJ2 (83)

To solve this equation one defines the auxiliary function s̃(x) via

s(x) = s̃(x)
1

v2
0 − f2(x)

e
2γ

∫ x
0
dy

f(y)

v20−f
2(y) (84)

One finds that it satisfies the equation

s̃′(x) = (B(x)− c(f ′(x) + 2γ))e
−2γ

∫ x
0
dy

f(y)

v20−f
2(y) (85)

which we integrate as follows

s̃(x) = s̃(0) +

∫ x

0

dy(B(y)− c(f ′(y) + 2γ))e
−2γ

∫ y
0
du

f(u)

v20−f(u)
2

(86)

Hence we now have a second unknown integration constant, s̃(0). It can be fixed however from the periodicity of s(x).
Writing s(0) = s(L) we obtain the condition

s̃(0)(1− e2γ
∫ L
0
dy

f(y)

v20−f
2(y) ) =

∫ L

0

dy(B(y)− c(f ′(y) + 2γ))e
−2γ

∫ y
L
du

f(u)

v20−f(u)
2
. (87)

Substituting we write the final result for s(x)

s(x) =
1

v2
0 − f2(x)

e
2γ

∫ x
0
dy

f(y)

v20−f
2(y)

(
1

1− e2γ
∫ L
0
dy

f(y)

v20−f
2(y)

∫ L

0

dy(B(y)− c(f ′(y) + 2γ))e
−2γ

∫ y
L
du

f(u)

v20−f(u)
2

(88)

+

∫ x

0

dy(B(y)− c(f ′(y) + 2γ))e
−2γ

∫ y
0
du

f(u)

v20−f(u)
2

)
From (78) and (80) the diffusion constant is given by (upon insertion of the result for s(x) and various manipulations)

DL = J

∫ L

0

dx

∫ x

0

dy(1− LP̃ (y)) + cL− JL
∫ L

0

dxs(x) (89)

= J

∫ L

0

dx

∫ x

0

dy(1− LP̃ (y)) + cL (90)

−JL
∫ L

0

dx

∫ L

0

dy
e

2γ
∫ x
y
du

f(u)

v20−f(u)
2

v2
0 − f2(x)

(B(y)− c(f ′(y) + 2γ))[θ(x− y)− 1

1− e−2γ
∫ L
0
du

f(u)

v20−f(u)
2

] (91)

Now we note, remarkably, that the terms proportional to c cancel because of the normalisation condition
∫ L

0
dxP̃ (x) =

1 applied on Eq. (39). Hence we simply obtain

DL = J

∫ L

0

dx

∫ x

0

dy(1− LP̃ (y))− JL
∫ L

0

dx

∫ L

0

dy
e

2γ
∫ x
y
du

f(u)

v20−f(u)
2

v2
0 − f2(x)

B(y)[θ(x− y)− 1

1− e−2γ
∫ L
0
du

f(u)

v20−f(u)
2

] (92)

where B(y) is given in (82) which we rewrite as

B(x) = −J(2γ + f ′(x))

∫ x

0

dy(1− LP̃ (y)) + (v2
0 − f2(x) + 2JLf(x))P̃ (x)− LJ2 (93)
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The final result for the diffusion constant in the presence of a drift is given by substituting the expression (40)
(equivalently (39)) for P̃ (x) in Eqs. (92), (93). Although it is a complicated formula, it is valid for any force
landscape such that |f(x)| < v0 (phase A).

We can now check that in the limit of zero bias this formula crosses over smoothly to formula (76) (i.e. (24) in
the text) for the zero bias diffusion constant. First it is easy to see from Eq. (40) that the stationary distribution

P̃ (x) converges to the one given by formula (68) in the zero bias limit where both J and
∫ L

0
du f(u)

v20−f(u)2
tend to zero.

This can be seen since in that limit the r.h.s. in (76) is dominated by the first term. The normalisation condition∫ L
0
dxP̃ (x) = 1 in Eq. (76) further implies that, in the limit J → 0 the following ratio goes to a constant

J

1− e−2γ
∫ L
0
du

f(u)

v20−f(u)
2

→ Dzb
L

L2
(94)

where Dzb
L is the zero bias diffusion constant given by Eq. (76). This is nothing but the Einstein relation [see

Eq. (10) in the main text], i.e., VL ' Dzb
L
GL
L = Dzb

L
1
L (W (0) −W (L)) in the small bias limit, where we have used

GL = W (0)−W (L). We note that when J → 0 one has

B(y) ' (v2
0 − f2(y))P̃ (y) ' Ã v2

0e
2γ

∫ y
0
du

f(u)

v20−f(u)
2
, (95)

where Ã is given in (68). Substituting in (92) one sees that the integrand in the last term (which is the only remaining
term in the limit J → 0) does not depend on y. This produces a factor L2 and one can check that the remaining
integral over x cancels exactly the factor Ã, with the result DL → Dzb

L when J → 0.

