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Francesco Mori, Satya N. Majumdar, and Grégory Schehr
LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

(Dated: April 20, 2020)

We consider a one-dimensional Brownian motion of fixed duration T . Using a path-integral
technique, we compute exactly the probability distribution of the difference τ = tmin− tmax between
the time tmin of the global minimum and the time tmax of the global maximum. We extend this
result to a Brownian bridge, i.e. a periodic Brownian motion of period T . In both cases, we compute
analytically the first few moments of τ , as well as the covariance of tmax and tmin, showing that these
times are anti-correlated. We demonstrate that the distribution of τ for Brownian motion is valid
for discrete-time random walks with n steps and with a finite jump variance, in the limit n → ∞.
In the case of Lévy flights, which have a divergent jump variance, we numerically verify that the
distribution of τ differs from the Brownian case. For random walks with continuous and symmetric
jumps we numerically verify that the probability of the event “τ = n” is exactly 1/(2n) for any
finite n, independently of the jump distribution. Our results can be also applied to describe the
distance between the maximal and minimal height of (1 + 1)-dimensional stationary-state Kardar-
Parisi-Zhang interfaces growing over a substrate of finite size L. Our findings are confirmed by
numerical simulations. Some of these results have been announced in a recent Letter [Phys. Rev.
Lett. 123, 200201 (2019)].

I. INTRODUCTION

The average global temperature over a century, the
amount of rainfall in a given area throughout one year,
or the price of a stock during a trading day are only few of
several quantities whose maximal observed value within
a fixed period of time T plays a central role. Understand-
ing extremal properties of the underlying stochastic pro-
cesses is therefore of fundamental importance in a variety
of disciplines – for a recent review see [1]. These include
several applications in e.g., climate studies [2–8], finance
[9–13] and computer science [14–16]. For instance, ex-
treme natural events, such as earthquakes, tsunamis, or
hurricanes, have often devastating consequences. The
statistics of records of such extremal events have been
extensively studied in statistics and mathematics litera-
ture [17–19], and more recently in statistical physics [20–
25].

Thus, understanding statistical fluctuations of these
calamities is a problem of great practical importance.
Moreover, in many situations it is not only important
to ask what is the intensity of the maximum value but
also at what time tmax this maximum value is attained
within the time interval [0, T ] (see Fig. 1). This time
tmax is extremely relevant in several applications. For in-
stance, in finance it is important to estimate the time at
which the price of a stock will reach the maximum value
during a fixed period [26, 27]. Similarly, it is also natural
to study the time tmin at which the global minimum is
reached.

The time tmax of the maximum has been studied for a
variety of stochastic processes. For instance, the proba-
bility distribution P (tmax|T ) of tmax, for a given T , is ex-
actly known for one-dimensional Brownian motion (BM),
one of the most ubiquitous and paradigmatic stochastic
processes. Indeed, if we consider a BM x(t) of total du-
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FIG. 1: Typical realisation of a Brownian motion x(t) vs t
with time t ∈ [0, T ]. The global maximum xmax is reached at
time tmax, while the global minimum xmin is attained at time
tmin. The time between the global maximum and the global
minimum is τ = tmax − tmin.

ration T , then [28–31]

P (tmax|T ) =
1

π
√
tmax(T − tmax)

, (1)

where tmax ∈ [0, T ]. In the case of BM, tmax and tmin

have, by symmetry, the same probability distribution (1).
Moreover, the distribution of tmax has been computed for
several generalisations of BM. For instance, P (tmax|T ) is
known for BM with additional constraints [32–35], drifted
BM [36, 37], fractional BM [38, 39] and Bessel processes
[35]. The many body case has also been considered, both
for N independent BM’s [40] and N non-crossing Brow-
nian walkers [41]. The statistics of tmax has been in-
vestigated for more general stochastic processes such as
Lévy flights [30, 42], random acceleration process [43],
and run-and-tumble particles [44]. Moreover, tmax has
been studied in a wide range of applications including
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disordered systems [45], stochastic thermodynamics [46]
and sports [47].

Despite this increasing interest in the statistical prop-
erties of tmax or tmin, their joint probability distribution
P (tmax, tmin|T ) was computed only recently, in the case
of BM, in our recent Letter [48]. Indeed, due to the strong
correlations between tmax and tmin, this joint probabil-
ity density function (PDF) is not just the product of the
two marginals P (tmax|T ) and P (tmin|T ), each of which
is given by the expression (1). To see that tmax and tmin

are strongly correlated, it suffices to consider the follow-
ing fact. Since the process occurs in continuous time, it
is clear that if the maximum occurs at a given time, it
is highly unlikely that the minimum occurs immediately
before or after the maximum. Thus tmax and tmin are
strongly anti-correlated and the occurrence of one for-
bids the occurrence of the other nearby in time.

Furthermore, computing P (tmax, tmin|T ) is not only
relevant to quantify the anti-correlations of tmax and tmin

but also to investigate observables that depend on both
tmax and tmin. One relevant example is the time differ-
ence between maximum and minimum: τ = tmin − tmax

(see Fig. 1). Note that τ ∈ [−T, T ] can be positive or
negative. This quantity τ has a natural application in
finance. Let us consider the price of a stock in a pe-
riod of time T . Then if tmax < tmin, as in Fig. 1, an
agent would try to sell his/her shares at time tmax when
the price is the highest and then wait up to time tmin

to re-buy at the best price. Thus, τ = tmin − tmax rep-
resents the time the agent has to wait before re-buying
his/her shares in order to maximise the gain. Notably,
similar quantities, for instance the time between a local
maximum and a local minimum, have been empirically
investigated for stock market data [13]. Consequently,
computing P (tmax, tmin|T ) and P (τ |T ) is a problem of
fundamental relevance, with broad interdisciplinary ap-
plications.

The main goal of this paper is to compute these
probabilities P (tmax, tmin|T ) and P (τ |T ) for different
one-dimensional stochastic processes. We will first
consider BM, finding an exact solution for the PDF
of τ . Then we will consider more general stochastic
processes and possible applications of our results. Some
of the main results presented here were announced
in our previous Letter [48]. However, the details of
the calculations, which are rather involved, were not
presented in [48]. Here we provide a detailed description
of these techniques, which we hope would be useful in
other problems. In addition, we present new results
for discrete-time random walks including Lévy flights,
which can not be obtained directly by applying the
techniques used for the Brownian motion. They require
different methods that are presented in detail in this
paper. We will see that our analysis of tmax and tmin

for discrete-time random walks also raises interesting
mathematical questions that would be of interest to the
probability theory community in mathematics.

The rest of the paper is organised as follows. In Sec-
tion II, we briefly present our main results. In Section III
we use a path-integral technique to compute the PDF of
the time τ between the maximum and the minimum of
a BM. In Section IV we present two alternative deriva-
tions for the PDF of τ in the case of a Brownian Bridge
(BB), which is a periodic BM of period T . The first
derivation is based on a path-integral method, while the
second exploits a mapping, known as Vervaat’s construc-
tion, between the BB and the Brownian excursion, i.e.
a BB constrained to remain positive between the initial
and final positions. In Section V we study τ in the case
of discrete-time random walks (RWs). In particular, we
perform an exact computation in the cases of double-
exponential jumps and of lattice walks. We also present
the results of numerical simulations for other jump dis-
tributions such as Lévy flights. In Section VI, we study
the probability of the event “τ = n” for discrete-time
random walks of n steps and conjecture that it is univer-
sal, i.e., independent of jump distributions as long as it
is symmetric and continuous. In Section VII we apply
our results to (1 + 1)−dimensional fluctuating interfaces.
Finally, in Section VIII we conclude with a summary and
related open problems. Some details of computations are
relegated to the appendices.

II. SUMMARY OF THE MAIN RESULTS

Since this paper is rather long, it would be convenient
and handy to the reader to have a summary of our main
results–this section does precisely that. This section
is rather self-contained and readers not interested in
details may just read this section only.

Probability distribution of τ = tmin−tmax for Brow-
nian motion: We consider a BM x(t), starting from
some fixed initial position x0 and evolving over a time
interval [0, T ]. By using a path-integral method we show
that the PDF of τ = tmin − tmax has a scaling form for
any τ and T :

P (τ |T ) =
1

T
fBM

( τ
T

)
, (2)

where the scaling function fBM(y) is given by

fBM(y) =
1

|y|

∞∑
n=1

(−1)n+1 tanh2

(
nπ

2

√
|y|

1− |y|

)
, (3)

where −1 ≤ y ≤ 1. The function fBM(y) is symmet-
ric around y = 0 and is non-monotonic as a function of
y (see Fig. 2a). Moreover, fBM(y) has the asymptotic
behaviours

fBM(y) ≈
y→0+

8

y2
e
− π√

y , fBM(y) ≈
y→1

1

2
. (4)
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FIG. 2: a) The scaled distribution T P (τ |T ) plotted as a function of τ/T for the BM (the solid line corresponds to the exact
scaling function fBM(y) in Eq. (3), while the filled dots are the results of simulations). b) The same scaled distribution for the
Brownian bridge where the exact scaling function fBB(y) is given in Eq. (8). Numerical simulations are obtained by averaging
over 107 samples.

We also show that the scaling function fBM(y) satisfies
the following integral relation:∫ 1

0

dy
fBM(y)

1 + uy
=

∫ ∞
0

dz
1

sinh(z)
tanh2

(
z

2
√

1 + u

)
.

(5)
This integral identity turns out to be very useful to com-
pute the moments of τ explicitly in an efficient way. For
example, for BM, the first few moments of τ are given
explicitly as :

〈|τ |〉 =
4 log(2)− 1

3
T = (0.5908 . . .) T , (6)

〈τ2〉 =
7ζ(3)− 2

16
T 2 = (0.4009 . . .) T 2 ,

〈|τ |3〉 =
147ζ(3)− 34

480
T 3 = (0.2972 . . .) T 3 ,

〈τ4〉 =
1701ζ(3)− 930ζ(5)− 182

3840
T 4

= (0.2339 . . .) T 4 ,

where ζ(z) is the Riemann zeta function.

Probability distribution of τ = tmin−tmax for Brow-
nian bridge: For a BB, which is a periodic BM of period
T , we show that the PDF of τ has a scaling form for any
value of τ and T :

P (τ |T ) =
1

T
fBB

( τ
T

)
, (7)

where the scaling function is

fBB(y) = 3 (1− |y|)
∞∑

m,n=1

(−1)m+nm2n2

[m2|y|+ n2(1− |y|)]5/2
. (8)

This scaling function is again symmetric around y = 0
(see Fig. 2b) and it has the asymptotic behaviours [71]:

fBB(y) ≈
y→0+

√
2π2

y
9
4

e
− π√

y , fBB(y) ≈
y→1

√
2π2

(1− y)
5
4

e
− π√

1−y .(9)

Moreover, we show that the scaling function fBB(y) sat-
isfies the integral equation:

∫ 1

0

dy
fBB(y)√
1 + uy

=

∫ ∞
0

dz

z√
1+u

coth
(

z√
1+u

)
− 1

sinh(z) sinh
(

z√
1+u

) .

(10)
This integral relation for BB is the counterpart of Eq.
(5) for BM. As in the case of BM, the integral relation
in Eq. (10) can be used to compute the moments of τ
for BB:

〈|τ |〉 =
π2 − 6

9
T = (0.4299 . . .) T , (11)

〈τ2〉 =
π2 − 6

18
T 2 = (0.2149 . . .) T 2 ,

〈|τ |3〉 =
375π2 − 14π4 − 1530

6750
T 3 = (0.1196 . . .) T 3 ,

〈τ4〉 =
125π2 − 7π4 − 390

2250
T 4 = (0.0719 . . .) T 4 .

Covariance of tmin and tmax: In the two cases of BM
and BB we quantify the anti-correlation of tmin and tmax.
Indeed, we compute exactly the covariance function

cov(tmin, tmax) = 〈tmintmax〉 − 〈tmin〉〈tmax〉 . (12)
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In the case of BM we find that

covBM(tmin, tmax) = −7ζ(3)− 6

32
T 2 (13)

= (−0.0754 . . .) T 2 ,

where ζ(z) is the Riemann zeta function. While for BB,
we get

covBB(tmin, tmax) = −π
2 − 9

36
T 2 (14)

= (−0.0241 . . .) T 2 .

Discrete-time random walks: We show that the re-
sult in (3) is universal in the sense of the Central Limit
Theorem. Indeed, let us consider a discrete-time stochas-
tic process of n steps, generated by the position of the RW

xk = xk−1 + ηk , (15)

where x0 = 0 and ηk are independent and identically dis-
tributed (IID) jumps drawn from the symmetric prob-
ability distribution p(η). We show that in the limit of
large n the probability distribution of τ = tmin − tmax

has a scaling form

P (τ |n) −→
n→∞

1

n
f
( τ
n

)
, (16)

where the scaling function f(y) depends only on the tail
behaviour of the jump distribution p(η). Moreover, we
show that if the jump variance σ2 =

∫∞
−∞ dη η2 p(η) is

finite, f(y) is given by the Brownian scaling function (3):
f(y) = fBM(y). We numerically verify this result for
several choices of the distribution p(η). Moreover, we
demonstrate exactly that f(y) = fBM(y) for two particu-
lar distributions p(η) with a finite variance: the double-
exponential distribution p(η) = (1/2)e−|η| and the dis-
crete distribution p(η) = (1/2)δ(|η| − 1), which corre-
sponds to lattice walks. On the contrary, for Lévy flights
with divergent jump variance, i.e. for p(η) ∼ 1/|η|µ+1 for
large η with 0 < µ < 2, we verify numerically that the
scaling function does depend on the Lévy exponent µ of
p(η), i.e. f(y) = fµ(y).

Moreover, we uncover a very interesting fact. For an
n-step discrete-time random walk on a line with IID in-
crements, we studied the event “τ = tmin − tmax = n”,
i.e., the time between the minimum and the maximum
has the maximal possible value n. This corresponds to
the event that the maximum occurs at time 0 and the
minimum at step n, i.e., at the end of the interval. Thus
the event counts the probability that the walk, starting
at the origin, stays below 0 up to step n and that the
last position at step n is the global minimum. For the
double-exponential jump distribution, we proved that for
any finite n, this probability is given exactly by

P (τ = n|n) =
1

2n
. (17)

Indeed, our numerical simulations suggest that this re-
sult, for any n, seems to be valid for arbitrary symmetric
and continuous jump distribution, and thus include Lévy
flights also. This leads us to conjecture that the result
in Eq. (17) is actually super-universal, i.e, independent
of jump distributions as long as they are continuous and
symmetric. We could prove this conjecture for n ≤ 3
(the proof is given in the Appendix E) and verified
it numerically for higher n. We suspect that there
must be an elegant proof of this conjecture using some
generalisation of the Sparre Andersen theorem—but the
mathematical proof of this conjecture for n > 3 has
eluded us so far (rather frustratingly !). This remains
an outstanding open problem.

Fluctuating interfaces: Finally, we show that our re-
sults can be directly applied to study similar quanti-
ties in the context of fluctuating interfaces. We con-
sider a one-dimensional Kardar-Parisi-Zhang (KPZ) [49]
or Edwards-Wilkinson (EW) [50] interface evolving over
a substrate of finite length L. Let H(x, t) be the height
of the interface at position x and at time t. We con-
sider both free boundary conditions (FBC), where the
endpoints H(0, t) and H(L, t) evolve freely, and peri-
odic boundary conditions (PBC), i.e. imposing H(0, t) =
H(L, T ).

In order to use our results to study this system, we ex-
ploit a useful mapping between the fluctuating interface
in the stationary state and a BM, in the case of FBC, or a
BB, in the case of PBC. More precisely, we identify space
with time, i.e. x⇔ t, the height of the interface with the
position of the Brownian particle, i.e. H ⇔ x, and the
substrate length with the total duration of the BM/BB,
i.e. L ⇔ T . The statistical properties of most observ-
ables of the interface height and of the BM/BB are in
general quite different, due to a specific constraint which
will be discussed later. For instance, the distribution of
the maximal height of the interface with FBC/PBC is
known to be different from the distribution of the maxi-
mum value of an usual BM/BB [51, 52]. Nevertheless, we
show that, in the stationary state, the position difference
between the maximal and minimal height has the same
PDF as τ for BM, in the case of FBC, and for BB, in the
case of PBC. In the case of KPZ interfaces with FBC,
this result is valid only in the large L limit.

