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Granular packings of nonconvex or elongated particles can form freestanding structures like walls or arches.
For some particle shapes, such as staples, the rigidity arises from interlocking of pairs of particles, but the origins
of rigidity for noninterlocking particles remains unclear. We report on experiments and numerical simulations
of sheared columns of “hexapods,” particles consisting of three mutually orthogonal sphero-cylinders whose
centers coincide. We vary the length-to-diameter aspect ratio, α, of the sphero-cylinders and subject the packings
to quasistatic direct shear. For small α, we observe a finite yield stress. For large α, however, the column
becomes rigid when sheared, supporting stresses that increase sharply with increasing strain. Analysis of x-ray
microcomputed tomography (micro-CT) data collected during the shear reveals that the stiffening is associated
with a tilted, oblate cluster of hexapods near the nominal shear plane in which particle deformation and average
contact number both increase. Simulation results show that the particles are collectively under tension along one
direction, even though they do not interlock pairwise. These tensions comes from contact forces carrying large
torques, and they are perpendicular to the compressive stresses in the packing. They counteract the tendency to
dilate, thus stabilizing the particle cluster.

DOI: 10.1103/PhysRevE.101.062903

I. INTRODUCTION

An important challenge in the science of granular mate-
rials is to understand the connection between the shapes of
individual grains and the macroscopic response of the aggre-
gate [1]. Recent studies have shown that nontrivial desired
macroscopic material properties can be obtained by tuning
the grain shape [1–5]. For noncohesive particles, spherical or
nearly spherical shapes form packings that deform plastically
under shear [6–10]. However, packings of highly elongated
and/or strongly nonconvex particles show stiffening behavior
under shear [11–17]. A dramatic illustration of this effect is
the formation of freestanding walls and columns consisting of
slender rods, staples, granular chains, or star-shaped particles
[18–22]. By analogy to similar properties of wet sand, in
which water bridges provide cohesive forces between grains,
dry granular materials that support such structures in the ab-
sence attractive interaction between grains are said to exhibit
“geometric cohesion” [23]. Columns of dry granular materials
exhibiting geometric cohesion can have a large yield stress
under uniaxial compression [20,24,25].

Fundamental questions remain open regarding the micro-
scopic sources of geometric cohesion. Previous research has
focused on the effect of entanglement in packings of highly
nonconvex particles [19,20,25]. Staples, for example, can act
like hooks to form interlocking chains that resist tension
[14,19]. However, it is not clear how particles manage to form
a cohesive or stiffening packing when the particle shape does
not allow a single pair of grains to support tensile stress. In
addition, the implications of geometric cohesion for elastic
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and rheological properties are not well understood. What
configurations of noncohesive particles provide the tensile
stresses required to avoid dilation and thereby resist large
applied stresses? And in cases where the material has a finite
yield stress, does geometric cohesion give rise to yield stress
vs pressure curves similar to those produced by wet granular
materials? In addition to their intrinsic interest, these ques-
tions are highly relevant for civil and material engineering
applications [2,5,26].

This paper reports on direct shear experiments and nu-
merical simulations with aggregates of “hexapods,” which
are particles shaped as shown in Fig. 1. Each particle con-
sists of six cylindrical arms of equal length emanating from
a center along three mutually perpendicular directions. We
define α to be the ratio of the length of the particle diameter
(2 arm lengths) to the diameter of a cylindrical arm. For the
packings comprised of particles with α near unity, we observe
plastic yielding of the granular material at finite yield stresses.
For large α, the material stiffens and does not yield before
individual particles break. We use x-ray micro-CT to measure
the bending of particle arms and identify a rigid cluster of
particles that is responsible for supporting the applied stress.
We also perform numerical simulations on hexapods for two
values of α, finding good agreement with experiments, and
use the simulations to identify the source of the tensile stresses
that counterbalance the tendency toward dilation and prevent
plastic yielding.

The rest of this paper is organized as follows. In Sec. II,
we describe the direct shear experimental setup and the x-ray
micro-CT data acquisition system. In Sec. III, we present the
experimental stress-strain curves and analyze the associated
packing structures. In Sec. IV, we present numerical simu-
lations that show qualitative behavior similar to that observed
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FIG. 1. (Left) Spherical and hexapod particles used in the exper-
iments. (Right) A schematic of the direct shear cell.

in our experiments and analyze the simulated contact forces to
identify the structure that leads to tensile stresses. Section V
contains a discussion and concluding remarks.

II. EXPERIMENTS

A. Experimental setup and procedures

Shown in Fig. 1, the experimental apparatus is a direct
shear cell of a type commonly used in granular and soil mate-
rial testing [27]. It consists of two stacked acrylic cylindrical
tubes of diameter D = 96 mm. The bottom tube is fixed to
a base and has a height of 85 mm. The top tube sits on a
linear guide, which is supported by the same base and permits
horizontal motion in one direction, which we define to be
the x direction. The tubes are separated by a small vertical
gap (≈1 mm) compared to the particle size. A stepper motor
drives the top tube in the shear direction at 0.1 mm/s. A force
sensor (strain-gauge load cell) connects the top tube and the
motor, and measures shear force with 0.1 N accuracy at a
frequency of 1 Hz. A piston, which is held by another linear
guide attached to the top tube, can be used to apply constant
normal force on the top of the packing throughout the shearing
process. Another support extends horizontally in the shear
direction to prevent particles from falling out of the top tube at
large shear strains. We cover this support with a low-friction
Teflon sheet to reduce frictional drag on the particles during
the shear.