C. Piecewise linear force model

We provide additional information on the study of the model v0 = 1 and f(x) = 4|x − 1
2 | − 1 + F in the interval

x ∈ [0, 1], i.e. we set L = 1 here. For γ = 4 and F = 1 this model was studied in the text. The stationary measure is
given in (29). Here we study other values of γ and F .

The case γ = 2, F = 1. Consider first the case γ = 2 and F = 1 where more explicit formulae can be given. We
find, by solving explicitly (36) in each subinterval where f(x) is linear

P̃ (x) =
c1√

(1− 4x)(3− 4x)
, 0 < x < 1/4 (96)

P̃ (x) =
c2√

(4x− 1)(3− 4x)
, 1/4 < x < 1/2 (97)

P̃ (x) =
2J
(√

(3− 4x)(4x− 1)(1− 2x) + sin−1
(√

3
2 − 2x

))
((3− 4x)(4x− 1))3/2

, 1/2 < x < 3/4 (98)

P̃ (x) =
J
(
2(2x− 1)

√
16x2 − 16x+ 3− log

(√
16x2 − 16x+ 3 + 4x− 2

))
((4x− 3)(4x− 1))3/2

, 3/4 < x < 1 (99)

where c1 and c2 are integration constants. The singularity at the unstable fixed point (see text) x = 3/4 is only
apparent on these formula. Note that the general solution on the interval x ∈ [1/2, 1] involves an additional term
multiplied by an integration constant. This term however has a non-integrable divergence at x = 3/4, hence the
coefficient can be set to zero. There is no change at x = 3/4 since we have chosen the integration constant to be zero
leading to the third line. In fact the last two lines in (114) are analytical continuations of each other. This is a general
feature of the problem, valid for any γ. Imposing the continuity of P̃ (x) at x = 1/2, the periodicity P̃ (0) = P̃ (1), and

the normalisation
∫ 1

0
dx P̃ (x) = 1 we can determine all the unknown constants c1, c2 and J as

c1 =
1

3
J
(

2
√

3− log
(

2 +
√

3
))

(100)

c2 =
πJ

2
(101)

1 =
1

48
J
(

3π2 + 4
(

4
√

3 + log
(

2−
√

3
))

cosh−1(2)
)

(102)
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FIG. 5. Plot of the velocity VL for the potential f(x) = 4|x − 1/2| vs γ, as given by the exact formula in Eq. (107). In
particular, in the limit γ → 0, one has VL = 1/ log 3 = 0.910239 . . . [see Eq. (108)].

which, using VL = JL with L = 1, leads to the result for the velocity

VL =
48

3π2 + 4
(
4
√

3 + log
(
2−
√

3
))

cosh−1(2)
= 0.811251 . . . (103)

with cosh−1(2) = log(2 +
√

3).

The case of arbitrary γ for F = 1. Performing the same steps as before we obtain the stationary measure as

P̃ (x) = c1 ((1− 4x)(3− 4x))
γ
4−1

+
(γ − 2)J 2F1

(
1, 2− γ

2 ; 2− γ
4 ; 2x− 1

2

)
γ − 4

, 0 < x < 1/4 (104)

P̃ (x) = c2 ((4x− 1)(3− 4x))
γ
4−1

+
(γ − 2)J 2F1

(
1, 2− γ

2 ; 2− γ
4 ; 2x− 1

2

)
γ − 4

, 1/4 < x < 1/2 (105)

P̃ (x) =
(γ + 2)J 2F1

(
1, γ+4

2 ; γ+8
4 ; 3

2 − 2x
)

γ + 4
, 1/2 < x < 1 , (106)

where 2F1(a, b; c; z) denotes the Gauss hypergeometric function. Proceeding as before we determine the integration
constants c1, c2, J and finally obtain the velocity for any γ > 0 as

1

VL
=

(γ − 2)
(

3F2

(
1, 1, 2− γ

2 ; 2, 2− γ
4 ;− 1

2

)
+ 3F2

(
1, 1, 2− γ

2 ; 2, 2− γ
4 ; 1

2

))
4(γ − 4)