III. DERIVATION OF THE DISTRIBUTION OF
τ = tmin − tmax FOR BROWNIAN MOTION

In this section, we derive the exact expression for the
PDF of the time τ = tmin − tmax between the maximum
and the minimum of a one-dimensional BM. We consider
a BM x(t), starting from position x(0) = x0 at initial
time and evolving according to

ẋ(t) = η(t), (18)
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t

x(t)

I II III

FIG. 3: Brownian motion x(t) during the time interval [0, T ],
starting from x(0) = 0. The value of the global maximum is
xmax − ε (with ε > 0) and the value of the global minimum
−xmin + ε, where ε is the cut-off needed to enforce absorbing
boundary conditions at xmax and xmin (as explained in the
text). The time at which the maximum (respectively the min-
imum) occurs is denoted by tmax (respectively tmin). The final
position x(T ), measured with respect to −xmin is denoted by
xf . The total time interval [0, T ] is divided into three seg-
ments: [0, tmax] (I), [tmax, tmin] (II) and [tmin, T ] (III), for the
case tmin > tmax.

where η(t) is a Gaussian white noise with zero mean
〈η(t)〉 = 0 and correlator 〈η(t)η(t′)〉 = 2D δ (t− t′). For
simplicity, we assume D = 1/2. The probability dis-
tribution of the time difference τ will not depend on
the initial position x0. Indeed, changing x0 corresponds
to a global shift in position but not in time. Hence,
without loss of generality we set x0 = 0 in the rest of
the paper. Let us define the amplitude of the maxi-
mum in [0, T ] as xmax = x (tmax) and the amplitude of
the minimum as xmin = −x (tmin) (see Fig. 3). Let
xf = x(T ) + xmin be the final position measured with
respect to the global minimum. First, we will compute
the joint distribution P (xmin, xmax, tmin, tmax|T ) of these
four random variables and then integrate out xmax and
xmin to obtain the joint PDF P (tmin, tmax|T ). Finally,
from this joint PDF P (tmin, tmax|T ) we will obtain the
marginal PDF of τ . Note that, integrating out tmin and
tmax in P (xmin, xmax, tmin, tmax|T ), one could also obtain
the joint distribution of xmax and xmin that is already
known in the literature [53, 54]. Notably, the joint distri-
bution of the extrema of a BM also plays an important
role in disordered systems, such as the Sinai model, where
the energy landscape is modelled by a Brownian motion
in space. In that context, the joint distribution of xmin

and xmax was computed by using real space renormalisa-
tion group methods in Refs. [34, 35]. Indeed, the position
and the depth of the energy minima as well as the height
of the energy barriers are quantities of fundamental im-
portance in the description of disordered systems.

A. Computation of the joint distribution of tmax

and tmin

For simplicity, we assume that tmax < tmin (the
complementary case tmin < tmax can be studied in
the same way). Exploiting the Markovian property
of the process, we can write the total probability
P (xmin, xmax, tmin, tmax|T ) as the product of the prob-
abilities of the three individual time segments (see Fig.
3): (I) [0, tmax], (II) [tmax, tmin] and (III) [tmin, T ]. We
denote by PI, PII, and PIII the probability of the tra-
jectory in the segments (I), (II), and (III), respectively.
First of all, in each segment the trajectory has to stay
inside the space interval [−xmin, xmax] because, by defi-
nition, it can never go above the global maximum xmax

nor below the global minimum −xmin. In the first seg-
ment (I), the particle goes from the origin at time t = 0
to position xmax at time tmax (see Fig. 3). In the second
segment (II), the trajectory starts at xmax at time tmax

and arrives at −xmin at time tmin. Finally, in the third
segment (III), the trajectory starts at −xmin at time tmin

and arrives at x(T ) at time T . We finally integrate over
all possible values of x(T ) ∈ [−xmin, xmax]. It is useful to
define the amplitude of the space interval [−xmin, xmax]

M = xmin + xmax ≥ 0. (19)

To avoid that the trajectory goes outside the interval
[−xmin, xmax] we impose absorbing boundary conditions
at both −xmin and xmax. However, since we are consid-
ering a continuous-time BM, we cannot impose that the
trajectory arrives exactly at the absorbing boundary at
a certain time. Indeed, due to the continuous nature of
the process, if x(t) arrives at position xmax at time tmax

it will go above xmax infinitely many times in the time
interval [tmax, tmax + δ] for any δ > 0 [29]. Thus, it is
impossible to satisfy the constraint x(t) < xmax while
imposing x(tmax) = xmax. Analogously, one cannot
impose that the BM arrives at position −xmin at time
tmin in the presence of an absorbing boundary at −xmin.
A way to avoid this issue is to introduce a cut-off ε
such that the actual values of x(t) at tmax and tmin

are respectively xmax − ε and −xmin + ε [16, 33], as in
Fig. 3. In this way, we can compute the probability
P (xmin, xmax, tmin, tmax|T ) for a fixed ε and then take
the limit ε→ 0 at the very end of the computation.

To compute the grand joint PDF
P (xmin, xmax, tmin, tmax|T ), we need, as a basic building
block, the Green’s function GM (x, t|x0, t0) denoting the
probability density for a BM, starting from x0 at time
t0, to arrive at x at time t, while staying inside the box
[0,M ] during the interval [t0, t]. An explicit expression
for this Green’s function can be easily computed solving
the diffusion equation

∂tGM (x, t|x0, t0) =
1

2
∂2
xGM (x, t|x0, t0) , (20)

with absorbing boundary conditions both at x = 0 and
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x = M . The solution of Eq. (20) is given by (see e.g.
[55–57]):

GM =
2

M

∞∑
n=1

sin
(nπx
M

)
sin
(nπx0

M

)
e−

n2π2

2M2 (t−t0) .

(21)
To make use of this building-block, we first shift the ori-
gin in Fig. 3 to −xmin. We start with the segment (I),
where the probability PI is just proportional to

PI ∝ GM (M − ε, tmax|xmin, 0) . (22)

Using the expression (21), after shifting the origin to
−xmin, and expanding to leading order in ε, we get

PI ∝ −
2πε

M2

∞∑
n1=1

(−1)n1n1 sin
(n1π xmin

M

)
e−

n2
1π

2

2M2 tmax .

(23)
We next consider the segment (II). Here the probability
PII is proportional to

PII ∝ GM (ε, tmin|M − ε, tmax) . (24)

Using again Eq. (21), and expanding to leading order for
small ε, we obtain

PII ∝ −
2π2 ε2

M3

∞∑
n2=1

(−1)n2n2
2 e
−n

2
2π

2

2M2 (tmin−tmax) . (25)

Finally, for the third time segment (III), we obtain

PIII ∝
∫ M

0

GM (xf , T |ε, tmin) dxf , (26)

after integrating over the final position xf ∈ [0,M ]. Us-
ing Eq. (21) and expanding for small ε we obtain (after
integration over xf)

PIII ∝
2ε

M

∞∑
n3=1

[1− (−1)n3 ] e−
n2
3π

2

2M2 (T−tmin) . (27)

Taking the product of the three segments (23), (25) and
(27), we obtain that the total probability of the trajectory
is proportional to

P (xmin, xmax, tmin, tmax|T ) ∝ PIPIIPIII ∝
ε4

M6

∞∑
n1=1

(−1)n1n1 sin
(n1π xmin

M

)
e−

n2
1π

2

2M2 tmax (28)

×
∞∑

n2=1

(−1)n2n2
2 e
−n

2
2π

2

2M2 (tmin−tmax)
∞∑

n3=1

[1− (−1)n3 ] e−
n2
3π

2

2M2 (T−tmin) ,

where M = xmin + xmax. As pointed out earlier,
the result in Eq. (28) was derived in Ref. [35] us-
ing real-space renormalisation group (RSRG) method.
The method used here, using directly the constrained
propagator, is rather different from the RSRG method
used in Ref. [35]. Note that Eq. (28) is valid in
the case tmin > tmax and that by ‘∝’, we have omit-
ted the explicit dependence on the volume factors of
the variables, i.e. dtmax, dtmin, dxmax and dxmin, since
P (xmin, xmax, tmin, tmax|T ) is a probability density, and
not a probability. We now want to integrate xmin and
xmax over [0,+∞), in order to obtain the joint PDF
P (tmin, tmax|T ) for tmin > tmax

P (tmin, tmax|T ) (29)

=

∫ ∞
0

dxmin

∫ ∞
0

dxmaxP (xmin, xmax, tmin, tmax|T ) .

Plugging the expression for P (xmin, xmax, tmin, tmax|T )
given in Eq. (28) into Eq. (29) and performing the inte-

gral over xmax, we get

P (tmin, tmax|T ) (30)

∝ ε4
∞∑

n1,n2,n3=1

(−1)n1+n2 [1− (−1)n3 ]n1n
2
2 J(α, β) ,

where we have defined the double integral

J(α, β) =

∫ ∞
0

dxmin

∫ ∞
0

dxmaxe
− β

(xmin+xmax)2 (31)

× 1

(xmin + xmax)6
sin

(
αxmin

xmin + xmax

)
.

with

α = n1π , (32)

and

β =
π2

2

(
n2

1 tmax + n2
2 (tmin − tmax) + n2

3 (T − tmin)
)
.

(33)
The integral (31) can be explicitly evaluated (see Ap-
pendix A) and we get

J(α, β) =
1− cosα

2αβ2
. (34)
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Thus, using this result (34) in Eq. (30), one obtains (for
tmax < tmin)

P<(tmin, tmax|T ) = A< θ(tmin − tmax)

∞∑
n1,n2,n3=1

× (−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmax + n2

2(tmin − tmax) + n2
3(T − tmin)]

2 , (35)

where we used dtmaxdtmin ∝ ε4 and the subscript ‘<’
indicates tmax < tmin. Here θ(x) is the Heaviside theta
function. In arriving at this final form (35), we have used
that (−1)n1 = −1 since only the odd values of n1 con-
tribute to the sum. The overall proportionality constant
A< has to be fixed from the normalisation condition∫ T

0

dtmin

∫ T

0

dtmaxP<(tmin, tmax|T ) (36)

= P (tmax < tmin|T ) =
1

2
.

Note that, for the complementary case tmax > tmin, one
can perform a similar computation and one obtains

P>(tmin, tmax|T ) = A> θ(tmax − tmin)

∞∑
n1,n2,n3=1

× (−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmin + n2

2(tmax − tmin) + n2
3(T − tmax)]

2 , (37)

where A> is again a proportionality constant. This con-
stant A> can be fixed from a normalisation condition
similar to the one in Eq. (36) but with P<(tmin, tmax|T )
replaced by P>(tmin, tmax|T ). Indeed, it is easy to see
that A> and A< have to satisfy the same condition. This

implies that

A< = A> = A . (38)

However, computing the exact value of A from condition
(36) appears to be non-trivial. We will see later that the
normalisation constant A is given exactly by

A =
4

π2
. (39)

Moreover, one sees the symmetry

P>(tmin, tmax|T ) = P<(tmax, tmin|T ) . (40)

This non-trivial symmetry can be traced back to the fact
that the BM is symmetric under the reflection x→ −x.

B. Computation of the PDF of τ = tmin − tmax

To compute the PDF P (τ |T ) of τ = tmin − tmax, we
focus on the case tmin > tmax, i.e. τ > 0. The com-
plementary case τ < 0 is simply determined from the
symmetry P (−τ |T ) = P (τ |T ), obtained from exchang-
ing tmax and tmin and using Eq. (40). For τ > 0, one
has

P (τ |T ) =

∫ T

0

dtmax

∫ T

0

dtminP<(tmin, tmax|T )

× δ(tmin − tmax − τ) , (41)

where P<(tmin, tmax, |T ) is given in Eq. (35). Integrating
over tmin gives

P (τ |T ) =

∫ T−τ

0

dtmaxP<(tmax + τ, tmax|T ) (42)

= A

∞∑
n1,n2,n3=1

(−1)n2+1n2
2(1− (−1)n1)(1− (−1)n3)

∫ T−τ

0

dtmax
1

(n2
1tmax + n2

2τ + n2
3(T − tmax − τ))

2

= A (T − τ)

∞∑
n1,n2,n3=1

(−1)n2+1n2
2

(1− (−1)n1)(1− (−1)n3)

(n2
1(T − τ) + n2

2τ)(n2
3(T − τ) + n2

2τ)
.

Remarkably, the sums over n1 and n3 get decoupled and
each yields exactly the same contribution. Hence we get

P (τ |T ) = A (T − τ)

∞∑
n2=1

(−1)n2+1n2
2 (43)

×

[ ∞∑
n=1

1− (−1)n

n2(T − τ) + n2
2τ

]2

.

This sum over n inside the parenthesis can be performed
using the identity [58]

∞∑
n=1

1− (−1)n

b+ n2
=

π

2
√
b
tanh

(π
2

√
b
)
. (44)
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Using this identity (44) into Eq. (43) one obtains, for
τ > 0,

P (τ |T ) =
1

T
fBM

( τ
T

)
, (45)

where

fBM(y) = A
π2

4y

∞∑
n=1

(−1)n+1tanh2

(
nπ

2

√
y

1− y

)
, (46)

which is only valid for y > 0. However, the symmetry
τ → −τ implies that fBM(y) = fBM(−y) and hence

fBM(y) = A
π2

4|y|

∞∑
n=1

(−1)n+1tanh2

(
nπ

2

√
|y|

1− |y|

)
,

(47)
which is valid for −1 ≤ y ≤ 1. The constant A can be
determined from the normalisation condition∫ T

−T
dτ P (τ |T ) = 1 . (48)

Using the scaling form (45) and changing variable τ →
y = τ/T , we get the equivalent condition on fBM(y)∫ 1

−1

dy fBM(y) = 1 , (49)

which, using the symmetry fBM(y) = fBM(−y), becomes∫ 1

0

dy fBM(y) =
1

2
. (50)

Using the expression for fBM(y) in Eq. (47), we get the
following condition for A:

A
π2

4

∫ 1

0

dy

y

∞∑
n=1

(−1)n+1tanh2

(
nπ

2

√
y

1− y

)
=

1

2
.

(51)
It turns out that the integral on the left-hand side of Eq.
(51) can be computed exactly (see Appendix B), yielding∫ 1

0

dy

y

∞∑
n=1

(−1)n+1tanh2

(
nπ

2

√
y

1− y

)
=

1

2
. (52)

Thus, using Eqs. (51) and (52) we get that A = 4/π2.
Using this exact value of A in Eq. (46) gives us our
complete result for the scaling function

fBM(y) =
1

|y|

∞∑
n=1

(−1)n+1 tanh2

(
nπ

2

√
|y|

1− |y|

)
, (53)

for −1 < y < 1, as given in Eq. (3). A plot of the scaling
function fBM(y) is shown in Fig. 2a, where we also com-
pare it with numerical simulations, finding an excellent
agreement. The scaling function fBM(y) is symmetric

around y = 0 and it is non-monotonic as a function of y.
We numerically identify the values

y∗ = ±(0.5563 . . .) (54)

at which fBM(y) is maximal. This non-trivial value has a
nice application in finance. Indeed, let us consider again
the situation described in Section I and let x(t) represent
the price of a stock during some fixed time window of
duration T . Assume that tmin > tmax and that an agent
has sold her or his stock at time tmax. In order to re-buy
the stock at the best price, i.e. at time tmin, then, the
optimal time that the agent has to wait between selling
and buying is exactly y∗ T , which is the value of τ =
tmin − tmax with the highest probability density.

C. Asymptotic analysis of fBM(y)

We consider the function fBM(y) given explicitly in Eq.
(3) where y ∈ [−1, 1]. Using the symmetry fBM(−y) =
fBM(y) it is sufficient to consider the case y > 0. We first
study the limit when y → 1 (or equivalently y → −1). In

this limit, the term tanh2
(
nπ
2

√
y

1−y

)
can be expanded

as

tanh2

(
nπ

2

√
y

1− y

)
' 1 + e

− nπ√
1−y

1− e−
nπ√
1−y
' 1 + 2e−nπ/

√
1−y .

(55)
Thus, the scaling function fBM(y) can be expanded, as
y → 1 as

fBM(y) ' (1 + (1− y))

∞∑
n=1

(−1)n+1
(

1 + 2e−nπ/
√

1−y
)

= (1 + (1− y))

( ∞∑
n=1

(−1)n+1 +
2

1 + eπ/
√

1−y

)

' (1 + (1− y))

(
1

2
+ 2 e−π/

√
1−y
)
' 1

2
+

1− y
2

. (56)

In going to the second to the third line above, we have
used the equality

∞∑
n=1

(−1)n =
1

2
. (57)

Of course, this sum is not convergent. However, one can
interpret it in a regularised sense as follows [33]

lim
α→−1

∞∑
n=1

αn+1 = lim
α→−1

α2

1− α
=

1

2
. (58)

Thus, in the limit y → 1, we have verified that fBM(y)
goes to the value 1/2. Moreover, in the vicinity of y = 1,
fBM(y) is linear with negative slope −1/2. Next, we con-
sider the limit y → 0+. In order to investigate this limit,
it turns out that the representation given in Eq. (3) is
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not convenient, since the series diverges strongly if one
naively takes the limit y → 0+. Hence, it is convenient to
derive an alternative representation of fBM(y) which will
allow us to obtain the y → 0+ behaviour correctly. To
proceed, we use the Poisson summation formula. Con-
sider the sum

s(a) =

∞∑
n=0

(−1)n+1 tanh2(na) (59)

= −
∞∑
n=0

eiπn tanh2(na) = −1

2

∞∑
n=−∞

eiπn tanh2(na) .

This sum can be re-written, using the Poisson summation
formula, as

s(a) = −1

2

∞∑
m=−∞

F̂ (2πm) , (60)

where

F̂ (2πm) =

∫ ∞
−∞

ei2πmxeiπx tanh2(ax) dx . (61)

This integral can be performed explicitly, using the iden-
tity [59]∫ ∞

0

cos (by) tanh2(y) dy = −π
2

b

sinh
(
πb
2

) . (62)

Using this, we get

s(a) =
π2

2a2

∞∑
m=−∞

2m+ 1

sinh
(
π2(2m+1)

2a

) . (63)

Using a = π
2

√
|y|/(1− |y|) in Eq. (53) and Eq. (63), we

obtain an exact alternative representation of fBM(y) as

fBM(y) =
2(1− |y|)
|y|2

∞∑
m=−∞

2m+ 1

sinh
(

(2m+ 1)π
√

1−|y|
|y|

) .
(64)

One can now take the y → 0+ limit in the last expression,
where the terms m = 0 and m = −1 dominate in this
limit. This yields, to leading order,

fBM(y) ≈ 8

y2
e−π/

√
y , (65)

Including also higher order corrections, one obtains

fBM(y) ≈ 8

y2
e−π/

√
y − 8

y
e−π/

√
y , as y → 0+ . (66)

Hence, using the y → −y symmetry, the asymptotic be-
haviours of fBM(y) can be summarised as

fBM(y) ≈


1

2
+

1− |y|
2

as y → ±1

8

y2
e−π/
√
|y| − 8

|y|
e−π/
√
|y| as y → 0 .