Our experiments are conducted using plastic (polypropy-
lene) hexapods that consist of three mutually orthogonal
cylinders with spherical caps whose centers coincide (see the
left panel of Fig. 1). The diameter d and lengths L of the
cylinders are 3, 10, 20, and 30 mm, giving them a length-
to-diameter aspect ratio α = 3.3, 6.7, 10. The material has
Young’s modulus on the order of 1 GPa and a static friction
coefficient 0.36 ± 0.05. We also use acrylic spheres with
diameter L = 9.5 mm as a benchmark, and it has α = 1.

For each experiment, a monodisperse packing is prepared
by randomly pouring particles into the initially aligned tubes
and then leveling the top surface of the packing. The initial
height of the packing ranges from 140 to 150 mm for different

α, which fills the entire bottom tube and part of the top
tube. A nominal initial packing fraction, defined as the par-
ticle volume divided by the volume of the cylindrical region
they occupied, is 0.59 ± 0.02 (α = 1), 0.40 ± 0.04 (α = 3.3),
0.23 ± 0.01 (α = 6.7), and 0.14 ± 0.01 (α = 10).

In a given run of the experiment, a constant normal force F
is applied through the piston, and the stepper motor drives the
top tube in the x direction at constant speed, which generates
a shear force, continuously measured by the force sensor. The
evolution of this horizontal force is recorded for several values
of F , taking several runs at each value. Gravity contributes
to the normal stress on the plane, and we define a nominal
normal stress P = (F + G)/A, where G is the total gravita-
tional force on the particles above the shear plane z = 0, and
A = πD2/4 is the tube’s cross-sectional area. We note that in
addition to P, there is a component of normal stress associated
with frictional forces applied by the tube walls to the particles.
We define the shear stress τ to be the shear force divided by
the area of intersection of the top and bottom tubes at z = 0.
The shear strain γ is defined as s/L, where s is the top tube
displacement, measured by counting the steps taken by the
motor (see the right panel of Fig. II A). We stop the shear when
s = 30 mm or the force on the force sensor exceeds 20 N.

B. X-ray micro-CT data acquisition and postprocessing

We use an x-ray micro-CT scanner (Nikon XT-H225) to
observe packing structures of α = 10 particle packing under
shear. Three repeated and independent runs are done to check
the consistency of our observations. The packings are pre-
pared in the same way as in Sec. II A, without the piston to
apply addition normal stress. Each run is paused at different
γ to take an x-ray scan, during which the tubes are removed
from the force sensor and motor with the top tube clamped to
the linear guide to resist force from the packing. During an
x-ray scan, the sample is very slowly rotated along a vertical
axis to collect projection images, with an x-ray source of about
190 kV and 180 μA. These projections are then postprocessed
using Nikon’s Feldkamp cone-based CT algorithm [28] to get
a 16-bit three-dimensional (3D) density image with size about
15003 px3 and spatial resolution about 80 µm/px.

To extract packing structures from the 3D image, we use
codes developed previously [16]. Each two-dimensional (2D)
slice of the 16-bit image is binarized using Otsu’s method
[29], producing a 3D density in which voxels occupied by
the material are set to 1. We then calculate the Euclidean
distance of each 1 to its nearest 0, and set to 0 all of the 1’s for
which the distance is smaller than about 1/3 of a particle arm
diameter. The resulting connected regions of 1’s correspond
to individual particles, allowing for an estimate of the center
of mass of each particle and the Euler angles specifying its
orientation. We then use a template-matching technique on the
original binarized image [16,30] to refine these estimates. The
template is taken to be an ideal hexapod with the appropriate
dimensions. We check that all template overlap values are
greater than 87% and that no particle is missed. Overlaps
of less than 95% are attributable to the bending of hexapod
arms in the physical sample. The position and orientation
measurement accuracy are 1 px (80 µm) and 0.3◦, respectively.
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FIG. 2. A schematic illustrates the bending of particle arm and
measurement. The shaded light-gray area is the body of a particle.
Boxes are a one-pixel-wide skeleton of the particle. The dashed lines
are linear fits based on the coordinates of the skeleton of each arm.
The bend angle θ is measured as 90◦, subtracting the angle between
the lines.

Each particle from the eroded image is skeletonized to a
width of one voxel using an image thinning procedure [31]
implemented in the PYTHON package scikit-image [32].
From the skeleton, we determine an angle between nominally
orthogonal arms using the method illustrated in Fig. 2. This
measurement is a proxy characterizing the bending of particle
arms. We fit each of the six arms (about 100 voxels long) to a
straight line using a least-squares method. The “bend angle”
θ between nominally orthogonal arms is defined as 90◦ minus
the angle between the two straight lines. The error in θ is 0.4◦
on average. Further, we define a quantity characterizing the
total deformation of an individual particle i:

θi(γ ) =
∣∣∣∑ |θ (γ )| −

∑
|θ (0)|

∣∣∣, (1)

where the sums are taken over the 12 pairs of orthogonal
arms of a given particle, and γ specifies the applied strain.
The subtracted term accounts for any preexisting distortions,
which are usually less than 0.3◦.

Finally, we detect interparticle contacts and particle-tube
contacts using a previously developed technique [16]. We first
estimate contact locations from the skeletons. If the shortest
distance between a pair of arm skeletons is smaller than 1.1d ,
the midpoint of the shortest line segment connecting them
is stored as a possible contact. We then zoom into a box
of edge length 21 px (≈1.8 mm) centered at each possible
contact in the original 16-bit density image and binarize the
image using the threshold taken from the binarization step
discussed above. If this produces two disconnected domains,
we conclude that there is no contact. Otherwise we take the
original midpoint to be the location of a contact. We also
vary the threshold within a reasonable range to determine the
sensitivity of the contact detection. A maximum threshold is
obtained by increasing the median threshold to a point where
clearly identifiable contacts are missed, such as the contacts
that support particles on top of the packing. A minimum
threshold is taken to yield a range that is symmetric about the
median. Varying the threshold can change the average contact
number substantially. Nevertheless, the trend in average con-
tact number with increasing strain is similar for all threshold
choices, as will be shown below.