(107)

+
(γ + 2)

(
3F2

(
1, 1, γ2 + 2; 2, γ4 + 2;− 1

2

)
+ 3F2

(
1, 1, γ2 + 2; 2, γ4 + 2; 1

2

))
4(γ + 4)

+
1

8

(
cos
(
πγ
4

)
Γ
(

1
2 −

γ
4

)
Γ
(
γ
4 + 1

)
Γ
(
γ
4

)
Γ
(
γ+2

4

) − π cot
(πγ

4

))

+
1

γ

(
3

2

)1− γ4
(

(γ + 2) 2F1

(
1, γ+4

2 ; γ+8
4 ;− 1

2

)
γ + 4

− (γ − 2) 2F1

(
1, 2− γ

2 ; 2− γ
4 ;− 1

2

)
γ − 4

)
2F1

(
1− γ

4
,
γ

4
;
γ + 4

4
;−1

2

)
,

where 3F2(a1, a2, a3; b1, b2; z) denotes a generalised hypergeometric function. This formula is plotted in Fig. 5. We
see that VL is a decreasing function of γ. In the limit γ → 0 we can use the prediction given in (45), (46), i.e.

lim
γ→0

VL =
1

2
∫ L

0
dx

v0+f(x)

=
1

2
∫ 1

0
dx

1+4|x− 1
2 |

=
1

log 3
= 0.910239 . . . , (108)

which is found to be in very good agreement with the numerical evaluation of VL (see also Fig. 5) as well as with the
Taylor expansion VL = 0.910239 . . .− 0.0654649 . . . γ +O(γ2) performed with Mathematica.
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FIG. 6. Plot of VL for the potential f(x) = 4|x − 1/2| + F − 1 as a function of F ∈ [0, 2] for two different values of γ: a) for
γ = 4, as given in Eq. (112) and b) for γ = 2 as given in Eq. (117). While the two formulae in Eq. (112) and (117) are quite
different, the two curves shown in panel a) and panel b) look very similar on that scale. However, they actually differ by their
behaviour near F = 0, with VL ∝ F 2 for γ = 4 (left panel) while VL ∝ F for γ = 2 (right panel).

The case γ = 4 and 0 < F < 2. Consider γ = 4 and vary the external force F while remaining in phase B (see the
upper panel of Fig. 2), i.e. 0 < F < 2. The critical points are xs = F

4 and xu = 4−F
4 . We find that the stationary

measure is given by

P̃ (x) = c1 +
1

2
J(log(F − 4x+ 2)− log(F − 4x)) , 0 < x <

F

4
, (109)

P̃ (x) = c2 +
1

2
J(log(F − 4x+ 2)− log(4x− F )) ,

F

4
< x < 1/2 , (110)

P̃ (x) =
J(F + 4x− 1)

(F + 4x− 2)2
, 1/2 < x < 1 . (111)

One finds the constants c1, c2, J from the continuity of P̃ (x) at x = 1/2, the periodicity P̃ (0) = P̃ (1) and the
normalisation, leading to the following formula for the velocity

VL =
2F 2(F + 2)2

2((F − 1)(F + 5) + 7)− F 2(F + 2)2 logF + F 2(F + 2)2 log(F + 2)
. (112)

This formula for VL vs F for γ = 4 is plotted in the left panel of Fig. 6. From this formula (112), one obtains that
the velocity vanishes quadratically as F → 0+ as

VL = 2F 2 − 2F 3 + F 4

(
2 log(F ) +

7

2
− log(4)

)
+O

(
F 5
)
, (113)

with some subdominant logarithmic singularities.

The case γ = 2 and 0 < F < 2. We now find the stationary measure

P̃ (x) =
c1√

(F − 4x)(2 + F − 4x)
, 0 < x <

F

4
, (114)

P̃ (x) =
c2√

(4x− F )(2 + F − 4x)
,

F

4
< x < 1/2 , (115)

P̃ (x) =
(γ + 2)J 2F1

(
1, γ+4

2 ; γ+8
4 ; 2( 4−F

4 − x)
)

γ + 4
|γ=2 , 1/2 < x < 1 , (116)
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FIG. 7. Plot of the force f(x) = − αx
x2+a2

vs x with a = 1 and for two different values of the parameter r: r < 1 (orange solid

line), corresponding to the phase A and r > 1 (black solid line) corresponding to the phase C. In the latter case, xs and xu
denote respectively the stable and unstable fixed points in the state σ = −1, while ys and yu denote their counterpart in the
state σ = +1 (see Fig. 2 in the main text). In phase C (black solid line), the stationary measure P̃ (x) is supported on the
interval [xs, ys].