(67)

D. Moments of τ for BM

Since the distribution P (τ |T ) is symmetric in τ ∈
[−T, T ], the odd moments of τ vanish by symmetry and
only the even moments are nonzero. Hence, it is more ap-
propriate to compute the moments of the absolute value
of τ

〈|τ |k〉 =

∫ T

−T
dτ P (τ |T ) |τ |k k ≥ 0 . (68)

Using the scaling form P (τ |T ) = (1/T ) fBM(τ/T ), one
obtains from Eq. (68)

〈|τ |k〉 = T k
∫ 1

−1

dy fBM(y) |y|k ,= 2T k
∫ 1

0

dy fBM(y) |y|k ,

(69)
where the scaling function fBM(y) is given in Eq. (53).
However, evaluating the integral on the right hand side
of Eq. (69) directly with the form of fBM(y) in Eq. (53)
seems rather hard. Here we found an alternative way to
evaluate the moments explicitly.

In fact, we found an integral identity satisfied by the
scaling function fBM(y), namely,∫ 1

0

dy
fBM(y)

1 + uy
=

∫ ∞
0

dz
1

sinh(z)
tanh2

(
z

2
√

1 + u

)
.

(70)
The proof of this identity is provided later in Sec-
tion V.A.1 in the context of discrete-time random walks
with exponential jump distribution, as it emerges quite
naturally there. It turns out that this identity in Eq.
(70) plays the role of a generating function of moments
and moments can be simply extracted by expanding both
sides of this identity in powers of u. Let us just quote
here first four moments of τ

〈|τ |〉 =
4 log(2)− 1

3
T = (0.5908 . . .)T , (71)

〈τ2〉 =
7ζ(3)− 2

16
T 2 = (0.4009 . . .)T 2 ,

〈|τ |3〉 =
147ζ(3)− 34

480
T 3 = (0.2972 . . .)T 3 ,

〈τ4〉 =
1701ζ(3)− 930ζ(5)− 182

3840
T 4

= (0.2339 . . .)T 4 ,

which are fully consistent with the estimates from
simulation.

Covariance of tmin and tmax: As an application of
these results on the moments of τ , we show now that
the covariance of tmin and tmax can also be computed
explicitly using the known second moment 〈τ2〉 above.
By definition, the covariance function is given by

cov (tmin, tmax) = 〈tmintmax〉 − 〈tmin〉〈tmax〉 . (72)

While, in principle, one can evaluate the covariance ex-
actly knowing the joint distribution P (tmin, tmax|T ) in
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Eq. (35), it turns out to be rather cumbersome. A more
elegant and much shorter method consists in using the
moments of τ as we show now. Since τ = tmin − tmax, it
follows that

〈τ2〉 = 〈t2min〉+ 〈t2max〉 − 2〈tmin tmax〉 . (73)

We can now eliminate 〈tmin tmax〉 from Eqs. (72) and
(73) and express the covariance in terms of τ2

cov (tmin, tmax) (74)

=
1

2

(
〈t2min〉+ 〈t2max〉 − 〈τ2〉

)
− 〈tmin〉〈tmax〉 .

Thus, we just need the first two moments of tmin, tmax

and τ . In the case of the BM the marginal PDFs of tmin

and tmax are given by the expression in Eq. (1):

P (tmin|T ) =
1

π
√
tmin(T − tmin)

, (75)

for 0 ≤ tmin ≤ T , and similarly

P (tmax|T ) =
1

π
√
tmax(T − tmax)

, (76)

for 0 ≤ tmax ≤ T . From Eqs. (75) and (76) we get

〈tmin〉 = 〈tmax〉 =
T

2
, (77)

〈t2min〉 = 〈t2max〉 =
3

8
T 2 . (78)

The second moment of τ is computed in Eq. (71) above.
Thus, substituting the results from Eqs. (77), (78) and
(71) in Eq. (74), we get

covBM(tmin, tmax) = −7ζ(3)− 6

32
T 2 = −(0.0754 . . .)T 2.

(79)

IV. DERIVATION OF THE DISTRIBUTION OF
τ = tmin − tmax FOR BROWNIAN BRIDGE

Here, we study the statistics of τ = tmin − tmax in
the case of a BB, i.e. a periodic BM of fixed period T .
The PDF of τ for BB will be directly applicable to study
KPZ/EW interfaces with PBC in space (see Section VII).
In the case of the BB, tmax is uniformly distributed over
the interval [0, T ] [29]

P (tmax|T ) = 1/T . (80)

By the symmetry of the BB, tmin has the same distribu-
tion (80). However, as explained below, the PDF of the
time difference τ = tmin − tmax for the BB has a scal-
ing form P (τ |T ) = (1/T )fBB(τ/T ) where fBB(y) is the
non-trivial scaling function given in Eq. (8). In the next
two sections we present two alternative derivations for
the PDF P (τ |T ). The first is based on a path-integral
technique analogous to the one presented in Section III,
while the second is based on a useful mapping between
the BB and the Brownian excursion, namely the Veervat
construction.

t

x(t)

I II III

FIG. 4: A typical trajectory of a Brownian bridge x(t) during
the time interval [0, T ], starting from x(0) = 0 and ending at
x(T ) = 0. The value of the global maximum is xmax− ε (with
ε > 0) and the value of the global minimum −xmin+ε, where ε
is the cut-off needed to enforce absorbing boundary conditions
at xmax and xmin (as explained in the text). The time at which
the maximum (respectively the minimum) occurs is denoted
by tmax (respectively tmin). The total time interval [0, T ] is
divided into three segments: [0, tmax] (I), [tmax, tmin] (II) and
[tmin, T ] (III), for the case tmin > tmax.

A. Derivation 1: path-integral method

The derivation in the case of BB follows more or less
the same steps as in the BM case (Section III). We con-
sider a typical trajectory going from x0 = 0 at time t = 0
to the final position x(T ) = 0 at time T , as in Fig. 4.

Let tmin and tmax denote the time of occurrences of
the minimum and the maximum respectively. The ac-
tual values of the minimum and the maximum are again
denoted by −xmin and xmax. As in the BM case, we first
compute the grand joint PDF P (xmin, xmax, tmin, tmax|T )
by decomposing the interval [0, T ] into three segments I,
II, III. While the probabilities PI and PII for the first
two segments are exactly identical as in the BM case,
the probability for the last segment PIII is different, due
to the bridge constraint x(T ) = 0. Once again, in terms
of the Green’s equation defined in Eq. (21), with the ori-
gin shifted to −xmin as in the BM case, this grand PDF
can be written as

P (xmin, xmax, tmin, tmax|T ) (81)

∝ GM (M − ε, tmax|xmin, 0)GM (ε, tmin|M − ε, tmax)

× GM (xmin, T |ε, tmin) ,

where we have again used the cut-off ε, as explained in
Section III and M = xmin + xmax as before. We recall
that in Eq. (81) we measure all positions with respect to
the global minimum −xmin. Taking the ε→ 0 limit and
integrating over xmin and xmax, we can obtain the joint
PDF P (tmin, tmax|T ). The intermediate steps leading to
the final result are very similar to the BM case, hence we
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do not repeat them here and just quote the final result.
For tmin > tmax, we get

P<(tmin, tmax|T ) = B
√
T θ(tmin − tmax) (82)

×
∞∑

n,m=1

(−1)m+nm2n2

[n2T + (m2 − n2)(tmin − tmax)]
5/2

,

where the constant B can be fixed from the overall nor-
malisation. The factor

√
T in Eq. (82) comes from the

fact that, since we are considering a BB, we are implicitly
conditioning on the event “x(T ) = 0”. Thus, after inte-
grating out the variables xmin and xmax from the joint
distribution in Eq. (81), one has also to divide by the
probability

P (x(T ) = 0|T ) =
1√
2πT

, (83)

which gives the additional factor
√
T in Eq. (82). We

recall that the subscript ’<’ in Eq. (82) indicates tmax <
tmin. To compute the PDF P (τ |T ) of τ = tmin − tmax,
we focus on the case tmax < tmin, i.e. τ > 0. The com-
plementary case τ < 0 is simply determined from the
symmetry P (−τ |T ) = P (τ |T ), as in the BM case. For
τ > 0, one has

P (τ |T ) =

∫ T

0

dtmax

∫ T

0

dtminP<(tmin, tmax|T )

× δ(tmin − tmax − τ) , (84)

where P<(tmin, tmax, |T ) is given in Eq. (82). Noting
that P<(tmin, tmax, |T ) depends only on the difference τ =
tmin−tmax, we can first carry out the integral over tmin in
Eq. (84) keeping τ fixed. This gives an additional factor
(T − τ) and we get, for τ > 0

P (τ |T ) =
1

T
fBB

( τ
T

)
, (85)

where the scaling function fBB(y), for 0 ≤ y ≤ 1, is given
by

fBB(y) = B (1− y)

∞∑
m,n=1

(−1)m+nm2n2

[m2 y + n2(1− y)]
5/2

. (86)

For τ < 0, using the symmetry P (−τ |T ) = P (τ |T ), it
follows that P (τ |T ) takes exactly the same scaling form
as in Eq. (85), with y replaced by −y. Thus for all
−T ≤ τ ≤ T , P (τ |T ) = (1/T )fBB(τ/T ) where fBB(y),
for all −1 ≤ y ≤ 1, is given by

fBB(y) = B(1− |y|)
∞∑

m,n=1

(−1)m+nm2n2

[m2 |y|+ n2(1− |y|)]5/2
,

(87)
The prefactor B can, in principle, be fixed from the nor-
malisation condition∫ 1

−1

fBB(y)dy = 1 . (88)

However, computing explicitly this integral appears to be
challenging. An alternative way to obtain the constant
B is presented in the next section, where we show that

B = 3 . (89)

The scaling function fBB(y), shown in Fig. 2b, is sym-
metric around y = 0 and it is non-monotonic as a func-
tion of y. We numerically find that at the two points
y∗ = ±(0.3749 . . .) the scaling function fBB(y) reaches
its maximal value. To confirm this result (87) we have
performed numerical simulations, using a simple algo-
rithm for generating Brownian bridges [60]. The results
of simulations (see Fig. 2b) are in excellent agreement
with the scaling function in Eq. (87).

B. Derivation 2: mapping to Brownian excursion

We can derive the result for the BB in Eq. (87) by us-
ing an alternative method based on a mapping between a
BB trajectory and a Brownian excursion (BE) trajectory
– known as Vervaat construction in probability theory
[61] (see also [60]). Let us first recall that a BE on the
time interval [0, T ] is a BB with the additional constraint
that the path remains positive at all intermediate times
between 0 and T (for a typical trajectory of BE, see Fig.
5b). From any BB configuration, one can obtain a BE
configuration by sliding and fusing as explained in the
caption of Fig. 5. Additionally, Vervaat proved that
the configurations of BE generated by this construction
from a BB configuration occur with the correct statistical
weight. Clearly, under this mapping, as also explained in
the caption of Fig. 5, the time difference τ = tmin− tmax

for a BB gets mapped onto tBE
max of a BE, measured from

the right end of the interval [0, T ], where tBE
max denotes

the time at which the maximum of a Brownian excursion
occurs. This is a random variable, and let us denote its
PDF by

PBE(τ |T ) = Prob.
(
tBE
max = τ |T

)
. (90)

Note that this mapping is one-to-one only if we fix the
value of tmin. Thus, focusing on the case where τ > 0, i.e.
tmin > tmax for BB, the Vervaat construction provides the
exact identity

PBB(tmin − tmax|tmin, T ) = PBE(tmin − tmax|T ) , (91)

where the left-hand side denotes the PDF of tmin − tmax

for a BB, conditioned on tmin and on the total time T .
For the BE, the PDF PBE(τ |T ) was computed exactly in
[33] and it reads

PBE(τ |T ) = 3T 3/2
∞∑

m,n=1

(−1)m+nm2n2

[m2τ + n2(T − τ)]
5/2

. (92)

The joint PDF of tmax and tmin for a BB can be written
as

PBB(tmax, tmin|T ) = PBB(tmax − tmin|tmin, T )PBB(tmin|T )

= PBE(tmin − tmax|T )PBB(tmin|T ) ,(93)
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a) b)

x(t) x(t)

t t

FIG. 5: Schematic representation of the Vervaat transformation from a Brownian bridge x(t) in panel a) to a Brownian excursion
in panel b). On the left panel a), we have a Brownian bridge going from x(0) = 0 at time t = 0 to the final position x(T ) = 0
at time t = T . We first locate the time tmin at which the minimum of the bridge occurs with value −xmin. We decompose the
trajectory into two parts: the left of tmin (shown in yellow) and the right of tmin (shown in blue). Keeping the blue part of
the trajectory fixed, we first slide forward the yellow part of the trajectory by an interval T and glue this yellow part of the
trajectory to the right end of the blue part. Next we shift the origin of the space to −xmin. After these two transformations, the
new trajectory on the right panel b) corresponds to a Brownian excursion path. Note that the time difference τ = tmin − tmax

in the bridge configuration on the left (indicated by a double-arrowed red line) corresponds exactly to the time at which the
maximum of the excursion occurs (measured from the right end of the interval) on the right panel (also shown by a double
arrowed red line).

where we have used Eq. (91) in going from the first to
the second line above. The distribution of the time tmin

of the minimum of a BB is uniform over [0, T ] [31]

PBB(tmin|T ) =
1

T
, (94)

Thus, plugging the expressions for PBE(tmin − tmax|T )
and PBB(tmin|T ), given in Eqs. (92) and (94), into Eq.
(93), we obtain

PBB(tmax, tmin|T ) = 3
√
T (95)

×
∞∑

m,n=1

(−1)m+nm2n2

[m2(tmin − tmax) + n2(T − tmin + tmax)]
5/2

,

Finally, integrating Eq. (95) over tmax and tmin, keeping
τ = tmin − tmax fixed, we obtain that the PDF of the
time τ between the maximum and the minimum of a BB
is given by

P (τ |T ) =
1

T
fBB(

τ

T
) (96)

where

fBB(y) = 3(1−|y|)
∞∑

m,n=1

(−1)m+nm2n2

[m2 |y|+ n2(1− |y|)]5/2
. (97)

Comparing this result (97) with Eq. (87) we obtain that
the correct normalisation constant in Eq. (87) was in-
deed B = 3. Moreover, the asymptotic behaviours of

PBE(τ |T ) was also computed in [33]. As before, due to
the y → −y symmetry it is sufficient to consider only the
case y > 0. Thus, using Eq. (91), one finds that

fBB(y) ≈


√

2π2

(1−y)
5
4
e
− π√

1−y as y → 1

√
2π2

y
9
4
e
− π√

y as y → 0+ .

(98)

C. Moments of τ for BB

As in case of BM, the moments of τ = tmin − tmax can
be computed for the BB explicitly. Since P (τ |T ) is sym-
metric also for a BB, odd moments vanish and we com-
pute the k-th moment of the absolute value |τ |. In this
case, using the scaling form P (τ |T ) = (1/T ) fBB(τ/T ),
we have

〈|τ |k〉 =

∫ T

−T
dτ |τ |k 1

T
fBB

( τ
T

)
= 2T k

∫ 1

0

dy yk fBB (y) ,

(99)
As in the BM case, evaluating the integral on the right
hand side using the explicit form of fBB(y) from Eq. (97)
seems cumbersome. We need an integral identity satis-
fied by fBB(y), just like Eq. (70) for the BM case. For-
tunately, such an identity can be derived (see Appendix
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D for the derivation)

∫ 1

0

dy
fBB(y)√
1 + uy

=

∫ ∞
0

dz

z√
1+u

coth
(

z√
1+u

)
− 1

sinh(z) sinh
(

z√
1+u

) .

(100)
Again expanding in powers of u on both sides, we can
extract the moments. The first four moments read

〈|τ |〉 =
π2 − 6

9
T = (0.4299 . . .)T , (101)

〈τ2〉 =
π2 − 6

18
T 2 = (0.2149 . . .)T 2 ,

〈|τ |3〉 =
375π2 − 14π4 − 1530

6750
T 3 = (0.1196 . . .)T 3 ,

〈τ4〉 =
125π2 − 7π4 − 390

2250
T 4 = (0.0719 . . .)T 4 .

These results are in good agreement with the estimates
from numerical simulations.