FIG. 3. Typical shear response of packings with increasing parti-
cle α show a transition from yielding to stiffening. In the shown runs,
P = 0.97 kPa (α = 1), 0.74 kPa (α = 3.3), 0.25 kPa (α = 6.7), and
0.2 kPa (α = 10).

III. EXPERIMENTAL RESULTS

We report here on measurements of the yield stress for
packings with α = 1 (spheres) and 3.3, and on the nature of
the geometric form of the network of particles that support
strong macroscopic stresses for α = 6.7 or 10.0, where the
packing stiffens rather than yielding to applied stresses that
would cause particles to break.

Plastic yield of slowly sheared granular materials occurs
above a threshold shear stress τ , which generally depends on
the normal stress P perpendicular to the shear plane [33]. In
many cases, τ depends linearly on P: τ = μP + c, where the
constants μ and c are measures of the material’s internal fric-
tion and cohesive strength, respectively. Stiffening requires
the formation of a network of contact forces that constrain par-
ticle motions in all directions. As the applied stress increases,
these contact forces must also increase, creating a subset of
contact forces in the system that are much larger than those
present due to gravity alone. We focus here on identifying
the spatial form of this subset of particles responsible for the
stiffening behavior.

A. Yielding and stiffening

Two alternative types of behavior are observed in indi-
vidual runs: plastic yielding or stiffening, as demonstrated in
Fig. 3. Packings with small α deform plastically under shear:
τ fluctuates about a steady-state value for γ > 1, analogous
to critical state in soil mechanics [27]. In contrast, for large α,
we observe a sharp increase in τ with increasing strain.

For cases in which we observe yielding, a simple measure
of μ and c can be obtained by fitting the data for τ (P), as
shown in Fig. 4. This corresponds to a standard procedure
for characterizing systems in which the force from lateral
boundaries can be neglected. For a given P, we average
the shear stress τ for each run using only the data for
γ > 1 to avoid including the transient. We then average
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FIG. 4. Yield points for packings of particles with α = 1 (circles)
and 3.3 (triangles), measured in experiments. The error bar is smaller
than the marker size and thus is not shown. Dashed lines show
linear least-squares fits, with slopes 0.93 and 1.78. Dotted lines show
extrapolations to P = 0.

over different runs to get 〈τ 〉 and an estimate of the sample-
to-sample fluctuations. The results are fit to the linear form
〈τ 〉 = μexptP + cexpt using a least-squares method. We find
μexpt = 0.93 ± 0.02 and cexpt =?20 ± 10 Pa for α = 1 pack-
ings and μexpt = 1.78 ± 0.06 and cexpt = 290 ± 50 Pa for α =
3.3 with 68% confidence using standard methods. The fact
that μexpt (α = 3.3) is greater than μexpt (α = 1) is consis-
tent with other studies of sheared granular materials with
anisotropic grain shapes [8]. This is due to the increase
of the effective friction caused by geometrical asperities of
the particles. The μexpt (α = 3.3) packings also show larger
fluctuations in τ/P. We also note that μexpt (α = 1) = 0.91
corresponds to a friction angle tan−1(μexpt ) = 42◦, which is
higher than the material’s angle of repose 31 ± 2◦ (measured
by tilting a box with an initially flat packing). This is due to
the fact that τ and P, which are measured at the boundary,
do not accurately estimate the normal and shear stress in the
interior of the deforming material [34].

The fits indicate that cexpt (α = 1) = 0, as expected, and
also cexpt (α = 3.3) > 0, suggesting that there is a nonvan-
ishing geometric cohesion effect for α = 3.3. In our system,
however, P does not necessarily represent the normal stress
at the shear plane because there may be significant vertical
forces applied by the tube walls. We note also that the apparent
cohesion for α = 3.3 appears to vanish for sufficiently low
P. The lowest P we can realize in our experiments, which
is due to gravity alone and is not included in the above fit,
has a lower 〈τ 〉 than the fitting trend (Fig. 4). Simulations
presented below, where the pressure on the shear plane itself
can be determined, suggest that there is actually no apparent
cohesion for α = 3.3. The difference between the α = 3.3 and
α = 1 experimental cases is traceable to the tendency of the
former to sustain substantial downward forces from the walls,
particularly from the bottom edge of the top tube.

For the stiffening packings, the strain corresponding to the
onset of rapid stiffening fluctuates from run to run, presum-
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FIG. 5. Total particle deformation θtotal (open squares) and shear
stress τ (solid line) vs strain γ for α = 10. The inset shows the
particle deformation summed over the 14% of particles with the
highest θi (dashed line) and the sum over the rest of the particles
(dotted line).

ably due to the packing preparation and the finite size of the
system, which has a diameter of roughly six times the arm
length of an α = 10 particle and contains 250 particles. For
independent repeated runs with α = 6.7 or 10, the likelihood
of stiffening was greater than 50% for both shapes at low
P. Increasing P or increasing the initial packing fraction by
tapping produces stiffening in 100% of the trials. We have
checked that this stiffening occurs in larger systems, both
in additional experiments and in numerical simulations (see
Sec. IV and Fig. 10).