which leads to the formula for the velocity

1

VL
=

√
F (F + 2)

4F 3/2(F + 2)3/2

(
2
(√

F
√
F + 2(F + 1) + log

(
F −

√
F (F + 2) + 1

))
sinh−1

(√
F√
2

)
(117)

−
√
F (F + 1)

√
F + 2 log

(
F −

√
F (F + 2) + 1

))
(118)

+
4
(

(F − 1)
√
−(F − 2)F − sin−1

(√
1− F

2

))
sin−1

(√
1− F

2

)
(F − 2)F

.

This formula for VL vs F for γ = 2 is plotted in the right panel of Fig. 6. Around F = 1 it reproduces the result
given above, i.e. one finds VL ' 0.811251 . . .+ 0.854383 . . . (F − 1). Now we find that it vanishes linearly as F → 0+

VL =
8F

π2
− 4F 2

π2
+

64
√

2F 5/2

3π3
− 64F 3

π4
− 208

√
2F 7/2

15π3
+

1600F 4

9π4
+O

(
F 9/2

)
, (119)

with subdominant half integer powers.

D. RTP in a logarithmic potential

Stationary distribution. Consider, as in the text, the attractive logarithmic potential U(x) = α
2 log(x2 + a2), i.e.

f(x) = −U ′(x) = − αx
x2+a2 , and define the dimensionless parameters r = α

2v0a
, and g = 2γα/v2

0 (see Fig. 7). We choose
the period [−L/2, L/2]. Note that there is then a jump of the force at x = ±L/2 in order to ensure periodicity. Since
we are interested in the large L limit, this jump is very small and does not change our results below in that limit.
One can calculate, denoting x̃ = x/a and x̃0 = x0/a,

W (x)−W (x0) = −2γ

∫ x

x0

dy
f(y)

v2
0 − f2(y)

=
g

2

∫ x̃2

x̃2
0

dz(1 + z)

1 + 2z(1− 2r2) + z2
, (120)

which holds for (i) r < 1 and any x, x0 (ii) r > 1 and −ys < x, x0 < ys with ys,u = a(r ∓
√
r2 − 1) (see Fig. 7). For

r < 1 one sets z = 2r2 − 1 + u′2r
√

1− r2 and x = 2r2 − 1 + u2r
√

1− r2 and obtains

W (x)−W (x0) =



g
2

∫ u
u0
du′

u′+ r√
1−r2

1+(u′)2 , x̃2 = 2r2 − 1 + u2r
√

1− r2 , r < 1

g
2

∫ x̃2

x̃2
0

dz(1+z)
(1−z)2 , , r = 1

g
2

∫ u
u0
du′

u′+ r√
r2−1

(u′)2−1 , x̃2 = 2r2 − 1 + u2r
√
r2 − 1 , r > 1

(121)
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FIG. 8. Plot of the stationary distribution P̃ (x) corresponding to the force f(x) = −αx/(x2 + a2) for a = 1 (see Fig. 7) at the
critical point r = 1, as given by the exact formula in Eq. (125). It exhibits a shape transition as g crosses the value gc = 8.

For g = 4 < gc, P̃ (x) is bi-modal (panel a) with two maxima close to the boundaries at x = ±1 while for g = 12 > gc, P̃ (x) is
unimodal with a maximum at x = 0 (panel c). Exactly at the critical value g = gc = 8 (panel b), the stationary distribution
has a very flat maximum at x = 0.

where in the last formula u, u0 < −1 (u = −1 corresponds to x = ±ys). Performing the integrals this leads to

Φ±(0, x) =
v2

0

v2
0 − f2(x)

e∓(W (x)−W (0)) =


(u+ r√

1−r2
)2

1+u2 e
∓ g2 ( 1

2 log(1+u2)+ r√
1−r2

arctanu)±K
, r < 1

(u+ r√
r2−1

)2

u2−1 e
∓ g2 ( 1

2 log(u2−1)− r√
r2−1

arccothu)±K
, r > 1

(122)

where K is a r dependent integration constant which cancels out in the observables of interest. Note that the ratio
between the two species is

P̃−(x)

P̃+(x)
=
v0 + f(x)

v0 − f(x)
=
x2 + a2 − 2rxa

x2 + a2 + 2rxa
. (123)

For r ≥ 1 it vanishes near the stable point ys for the + species (where they outnumber the − species).