The second moment 〈τ2〉 can also be derived explicitly
using the Veervat construction discussed in Section IV
that links a BB to a BE. For a BE, the PDF of tmax has
the scaling form

PBE(tmax|T ) =
1

T
fBE

(
tmax

T

)
, (102)

where fBE(y) is given by [33]

fBE(y) = 3

∞∑
m,n=1

(−1)m+nm2n2

(m2y + n2(1− y))
5/2

. (103)

Thus the two scaling functions fBB(y) in Eq. (97) and
fBE(y) in Eq. (103) are simply related via

fBB(y) = (1− y)fBE(y) . (104)

Consequently, from Eq. (99) using k = 2 and the relation
in Eq. (104) we get

〈τ2〉 = 2T 2
(
〈y2〉BE − 〈y3〉BE

)
, (105)

where

〈ym〉BE =

∫ 1

0

dy ym fBE(y) . (106)

The first three moments, i.e. 〈ym〉BE for m = 1, 2, 3, were
computed in Ref. [33]

〈y〉BE =
1

2
,

〈
y2
〉

BE
=

15− π2

18
,

〈
y3
〉

BE
= 1− π2

12
.

(107)
Substituting these results in Eq. (105) gives

〈τ2〉 =
π2 − 6

18
T 2 = (0.2149 . . .)T 2 , (108)

in perfect agreement with the first derivation in Eq.
(101).

Covariance of tmin and tmax: As in the case of BM,
the covariance between tmin and tmax can be computed
from the general formula in Eq. (74), and using the ex-
plicit knowledge of 〈τ2〉 from Eq. (101). In addition, we
need the first two moments of tmin and tmax for BB. The
marginal PDFs of tmin and tmax for BB are both uniform
over [0, T ] [31]

P (tmin|T ) =
1

T
, 0 ≤ tmin ≤ T , (109)

P (tmax|T ) =
1

T
, 0 ≤ tmax ≤ T . (110)

This gives the first two moments

〈tmin〉 = 〈tmax〉 =
T

2
, (111)

〈t2min〉 = 〈t2max〉 =
1

3
T 2 . (112)

Substituting these results in Eq. (74) and using 〈τ2〉 from
Eq. (101) we get

covBB(tmin, tmax) = −π
2 − 9

36
T 2 = −(0.0241 . . .)T 2 .

(113)
Thus, by comparing Eqs. (79) and (113), we see that
tmin and tmax are more strongly anti-correlated in the
BM case than the BB case.

V. DISCRETE-TIME RANDOM WALKS

In this section we investigate the time between the
maximum and the minimum of discrete-time RWs. Let
us consider a time series of n steps generated by the po-
sitions of a random walker evolving via the Markov jump
process

xk = xk−1 + ηk , (114)

starting from x0 = 0, where ηk’s are IID random vari-
ables, each drawn from a symmetric PDF p(η) (for a typ-
ical realisation see Fig. 6). Similarly to the continuous-
time case described above, we can define the discrete time
at which the maximum (minimum) value is reached as
nmax (nmin), as in Fig. 6. Note that τ = nmin − nmax

is now an integer and that τ ∈ [−n, n]. Remarkably, un-
der the additional hypothesis that the distribution p(η) is
continuous, the probability distribution of nmax is known
to be universal, i.e. independent of the PDF p(η) for all
values of n, and not only asymptotically for large n. In-
deed, Sparre Andersen showed that the probability distri-
bution of nmax, given the total number of steps n, is [30]

P (nmax|n) =

(
2nmax

nmax

)(
2(n− nmax)

(n− nmax)

)
2−2n . (115)
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no. of steps 
k

xmin

0

xmax

nminnmax
xf

l2l1 l3

xk

I II III

FIG. 6: A typical trajectory of a discrete-time random walk
xk versus k up to n steps, starting from x0 = 0. The global
maximum xmax occurs at step nmax and the global minimum
−xmin ≤ 0 at step nmin. For this trajectory nmin > nmax.
The final position of the walker at step n is denoted by xf ,
measured with respect to the global minimum −xmin. The
total duration of n steps has been divided into three segments:
0 ≤ k ≤ nmax (I), nmax ≤ k ≤ nmin (II) and nmin ≤ k ≤ n
(III). The respective durations of these three segments are
denoted by l1, l2 and l3.

Note that Eq. (115) is exact for any n and nmax ∈ [0, n].
By the symmetry of the jump distribution p(η), the time
of the minimum nmin is also distributed as (115). Note,
however, that Eq. (115) holds only for continuous jump
distributions, thus it is not valid for discrete-space RW,
e.g. for lattice walks, which is also discussed below. No-
tably, using Stirling’s formula, in the large n limit the Eq.
(115) converges to the PDF of tmax for BM given in Eq.
(1), with tmax and T replaced by nmax and n. One may
ask whether this universality extends also to the time be-
tween maximum and minimum, i.e. to τ = nmin − nmax.
In the case of finite jump variance σ2 =

∫∞
−∞ dη η2 p(η),

the Central Limit Theorem states that the random walk
converges, when n → ∞ to a Brownian motion. Thus,
one may expect that, in the large n limit, the proba-
bility distribution of any observable of the random walk
(e.g. nmax, τ , . . .) converges to its Brownian counter-
part. However, directly verifying this convergence for a
generic jump distribution is usually challenging. In this
section, we demonstrate that the distribution of τ con-
verges to the Brownian result (3) for two particular jump
distributions. Note however that the universal formula
for the probability distribution of nmax in Eq. (115) is
valid even when the variance is not well-defined. Thus
a natural question is: “Does the universality of τ also
extend to jump distributions with a divergent variance?”
To proceed, it is useful to consider separately the cases
of finite and divergent jump variance.

A. Finite jump variance

As stated above, for all jump distributions with a fi-
nite variance, one may expect that, for large n, the cor-
responding PDF of the time difference τ = tmin − tmax

would converge for large n to the distribution of τ for
BM. In other words, for n→∞ we expect

P (τ |n) −→
n→∞

1

n
fBM

( τ
n

)
. (116)

In this section, we first verify this universality analyt-
ically for the double-exponential distribution p(η) =
(1/2)e−|η|. Then, we show that the universality of the
distribution of τ is also valid for discrete-space distri-
butions by computing the asymptotic distribution of τ
in the case of lattice walks. However, apart from the
two special cases discussed below, it turns out that the
exact computation of P (τ |n) is very hard for a generic
p(η). Therefore, we verify (116) numerically for other
jump distributions with a finite variance (see Fig. 7).
In the case of random walk bridges, i.e. random walks
with the additional constraint that they have to go back
to the origin at the final step, a result equivalent to the
one in Eq. (116) can be derived. Indeed, in Appendix D
we show that, in the case of random walk bridges with
double-exponential jumps, in the limit of large n

P (τ |n) −→
n→∞

1

n
fBB

( τ
n

)
, (117)

where fBB(y) is the scaling function in Eq. (8).

1. Exact result for the double-exponential distribution

In this section we compute the probability distribu-
tion of τ in the case of RWs with double-exponential
jump distribution: p(η) = (1/2)e−|η|. The main ingredi-
ent needed to compute the probability distribution of τ
is the restricted Green’s function G (x, l|M), defined as
the probability that the walker goes from the origin to
position x in l steps, while remaining always in the space
interval [0,M ]. Using the Markov property of the process
with an arbitrary jump distribution p(η), we can easily
write down a recursion relation for G (x, l|M)

G (x, l|M) =

∫ M

0

dx′G (x′, l − 1|M) p(η = x− x′) ,

(118)
valid for all l ≥ 1 and starting from the initial condi-
tion G(x, 0|M) = δ(x). This equation can be understood
as follows. Let the walker arrive at x′ ∈ [0,M ] at step
l − 1 (without leaving the box [0,M ] up to l − 1 steps)
and then it makes a jump from x′ to x at the lth step.
The probability of this jump is simply p(η = x − x′).
Remarkably, this simple equation (118) cannot be solved
exactly for arbitrary jump distribution p(η). The rea-
son is because the integral is defined over a finite range
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FIG. 7: The distribution nP (τ |n) as a function of τ/n for
discrete-time random walks (RWs) for different jump distri-
butions. Jump distributions with a finite variance (lattice
walks, Gaussian, uniform, double-exponential and Pareto)
collapse onto the scaling function fBM(y) shown by the solid
(green) line. For distributions with divergent variance, i.e.
Lévy flights with index µ = 3/2 and µ = 1 (Cauchy distribu-
tion), the scaling function fµ(y) depends on µ (except at the
endpoints y = ±1 where fµ(±1) = 1/2 seems to be universal
for all 0 < µ ≤ 2). The empirical curves are obtained by sim-
ulating 107 RWs of n = 105 steps for each jump distribution.

[0,M ]. In the semi-infinite case M →∞, this reduces to
Wiener-Hopf equation which can be solved for arbitrary
symmetric and continuous p(η) [42]. Although the solu-
tion in this case is not fully explicit for G (x, l|M →∞),
one can obtain an explicit expression for its generating
function in terms of the Fourier transform of the jump
distribution p(η). This is known as the Ivanov formula
[62] (see also the Appendix A of Ref. [63] for a trans-
parent derivation). Unfortunately, for finite M , no exact
solution is known for arbitrary p(η). However, for the
double-exponential jump distribution, we can obtain an
exact solution of Eq. (118) for finite l, as shown below.
To proceed, we first consider the generating function

G̃(x, s|M) =

∞∑
l=1

G(x, l|M) sl. (119)

By multiplying Eq. (118) by sl, summing over l and
using the initial condition G(x, 0|M) = δ(x), we get

G̃ (x, s|M) = s

∫ M

0

dx′G̃ (x′, s|M) p(x− x′) + s p(x).

(120)
The double-exponential distribution p(η) = (1/2)e−|η|

has the special property that if we differentiate it twice,
it satisfies a simple differential equation

p′′(x) = p(x)− δ(x) . (121)

Using this relation, we can then reduce the integral equa-
tion in (120) into a differential equation, which then is

easier to solve. Differentiating Eq. (120) twice with re-
spect to x, and using the identity (121), we get

∂2G̃ (x, s|M)

∂x2
= (1− s)G̃ (x, s|M)− s δ(x), (122)

for 0 ≤ x ≤ M . For x > 0, the δ-function in (122)
disappears and the general solution reads simply

G̃ (x, s|M) = A(s,M) e−
√

1−s x +B(s,M) e
√

1−s x ,
(123)

where A(s,M) and B(s,M) are two arbitrary constants.
In going from the integral (120) to the differential (122)
equation, we have taken derivatives and hence one has to
ensure that the solution of the differential equation also
satisfies the integral equation. This condition fixes these
unknown constants A(s,M) and B(s,M). Indeed, by
substituting Eq. (123) into the integral equation (120),
it is straightforward to check that Eq. (120) is verified
only if

A(s,M) =
1−
√

1− s

1−
(

1−
√

1−s
1+
√

1−s

)2

e−2
√

1−sM
, (124)

B(s,M) = −A(s,M)
1−
√

1− s
1 +
√

1− s
e−2
√

1−sM . (125)

Hence, the final exact solution reads

G̃ (x, s|M) = A(s,M) (126)

×
[
e−
√

1−s x − 1−
√

1− s
1 +
√

1− s
e−
√

1−s (2M−x)

]
,

with the amplitude A(s,M) given in Eq. (124).
We can now proceed with the computation of the

probability distribution of τ . As in the case of BM,
our strategy will be to first compute the grand joint
PDF P (xmin, xmax, nmin, nmax|n) of the four random
variables xmin, xmax, nmin and nmax and then inte-
grate out xmin and xmax to obtain the joint distribu-
tion P (nmin, nmax|n). To compute this grand PDF, we
divide the interval [0, n] into three segments of lengths
l1 = nmax, l2 = nmin − nmax and l3 = n − nmin (see
Fig. 6). Here again we consider the case nmax < nmin

(the complementary case can be then obtained using the
symmetry of the process). The grand PDF can then be
written as the product of the probabilities PI, PII and
PIII of the three independent segments: 0 ≤ k ≤ nmax

(I), nmax ≤ k ≤ nmin (II) and nmin ≤ k ≤ n = l1 + l2 + l3
(III). To proceed, we first notice that the probability of
each segment can be expressed in terms of the restricted
Green’s function G (x, n|M). In order to do this, it is
crucial to use the fact that the jump distribution p(η) is
symmetric, which makes the walk reflection-symmetric
around the origin. This is best explained with the help
of the Fig. 6. Let us first set M = xmin + xmax. In
segment I, the trajectory has to start at the origin and
reach the level xmax at step l1, while staying in the box
[−xmin, xmax]. Using the invariance under the reflection
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x → −x, followed by a shift of the origin to the level
xmax, this probability is just

PI = G (xmax, l1|M) . (127)

For the second segment, the trajectory starts at xmax

and ends at −xmin at step l2, while staying inside the
box [−xmin, xmax] (see Fig. 6). Using a similar argument
as in the previous case, one gets

PII = G (M, l2|M) . (128)

For the third segment, the trajectory starts at −xmin and
stays inside the box [−xmin, xmax] up to l3 steps. Thus
this probability is given by

PIII =

∫ M

0

G (xf , l3|M) dxf , (129)

where xf is the final position of the trajectory measured
with respect to −xmin (see Fig. 6) and we have inte-
grated over the final position xf . The grand joint PDF
P (xmin, xmax, nmin, nmax|n) is given by the product of the
three segments

P (xmin, xmax, nmin, nmax|n) = PIPIIPIII (130)

= G (xmax, l1|M) G (M, l2|M)

∫ M

0

G (xf , l3|M) dxf ,

where we recall that

l1 = nmax , l2 = nmin − nmax , l3 = n− nmin ,(131)

and that M = xmax + xmin. Note that, unlike the BM,
for the discrete-time RW, we do not need to put a cut-off
ε. It is now useful to express this grand PDF in terms of
the intervals l1, l2 and l3 (see Fig. 6). Hence, we write

P (xmin, xmax, nmin, nmax|n) ≡ P (xmin, xmax, l1, l2, l3),
(132)

where l1, l2 and l3 are given in Eq. (131). It is conve-
nient to take the generating function of the grand PDF
P (xmin, xmax, nmin, nmax|n), so we multiply Eq. (130) by

sl11 s
l2
2 s

l3
3 and sum over l1, l2 and l3 to obtain

∞∑
l1,l2,l3=1

P (xmin, xmax, l1, l2, l3) sl11 s
l2
2 s

l3
3 (133)

= G̃ (xmax, s1|M) G̃ (M, s2|M)

∫ M

0

dxf G̃ (xf , s3|M) ,

where G̃(x, s|M) is given in Eq. (126). To obtain the
marginal joint distribution of l1, l2, and l3, we still need
to integrate over xmin and xmax in Eq. (133). Let us first
define

P (l1, l2, l3) (134)

=

∫ ∞
0

dxmin

∫ ∞
0

dxmax P (xmin, xmax, l1, l2, l3) .

We can perform this double integral by making a change
of variables (xmin, xmax) → (xmax,M = xmax + xmin).
Performing the double integral yields

∞∑
l1,l2,l3=1

P (l1, l2, l3) sl11 s
l2
2 s

l3
3 (135)

=

∫ ∞
0

dM

[∫ M

0

dxmaxG̃ (xmax, s1|M)

]

× G̃ (M, s2|M)

[∫ M

0

dxfG̃ (xf , s3|M)

]

=

∫ ∞
0

dM I (M, s1) G̃ (M, s2|M) I (M, s3) ,

where we have defined

I (M, s) =

∫ M

0

dx G̃ (x, s|M) . (136)

We want to compute the PDF P (τ |n) of τ = nmin−nmax,
for a given total number of steps n. We can express
P (τ |n) in terms of the joint PDF P (l1, l2, l3) computed
above as follows

P (τ |n) =

∞∑
l1,l3=1

P (l1, l2 = τ, l3) δ(l1 + τ + l3−n) . (137)

Taking the double generating function of this expression
(137) gives

∞∑
n=1

n∑
τ=1

P (τ |n)sτ2 s
n =

∞∑
l1,τ,l3=1

P (l1, τ, l3)sl1(s s2)τ sl3 .

(138)
Notice that the right-hand side of Eq. (138) can be read
off Eq. (135) by setting s1 → s, s2 → s s2 and s3 → s.
This yields∑

τ,n

P (τ |n)sτ2 s
n =

∫ ∞
0

dM G̃ (M, s s2|M) I (M, s)
2
.

(139)
To use the relation (139), we also need to compute
I (M, s). Substituting Eq. (126) in Eq. (136), we get

I (M, s) =

∫ M

0

dx G̃ (x, s|M) =
A(s,M)√

1− s
(140)

×
[
1− 2

1 +
√

1− s
e−
√

1−sM +
1−
√

1− s
1 +
√

1− s
e−2
√

1−sM
]
,

where A(s,M) is given in Eq. (124). Using Eqs. (126)
and (140), we can now write an explicit expression for
the right-hand side of Eq. (139). This yields

∑
n,τ

P (τ |n)sτ2 s
n =

∫ ∞
0

dM A(s s2,M)e−
√

1−ss2M

×
(

1− 2

1 +
√

1− s
e−
√

1−sM +
1−
√

1− s
1 +
√

1− s
e−2
√

1−sM
)2

×
( 2
√

1− ss2

1 +
√

1− ss2

)(A(s,M)√
1− s

)2

, (141)
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where A(s,M) is given in Eq. (124). We now want to
extract the asymptotic behavior of P (τ |n) for large n.
In this limit, we expect that P (τ |n) approaches a scaling
form

P (τ |n) −→
n→∞

1

n
fexp

( τ
n

)
. (142)

Our goal now is to extract this scaling function fexp(y)
from the exact formula (141) and show that fexp(y) =
fBM(y) given in Eq. (3). Since we are interested in the
scaling limit τ, n → ∞ keeping the ratio y = τ/n fixed,
we also need to investigate the generating function in Eq.
(141) in the corresponding scaling limit. It is convenient
to first parametrise the Laplace variables as s = e−λ

and s2 = e−λ2 . In these new variables, the scaling limit
corresponds to λ, λ2 → 0 with λ2/λ fixed. In this limit,
the double sum in the left-hand side of Eq. (141) can
be replaced by a double integral. Thus, taking the limit
λ, λ2 → 0 keeping the ratio λ2/λ fixed on both sides of
Eq. (141), we get∫ ∞

0

dn

∫ n

0

dτ P (τ |n) e−λ2τe−λn ≈ 2
√
λ+ λ2

λ

×
∫ ∞

0

dM
e−
√
λ+λ2M

(
1− e−

√
λM
)2

(
1 + e−

√
λM
)2 (

1− e−2
√
λ+λ2M

) . (143)

Rescaling z =
√
λ+ λ2M in the integral on the right-

hand side leads to∫ ∞
0

dn

∫ n

0

dτP (τ |n) e−λ2τe−λn (144)

≈ 1

λ

∫ ∞
0

dz
tanh2

(√
λ

λ+λ2

z
2

)
sinh(z)

.