B. Packing structure in stiffening systems

To identify key structures responsible for the stiffening,
we first show that we can detect the bending of particle
arms in the high-stress states. Figure 5 shows that the x-ray
CT protocol for identifying arm bending produces a signal
that increases rapidly at approximately the same γ where
large forces develop. The open squares on the figure indicate
θtotal = ∑

θi, where the sum is over all particles. Large contact
forces do not necessarily result in substantial deformation of
the particles because they may be applied close to the center
of the particle. Nevertheless, the correlation between large
applied force and the presence of bent arms is confirmed for
independent runs. We find also that the particle deformation is
concentrated in roughly 14% of the particles at each stage in
the loading process. The inset in Fig. 5 shows that the particles
in the top 14% of θi, selected at each strain independently,
dominate the total deformation signal during stiffening. For
convenience, we refer to these 14% as forming a rigid cluster
(C) and the rest of the particles as other particles (O). The
results shown here and below are qualitatively similar for
cutoff choices of 10% and 20%. During stiffening, the set
of strongly deformed particles in C changes by less than
10%, with fewer changes occurring during the later stages,
indicating the emergence of a well-defined rigid cluster. We
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FIG. 6. (Left) 〈θi〉 as a function of height z from the z = 0 plane.
Dark curve indicates large shear strain γ . (Right) Visualization of the
packing at the last γ in Fig. 5. The 14% of particles with the highest
θi are shown, with red indicating large θi. The rest of the particles,
which fill the tubes, are rendered semitransparent.

note, however, that it is possible that the rigidity of the cluster
C requires the presence of weak forces due to contacts with
particles outside C.

Figure 6 reveals that the most strongly bent particles are
localized near the z = 0 plane. We calculate the average θi for
particles in a vertical window of width 0.5L centered at height
z. Before stiffening, 〈θi〉 ≈ 0 for all z. During stiffening, 〈θi〉
near z = 0 increases dramatically and greatly exceeds the
original deformations due to gravity. A 3D rendering of the
strongly deformed particles is shown in Fig. 6, revealing
a localization of the large stresses to a tilted band passing
through the z = 0 plane.

To characterize the shape of the stiffening cluster, we com-
pute its principal moments of inertia I1, I2, and I3 about its cen-
ter of mass, with results as shown in Fig. 7. The ratios of in-
termediate and minor principal moments to the major moment
are approximately 1.0 and 0.45 at γ = 0 before stiffening, and
0.7 and 0.6 at γ = 0.86 after stiffening, representing a change
in cluster shape from a prolate to an oblate ellipsoid. (The
original prolate shape simply represents a set of particles that
are roughly uniformly distributed through the column.) The
contact network within this cluster evolves during stiffening,
with new contacts being created. Figure 8 shows the average
contact number for particles in the cluster 〈Z〉C, along with a
comparison to the average over the other particles 〈Z〉O or over
all particles 〈Z〉. In the three experimental runs, the behavior
of 〈Z〉, 〈Z〉C, and 〈Z〉O varies substantially during the shearing
phase, with all three decreasing in some runs and remaining
constant in others. The increase of 〈Z〉C during stiffening is
consistent across runs. These added contacts within the cluster
further increase its strength, leading to a strongly increasing
shear modulus.

IV. NUMERICAL SIMULATIONS

We use the molecular dynamics software package LAMMPS

[35] to simulate our direct shear experiments with particles
having α = 1, 3.3, and 10. The equations of motion are

FIG. 7. Ratios of the principal moments of inertia, I2/I1 (solid
line) and I3/I1 (dashed line), of the cluster C as a function of
shear strain in an experiment run. The inset shows the approximated
ellipsoidal shape of the cluster and its principal axes (rods). The 3D
vectors indicate the laboratory coordinates, as in Fig. 6.

integrated using the velocity Verlet scheme. Our simulation
parameters and procedures are chosen to correspond reason-
ably well to our experiments, but there are features that we
cannot match exactly. Most importantly, the particles in the
simulations consist of rigidly connected spheres rather than
smooth, flexible tubes. Arms are not allowed to bend, and the
spacing between the spheres introduces geometric roughness
that creates effective friction. Nevertheless, the simulations
reproduce the main features of the experiments, suggesting
that analyses of the detailed packing structures and forces

FIG. 8. The evolution during a single run of the average contact
number over all particles 〈Z〉 (black solid line), particles in the cluster
〈Z〉C (blue dashed line), and the other particles 〈Z〉O (green dotted
line). The shear stress τ vs strain γ (red line) indicates the stiffening.
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FIG. 9. View of the two hexapods used in simulations, looking
along the axis of one arm. Each circle is a finite-size sphere of
diameter d = 3 mm in the simulation.

within the simulations are indeed relevant for understanding
the apparent cohesion and stiffening found by experiments.

A. Parameters and procedures

The particle sizes and shear cell dimensions in the simula-
tions match those used in our experiments. The simulated α =
3.3 and 10 hexapods are modeled as rigid bodies consisting
of overlapping identical spheres, forming rough cylinders, as
shown in Fig. 9. The concavities in the arm surfaces create an
effective friction coefficient equal to 0.27 when two such con-
cavities are nested within each other. All particle interactions
are modeled as Hertz-Mindlin contact, including Coulomb
friction (using the pair_style gran/hertz/history command in
LAMMPS). In experiments, the materials used to make α = 1
particles and α = 3.3 or α = 10 particles are different. To
stay the same with experiments, We therefore choose two
corresponding sets of parameters for the contact model. The
Young’s modulus, Poisson ratio, and friction coefficient are
3 GPa, 0.35, and 0.36 for α = 1, and 1.5 GPa, 0.43, and 0.3
for α = 3.3 or 10, respectively. The normal and tangential
forces also contain damping terms linearly proportional to the
relative velocity at the contact. The constant of proportionality
is chosen so that the restitution coefficient for the collision of a
particle with a wall is close to experimentally measured value.
For simplicity, we choose the normal and tangential damping
coefficients to be the same. Varying the damping coefficient
by an order of magnitude does not change the qualitative
features of the yielding or stiffening responses.