Phase A. For r < 1 (phase A) we thus obtain the stationary distribution as

P̃ (x) = ÃΦ+(0, x) , Φ±(0, x) =
(u+ r√

1−r2 )2

(1 + u2)1± g4
e
∓ g2 r√

1−r2
arctanu±K

, u =
(x/a)2 + 1− 2r2

2r
√

1− r2
(124)

where K is an immaterial constant and ÃeK is determined by the normalisation condition
∫ +∞
−∞ dxP̃ (x) = 1 [54].

Since Φ+(0, x) ∝ |x|−g for |x| → +∞, this stationary measure is normalisable only for g > 1. Hence for g > 1 the
particle is bound by the logarithmic potential, which corresponds to the phase bound A in Fig. 4 of the text. In that
phase DL ∼ drL1−g at large L from (24) and (124). For g < 1, the above stationary distribution is not normalisable
in the infinite space. This corresponds to the phase unbound A in Fig. 4 of the text. Using L as an upper cutoff one
finds from (24), D = D0(1− g2) in that phase.
Critical point. At r = 1, i.e. the critical point between the A and C phases, the stationary distribution reads for
any g > 1

P̃ (x) = ÃΦ+(0, x) , Φ±(0, s) =
(a2 + x2)2

(a2 − x2)2± g2
e
∓ ga2

a2−x2
±K

, −a < x < a (125)

and vanishes outside the interval [−a, a]. It thus vanishes with an essential singularity at x = ±a. This distribution
is bimodal for g < 8 and, in that case, with two symmetric maxima close to the boundaries at x = ±a, see Fig. 8.
Phase C. For r > 1 the formula (122) gives, up to a normalisation prefactor, the stationary distribution P̃ (x) =
ÃΦ+(0, x) in the bound phase C (see Fig. 4 in the text). The stationary distribution has a finite support, which is the
interval [xs, ys] with ys = a(r −

√
r2 − 1) > 0 and xs = −ys. It is an even function of x and vanishes at the edges of



19

the support (stable fixed points) as a power law, P̃ (x) ∼ (ys−x)φ. Note that for r > 1, f ′(ys) = − 2rv0
a

r(
√
r2−1+r)−1

2r2 ,
hence the singularity exponent φ, given in (27) in the main text, reads

φ = −1 +
g

4

1

r
(√
r2 − 1 + r

)
− 1

= −1 +
g

4

(
r√

r2 − 1
− 1

)
(126)

Within the phase C there is thus a transition line g = gc(r) = 4
(
r
(√
r2 − 1 + r

)
− 1
)

where the exponent φ changes
sign (for g < gc(r) φ < 0).

Vanishing of diffusion constant at the transition from phase A to phase C. Note that in the bound phase
C the diffusion constant vanishes DL = 0 for any L > 2ys since the particle is blocked by the first absorbing region
that it encounters (remembering that the force f(x) is chosen periodic, hence the RTP will move at most by one
period). Let us see how it vanishes as r → 1−, coming from the bound A phase. From (24) we see that we can take
the constants K = 0 since they cancel in the product. Let us consider g > 1, i.e. the bound A phase. From (122) for

r < 1 we see that u ' x̃2−1

2
√

2(1−r)
as r → 1−, hence for any fixed x̃ 6= 1 we can use the large u → ±∞ asymptotics.

Hence we have, as r → 1−

Φ±(0, x) ' (2
√

2(1− r))±g/2 (x̃2 + 1)2

(x̃2 − 1)2± g2
e
∓sgn(x̃2−1)πg4

1√
2(1−r) e

± g

x̃2−1 . (127)

From (24), in order to calculate DL we need to compute the integrals 2
∫ L/2

0
dxΦ±(0, x) (recalling that the functions

Φ±(0, x) are even). Both integrals are found to be exponentially diverging as ∼ e
πg
4

1√
2(1−r) , for Φ+(0, x) from the

region x̃ < 1 and for Φ−(0, x) from the region x̃ > 1. Indeed one has

2

∫ L/2

0

dxΦ±(0, x) ' 2 e
πg
4

1√
2(1−r) a

(
2
√

2(1− r)
)±g/2 ∫

x̃∈I±
dx̃

(x̃2 + 1)2

(x̃2 − 1)2± g2
e
± g

x̃2−1 (128)

where I+ = [0, 1] and I− = [1, L/a[. Hence we obtain

D0

DL
' 4a2L−2e

2πg4
1√

2(1−r)