Substituting the scaling form (142) on the left-hand side
of Eq. (144) gives∫ ∞

0

dn

∫ n

0

dτ
1

n
fexp

( τ
n

)
e−λ2τe−λn (145)

=

∫ ∞
0

dn

∫ 1

0

dy fexp(y) e−λ2yne−λn =

∫ 1

0

dy
fexp(y)

λ+ λ2y
.

Comparing this left-hand side (145) with the right-hand
side of Eq. (144), with u = λ2

λ fixed, we get the identity∫ 1

0

dy
fexp(y)

1 + uy
=

∫ ∞
0

dz
1

sinh(z)
tanh2

(
z

2
√

1 + u

)
.

(146)
This representation of fexp(y) in Eq. (146) turns out to
be useful to compute the moments of τ explicitly (see
Section III D). The next step is to invert this integral
equation (146) to obtain fexp(y) explicitly. For this, it
is convenient to first rewrite Eq. (146) in terms of the
variables u = − 1

w on the left-hand side and t = z
2
√

1+u

on the right-hand side. This gives∫ 1

0

dy
fexp(y)

w − y
=

2

w

√
1− 1

w

∫ ∞
0

dt
tanh2(t)

sinh
(

2t
√

1− 1
w

) .
(147)

We now recognise the left-hand side of Eq. (147) as the
Stieltjes transform of the function fexp(y). A Stieltjes
transform of this type can be inverted using the so-called
Sochocki-Plemelj formula (see for instance the book [64]).
Using this inversion formula we get (see Appendix B for
the details of the computation):

fexp(y) =
1

y

∞∑
n=1

(−1)n−1 tanh2

(
nπ

2

√
y

1− y

)
. (148)

This result above has been derived assuming τ = nmin −
nmax > 0, i.e., when the minimum occurs after the max-
imum. In the complementary case τ < 0, i.e. when
the maximum occurs after the minimum, it is clear that
P (τ |n) = P (−τ |n) and this follows simply from the
x → −x symmetry of the process. Hence, we get, for
τ ∈ [−n, n], and in the scaling limit τ, n → ∞ keeping
the ratio y = τ/n fixed

P (τ |n) −→
n→∞

1

n
fexp

( τ
n

)
, (149)

where the scaling function fexp(y) is given exactly by

fexp(y) =
1

|y|

∞∑
n=1

(−1)n−1 tanh2

(
nπ

2

√
|y|

1− |y|

)
.

(150)
Comparing with the Brownian case in Eq. (3), we see
that fexp(y) = fBM(y). This exact computation for the
double-exponential jump distribution confirms explicitly
the expectation based on the Central Limit Theorem.
The asymptotics of fexp(y) is thus given in Eq. (67). In
particular, in the limit y → 1, we get that f(y) → 1/2.
This limit value can be also computed directly for the
double-exponential distribution p(η) = (1/2)e−|η| (see
Section VI). This result is also confirmed by numeri-
cal simulations (see Fig. 7). Moreover, the fact that
fexp(y) = fBM(y) implies that Eq. (146) is also satisfied
by the Brownian scaling function fBM(y). This thus pro-
vides the derivation of the integral identity announced in
Eq. (70).

2. Exact result for lattice walks

We now consider a one-dimensional unbiased lattice
walk. This corresponds to the discrete PDF

p(η) =
1

2
(δ (η − 1) + δ (η + 1)) . (151)

At each step k, the position xk of the walker is increased
or decreased by 1 with equal probability. Contrary to
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the BM and double-exponential case, here we need to be
careful when defining the times nmax and nmin. Indeed,
for such discrete-space walks there is a finite probability
that the global maximum or the global minimum are not
unique. Therefore, for simplicity we define nmax (nmin) as
the time at which the maximal (minimal) value is reached
for the first time. Even if this choice may seem arbitrary,
we expect that, in the large n limit, the final result will be
independent of which particular global maximum (mini-
mum) we consider.
As before, the main ingredient to compute the distribu-
tion of τ = nmin−nmax is the restricted Green’s function
G(x, l|M), defined as the probability that the walker goes
from the origin to position x in exactly l steps, without
leaving the space interval [0,M ]. Note that now x and
M are integers. One can easily write a recursion relation
for G(x, l|M):

G(x, l|M) =
1

2
G(x+ 1, l − 1|M) +

1

2
G(x− 1, l − 1|M) ,

(152)
valid for l ≥ 1. Eq. (152) means that if the walker is at
position x ∈ (0,M) at time l, it either was at position
x − 1 at time l − 1 and then, with probability 1/2, it
jumped up, or it was at position x + 1 at time l − 1
and then, with probability 1/2, it jumped down. Note
that this Eq. (152) can be also obtained substituting the
expression for p(η) given in Eq. (151) into Eq. (118).
One needs to impose appropriate boundary conditions.
Since we are forcing the walker to remain always in the
interval [0,M ], we impose:

G(−1, l|M) = 0 , G(M + 1, l|M) = 0 . (153)

We recall that G(x, l|M) is by definition the probability
that the walker goes from the origin to position x in l
steps, while remaining inside the interval [0,M ]. Thus,
the initial condition is

G(x, 0|M) = δx, 0 , (154)

where δa, b is the Kronecker delta function: δa, b = 1 if
a = b and δa, b = 0 otherwise. To solve Eq. (152) we first
multiply both sides by sl and sum over l ≥ 1. This yields

G̃(x, s|M) (155)

= δx ,0 +
s

2

(
G̃(x+ 1, s|M) + G̃(x− 1, s|M)

)
,

where the generating function G̃(x, s|M) is defined in Eq.

(119). The boundary conditions for G̃(x, s|M) are

G̃(−1, s|M) = 0 , G̃(M + 1, s|M) = 0 . (156)

Note that the recursion (155) is non-homogeneous due to
the term δx ,0. However, one can easily include this term
in the lower boundary condition. In this way, we obtain
the homogeneous relation

G̃(x, s|M) =
s

2

(
G̃(x+ 1, s|M) + G̃(x− 1, s|M)

)
,

(157)

with modified boundary conditions

G̃(−1, s|M) =
2

s
, G̃(M + 1, s|M) = 0 . (158)

This homogeneous recursion relation can now be solved
for x ∈ [−1,M + 1], yielding, after a few steps of algebra

G̃(x, s|M) =
2

s

( w(s)x+1

1− w(s)2(M+2)
(159)

+
w(s)−(x+1)

1− w(s)−2(M+2)

)
,

where

w(s) =
1

s

(
1−

√
1− s2

)
. (160)

Since the global maximum and the global minimum are
in general not unique, we need to use a slightly differ-
ent method with respect to the one presented at the
beginning of this section. Indeed, we need to include
the information that nmax and nmin are the times at
which the global maximum and the global minimum
are attained for the first time. Hence, we need to
impose that xk < xmax for k ≤ nmax − 1 and that
xk > xmin for k ≤ nmin − 1. As we will see, this
additional condition slightly modifies the procedure de-
scribed above. Considering the case nmax < nmin (the
complementary case nmin < nmax can be studied analo-
gously), we can factorize the grand probability distribu-
tion P (xmin, xmax, nmin, nmax|n) as the product of three
factors: PI, PII and PIII, corresponding to the three
segments defined above (see Fig. 6). In segment I
(0 ≤ k ≤ nmax), the walker needs to attain the maxi-
mum value xmax at time nmax for the first time, while
remaining always above −xmin. Thus, it has first to ar-
rive at xmax − 1 at time nmax − 1 without leaving the
interval [−xmin + 1, xmax − 1] and then to jump to xmax

at time nmax. The probability weight of this last jump is
1/2. Hence, using the reflection invariance x → −x the
probability of the first segment can be written as

PI = G(xmax − 1, l1 − 1|M − 2)
1

2
, (161)

where l1 = nmax and M = xmin + xmax. Note that after
time nmax the walker is free to reach xmax again. For
the second segment (nmax ≤ k ≤ nmin) we apply a sim-
ilar reasoning: to reach the global minimum −xmin at
time nmin for the first time, the RW first has to arrive at
−xmin+1 while remaining in the interval [−xmin+1, xmax]
and then to jump to −xmin. Thus, the probability of the
second segment is

PII = G(M − 1, l2 − 1|M − 1)
1

2
, (162)

where l2 = τ = nmin − nmax. Finally, the probability
of the last segment is the probability to remain in the
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interval [−xmin, xmax] up to time n starting from −xmin.
This is simply given by:

PIII =

M∑
xf=0

G(xf , l3|M), (163)

where l3 = n−nmin and xf is the final position measured
with respect to −xmin. Thus the grand joint probability
P (xmin, xmax, tmin, tmax) is given by the product of the
three factors:

P (xmin, xmax, tmin, tmax|n) = PI PII PIII (164)

=
1

4
G(xmax − 1, l1 − 1|M − 2)G(M − 1, l2 − 1|M − 1)

×
M∑
xf=0

G(xf , l3|M) .

Again it is convenient to express this probability in terms
of the intervals l1, l2, l3, as in Eq. (132). Summing over
the position variables xmax and xmin we obtain the joint
probability:

P (l1, l2, l3) (165)

=

∞∑
xmax ,xmin=1

G(xmax − 1, l1 − 1|M − 2)

× 1

4
G(M − 1, l2 − 1|M − 1)

M∑
xf=0

G(xf , l3|M) .

Performing the change of variables (xmax, xmin) →
(xmax, M) in the summations above, we obtain

P (l1, l2, l3) (166)

=
1

4

∞∑
M=2

M−1∑
xmax=1

G(xmax − 1, l1 − 1|M − 2)

× G(M − 1, l2 − 1|M − 1)

M∑
xf=0

G(xf , s3|M) .

We multiply both sides by sl1 sl2 sl3 and we sum over l1,
l2 and l3:

∞∑
l1,l2,l3=1

P (l1, l2, l3)sl11 s
l2
2 s

l3
3 =

1

4

∞∑
M=2

M−1∑
xmax=1

(167)

× s1 G̃(xmax − 1, s1|M − 2) s2 G̃(M − 1, s2|M − 1)

×
M∑
xf=0

G̃(xf , s3|M) ,

where G̃(x, s|M) is the generating function of G(s, l|M)
given in Eq. (159). Note that in Eq. (167) we have used
the initial condition G(x, 0|M) = δx ,0. Rearranging the
terms in Eq. (167), we get

∞∑
l1,l2,l3=1

P (l1, l2, l3)sl11 s
l2
2 s

l3
3 =

s1 s2

4

∞∑
M=2

(168)

× Ĩ(M − 2, s1)G̃(M − 1, s2|M − 1)Ĩ(M, s3) ,

where

Ĩ(M, s) =

M∑
x=0

G̃(x, s|M) . (169)

Plugging the expression for G̃(x, s|M) given in Eq. (159),
we get

Ĩ(M, s) =
2

s

( 1

1− w(s)2(M+2)

w(s)M+1 − 1

1− ω(s)−1
(170)

+
1

1− w(s)−2(M+2)

w(s)−(M+1) − 1

1− ω(s)

)
.

It is now useful to recall the expression (138), which re-
lates the probability distribution P (τ |n) to the distribu-
tion P (l1, l2 = τ, l3) and is given by

∞∑
τ,n=1

P (τ |n)sτ2 s
n (171)

=

∞∑
l1,τ,l3=1

P (l1, l2 = τ, l3)sl1(s s2)τ sl3 .

It is easy to show that Eq. (171) is still valid for a
discrete-space RW. Thus, using Eqs. (168) and (171),
we obtain:

∞∑
τ,n=1

P (τ |n)sτ2s
n =

s2 s2

4

∞∑
M=2

Ĩ(M − 2, s) (172)

× Ĩ(M, s)G(M − 1, s s2|M − 1) .

Note that this relation (172) is exact and valid even for
finite n. As for the case of double-exponential jumps, we
are interested in the large n limit. In this limit we expect
the probability P (τ |n) to have a scaling form

P (τ |n) −→
n→∞

1

n
fLW

( τ
n

)
. (173)

Moreover, to investigate the limit τ, n → ∞ with τ/n
fixed it is useful, as before, to parametrise the Laplace
variables as s = e−λ and s2 = e−λ2 and to consider the
limit λ, λ2 → 0, with λ/λ2 fixed. In this limit, similarly
to the case of the double-exponential distribution (see
Eq. (145)), the left-hand side of Eq. (172) can be ap-
proximated, using Eq. (173) and the replacing the sums
by integrals, as

∑
τ,n

P (τ |n)sτ2s
n ≈

∫ 1

0

dy
fLW(y)

λ+ λ2 y
. (174)

We now consider the right-hand side of Eq. (172) and we
set s = e−λ and s2 = e−λ2 . When n is large, we expect
the sum over M to be dominated by terms with M � 1.
Thus, we can approximate M − 2 ≈ M − 1 ≈ M and
substitute the sum in Eq. (172) with an integral. This
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gives

s2 s2

4

∞∑
M=2

Ĩ(M − 2, e−λ) Ĩ(M, e−λ) (175)

× G(M − 1, e−(λ+λ2)|M − 1)

≈ e−(2λ+λ2)

4

∫ ∞
0

dM Ĩ(M, e−λ)2G(M, e−(λ+λ2)|M) .

Expanding Ĩ(M, e−λ) in Eq. (170) for small λ, we obtain:

Ĩ(M, e−λ) ≈
√

2

λ
tanh

(
M

√
λ

2

)
. (176)

The Green’s function G(M, e−(λ+λ2)|M) in Eq. (159)
can be approximated, for λ, λ2 → 0, as

G(M, e−(λ+λ2)|M) ≈
2
√

2(λ+ λ2)

sinh
(
M
√

2(λ+ λ2)
) . (177)

Substituting the expressions (176) and (177) into Eq.
(175) and approximating e−(2λ+λ2) ≈ 1, we get that the
right-hand side of Eq. (172) can be approximated by

∫ ∞
0

dM

√
2(λ+ λ2)

λ

tanh2
(
M
√
λ/2
)

sinh(M
√

2(λ+ λ2))
. (178)

Using this approximation (178) together with Eq. (174)
to approximate the left-hand side of Eq. (172), we get
that in the limit n, τ → ∞, with τ/n fixed, Eq. (172)
becomes ∫ 1

0

dy
fLW(y)

λ+ λ2 y
(179)

=

∫ ∞
0

dM

√
2(λ+ λ2)

λ

tanh2
(
M
√
λ/2
)

sinh(M
√

2(λ+ λ2))
.

Setting u = λ2/λ and performing the change of variables

z =
√

2(λ+ λ2)M we find the relation:∫ 1

0

dy
fLW(y)

1 + uy
=

∫ ∞
0

dz
1

sinh(z)
tanh2

(
z

2
√

1 + u

)
.

(180)
Comparing this result with Eq. (146) we notice that
fLW(y) and fexp(y) satisfy the same integral relation. As
explained in the previous section, this integral relation
can be exactly solved (see Appendix B) and one obtains
that

fLW(y) = fBM(y) , (181)

where fBM(y) is given by Eq. (3). Hence, also in the case
of lattice walks we have explicitly verified the expecta-
tions based on the Central Limit Theorem. See Fig. 7
for a numerical verification of this result.

B. Divergent jump variance

We now consider a class of RWs characterised
by jump distributions with divergent variance σ2 =∫∞
−∞ dη η2 p(η). In particular, we consider Lévy flights

for which the jump probability p(η) has heavy tails:

p(η) ∼ 1

|η|−(µ+1)
(182)

for η → ±∞, with 0 < µ < 2. Note that for such values
of the Lévy index µ the variance σ2 is divergent. Thus,
for these RWs the Central Limit Theorem does not hold.
Indeed, we verify numerically (see Fig. 7) that in the
limit of large number of steps n, the PDF of τ takes a
scaling form

P (τ |n) ≈ 1

n
fµ

( τ
n

)
, (183)

where the scaling function fµ(y) depends on the Lévy
index µ. Our general result is thus less universal with
respect to the distribution of the time of the maximum
nmax, which is the same for any symmetric jump distri-
bution. However, we observe from simulations that fµ(y)
goes to the value 1/2 when y → ±1 , independently of µ.
Thus, the PDF of the event “τ = n” is universal in the
limit of large n for any symmetric distribution p(η):

P (τ = n|n) = 1/(2n) (184)

In Section III, we have verified that the scaling function
fBM(y) approaches the limit value 1/2 linearly with a
negative slope −1/2. In the case of Lévy flights, this
linear behaviour in the vicinity of y = τ/n = 1 seems
to remain valid, but with a slope which depends on the
Lévy exponent µ (see Fig. 7). The asymptotic result in
Eq. (184) can be directly obtained in the case of lat-
tice walks (see Appendix C). As we will see in the next
section, this result in Eq. (184) is valid, in the case of
continuous jump distributions, for any finite n. However,
rigorously proving this fact for Lévy flights appears to be
a challenging task.