Particle-tube interactions are modeled in the same way as
particle-particle interactions. For contacts with the extended
support, the frictional forces are set to zero to mimic the low
friction associated with the Teflon sheet used in experiments,
and, for technical reasons, normal forces are taken to be
linearly proportional to the overlap distances between the
particles and the extended support. Sample preparation and
shear procedures in the simulations mimic the experiments.
We randomly drop particles into the tube, releasing n particles
every 0.12 s at random horizontal positions 18 cm above the

(diameter 2D)

(low friction)

(diameter 2D)

FIG. 10. Ratio of shear stress to applied normal stress, τ/P, vs
strain γ for numerical simulations of sheared packings with different
particle shape aspect ratio α. For α = 10, results are shown for
two different tube diameters, D and 2D, with D = 96 mm, and
low interparticle friction coefficient. P = 0.72 kPa, 0.35 kPa, and
0.08 kPa for α = 1, 3.3, and 10, respectively, with D = 96 mm,
and P = 0.068 kPa for α = 10 and tube diameter= 2D. Inset: The
same runs are plotted against γD, the ratio of horizontal tube dis-
placement to tube diameter.

bottom and letting them fall in place to create a packing.
We take n ≈ 85 for α = 1 particles, n = 115 for α = 3.3
particles, and n = 5 for α = 10 particles. After the particles
have settled under gravity, we shear the packing by displacing
the top tube at a constant horizontal speed of 0.1 mm/s, up to
a total displacement of 30 mm.

B. Results

Our simulations reproduce the qualitative plastic yield-
ing and stiffening for the different particle α, as shown in
Fig. 10. Quantitatively, the simulated materials appear to
sustain stronger forces: for α = 1 or 3.3, the shear strengths
τ/P are greater than those in experiments, and for α = 10,
the transition to stiffening occurs at a smaller γ (≈0.2) than
in experiments (≈0.8). The latter effect is likely due to the
increased effective interparticle friction created by the joined
spheres that make up each arm. Specifying a smaller Coulomb
friction coefficient between particles (= 0.1) results in an
increase in the strain for the onset of stiffening (Fig. 10). Dou-
bling the shear tube diameter, we find stiffening at roughly the
same value of the strain γD, defined as the ratio of horizontal
tube displacement to the tube diameter (Fig. 10 inset).

1. Apparent cohesion in yielding systems

Figure 11(a) shows the sample-averaged shear stress in
the steady state〈τ 〉 vs applied normal stress P for numerical
simulations with particle aspect ratios α = 1 and 3.3. The
large error bars for the α = 3.3 case are due to large fluc-
tuations of the shear stress in the steady state in individual
runs. We fit the results to the linear form 〈τ 〉 = μsimP + csim

using a least-squares method. For α = 1 packings, we find
μsim = 1.25 ± 0.02 and csim = −0.12 ± 0.01 kPa. For α =
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(a)

(b)

FIG. 11. (a) The sample-averaged shear stress in the steady state
as a function of applied normal stress for direct shear simulations
with particle of aspect ratios α = 1 (circles) and α = 3.3 (triangles).
The error estimates for α = 1 particle packings are smaller than
the marker size. Dashed lines shown the linear least-squares fits,
with slopes 1.25 and 11. Dotted lines show extrapolations to P = 0.
(b) Sample-averaged pressure 〈p〉 vs deviatoric stress 〈q〉 in the
steady state are shown for packings with particle α = 1 (open circles)
and 3.3 (triangles). Dashed lines shown the linear least-squares fits,
the dotted lines show extrapolations to P = 0, with slopes 0.55
and 1.5.

3.3, we find μsim = 11 ± 2 and csim = 2 ± 2 kPa. In both
cases, the internal friction coefficient μsim is larger than the
value obtained from experiments. As expected, the α = 1 case
shows a vanishing apparent cohesion compared to the range of
P, which is on the order of 1 kPa. Also as in experiments, α =
3.3 particle packings show an apparent cohesion comparable
to P. In this case, however, we will see that the apparent
cohesion is an artifact due to the fact that P does not account
for downward forces applied by the tube walls to the packing.

Using the pressure of the packings near the shear plane,
which can be derived from the simulated contact forces, we
find no apparent cohesion. The complete set of contact forces

for a given snapshot of the simulation can be used to construct
a stress tensor σ, associated with a single particle or collection
of particles in a given region of the packing:

σ = 1

V

N∑
i=1

Zi∑
k=1

fk,i ⊗ rk,i , (2)

where N is the number of particles in a chosen volume V ,
which is a vertical window of width 4L centered at the z = 0
plane. The second sum is over all of the contacts where forces
are applied to particle i. The vector rk,i is the displacement of
the point of contact from the center of particle i, and fk,i is the
force on particle i. Given this definition, a negative (positive)
principal stress means the material is under compression
(tension). This definition of σ corresponds to the stress tensor
computed based on forces on the boundary of volume V
[36,37]. From σ, we calculate the pressure p and deviatoric
stress q, which are the responses to volumetric and distortional
deformation of the material, defined as in Ref. [27]:

p = 1
3 Tr(σ) , q = ∣∣∣∣ 3

2 (σ − p I)
∣∣∣∣ , (3)

where ||a|| ≡
√∑

i, j ai jai j .