∫ 1

0

dx̃
(x̃2 + 1)2

(x̃2 − 1)2+ g
2

e
− g

1−x̃2 ×
∫ L/a

1

dx̃
(x̃2 + 1)2

(x̃2 − 1)2− g2
e
− g

x̃2−1 ∼
(
L

a

)g−1

e
−πg2 1√

2(1−r) . (129)

We see that the first integral is convergent, while the second behaves at large L/a as (L/a)1+g. Putting all factors

together we obtain that DL
D0
∼ (L/a)1−ge

−πg2 1√
2(1−r) with an amplitude that can be obtained from the above integrals.

This leads, for g > 1, to the essential singularity in the limit r → 1− for the diffusion constant, as given in the text.
Note that it is multiplied by the estimate for the diffusion constant in the unbound A phase, (L/a)1−g.

Let us indicate a qualitative, but more general argument for the vanishing of the diffusion constant upon entering
phase C, valid for any smooth enough f(x) (twice differentiable). For simplicity and by choice of coordinate (thus
without loss of generality), we fix the position of the minimum of f(x) to be at x = 0, and define f(0) = −v0(1− ρ).
Upon approaching phase C, coming from phase A, we have ρ → 0+. In that limit, we can approximate f(y) =
−v0(1− ρ) + 1

2f
′′(0)y2, with f ′′(0) > 0. One has, denoting y = ρz

√
v0/f ′′(0), the following divergence of the active

potential

W (x)−W (x0) ' 2γ

∫
dy

1

2ρv0 + f ′′(0)y2
' 2γ√

2ρv0f ′′(0)

∫
dz

1

1 + z2
(130)

where for any fixed x, x0, the boundaries of the integrals are pushed to infinity. If one integrates the last integral in
(130) from −∞ to +∞ (which corresponds to x, x0 each on one side of x = 0) and substitute in the formula for the

diffusion constant, one finds again the estimate DL ∼ e
−πg2 1√

2(1−r) , in agreement with the previous computation (129).

E. Mean first-passage time

We consider the particle in x ∈ [−L1,+∞) and denote T±(x) the mean first-passage times to the level X, starting
initially at x in the velocity state σ = ±. We focus on phase A here, i.e. |f(x)| < v0. Note that here we do not assume
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any periodicity of f(x). For convenience, we consider reflecting boundary conditions at x = −L1. Then T±(x) satisfy
the following pair of backward Fokker-Planck equations in x ∈ [−L1, X]

[v0 + f(x)]
dT+

dx
− γ T+(x) + γ T−(x) = −1 , (131)

[−v0 + f(x)]
dT−
dx
− γ T−(x) + γ T+(x) = −1 . (132)

The boundary conditions for T±(x) are

T+(X) = 0 ,
dT−(x)

dx

∣∣∣∣∣
x=−L1

= 0 . (133)

The first condition comes from the fact that if the particle starts at X with a positive state σ = +1, and given that
|f(L)| < v0, it implies that the particle crosses X immediately. The second condition is more tricky to derive. By
writing down the backward Fokker-Planck equation exactly at x = −L1 and imposing that if the particle tries to go
to the left of −L1 it remains stuck at x = −L1, we can show that this second condition emerges. Since eventually we
will be interested in the limit L1 → −∞, with a non negative drift, this second boundary condition is expected to be
unimportant.

One can eliminate T+(x) and write a single differential equation for T−(x) as follows. We re-write the two equations
in the operator form:

L+T+(x) ≡ [(v0 + f(x))∂x − γ]T+(x) = −1− γ T−(x) , (134)

L−T−(x) ≡ [(−v0 + f(x))∂x − γ]T−(x) = −1− γ T+(x) . (135)

Operating with L+ on the left and right hand side of Eq. (135) and using (134) we get, denoting Z−(x) = dT−/dx,
the first order differential equation

[
v2

0 − f2(x)
] dZ−
dx

+ [2 γ f(x)− v0 f
′(x)− f(x) f ′(x)] Z−(x) = −2γ . (136)

Integrating, and taking into account the boundary condition at x = −L1 (133), we obtain

Z−(x) =
dT−
dx

= − 2γ

v0 − f(x)

∫ x

−L1

dy

v0 + f(y)
e
−2γ

∫ x
y

f(u) du

v20−f
2(u) . (137)