VI. UNIVERSAL PROBABILITY OF THE
EVENT τ = nmin − nmax = n

Let us consider a discrete-time random walk xk
generated by the Markov process in Eq. (114) with a
generic jump distribution p(η). In this section, we want
to investigate the probability pn that the number of
steps τ = nmin − nmax between the global maximum
and the global minimum is exactly equal to the total
number of steps n. Since τ is bounded by construction
between −n and n, the event “τ = n” can only happen
when nmax = 0 and nmin = n, which corresponds to con-
figurations as the one in Fig. 8. Thus, this probability
pn = P (τ = n|n) has a simple and nice interpretation.
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xk

no. of steps
k

FIG. 8: A typical trajectory of a discrete-time random walk
that contributes to the probability P (τ = n|n) where τ =
nmin − nmax. The event “τ = n” can only happen when
nmax = 0 and nmin = n. Consequently, the trajectories that
contribute to this event start at x0 = 0 and arrive at xn =
−xmin, while staying inside the box [−xmin, 0].

Indeed, using the x → −x symmetry of the process, pn
is the probability that a RW starting from the origin
remains positive up to step n and that the last value
xn is a record, meaning that xn > xk for k = 0, . . . , n−1.

In Section V, we have observed from numerical simu-
lations that, in the limit of large number n of steps, the
probability pn of the event “τ = n” appears to be com-
pletely independent of the distribution p(η) of the jumps
(see Fig. 7). Indeed, in the limit of large n,

pn = P (τ = n|n) ' 1

2n
(185)

for any symmetric jump distribution p(η). Notably, this
universality appears to be valid for a variety of distribu-
tions, including discrete distributions and distributions
with divergent first moment, e.g. Cauchy distribution.
Moreover, in the case of the double-exponential jump dis-
tribution and in the case of lattice walks, we analytically
showed that the probability distribution of τ converges,
in the large n limit, to the scaling form

P (τ |n) ' 1

n
fBM

( τ
n

)
, (186)

where the scaling function fBM(y) is given in Eq. (3). In
Section (III) we have observed that when y = τ/n → 1,
i.e. when τ → n, this scaling function fBM(y) converges
to the asymptotic value 1/2 (see Eq. (67)). Thus, taking
the limit τ → n in Eq. (186) we obtain the result in Eq.
(185). Moreover, Eq. (185) can be also derived directly
in the case of lattice walks (see Appendix C).

We now want to show that, in the case of continuous
jump distributions, the universal result in Eq. (185) is
exactly valid even for finite n. In Fig. 9, we verify this

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n
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0.14

0.16

p n

1/(2n)
Lattice walk
Gaussian
Uniform
Exponential
Levy ( =1/2)
Levy ( =3/2)

FIG. 9: The probability pn = P (τ = n|n) as a function of
n for discrete-time random walks (RWs) for different jump
distributions. Continuous jump distributions collapse onto
the universal result 1/(2n) shown by the solid (blue) line.
In the case of lattice walks, which are discrete in space, the
result 1/(2n) is only reached asymptotically for large n. The
empirical curves are obtained by simulating 107 RWs for each
jump distribution.

universality numerically for several different continuous
jump distributions. Even if finding a theoretical expla-
nation of this universality appears to be non-trivial, it
is possible to analytically derive the result pn = 1/(2n)
in the special case of double-exponential jumps. More-
over, besides the trivial cases n = 1 and n = 2, in Ap-
pendix E, we provide a proof of this universality in the
case n = 3. However, generalising the method presented
in Appendix E to n > 3 appears to be challenging. Thus,
proving this conjecture pn = 1/(2n) for symmetric and
continuous jump distribution remains an interesting open
problem.

It is easy to verify that this result pn = 1/(2n) for
any finite n does not hold for RWs with discrete jump
distributions (see Fig. 9). For instance, if we consider the
discrete distribution p(η) = δ(|η| − 1)/2, corresponding
to lattice walks, it is easy to check for n = 3 that

p3 =
1

8
6= 1

2n
. (187)

Note that for RWs with discrete distributions the global
maximum and the global minimum are degenerate with
finite probability. Thus, here we define nmax (nmin) as the
step at which the global maximum (minimum) is reached
for the first time.

In the case of RWs with double exponential jumps,
i.e. when p(η) = (1/2)e−|η|, we can analytically show
that pn = 1/(2n) for any finite n. Since −n ≤ τ ≤ n,
it follows that the event “τ = nmin − nmax = n” corre-
sponds, as explained above, to having the maximum at
step nmax = 0 and the minimum at step nmin = n (see
Fig. 8). This corresponds to a trajectory that starts at
the origin at step 0, reaches −xmin at step n, stays in
the box [−xmin, 0] for all intermediate steps. To com-
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0 xminxmax L 0 xminxmaxx xa) b)
0

H(x,t) H(x,t)

0

FIG. 10: Typical realizations of the height H(x, t) of (1 + 1)−dimensional Kardar-Parisi-Zhang fluctuating interfaces, evolving
on a substrate of size L, as a function of the position x and at fixed time t: a) for the free boundary conditions and b) for the
periodic boundary condition. The maximal height is reached at position x̃max and the minimal height at position x̃min. The
distance between the points of maximal and minimal height is denoted as τ .

pute the probability of such a trajectory, it is useful first
to reflect the trajectory x → −x, so that we just need
to compute the probability that the walker starting at 0
arrives at xmin ≥ 0 at step n, while staying in the box
[0, xmin], with xmin integrated over [0,+∞). This proba-
bility can be conveniently expressed in terms of our basic
building block G(x, n|M), defined as the probability that
the walker goes from the origin to position x in n steps,
always remaining in the box [0,M ]. Indeed, after inte-
grating over xmin, we get

pn = P (τ = n|n) =

∫ ∞
0

G(xmin, n|xmin) dxmin . (188)

Hence, to prove that pn = 1/(2n), we need to evaluate the
integral on the right-hand side of Eq. (188). Actually, for
the double-exponential jump distribution, the generating
function of G(x, n|M) was exactly computed in Section
V. Hence, multiplying both terms of Eq. (188) by sn and
summing over n, we obtain,

∞∑
n=1

pn s
n =

∫ ∞
0

G̃(xmin, s|xmin) dxmin . (189)

Using the expression for G̃(xmin, s|M) in Eqs. (126) and
(124), with M = xmin, we obtain

∞∑
n=1

pn s
n =

∫ ∞
0

dxmin
1−
√

1− s
1− ( 1−

√
1−s

1+
√

1−s )2e−2
√

1−s xmin

×
[
e−
√

1−s xmin − 1−
√

1− s
1 +
√

1− s
e−
√

1−s xmin

]
. (190)

Computing the integral on the right-hand side, we obtain,

after few steps of algebra,

∞∑
n=1

pn s
n = −1

2
log (1− s) . (191)

The right-hand side can be rewritten in Taylor series for
0 < s < 1 as follows

∞∑
n=1

pn s
n =

1

2

∞∑
n=1

1

n
sn , (192)

which implies that for any finite n ≥ 1

pn = P (τ = n|n) =
1

2n
. (193)

VII. FLUCTUATING INTERFACES

A remarkable application of our results is to KPZ/EW
fluctuating interfaces. We consider a (1+1)−dimensional
fluctuating interface evolving over a substrate of finite
size L. Let H(x, t) be the height of the interface at po-
sition x at time t, with 0 ≤ x ≤ L, as in Fig. 10 [65–67].
We describe the evolution of the height field in time using
the KPZ equation [49]

∂H(x, t)

∂t
=
∂2H(x, t)

∂x2
+λ

(
∂H(x, t)

∂x

)2

+η (x, t) , (194)

where λ ≥ 0 and η(x, t) is a Gaussian white noise with
zero mean and correlator 〈η (x, t) η (x′, t′)〉 = 2δ(x −
x′)δ(t − t′). The linear case λ = 0 corresponds to EW
equation [50]. We consider both free boundary condi-
tions, where the endpoints H(0, t) and H(L, t) evolve
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FIG. 11: Scaling plot of P (τ = x̃min − x̃max|L) for the Edwards-Wilkinson interface obtained from the numerical integration
of Eq. (207) with ∆t = 0.01 and L = 512: a) for the free boundary conditions and b) for the periodic boundary conditions.
The solid line in a) represents the analytical scaling function fBM(y) given in Eq. (3) while the filled dots represent simulation
data. In b), the solid line represents the analytical scaling function fBB(y) given in Eq. (8), while the filled dots represent
simulation data. The numerical data are obtained by averaging over 106 samples.

freely, and periodic boundary condition, where the con-
straint H(0, t) = H(L, t) is present (see Fig. 10). Here
we are interested in describing this system in the large
time limit. However, since the zero mode, characterised
by the average height

H(t) =
1

L

∫ L

0

H(x, t) dx , (195)

typically grows with time, the height H(x, t) will never
reach a stationary state, even for a finite system. Thus,
it is useful to define the displacement from the average
height, i.e. the relative height

h(x, t) = H(x, t)−H(t) . (196)

In this way, we are fixing the zero mode to be exactly
zero. Indeed, note that h(x, t) satisfies by construction∫ L

0

dxh(x, t) = 0 . (197)

For finite L, it turns out that h(x, t) reaches a stationary
state h(x) for late times. In this stationary state, we
define the position at which the height is minimal as

x̃min = argmin0≤x≤L (h(x)) , (198)

and the position of maximal height as

x̃max = argmax0≤x≤L (h(x)) . (199)

We are mainly interested in computing the joint PDF
P (x̃max , x̃min|L) of x̃max and x̃min and the PDF of the
position distance τ = x̃min−x̃max between maximum and
minimum, which we denote as P (τ |L). We also denote
the maximal and the minimal relative height as hmax =
h(x̃max) and hmin = h(x̃min).

A. Edwards-Wilkinson case

We start by considering the simpler case of EW inter-
faces, corresponding to λ = 0 in Eq. (194). First, we
consider FBC, i.e. we assume that the height values h(0)
and h(L) at the extremes of the interval evolve freely
according to Eq. (194). In this case, the PDF of the sta-
tionary state h(x) of EW equation is given by [51, 52, 68]

Pst ({h}) = AL e
− 1

2

∫ L
0
dx(∂xh)2δ

[∫ L

0

h(x)dx

]
, (200)

where the delta function enforces the constraint (197)
and AL is the normalisation constant

AL =
√

2πL3/2 . (201)

On the other hand, in the case of PBC h(0) and h(L)
evolve freely but with h(0) = h(L). Thus, the station-
ary distribution of h(x) contains the additional factor
δ (h(0)− h(L)):

Pst ({h}) = BL e
− 1

2

∫ L
0
dx(∂xh)2δ

[∫ L

0

h(x)dx

]
(202)

× δ (h(0)− h(L)) ,

with BL corresponding to the normalisation constant

BL = L . (203)

From the expressions of the stationary probabilities (200)
and (202), we observe that, for both FBC and PBC, the
stationary height h(x) behaves locally as a BM, apart
from a global zero area constraint. Indeed if we identify
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(a) space with time, i.e. x ⇔ t, (b) the total substrate
length L with the total duration T , i.e. L ⇔ T and (c)
the stationary relative height h(x) with the position x(t)
of a BM, i.e. h(x)⇔ x(t), we find a one-to-one mapping
between the stationary EW interface and the positions
of a BM (for the case of the FBC). In the case of the
PBC, the stationary interface corresponds to a BB. Note
however that due to the zero area constraint (197) the
process x(t) obtained through the mapping is not ex-
actly a BM/BB. Indeed, x(t) has to satisfy an equivalent
constraint: ∫ T

0

dt x(t) = 0 . (204)

Hence, the statistical properties of this process x(t) will
in general differ from those of a usual BM/BB. For in-
stance, the PDF of the maximal (minimal) height hmax

(hmin) is known for both boundary conditions to be dif-
ferent from the PDF of the maximum (minimum) value
of an usual BM/BB [51, 52]. Indeed, the zero area con-
straint affects the value of the maximum (minimum).
On the other hand, this constraint just corresponds to
a global shift by the zero mode. Thus, it is clear that,
due to the locally Brownian nature of h(x), the posi-
tions at which the extrema occur are not affected for
both FBC and PBC. Hence, for FBC the joint PDF of
x̃max and x̃min P (x̃max , x̃min|L) will coincide with that
of the times tmax and tmin for a BM of total duration
T = L. This implies that the stationary probability dis-
tribution of the position difference τ between minimum
and maximum is given by

P (τ = x̃min − x̃max|L) =
1

L
fBM(

τ

L
) , (205)

where the scaling function fBM(y) is given by Eq. (3).
In the case of PBC, exploiting the mapping to a BB, we
have that

P (τ = x̃min − x̃max|L) =
1

L
fBB(

τ

L
) , (206)

where the scaling function fBB(y) is given in Eq. (8).
To check this prediction for P (τ |L) in Eqs. (205) and
(206) for the EW interface, we numerically integrated
the space-time discretised form of Eq. (194) with λ = 0

H(i, t+ ∆t)−H(i, t) = ∆t
[
H(i+ 1, t) +H(i− 1, t)

− 2H(i, t)
]

+ ηi(t)
√

2∆t , (207)

where ηi(t)’s are IID random variables for each i and t,
each drawn from a Gaussian distribution of zero mean
and unit variance. We considered both the FBC and the
PBC with ∆t = 0.01 and L = 512. We have run the sim-
ulation for a sufficiently large time to ensure that the sys-
tem has reached the stationary state and then measured
the PDF P (τ |L). Even though we expect the results in
Eqs. (205) and (206) to be valid for all values of L, this
expectation is only for the continuum version of the EW
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FIG. 12: Scaling plot of P (τ = x̃min − x̃max|L) for the KPZ
interface with PBC obtained using the discretisation scheme
(208) with ∆t = 0.01 and L = 512. The solid line represents
the analytical scaling function fBB(y) given in Eq. (8), while
the filled dots represent the simulation data. The numerical
data are obtained by averaging over 106 samples.

equation (194) with λ = 0. Since for the simulation we
have use the discrete version (207) of this equation, we
expect these results in Eqs. (205) and (206) to hold only
for large L. Actually, for L = 512, we already see an
excellent agreement between simulations and analytical
results. In Fig. 11 a) we compare the simulations with
the analytical prediction for the FBC in Eq. (205). The
corresponding simulation results for the PBC are shown
in Fig. 11 b) and compared with the analytical prediction
in Eq. (206).

B. Kardar-Parisi-Zhang case

At variance with the case of EW equation, for the KPZ
equation (194) with λ > 0, the stationary state for the
relative heights is expected to converge to the same mea-
sures (200) and (202) (respectively for the FBC and the
PBC), but only in the limit L → ∞. Therefore, we ex-
pect that the results for P (τ |L) in Eqs. (205) and (206)
to hold also for the KPZ equation for large L. However,
verifying these analytical predictions numerically for the
KPZ equation is challenging because the non-linear term
is not easy to discretise [69, 70]. Several discretisation
schemes have been proposed in the literature and we
found it suitable to use the scheme proposed by Lam
and Shin [70], where the non-linear term λ(∂xH(x, t))2

is discretised as follows

λ

3

[
(H(i+ 1, t)−H(i, t))2 + (H(i+ 1, t)−H(i, t))

× (H(i, t)−H(i− 1, t)) (208)

+ (H(i, t)−H(i− 1, t))2)
]
.
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The advantage of this scheme is that one can prove an-
alytically that, for the PBC, the Fokker-Planck equation
associated with this discrete model admits a stationary
solution,

Pst({H}) ∝ exp

[
−1

2

L∑
i=1

(H(i+ 1, t)−H(i, t))2

]
,

(209)
independently of λ. In the L → ∞ limit, the stationary
measure converges to the Brownian measure Pst({H}) ∝
exp

[
− 1

2

∫ L
0

(∂xH)2 dx
]
. Therefore, with this discretisa-

tion scheme (208) and PBC, we expect to recover the BB
result for P (τ |L) as in Eq. (206). In Fig. 12 we compare
the simulation results for P (τ |L) for the KPZ equation
with PBC and λ = 1 (with parameters ∆t = 0.01 and
L = 512), with the analytical scaling function in Eq.
(206) for the BB – the agreement is excellent. Unfortu-
nately, for the KPZ equation with the FBC, there is no
convenient discretisation scheme for the non-linear term
that correctly produces the stationary measure for finite
L. Of course, we still expect that, in this case, the results
for P (τ |L) for the KPZ equation in the stationary state
will again converge to the Brownian prediction given in
Eq. (205) in the large L limit. However, numerically ver-
ifying this for finite but large L seems challenging, due
to the absence of a good discretisation scheme for the
non-linear term in the FBC case.