Figure 11(b) shows the sample averaged p vs q for yielding
systems. For a given P, we first average p and q for each
run using only the data for γ � 1 to avoid the transient.
We then average over different runs to get 〈p〉 and 〈q〉, and
estimate the sample-to-sample fluctuations. 〈p〉 and 〈q〉 for
α = 3.3 packings show larger fluctuations than α = 1. The
results are fit to the standard Drücker-Prager form of the yield
condition [33] 〈q〉 = μDP〈p〉 + cDP using the least-squares
method. Dashed lines in Fig. 11(b) show the fit, and dotted
lines show extrapolation to 〈p〉 = 0. Sample fluctuations for
α = 1 particle packings are smaller than the marker size. As in
experiments, we find that μ is larger for α = 3.3 packings than
for α = 1. For α = 1 packings, we find μDP = 0.55 ± 0.01
and cDP = −0.04 ± 0.01 kPa. For α = 3.3, we find μDP =
1.5 ± 0.4 and cDP = 0 ± 3 kPa. The apparent cohesion coef-
ficient cDP is consistent with zero for both particle types.

The discrepancy between csim based on the applied normal
stress P and cDP extracted from those same simulations using
the measured pressure p is resolved by noting that large
vertical forces are applied to the packing by the bottom
edge of the top tube. Including contributions to P from these
forces gives a fit with csim = 0 within uncertainty (results not
shown), consistent with the results obtained using p.

2. Packing structures in stiffening systems

Our simulations for α = 10 particle packings reproduce the
structures obtained from the CT measurements described in
Sec. III B. Though the simulated particles are inflexible, the
elastic energy is represented by allowing overlaps of arms, and
the amount of interpenetration can be used as a proxy for the
bending of arms in the experiment. For a given contact, we de-
fine δ as the overlap of two spheres on the contacting arms. We
then define the quantity 	i as the sum of δ/
 over all contacts
of particle i, where 
 is the moment arm length measured from
the particle center. We take 	i to be the analog of the quantity
θi measured from CT data. Figure 12 shows that the sum
over all particles 	total = ∑

	i is strongly correlated with the
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FIG. 12. Total particle deformation 	total (green dashed line) and
shear stress divided by applied normal stress τ/P (black solid line) vs
strain γ for a simulation of α = 10 particle packing. The inset shows
the particle deformation summed over the 20% of particles with the
highest 	i (red solid line) and the sum over the rest of the particles
(blue dashed line).

rapid increase in τ . For the largest shear strains, 	total is of the
same order of magnitude as θtotal (Fig. 5). Note, however, that
τ is much larger in simulations than in experiments. This is
because hexapod arms do not bend in simulations; the stress
scale is set by the material stiffness (on the order of 106 N/m
for an overlap of 3 mm) rather than the bending stiffness of
arms (on the order of 104 N/m at arm tip), as in experiments.
The former was set to this high value to prevent arms from
passing through each other for the relevant shear magnitudes.
(Recall that excessive force in the experiments leads to the
breaking of particle arms.)

Consistent with the experiments, we find that 	total is
concentrated in roughly 20% of the hexapods. The inset in
Fig. 12 shows that

∑
	i over the particles in the top 20%,

selected at each strain independently, increases roughly twice
as fast as the sum over the lower 80%, indicating that these top
20% are primarily responsible for the stiffening of the system.
For convenience, we refer to these 20% of particles as a rigid
cluster (C) and the remaining set “others” (O). The results
here and below are qualitatively similar for a cutoff choice
anywhere between 16% and 24%.

As expected, the stress associated with stiffening is lo-
calized near the nominal shear plane. Figure 13 shows the
average 	i for particles in a vertical window of width equal to
L/2, centered at a height z. The stiffening response indicated
by 〈	i〉 is localized near the z = 0 plane. As in the experi-
ments (see Fig. 5), during stiffening 〈	i〉 near z = 0 increases
dramatically. We stop the simulation when the overlap of
particles is roughly 10% of the arm diameter. Increasing the
applied force indefinitely would result in particle arms passing
through each other, which is an irrelevant regime for the
interpretation of experiments.

The method described in Sec. III B is used to characterize
the shape of the stiffening cluster. As shown in Fig. 14,
the ratios of the principal moments of inertia to the largest
moment are approximately 0.5 and 0.9 before stiffening (γ ≈

FIG. 13. Sum of arm deformation on each particle 	i, averaged
over particles whose centers lie in a horizontal window centered at z.
Darker curves indicate larger shear strain.

0.5) and 0.6 and 0.7 after stiffening, representing a change in
cluster shape from a prolate to an oblate ellipsoid, consistent
with the experimental results (Fig. 7).

Finally, Fig. 15 shows the behavior of the average contact
number during stiffening. 〈Z〉, 〈Z〉C, and 〈Z〉O denote averages
over all particles, over the rigid cluster, and over the others.
We see that 〈Z〉C increases substantially faster than 〈Z〉O, as in
the experiments (Fig. 8). Note that in our simulations a sphere
on one arm can create contacts with two neighboring spheres
on another arm, whereas in experiments a given pair of arms
can have only one contact. Counting the number of arm
contacts rather than sphere contacts reduces the 〈Z〉 values but

FIG. 14. Ratios of the principal moments of inertia, I2/I1 (solid
line) and I3/I1 (dashed line), of the cluster C as a function of shear
strain in a simulation run.