Integrating we get

T−(x) =

∫ x

−L1

dy Z−(y) + c (138)

where c is an arbitrary constant yet to be fixed. Substituting this result into Eq. (132) we obtain T+(x). Using the
boundary condition T+(X) = 0 gives us the constant c, and finally we obtain

T−(x) = T−(X) +

∫ X

x

dy
2γ

v0 − f(y)

∫ y

−L1

dz

v0 + f(z)
e
−2γ

∫ y
z

f(u) du

v20−f
2(u) , (139)

where

T−(X) =
1

γ

(
1 + 2γ

∫ L

−L1

dy

v0 + f(y)
e
−2γ

∫ L
y

f(u) du

v20−f
2(u)

)
. (140)

Interestingly, note that T−(X), which is the mean first return time to x = X of a RTP starting in the state σ = −1
(which implies that it travels first to the left), is non zero, contrarily to the diffusive limit where both T±(X) vanish.
From this result we also obtain

T−(x)− T+(x) = 2

∫ x

−L1

dyeW (x)−W (y)

v0 + f(y)
+

1

γ
. (141)
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In the case where the bias is to the right (i.e. meaning here W (−∞)→ +∞ where W (x) is defined in Eq. (8) of the
main text), we can safely take −L1 → −∞ and obtain our final result for the first mean passage time from x to X on
the infinite line in phase A, as given in the text [see Eqs. (31) as well as (32)].

We now show that if there is a finite velocity V in the large X limit, which can be extracted from the mean first
passage time as

lim
X→+∞

T−(x)

X
=

1

V
(142)

for arbitrary fixed x then it coincides with the one obtained in formula (23) of the text.
To show this we choose x = 0, and we can also choose L1 = 0, as it does not affect the (positive) velocity in the

large X limit. We obtain

1

X
T−(0) ' 1

X

∫ X

0

dy
2γ

v0 − f(y)

∫ y

0

dz

v0 + f(z)
e
−2γ

∫ y
z

f(u) du

v20−f
2(u) (143)

since T−(X) remains bounded as X → +∞. Multiplying the numerator and the denominator by (v0 +f(y))(v0−f(z))
we obtain

1

X
T−(0) ' 1

X

∫ X

0

dy
2γ

v2
0 − f2(y)

∫ y

0

dz

v2
0 − f(z)2

(v2
0 + f(y)v0 − f(z)v0 − f(y)f(z))e

−2γ
∫ y
z

f(u) du

v20−f
2(u) , (144)

which we can then expand into the sum of four terms. One can check that the first term is exactly the first term
in (23). We can further show using integration by parts that the sum of the second and the third term gives the
second term in (23). Finally the fourth term vanishes in the large X limit, using again integration by parts. This
shows that the exchange of limits (large spatial period and large time) used to obtain (23) is legitimate.

F. Fully inhomogeneous model

All our formula extend easily to the case where the RTP velocity v0 and transition rate γ depend also on space
v0 → v0(x) and γ → γ(x), with the same periodicity of period L. The model is now defined by the pair of Fokker-
Planck equations which generalise the Eqs. (12)

∂tP+ = −∂x[(f(x) + v0(x))P+]− γ(x)P+ + γ(x)P− (145)

∂tP− = −∂x[(f(x)− v0(x))P−] + γ(x)P+ − γ(x)P− . (146)

We can now follow all the steps presented in the paper and check that they generalise straightforwardly to this fully
inhomogeneous case. Let us illustrate it in the case of phase A, |f(x)| < v0(x) (the phases A, B, C, D generalise
also straightforwardly and we assume that v0(x) > 0, γ(x) > 0 for all x). The equations (13) still hold with the
substitutions v0 → v0(x) and γ → γ(x). From them one obtains that the equations for the stationary distributions
now read

f(x)P̃ (x) + v0(x)Q̃(x) = J (147)

d

dx
[
v2

0(x)− f2(x)

v0(x)
P̃ (x) + J

f(x)

v0(x)
] + 2

γ(x)

v0(x)
J − 2

γ(x)f(x)

v0(x)
P̃ (x) = 0 (148)

where the second equation generalises Eq. (36). Solving it one finds that for J 6= 0, the formula (17) of the text for
the stationary distribution becomes

P̃ (x) =
J

v2
0(x)− f2(x)

(∫ L

0

du 2 γ(u)Φ−(x, u)

AL
−
∫ x

0

du 2 γ(u)Φ−(x, u)− f(x)