VIII. CONCLUSIONS

In summary, we have presented an exact solution for
the probability distribution of the time τ between the
maximum and the minimum for a class of stochastic pro-
cesses. First, we have considered a one-dimensional BM
of duration T . In this case, we have used a path-integral
method to show that the PDF of τ has a scaling form for
any τ and T , i.e. P (τ |T ) = (1/T )fBM(τ/T ), and we have
exactly computed the scaling function fBM(y). In partic-

ular we find that fBM(y) ∼ e−π/
√
|y| when y → 0, while

fBM(y) ∼ 1/2 when y → ±1. We have generalised our
result to a one-dimensional BB, finding a different scaling
function fBB(y). We have verified numerically that the
PDF of τ for BM is universal in the sense of the Central
Limit Theorem, i.e. the scaling function fBM(y) is also
valid for discrete-time RWs with finite-variance jumps in
the limit of large number of steps n. For two particular
RW models, namely RW with double-exponential jumps
and lattice walks, we have proved analytically this uni-
versality. In the case of Lévy flights with a divergent
jump variance we have observed from numerical simula-
tions that the PDF of τ differs from the Brownian case.
Indeed, for Lévy walks the precise shape of P (τ |n) de-
pends on the tail behaviour of the jump distribution.

For discrete-time RWs with symmetric and continuous
jump distribution, we found numerically that the proba-
bility pn = P (τ = n|n) = 1/(2n) for any finite n, com-

pletely independent of the jump distribution. We could
prove this result analytically for the double exponential
jump distribution. For general symmetric and continuous
jump distribution, we could prove this super-universality
only for n ≤ 3. We believe that there must be an ele-
gant combinatorial proof of this result, but it has eluded
us so far. Proving this conjecture for n > 3 remains a
challenging open problem.

Finally, we have also observed that the distribution
of τ for BM and BB emerges in the statistical descrip-
tion of fluctuating interfaces. Indeed, the space distance
between the maximal and minimal height of a (1 + 1)-
dimensional stationary KPZ interface growing over a sub-
strate of size L has the same probability distribution as
τ for BM, if one considers FBC, or for BB, in the case of
PBC.

For further studies it would be interesting to compute
the distribution of τ in the case of Lévy flights. More-
over, in this paper we have only investigated processes
with symmetric increments. It would be relevant to study
how the PDF of τ gets modified when one considers an
additional drift in the process, such as for drifted BM.
This could be useful to describe financial data, which
have the tendency to increase or decrease persistently in
time. Finally, it would be also interesting to compute the
distribution of τ for stochastic processes with correlated
noise, such as run-and-tumble particles or active BM.

Appendix A: Computation of the integral J(α, β)

In this appendix we explicitly compute the integral

J(α, β) =

∫ ∞
0

dxmin

∫ ∞
0

dxmaxe
− β

(xmin+xmax)2 (A1)

× 1

(xmin + xmax)6
sin

(
αxmin

xmin + xmax

)
.

First of all, we perform the change of variable
(xmin, xmax)→ (m = xmin,M = xmin + xmax)

J(α, β) =

∫ ∞
0

dm

∫ ∞
m

dM

M6
e−

β

M2 sin
(αm
M

)
.(A2)

In the integral over M we make the change of variable
M → z = M/m, this yields, after inverting the order of
the integrals,

J(α, β) =

∫ ∞
1

dz

z6

∫ ∞
0

dm

m5
e
− β

(mz)2 sin
(α
z

)
. (A3)

In order to decouple the two integrals we change variable
m→ y = zm in the integral over m. We get that

J(α, β) =

∫ ∞
1

dz

z2
sin
(α
z

)∫ ∞
0

dy

y5
e
− β

y2 . (A4)

The two integrals can now easily computed and one finds
the final result

J(α, β) =
1− cosα

2αβ2
, (A5)

which is given in Eq. (34).
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Appendix B: Solution of the integral relation

In this appendix we show that the solution of Eq. (147)∫ 1

0

dy
f(y)

w − y
=

2

w

√
1− 1

w

∫ ∞
0

dt
tanh2(t)

sinh
(

2t
√

1− 1
w

) .
(B1)

is

f(y) =
1

y

∞∑
n=1

(−1)n−1 tanh2

(
nπ

2

√
y

1− y

)
, (B2)

for 0 ≤ y ≤ 1. Moreover, using Eqs. (B1) and (B2), we
show that∫ 1

0

dy

∞∑
n=1

(−1)n+1 1

y
tanh2

(
nπ

2

√
y

1− y

)
=

1

2
, (B3)

which is used in Section III to determine the normalisa-
tion constant A of the scaling function fBM(y).
First of all, we recognise the left-hand side of Eq. (B1)
as the Stieltjes transform of the function f(y). To invert
this Stieltjes transform we use the Sochocki-Plemelj for-
mula [64]. Setting w = y+ iε with y real, in our case this
formula reads

f(y) = − 1

π
lim
ε→0

Im

[
2

(y + iε)

√
1− 1

(y + iε)
(B4)

×
∫ ∞

0

dt
tanh2(t)

sinh
(

2t
√

1− 1
(y+iε)

)] .
We first expand the integrand of the right-hand side of
Eq. (B4) for small ε and take the imaginary part

Im

 1

(y + iε)

√
1− 1

(y + iε)

1

sinh
(

2t
√

1− 1
(y+iε)

)
(B5)

' ε

y3

t cos
(

2t
√

1−y
y

)
− 3−2y

2

√
y

1−y sin
(

2t
√

1−y
y

)
sin2

(
2t
√

1−y
y

)
+ ε2t2

y3(1−y) cos2
(

2t
√

1−y
y

) .

Note that we have kept the leading term of order O(ε2)
in the denominator in the second line of Eq. (B5), so
that the integral over t does not diverge. Substituting
Eq. (B5) in Eq. (B4) and making the change of variable

v = 2t
√

1−y
y , we get

f(y) = lim
ε→0

[
− ε

2πy2(1− y)

∫ ∞
0

dv (B6)

× tanh2

(
v

2

√
y

1− y

)
v cos(v)− (3− 2y) sin(v)

sin2(v) + ε2v2

(2y(1−y))2
cos2(y)

]
.

To compute the integral on the right-hand side, we split
it as a sum of integrals over v ∈ [0, π/2] and v ∈ [nπ −

π/2, nπ + π/2] for n ≥ 1. The integral over [0, π/2] is
convergent (since there is no divergence of the integrand
even when ε → 0 in the denominator) and is of order
O(ε). Thus it vanishes in the limit ε→ 0. Hence

f(y) = lim
ε→0

[
− ε

2πy2(1− y)

∞∑
n=1

In(y)

]
, (B7)

where

In(y) =

∫ nπ+π/2

nπ−π/2
dv tanh2

(
v

2

√
y

1− y

)
(B8)

× v cos(v)− (3− 2y) sin(v)

sin2(v) + ε2v2

(2y(1−y))2
cos2(v)

.

For n ≥ 1, we need to keep the O(ε2) regulator in the
denominator of the right-hand side of Eq. (B8) since
there is a double pole at v = nπ. Therefore, in the ε→ 0
limit, the dominant contribution to In(y) comes from the
neighbourhood of v = nπ. Indeed, setting v = nπ + ε z,
we find to leading order in the small ε limit

In(y) ' ε

∫ +∞

−∞
dz tanh2

(
nπ + εz

2

√
y

1− y

)
(B9)

× (nπ)(−1)n

ε2(z2 + (nπ)2

(2y(1−y))2 )

=
2πy(1− y)(−1)n

ε
tanh2

(√
y

1− y
nπ

2

)
.

Substituting this result in Eq. (B7), we see that the limit
ε→ 0 clearly exists and is given, for 0 ≤ y ≤ 1, by

f(y) =
1

y

∞∑
n=1

(−1)n−1 tanh2

(
nπ

2

√
y

1− y

)
. (B10)

We can now show the validity of Eq. (B3). Setting u =
−1/w and changing variable t → z = 2

√
1 + ut in Eq.

(B1), we get

∫ 1

0

dy
f(y)

1 + uy
=

∫ ∞
0

dz
1

sinh(z)
tanh2

(
z

2
√

1 + u

)
.

(B11)
Setting u = 0 in Eq. (B11) and plugging the expression
for f given in Eq. (B10), we obtain that

∫ 1

0

dy
1

y

∞∑
n=1

(−1)n−1 tanh2

(
nπ

2

√
y

1− y

)
(B12)

=

∫ ∞
0

dz
1

sinh(z)
tanh2

(z
2

)
.

The integral in the second line is equal to 1
2 and hence

we obtain Eq. (B3).
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Appendix C: Direct proof of P (τ = T |T ) = 1/(2T ) for
lattice walks

In Section V we show that for RWs with finite jump
variance the probability distribution P (τ |n), in the limit
of large n, approaches the scaling form

P (τ |n)→ 1

n
fBM

( τ
n

)
, (C1)

where the scaling function fBM(y) is given in Eq. (3).
The asymptotics of this function fBM(y) have been de-
rived in Section III. In particular, in the limit y → 1, we
obtain that (see Eq. (4))

fBM(y)→ 1

2
. (C2)

This result indicates that, for large n,

P (τ = n|n) ≈ 1

2n
. (C3)

Remarkably, in Section (VI) we show that this result is
valid even for finite n in the case of continuous-space
RWs.
In this appendix we show that this result (188) can be
proved directly in the case of lattice walks, corresponding
to the discrete jump distribution

p(η) = (1/2)δ(|η| − 1) . (C4)

Due to the discrete-space nature of these lattice walks,
the result in Eq. (188) is only valid for large n. As ex-
plained in Section V, since we are considering a discrete-
space random walk, we need to be careful when defining
the global minimum and the global maximum. Indeed,
the global extrema of a lattice walk will be degenerate
with finite probability. Hence, for simplicity, we define
nmin (nmax) as the time at which the global minimum
(maximum) is reached for the first time. In order to reach
the global minimum −xmin at step n for the first time,
the random walk has first to arrive at position −xmin + 1
at time n − 1 and then, with probability 1/2, to jump
down. To enforce that the global maximum is attained
for the first time at step nmax = 0, we need to impose
that the walker starts at the origin and that xk ≤ 0 for
any k. Overall, we need to compute the probability that
the walker starts from the origin and arrives at position
−xmin + 1 after n − 1 steps, remaining always in the
space-interval [−xmin + 1, 0], and then it jumps to posi-
tion −xmin. Using, the x→ −x symmetry and summing
over xmin, we obtain that

P (τ = n|n) =
∞∑

xmin=1

G(xmin− 1, n|xmin− 1) × 1

2
, (C5)

whereG(x, l|M) is the probability to go from the origin to
position x in l steps, always remaining inside the interval
[0,M ], and the factor 1/2 is the probability of the last

jump. Multiplying both terms by sn and we summing
over n, we obtain
∞∑
n=1

P (τ = n|n)sn =
1

2

∞∑
xmin=1

G̃(xmin − 1, s|xmin − 1) ,

(C6)

where the generating function G̃(xmin − 1, s|xmin − 1) is
given in Eqs. (159) and (160). We want to study the large
n limit, which corresponds to the s→ 1 limit. Thus, we
set s = e−p and we take the limit p→ 0:
∞∑
n=1

P (τ = n|n)e−pn =
1

2

∞∑
xmin=1

G̃(xmin−1, e−p|xmin−1) .

(C7)
In the limit p→ 0 we expect the sum on the right-hand
side to be dominated by large values of xmin, hence we
can approximate xmin − 1 ' xmin. Moreover, when p is
small it is reasonable to approximate the sums in both
terms with integrals. This yields∫ ∞

0

dnP (τ = n|n)e−pn =
1

2

∫ ∞
0

dxmin G̃(xmin, e
−p|xmin) .

(C8)

Expanding the expression for G̃(xmin, e
−p|xmin) in Eqs.

(159) and (160) for small p, we get

G̃(xmin, e
−p|xmin) ' 2

√
2p

sinh(xmin

√
2p)

. (C9)

Plugging this expression (C9) into Eq. (C8) and changing

variable xmin → x =
√

2xmin, we get∫ ∞
0

dnP (τ = n|n)e−pn =

∫ ∞
0

dx

√
p

sinh(x
√
p)
. (C10)

We next invert this Laplace transform with respect to p
using the identity [58]

√
p

sinh
(√
p
) =

∞∑
m=1

2m2π2(−1)m+1

p+m2π2
, (C11)

and noting that each term on the right-hand side corre-
sponds to a simple pole in the complex p-plane. Hence
the inversion of the Laplace transform becomes simple
and we get

G (xmin, n|xmin) =
2π2

x3
min

∞∑
m=0

(−1)m+1m2e
−m2π2

x2
min

n
(C12)

=
1

n

d

dxmin

[ ∞∑
m=0

(−1)m+1e
−m2π2

x2
min

n

]
.

Integrating over xmin, Eq. (188) gives

P (τ = n|n) =

∫ ∞
0

G(xmin, n|xmin)dxmin (C13)

≈ 1

n

( ∞∑
m=0

(−1)m+1 + 1

)
=

1

2n
.

Note that, in the last line, we have used the regularisa-
tion as in Eq. (58) to evaluate the sum on the second line.
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Appendix D: Probability distribution of
τ = nmin − nmax for random walk bridges.

In Section V we have shown that, in the case of
discrete-time random walks with finite jump variance,
the probability distribution of τ = nmin−nmax converges,
in the limit of large number of steps n, to the Brownian
result in Eq. (3). One may wander whether a similar
result holds also in the case of random walk bridges, i.e.
random walks with the additional constraint that they
have to go back to the origin at the final step. More pre-
cisely, we consider a time series xk, with k = 0, 1, . . . , n,
generated by the Markov rule

xk = xk−1 + ηk , (D1)

with initial condition x0 = 0 and with the constraint
xn = 0. The jumps ηk are IID random variables with
PDF p(η), which is assumed to be symmetric around
zero. When the jump variance σ2 =

∫∞
−∞ dη p(η)η2 is fi-

nite, the Central Limit Theorem states that, in the limit
of large n, the stochastic process xk converges to a Brow-
nian bridge. Thus, we expect that also the probability
distribution of the time τ between the global maximum
and the global minimum converges to the result in Eq.
(8), obtained in the case of a Brownian bridge. Here we
directly verify this convergence in the case of the double-
exponential jump distribution p(η) = (1/2)e−|η|. A sim-
ilar result can be easily obtained also in the case of lat-
tice walks. First of all, we notice that, due to the bridge
constraint, the probability distribution P (τ |n) is now im-
plicitly conditioned to the fact that the final position is
zero. Thus, using Bayes’ theorem, we obtain that

P (τ |n) =
P (τ, xn = 0|n)

P (xn = 0|n)
. (D2)

We first compute the denominator P (xn = 0|n), which is
the probability that an unconstrained random walk goes
back to the origin at step n. We define the propagator
G(x, n) as the probability that the walker is at position
x after n steps. Note that P (xn = 0|n) = G(0, n) and
that the initial condition is G(x, 0) = δ(x). Using the
Markov property, we can write down a recursion relation
for G(x, n):

G(x, n) =

∫ ∞
−∞

dx′G(x′, n− 1)p(x− x′) , (D3)

for any n ≥ 1. This equation means that in order to
arrive at position x at step n, the walker must have been
at some position x′ at step n − 1 and then it must have
jumped, with probability p(x − x′), to position x. In
the case of the double-exponential distribution p(η) =
(1/2)e−|η|, as explained in Section V, one can solve this
kind of integral equations using the fact that

p′′(x) = p(x)− δ(x) , (D4)

It is convenient to consider the generating function of
G(x, n):

G̃(x, s) =

∞∑
n=1

G(x, n)sn . (D5)

Multiplying both terms of Eq. (D3) and summing over
n ≥ 1, we obtain

G̃(x, s) = s

∫ ∞
−∞

dx′ G̃(x′, s)p(x− x′) + s p(x) , (D6)

where we have used the initial condition G(x, 0) = δ(x).
Differentiating Eq. (D6) twice with respect to x and
using Eq. (D4), we obtain

∂2G̃(x, s)

∂x2
= (1− s)G̃(x, s)− sδ(x) . (D7)

When x > 0, the δ-function disappears and the most
general solution of the differential equation (D7) is

G̃(x, s) = A+(s)e−
√

1−sx +B+(s)e
√

1−sx , (D8)

where A+(s) and B+(s) are two arbitrary constants.
Similarly, for x < 0, we obtain

G̃(x, s) = A−(s)e
√

1−sx +B−(s)e−
√

1−sx , (D9)

where A− and B− are again arbitrary constants. First
of all, in the limit x → ∞ we know that the propagator
G(x, n) goes asymptotically to zero. This implies that

G̃(x, s) cannot diverge when x→∞ and hence we obtain
that B+ = 0. Similarly, considering the limit x → −∞,

we obtain that B− = 0. Moreover, imposing that G̃(x, s)
is continuous at the origin, we obtain that

A+ = A− ≡ A . (D10)

Finally, to determine the constant A, we integrate Eq.
(D7) for x ∈ (−ε, ε). This yields

∂G̃(ε, s)

∂x
− ∂G̃(−ε, s)

∂x
=

∫ ε

−ε
dx (1−s)G̃(x, s)−s . (D11)

Taking the limit ε → 0 the integral on the right-hand
side vanishes and we obtain the condition

∂G̃(0+, s)

∂x
− ∂G̃(0−, s)

∂x
= −s . (D12)