062903-8



YIELDING, RIGIDITY, AND TENSILE STRESS IN … PHYSICAL REVIEW E 101, 062903 (2020)

Z O

Z C

Z

ar
m

 c
on

ta
ct

FIG. 15. The evolution of the average contact number over all
particles 〈Z〉 (black solid line), particles in the cluster 〈Z〉C (blue
dashed line), and the others 〈Z〉O (green dotted line) as a function
of shear strain γ from a numerical simulation of α = 10 particle
packing under shear. The red solid line shows shear stress divided
by applied normal stress τ/P vs γ . Inset: The evolution of 〈Z〉, 〈Z〉C,
and 〈Z〉O when a given pair of contacting arms is always counted as
a single contact. Colors and line styles match the main figure.

does not change the relative trends during stiffening, as shown
in the inset of Fig. 15. Thus it appears that during stiffening
the rigid cluster strengthens by adding new contacts between
particles.

3. Identification of tensile stresses

A typical material with a positive Poisson ratio must sup-
port internal tensile stresses when subjected to external uniax-
ial compressive or shear forces. In uniaxial compression of a
cylinder, for example, tensile stresses must arise to counteract
the tendency of the cylinder to bulge in the middle. Similarly,
for our granular packings, which tend to dilate through the
top free surface (in the direction perpendicular to the shear
plane), rigidity requires that there be some counterbalancing
mechanism providing a tensile contribution in the packing. In
this section, we identify a region in the simulated packing that
is under tensile stress, and we elucidate the mechanism for
supporting tensile stresses at the particle level.

We first consider the average stresses within the four equal-
volume regions shown in the Fig. 16 inset, which shows that
there are significant variations within the packing. Each region
is a semicircular portion of a cylinder with height L, covering
the portion of the packing where highly stressed particles
are found at large strains. The two regions above the z = 0
plane are moving with the top tube, and the two bottom
regions are fixed. For each region, we compute the stress
tensor using Eq. (2), averaging over particles whose centers lie
within the region. The major principal stress σ1 is compressive
everywhere and is substantially stronger in the top-back and
bottom-front regions, where it is oriented roughly in the x-z
plane, at a small angle to the x axis. The intermediate principal
stress is also compressive and is oriented along the y axis. The
minor principal stress σ3 is compressive in the bottom-front
region but tensile in the top-back region, as shown in Fig. 16.

z=0

Z

Y X+

shear direction

FIG. 16. The minor principal stresses σ3 vs strain γ for α = 10
particles in the four different regions defined in the text. Positive
values indicate tensile stress. Inset: Schematic showing the four
regions used to calculate the average stress tensors.

In both cases, it is oriented roughly in the x-z plane and close
to the z axis.

The packing is not constrained externally from dilating
in the positive z direction. The tensile stresses with large
projections on the z axis resist the dilation that occurs in
packings with small α and allows them to flow instead of
stiffen. Figure 17 shows σ3/σ1 in the top-back region as a
function of γ for several runs for particles with α = 1, 3.3, and
10. As α is increased, σ3/σ1 decreases faster with γ . σ3/σ1

remains positive during the shear for packings that yield, but
it goes negative for the stiffening α = 10 packing at relatively
small γ . Because σ1 is always compressive, a negative ratio
indicates that σ3 is tensile. Thus we see that the change from
yielding to stiffening behavior is correlated with the ability of
the packing to support tensile stress.

Figure 18 shows principal stresses at the particle scale,
calculated from Eq. (2) by summing over the contacts of indi-
vidual particles. Compressive and tensile principal stresses are

=1

=3.3

=10

FIG. 17. Ratios of minor to major principal stress σ3/σ1 in the
top-back region (Fig. 16) are calculated for different α’s and runs,
and plotted as a function of shear strain γ . Colors refer to different
α, and lightness of the colors refer to different runs.
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FIG. 18. Visualization of principal stresses for α = 10 packing
during stiffening. The principal stresses of each hexapod are calcu-
lated and drawn as line segments centered at the particle’s center of
mass. Tensile (compressive) principal stresses are shown on the left
(right) in red (blue). The line color, length, and thickness all vary
linearly with the square root of stress magnitude and are normalized
to the maximum stress magnitude. Gray grid surfaces represent the
shear tube boundaries.

represented as line segments centered at the particle’s center.
The line darkness, length, and thickness all vary linearly, with
values normalized to the maximum magnitude in each panel.
Compressive principal stresses σc are shown on the right (in
blue). Tensile principal stresses σt are shown separately on the
left (in red), as they would be difficult to see if normalized on
the same scale as σc. The rigid cluster is discernible in this
figure as the collection of highly stressed particles. The large
compressive stresses tend to align along the direction of the
major axis of the rigid cluster ellipsoid, and the tensile stresses
are close to the minor axis.

The source of tensile stress on a single particle can be
understood as follows. In α = 10 packings, contacts between
particle arms tend to occur far from the particle centers [16],
and the angle φ between the contact force f and the vector
pointing from particle center to the contact r is expected to
be nearly 90◦, which implies that the contact force exerts
a substantial torque on each particle [24]. To see that such
forces can give rise to tensile stresses, consider a cross-shaped
rigid particle subjected to four equal magnitude contact forces
with φ = 90◦, as shown in Fig. 19. The configuration is in
mechanical balance, and the stress tensor of Eq. (2) has the
form

σ =
(−σ0 0

0 σ0

)
,

f
r

FIG. 19. A cross-shape particle is under four contact forces f (big
thick arrows) and the vectors r (small thin arrows). φ is defined as the
acute angle φ between f and r. In this case, φ = 90◦ for all contacts.
Horizontal (blue) and vertical (red) arrows show the compressive and
tensile principal stresses carried by the cross.