)
(149)

with now Φ±(x, u) = v0(x)v0(u)
v0(u)2−f(u)2 e

±(W (x)−W (u)) and AL given by (19), where from now on the definition of the “active

potential” (8) becomes

W (x) = −2

∫ x

0

dy
γ(y)f(y)

v2
0(y)− f2(y)

. (150)
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The formula for the velocity VL remains the same as (20) where one substitutes in the last term
W (L)
2γL → 1

L

∫ L
0
dx f(x)

v20(x)−f2(x)
and the function Ψ(x, u) is now Ψ(x, u) = 2γ(u)v0(x)v0(u) e−(W (x)−W (u))

(v20(x)−f2(x))(v20(u)−f2(u))
.

Consider now the diffusion constant in the absence of a bias, i.e. W (0) = W (L). The equations (52), (53), (55),
(59) again still hold with the substitution v0 → v0(x) and γ → γ(x). From (147), the equation for the stationary
distribution in the case J = 0 is slightly modified as compared to (68) and becomes

P̃ (x) = Ã
v0(x)

v2
0(x)− f2(x)

e
2
∫ x
0
dy

γ(y)f(y)

v20(y)−f2(y) ,
1

Ã
=

∫ L

0

dx
v0(x)

v2
0(x)− f2(x)

e
2
∫ x
0
dy

γ(y)f(y)

v20(y)−f2(y) (151)

The equations (69), (70) and (71) still hold setting v0 → v0(x) and γ → γ(x). The equation (72) becomes

0 = − d

dx

[
f2(x)− v2

0(x)

f(x)
r(x) + c

v0(x)

f(x)

]
− 2γ(x)r(x) + Ã e

2
∫ x
0
dy

γ(y)f(y)

v20(y)−f2(y) . (152)

Defining again (73), integrating and using the periodicity to determine the integration constant c, we obtain after an
integration by part, the following expression for the diffusion constant DL in the fully inhomogeneous case at zero
bias

DL =
L2(∫ L

0
dx 2γ(x)v0(x)

v20(x)−f2(x)
e
−2

∫ x
0
dy

γ(y)f(y)

v20−f
2(y)

)(∫ L
0
dx v0(x)

v20(x)−f2(x)
e

2
∫ x
0
dy

γ(y)f(y)

v20−f
2(y)

) (153)

Note the non-trivial limit for the diffusion constant in the absence of an external force f(x) = 0 but in the presence
of inhomogeneities in the velocity and rate

DL =
L2(∫ L

0
dx 2γ(x)

v0(x)

)(∫ L
0
dx 1

v0(x)

) , (154)

as given in Eq. (33) in the text.
For the mean first passage time, Eqs. (131), (132), (134), (135), still hold with the substitutions v0 → v0(x) and

γ → γ(x). We need now to operate with L+ on the left and right hand side of Eq. (135) divided by γ(x). This leads
to the following equation for Z−(x) = dT−/dx, which generalises (136)[

v2
0(x)− f2(x)

] dZ−
dx

+

[
2 γ(x) f(x)− γ(x)(v0(x) + f(x))

d

dx

[−v0(x) + f(x)

γ(x)

]]
Z−(x) (155)

= −2γ(x) + γ(x)(v0(x) + f(x))
d

dx

[
1

γ(x)

]
(156)

This leads to

Z−(x) =
dT−
dx

= − 2γ(x)

v0(x)− f(x)

∫ x

−L1

dy

(
1

v0(y) + f(y)
− ∂y

1

2γ(y)

)
e
−2

∫ x
y

γ(u)f(u) du

v20(u)−f2(u) (157)

Hence we obtain

T−(x) = T−(L) +

∫ L

x

dy
2γ(y)

v0(y)− f(y)

∫ y

−L1

dz

(
1

v0(z) + f(z)
− ∂z

1

2γ(z)

)
e
−2

∫ y
z

γ(u)f(u) du

v20(u)−f2(u) . (158)

Substituting this form (158) in Eq. (135) we obtain T+(x) and by imposing the boundary condition T+(L) = 0, we
finally obtain

T−(L) =
1

γ(L)
+ 2

∫ L

−L1

dy

(
1

v0(y) + f(y)
− ∂y

1

2γ(y)

)
e
−2

∫ L
y

γ(u)f(u) du

v20(u)−f2(u) . (159)

In presence of a bias to the right one can take the limit L1 → −∞, which generalises the formula in the text.
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