Using Eqs. (D8) and (D9) and setting A+ = A− = A,
we obtain

A =
s

2
√

1− s
. (D13)

Thus, the generating function of G(x, n) is given by

G̃(x, s) =
s

2
√

1− s
e−
√

1−s|x| . (D14)
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We are interested in the large n limit, which corresponds
to the limit s→ 1. Thus, it is convenient to parametrise
s = e−p and to consider the limit p → 0. In this limit,
the sum over n in the definition of G̃(x, s) can be ap-
proximated with an integral. Hence, using s = e−p and
expanding the right-hand side of Eq. (D14) for small p,
we obtain∫ ∞

0

dnG(x, n) e−pn ' 1

2
√
p
e−
√
p|x| . (D15)

Inverting the Laplace transform, we obtain that in the
large n limit

G(x, n) ' 1√
4πn

e−
x2

4n . (D16)

Setting x = 0 and using P (xn = 0|n) = G(0, n), we
obtain that for large n

P (xn = 0|n) ' 1√
4πn

. (D17)

To proceed, we need to determine the probability
P (τ, xn = 0|n). The method to compute this probability
is similar to the one presented in Section V, with the only
difference that we do not need to integrate over the final
position xn, which is instead fixed. We will first write
the joint probability P (xmin, xmax, nmin, nmax, xn = 0|n)
of the global minimum xmin, the global maximum xmax,
the time of the minimum nmin, the time of the maxi-
mum nmax and the event “xn = 0”. Considering the
case nmin > nmax, this probability can be computed as
a product of three factors PI, PII, and PIII, correspond-
ing to the three segments in Fig. 6): 0 ≤ k ≤ nmax (I),
nmax ≤ k ≤ nmin (II), and nmin ≤ k ≤ n (III). Each
of these probability factors can be expressed in terms
of the restricted Greens’ function G(x, n|M), defined as
the probability that the walker goes from the origin to
position x in n steps, without leaving the space-interval
[0,M ]. We recall that in our case M = xmin +xmax. The
generating function of G(x, n|M) has been computed in
Section V and is given by (see Eqs. (124) and (126)):

G̃ (x, s|M) = A(s,M) (D18)

×
[
e−
√

1−s x − 1−
√

1− s
1 +
√

1− s
e−
√

1−s (2M−x)

]
,

where

A(s,M) =
1−
√

1− s

1−
(

1−
√

1−s
1+
√

1−s

)2

e−2
√

1−sM
. (D19)

The probabilities of the first two segments are exactly
identical to the ones computed in the case of random
walks. Thus,

PI = G(xmax, l1|M) (D20)

where l1 = nmax and

PII = G(M, l2|M) , (D21)

where l2 = nmin − nmax. The probability of the third
segment is modified as follows to take into account the
constraint xn = 0

PIII = G(xmin, l3|M) , (D22)

where l3 = n − nmax. The grand joint PDF
P (xmin, xmax, nmin, nmax, xn = 0|n) is given by the prod-
uct of the three factors above

P (xmin, xmax, nmin, nmax, xn = 0|n) = PIPIIPIII

= G(xmax, l1|M)G(M, l2|M)G(xmin, l3|M) , (D23)

where M = xmin + xmax. It is useful to express the left-
hand side in terms of the intervals l1, l2 and l3, hence we
define

P (xmin, xmax, nmin, nmax, xn = 0|n) (D24)

≡ P (xmin, xmax, l1, l2, l3, xn = 0) .

Multiplying both terms of Eq. (D23) by sl11 s
l2
2 s

l3
3 and

summing over l1, l2 and l3, we get∑
l1,l2,l3

P (xmin, xmax, l1, l2, l3, xn = 0) sl11 s
l2
2 s

l3
3 (D25)

= G̃ (xmax, s1|M) G̃ (M, s2|M) G̃ (M − xmax, s3|M) ,

where G̃(x, s|M) is given in Eq. (D18). We now integrate
both terms of Eq. (D25) over xmin and xmax in order to
obtain the marginal probability P (l1, l2, l3, xn = 0) of l1,
l2 and l3. Making a change of variables (xmin, xmax) →
(xmax,M = xmax + xmin), we obtain∑

l1,l2,l3

P (l1, l2, l3, xn = 0) sl11 s
l2
2 s

l3
3 (D26)

=

∫ ∞
0

dM G̃ (M, s2|M)

∫ M

0

dxmax G̃ (xmax, s1|M)

× G̃ (M − xmax, s3|M) ,

To compute the marginal probability P (τ, xn = 0|n) of
τ = nmin − nmax and of the event “xn = 0”, we write it
in terms of the joint PDF P (l1, l2, l3, xn = 0) as follows

P (τ, xn = 0|n) (D27)

=

∞∑
l1,l2=1

P (l1, l2 = τ, l3, xn = 0)δ(l1 + τ + l3 − n)

Multiplying both terms by sτ2s
n and summing over n and

τ , we obtain

∞∑
n=1

n∑
τ=1

P (τ, xn = 0|n)sτ2 s
n (D28)

=

∞∑
l1,τ,l3=1

P (l1, l2 = τ, l3, xn = 0)sl1(s s2)τ sl3 .



30

Notice that the right-hand side of Eq. (D28) can be read
off Eq. (D26) by setting s1 → s, s2 → s s2 and s3 → s.
This yields∑

n,τ

P (τ, xn = 0|n)sτ2 s
n (D29)

=

∫ ∞
0

dM G̃ (M, s s2|M)

∫ M

0

dxmax G̃ (xmax, s|M)

× G̃ (M − xmax, s|M) ,

We are interested in the limit τ, n → ∞ with y = τ/n
fixed. Thus, it is useful to parametrise the variables s
and s2 as s = e−λ and s2 = e−λ2 and to take the limit
λ, λ2 → 0 with u = λ2/λ fixed. In this limit the double
sum on left-hand side of Eq. (D29) can be approximated
with a double integral. Expanding the right-hand side of
Eq. (D29) to leading order in λ and λ2, we obtain∫ ∞

0

dn

∫ n

0

dτ P (τ, xn = 0|n)e−λ2τ e−λn (D30)

=

∫ ∞
0

dM

√
λ+ λ2

sinh(
√
λ+ λ2M)

×
∫ M

0

dxmax
sinh(

√
λxmax) sinh(

√
λ(M − xmax))

sinh2(
√
λM)

.

Performing the integral over xmax we obtain∫ ∞
0

dn

∫ n

0

dτ P (τ, xn = 0|n)e−λ2τ e−λn (D31)

=

∫ ∞
0

dM

√
λ+ λ2

2
√
λ

M
√
λ coth(M

√
λ)− 1

sinh(
√
λ+ λ2M) sinh(

√
λM)

.

In order to invert the double Laplace transform in Eq.
(D31) we use the following identities [58]:

√
p

sinh(
√
p)

= 2π2
∞∑
m=1

(−1)m+1m2

p+m2π2
, (D32)

√
q coth(

√
q)− 1

√
q sinh(

√
q)

= 4π2
∞∑
k=1

(−1)k+1 k2

(q + k2π2)2
. (D33)

Using these relations (D32) and (D33) with p = (λ +
λ2)M2 and q = λM2 in Eq. (D31), we obtain∫ ∞

0

dn

∫ n

0

dτ P (τ, xn = 0|n)e−λ2τ e−λn (D34)

=

∫ ∞
0

dM
4π4

M6

∞∑
m,k=1

(−1)m+k m2

λ+ λ2 + m2π2

M2

× k2(
λ+ k2π2

M2

)2 .
To invert the double Laplace transform on the left-hand
side of Eq. (D34) we perform the change of variables

(τ, n)→ (τ, τ̄ = n− τ). Thus, defining λ3 = λ+ λ2, one
obtains∫ ∞

0

dτ̄

∫ ∞
0

dτ P (τ, xn = 0|τ + τ̄) (D35)

× e−λ3τ e−λτ̄ =

∫ ∞
0

dM
4π4

M6

∞∑
m,k=1

(−1)m+k m2

λ3 + m2π2

M2

× k2(
λ+ k2π2

M2

)2 .
We can now invert the double Laplace transform noticing
that the term in λ on the right-hand side corresponds to
a single pole in the complex plane, while the term in λ3

corresponds to a double pole. This yields, using τ̄ = n−τ ,

P (τ, xn = 0|n) =

∫ ∞
0

dM
4π4

M6

∞∑
m,k=1

(D36)

× (−1)m+km2k2(n− τ)e−
m2π2

M2 τ− k2π2

M2 (n−τ)

Performing the integral over M , we obtain, after few
steps of algebra

P (τ, xn = 0|n) (D37)

=
3

2
√
π

∞∑
m,k=1

(−1)m+km2k2(n− τ)

(m2τ + k2(n− τ))
5/2

Finally, using Eqs. (D2) and (D17) we obtain that, in
the large n limit,

P (τ |n) (D38)

= 3
√
n

∞∑
m,k=1

(−1)m+km2k2(n− τ)

(m2τ + k2(n− τ))
5/2

This expression can be rewritten in the following scaling
form

P (τ |n) =
1

n
fBB

( τ
n

)
, (D39)

where the scaling function fBB(y) is the scaling function
in Eq. (8), which was obtained in the case of continuous-
time Brownian bridges. Thus, we have directly verified
the prediction of the Central Limit Theorem.
Eq. (D31) can also be used to compute a useful inte-
gral relation for fBB(y), which allows to determine the
moments of τ for a Brownian bridge. Indeed, using Eq.
(D2) we can rewrite the left-hand side of Eq. (D31) as∫ ∞

0

dn

∫ n

0

dτ P (τ, xn = 0|n)e−λ2τ e−λn (D40)

=

∫ ∞
0

dn

∫ n

0

dτ P (τ |n)P (xn = 0|n)e−λ2τ e−λn .
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Using the expression for P (xn = 0|n) in Eq. (D17) and
using the scaling form in Eq. (D39), we get∫ ∞

0

dn

∫ n

0

dτ P (τ |n)P (xn = 0|n)e−λ2τ e−λn

=

∫ ∞
0

dn

∫ n

0

dτ
1

n
fBB

( τ
n

) 1

2
√
π n

e−λ2τ e−λn

=

∫ ∞
0

dn
1

2
√
π n

∫ 1

0

dy fBB(y) e−(λ+λ2y)n (D41)

=
1

2

∫ 1

0

dy
fBB(y)√
λ+ λ2y

,

where we have performed the change of variable y = τ/n
in going from the second to the third line above. Chang-
ing variable z = M

√
λ+ λ2 in the right-hand side of Eq.

(D31), we get

1

2

∫ 1

0

dy
fBB(y)√
λ+ λ2y

(D42)

=

∫ ∞
0

dz
1

2
√
λ

z
√
λ√

λ2+λ
coth

(
z
√
λ√

λ2+λ

)
− 1

sinh(z) sinh
(
z
√
λ√

λ2+λ

) .

Defining u = λ2/λ, after few steps of algebra, we get

∫ 1

0

dy
fBB(y)√
1 + uy

=

∫ ∞
0

dz

z√
1+u

coth
(

z√
1+u

)
− 1

sinh(z) sinh
(

z√
1+u

) .

(D43)
As explained in the main text, this integral relation is
useful to compute the moments of τ for a Brownian
bridge.

Appendix E: Proof of P (τ = n|n) = 1/(2n) for n ≤ 3
for discrete-time random walks

We consider a discrete-time RW on the line generated
by the Markov jump process

xk = xk−1 + ηk ; x0 = 0 , (E1)

where ηk’s IID variables each drawn from a symmet-
ric and continuous PDF p(η). We are interested in
computing the probability pn of the event that “τ =
nmin − nmax = n′′, where nmin and nmax denote respec-
tively the time of the global minimum and the global
maximum and n is the total number of steps. This
event then corresponds to trajectories where for the n-
step walk, the maximum occurs at x0 = 0 and the min-
imum occurs at the n-step. This then corresponds to
trajectories that start at the origin x0 = 0, stay non-
positive up to n-steps and, in addition, the position xn is
the global minimum. By symmetry of the walk, pn also
counts the probability that nmin = 0 and nmax = n, i.e.,
the probability that the walker starts at the origin, stays
non-negative up to step n and additionally, the position

xn is the global maximum. Mathematically, the latter
event can be expressed as

pn =
〈
θ(x1)θ(x2) . . . θ(xn)1 (xn > Mn−1)

〉
, (E2)

where

Mn−1 = max
0≤k≤n−1

xk (E3)

is the global maximum up to step n − 1 and θ(x) is the
Heaviside theta function: θ(x) = 1 if x > 0 and θ(x) = 0
if x < 0. The indicator function 1 denotes the event
that xn is bigger than all previous values, so that xn is
the global maximum. The average 〈〉 is over the joint
distribution of the IID noises {η1, η2, . . . , ηn}

P (η1, η2, . . . , ηn) =

n∏
i=1

p(ηi) . (E4)

Our conjecture is that for symmetric and continuous p(η)

pn =
1

2n
for all n ≥ 1 . (E5)

In this appendix, we prove this conjecture for n ≤ 3.

The case n = 1: This case is trivial, because one gets
from Eq. (E2)

p1 = 〈θ(x1)〉 = 〈η1〉 =
1

2
, (E6)

where we used x1 = η1 from Eq. (E1).

The case n = 2: For a 2-step walk, Eq. (E2) reads,
using Eq. (E1)

p2 = 〈θ(x1)θ(x2)θ(x2 − x1)〉 = 〈θ(η1)θ(η1 + η2)θ(η2)〉 .
(E7)

However, if η1 > 0 and η2 > 0, one automatically has
η1 + η2 > 0. Hence, Eq. (E7) simply reduces to

p2 = 〈θ(η1)θ(η2)〉 = 〈θ(η1)〉〈θ(η2)〉 =
1

4
. (E8)

The case n = 3: Already the case n = 3 starts to be
nontrivial. In this case, p3 in Eq. (E2) counts the events
that x1 = η1 > 0, x2 = η1 +η2 > 0, x3 = η1 +η2 +η3 > 0,
and in addition, x3−x2 = η3 > 0, x3−x1 = η2 + η3 > 0.
Thus one can write p3 in Eq. (E2) in terms of ηi’s as

p3 = 〈θ(η1)θ(η3)θ(η1 + η2)θ(η2 + η3)〉 . (E9)

Furthermore, for given η1 and η2, the event η2 + η1 >
0 and η2 + η3 > 0 is equivalent to the event η2 >
max(−η1,−η3). Hence Eq. (E9), using Eq. (E4), can
be expressed as

p3 =

∫ ∞
0

dη1 p(η1)

∫ ∞
0

dη3 p(η3)

∫ ∞
max(−η1,−η3)

dη2 p(η2) .

(E10)
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Consider the integrand in the (η1 ≥ 0, η3 ≥ 0) quadrant
where it is symmetric under the exchange of η1 and η3.
Hence, we restrict the integral in the region η1 > η3 > 0
where max(−η1,−η3) = −η3 and we get

p3 = 2

∫ ∞
0

dη1 p(η1)

∫ η1

0

dη3 p(η3)

∫ ∞
−η3

dη2 p(η2) .

(E11)
where the factor 2 comes from the symmetric contribu-
tion from the region η3 > η1 > 0. Furthermore, using
the fact that p(η) is symmetric, we can write

p3 = 2

∫ ∞
0

dη1 p(η1)

∫ η1

0

dη3 p(η3)

[
1

2
+

∫ η3

0

dη2 p(η2)

]
.

(E12)
To proceed further, we make the change of variables

zi =

∫ ηi

0

p(η) dη . (E13)

With this change of variables the integral in Eq. (E12)
reduces magically to

p3 = 2

∫ 1/2

0

dz1

∫ z1

0

dz3

[
1

2
+ z3

]
=

1

6
. (E14)

Essentially, the change of variables in Eq. (E13) trans-
form the ηk’s to zk’s and each zk is uniformly distributed
over z ∈ [−1, 1] and thus the dependence on p(η) com-
pletely drops out. This is the key mechanism behind the
super-universality.

One would like to continue for n > 3, but it becomes
rather cumbersome quickly and we haven’t found a sim-
ple recursive pattern to compute these multiple integrals
for n > 3. There ought to exist an elegant combinatorial
proof of this beautiful universal result for all n, which
unfortunately eludes us for the moment. We thus leave
this as a challenging open problem.

[1] S. N. Majumdar, A. Pal, G. Schehr, Phys. Rep. 840, 1
(2020).

[2] R. W. Katz, M. B. Parlange, P. Naveau, Adv. Water
Resour. 25, 1287 (2002).

[3] R. W. Katz, G. S. Brush, M. B. Parlange, Ecology 86,
1124 (2005).

[4] S. Redner, M. R. Petersen, Phys. Rev. E 74, 061114
(2006).

[5] G. Wergen, J. Krug, Europhys.Lett. 92, 30008 (2010).
[6] S. Rahmstorf, D. Coumou, P. Natl Acad. Sci. USA 108,

17905 (2011).
[7] B. Christiansen, J. Clim. 26, 7863 (2013).
[8] G. Wergen, A. Hense, J. Krug, Clim. Dyn. 42, 1275

(2014).
[9] J.-P. Bouchaud, M. Potters, Theory of financial risks.

From Statistical Physics to Risk Management, Cam-
bridge University Press, Cambridge (2000).

[10] M. Yor, Exponential functionals of Brownian motion and
related processes, Springer Science & Business Media
(2001).
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