FIG. 20. The minor principal stress σ3 due to contacts that have
an angle φ (defined in the text) less than a threshold φth, σ3(φth ) is
normalized by major principal stress σ1 and plotted vs φth for α = 3.3
(gray dashed line) and 10 (black solid line). Inset: The distribution
(arbitrary unit) of φ for the two α’s.

indicating a tensile principal stress in the vertical direction and
a compressive principal stress in the horizontal direction.

The observation that contact forces with large φ (near 90◦)
are responsible for the tensile stress on individual particles
implies that these contact forces are also responsible for the
macroscopic tensile stress. Figure 20 emphasizes this point by
showing the net contribution to the global σ3 from all contact
forces with φ < φth as a function of φth. For the α = 10
case, we see that σ3/σ1 becomes negative only when contacts
with φ � 80◦ are included. In contrast, for the α = 3.3 case,
σ3(φth)/σ1, the contributions from contacts with large φ are
not sufficient to generate a global tensile stress. This may
be because there are fewer contacts with large φ (Fig. 20
inset). Alternatively, it could be that contacts with large φ

do generate large tensile stresses on individual particles, but
these are not well enough aligned to yield a net collective
effect.

The tensile stress in these packings differs from those
arising in cohesive granular materials like wet sand. As indi-
cated by Fig. 19, the tensile stress in the hexapod packings is
induced by applied compressive stress in an orthogonal direc-
tion. In the absence of compressive stresses, the system cannot
support tensile stress. This is consistent with experimental
observations of yield stress made for three-point bending tests
on columns of Z-shape particles, in which the yield stress
increased when the axial confining pressure of the column
was increased [24]. As there is no other relevant quantity with
dimensions of stress, the magnitude of the tensile stress must
scale with the applied compressive stress.

V. CONCLUSIONS

We perform experiments and simulations to analyze
sheared granular materials with hexapod particles of increas-
ingly nonconvex shape, and we observe the development of
structural rigidity when the arm length-to-diameter aspect ra-
tio α is sufficiently large. For moderate aspect ratio (α = 3.3),
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FIG. 21. Visualization of tensile (top) and compressive (bottom)
principal stresses for α = 10 packing in a tube of diameter twice as
large during stiffening. The illustration methods are the same as in
Fig. 18.

the packings have a yield stress that vanishes for vanishing
pressures, as in the case of hard spheres, suggesting that there
is no effective cohesion in these systems (Fig. 11).

For packings that stiffen under direct shear (α = 10), x-ray
micro-CT data reveals that particle arms bend significantly,
which allows for the identification of a cluster of particles
responsible for the rigidity. We find that the stress is carried by
an oblate cluster of particles localized near the nominal shear
plane and tilted slightly with respect to the plane (Fig. 7). The
average contact number of the particles within the rigid cluster
increases faster than that for particles outside the cluster,
suggesting that the rigidity is due to the emergence of a collec-
tively interlocked cluster, even though pairwise interactions of
particles cannot act as hooks that support tensile stress.

Our numerical simulations reproduce the main features of
the experiments and provide insights into the mechanism that
leads to stiffening. Individual particles support tensile stresses
arising from contact forces that are nearly perpendicular to
the particle’s arm, and such tensile stresses are organized so
as to provide a macroscopic tensile stress in regions of the
sheared random packing (Fig. 20). This tensile stress can
prevent dilation, allowing a cluster of particles to stabilize
the packing against shear, and has magnitude proportional
to the compressive stress acting in the orthogonal direction.

FIG. 22. A structure made of crosses that contracts in the hor-
izontal direction when compressed vertically. The structure before
and after compression is shown on the left and right, respec-
tively. Arrows indicate the displacement of individual crosses after
compression.

New contacts are formed within the cluster as the strain is
increased, leading to increasing stiffness.

Though most of our simulations were done for tube diame-
ters and particles sizes that matched our experimental system,
preliminary results for α = 10 in a tube with diameter twice
as large show qualitatively similar behavior. Figure 21 shows
the positions and orientations of compressive and principal
stresses of each particle, and the patterns appear similar to
those seen in the smaller system (Fig. 18). It would be inter-
esting to study the statistical distribution of tensile stresses in
big homogeneous packings to reduce possible statistical bias
brought by the localized shear zone due to the applied shear
deformation. It would also be interesting to characterize more
precisely the transition from yielding to stiffening behavior as
a function of α.

Identifying particle shapes that exhibit enhanced or novel
granular material properties suitable for practical applications
is a challenging task. Our understanding of the mechanism
for supporting tensile stress in the noncohesive granular
material studied here may help guide the development of
composite materials with novel functionalities. For example,
the formation of freestanding structures made of nonconvex
particles has been considered as an alternative approach to
making reinforced construction materials [5]. In traditional
reinforced concrete, the tensile strength is enhanced by a
lattice of reinforcing steel bars (rebar). We find that the tensile
stress supported by the rigid cluster in our setup is coupled
to the compressive stress it receives. Moreover, the tensile
yield stress of the system increases with compressive strain
in an orthogonal direction, which suggests that appropriately
applied compressive stresses may be used to tune the tensile
strength, a feature that may prove useful for reconfigurable
architectural applications.

Another possible application leveraging our insight may
be a new approach to designing auxetic materials [38]
without permanent bonds between building blocks. Fig-
ure 22(a) shows a lattice of rigid crosses in which contacting
arms are free to slide past each other. When compressive
forces are applied in the vertical direction, all contact forces
generate tensile stress in the horizontal direction (Fig. 16),
causing the structure to contract horizontally, as shown in
Fig. 22(b). Different lattices and particle shapes may be
used to create isotropic or anisotropic auxetic responses upon
compression or extension, both in two and three dimensions.
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