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Abstract
Discretized Langevin diffusions are efficient Monte Carlo methods for sampling from high di-
mensional target densities that are log-Lipschitz-smooth and (strongly) log-concave. In particular,
the Euclidean Langevin Monte Carlo sampling algorithm has received much attention lately, le-
ading to a detailed understanding of its non-asymptotic convergence properties and of the role
that smoothness and log-concavity play in the convergence rate. Distributions that do not possess
these regularity properties can be addressed by considering a Riemannian Langevin diffusion with
a metric capturing the local geometry of the log-density. However, the Monte Carlo algorithms
derived from discretizations of such Riemannian Langevin diffusions are notoriously difficult to
analyze. In this paper, we consider Langevin diffusions on a Hessian-type manifold and study a
discretization that is closely related to the mirror-descent scheme. We establish for the first time a
non-asymptotic upper-bound on the sampling error of the resulting Hessian Riemannian Langevin
Monte Carlo algorithm. This bound is measured according to a Wasserstein distance induced by
a Riemannian metric ground cost capturing the squared Hessian structure and closely related to a
self-concordance-like condition. The upper-bound implies, for instance, that the iterates contract
toward a Wasserstein ball around the target density whose radius is made explicit. Our theory re-
covers existing Euclidean results and can cope with a wide variety of Hessian metrics related to
highly non-flat geometries.
Keywords: Riemannian Langevin Monte Carlo, Hessian manifold, sampling, contraction, Baillon-
Haddad inequality.

1. Introduction

1.1. Problem and setting

We consider the problem of sampling from a target probability distribution dπ = e−f(x)dx sup-
ported on a domain X ⊂ Rp, where f is differentiable on X . We are particularly interested in
sampling algorithms that scale efficiently to high dimensions. When f is Lipschitz-smooth (i.e.
differentiable with Lipschitz gradient) and strongly convex on X , then the conventional Langevin
Monte Carlo (LMC) algorithm derived from an Euler-Maruyama discretization of the Langevin sto-
chastic differential equation (SDE) is one of the most computationally efficient methods to sample
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from π. In this paper, we endow X with a carefully designed Riemannian structure and study the
non-asymptotic convergence properties of a Riemannian generalization of the LMC algorithm. The
motivation is that by endowing X with an appropriate Riemannian geometry, it is possible to obtain
algorithms with better convergence properties, and which can tackle distributions that are beyond the
scope of the Euclidean LMC algorithm. We consider Riemannian structures of Hessian type (Shima,
2007); the corresponding metric is induced by the Hessian D2φ(x) of some C2(X ) Legendre-type
convex potential/entropy φ on X (see (Rockafellar, 1970, Chapter 26) for a comprehensive account
on Legendre functions).

Discrete scheme. In the same vein as in Hsieh et al. (2018), we consider a sampling analogue of
mirror-descent as an extension of the classical Euler-Maruyama discretization of the Langevin SDE,
which reads, starting from some random vector X0 on X ,

Xk+1
def.
= ∇φ∗

(
∇φ(Xk)− hk+1∇f(Xk) +

√
2hk+1[D2φ(Xk)]ξk+1

)
. (1)

Here φ∗ is the Legendre-Fenchel conjugate of φ, i.e., φ∗(y)
def.
= supx∈X 〈x,y〉 − φ(x), {hk}k∈N ⊂

R++ is the sequence of step-sizes, and {ξk}k∈N is a sequence of standard normal random vectors
that are mutually independent and independent of X0, which is either deterministic or random. Let
us recall the useful fact that φ is of Legendre type if and only if its conjugate φ∗ is of Legendre
type. Moreover, the gradient∇φ of φ is a bijection from int dom(φ) = X to int dom(φ∗) = Y and
its inverse obeys (∇φ)−1 = ∇φ∗, see (Rockafellar, 1970, Theorem 26.5). Thus (1) makes perfect
sense as a single-valued mapping from X to X .

In the following, we call iteration (1) Hessian Riemannian Langevin Monte Carlo (HRLMC)
algorithm. Note that Hsieh et al. (2018) does not study this method, and rather settles for a different
discretization, which is simpler to analyze (being a change of variable applied to the Euclidean case)
and enjoys theoretical guarantees that are markedly different from ours (we refer to Section 1.2 for
a detailed comparison).

In the case where ξk = 0 (optimization framework), one recovers the mirror descent mini-
mization algorithm (Nemirovsky and Yudin, 1983; Bauschke et al., 2017; Lu et al., 2018). The
classical Euclidean case is recovered when φ is the energy, i.e., φ(x) = ‖x‖22 /2. Other popular
options to sample in X = Rp++ include Shannon entropy φ(x) =

∑
i xi log(xi) and Burg’s entropy

φ(x) = −
∑

i log(xi).
As mentioned previously, the key motivations behind switching from Euclidean LMC methods

to the HRLMC scheme are that by choosing an entropy φ adapted to f , one can either obtain better
smoothness and strong convexity properties or even recover smoothness and strong convexity rela-
tive to φ in cases where f is neither Lipschitz-smooth nor strongly convex in the standard Euclidean
geometry. The goal of this paper is to provide the first step toward a theoretical understanding of
these phenomena, by establishing a non-asymptotic upper-bound on the error in a properly designed
Wasserstein distance for sampling from π using HRLMC. The terms in the bound explicitly reflect
the interleaved geometries of f and φ.

Continuous flow. It can be shown that the HRLMC algorithm (1) can be viewed as a discretization
of a Riemannian SDE. Denoting Yt

def.
= ∇φ(Xt), this SDE reads

dYt = −∇f ◦ ∇φ∗(Yt)dt+
√

2[D2φ∗(Yt)]−1dBt, (2)

2
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where {Bt}t≥0 is a standard p-dimensional Brownian motion. If moreover φ ∈ C3(X ), then
Legendreness of φ entails that the SDE on Xt reads

dXt =
(
θ(Xt)− [D2φ(Xt)]

−1∇f(Xt)
)
dt+

√
2[D2φ(Xt)]−1dBt, (3)

where the additional drift term θ(Xt)
def.
= −[D2φ(Xt)]

−1Tr
(
D3φ(Xt)[D

2φ(Xt)]
−1
)
. Moreover,

the corresponding density can be shown to satisfy a Fokker-Planck equation that has π as its statio-
nary solution (we omit the details for the sake of brevity). When φ(x) = ‖x‖22 /2, then Xt = Yt,
and (2) and (3) coincide with the standard Langevin diffusion. The SDE (3), viewed as Brownian
motion on a Hessian manifold corrected by a Riemannian drift term, is then its natural generaliza-
tion to a Riemannian manifold with a Hessian structure. The SDE (2) appeared in earlier preprint
versions of Hsieh et al. (2018), while the SDE (3) is a particular case of the so-called Rieman-
nian Langevin dynamics as shown in Roberts and Stramer (2002). We will show in Appendix A
that both (2) and (3) are well-posed, under a self-concordance-like condition (A1) and a relative
Lipschitz-smoothness condition (A4).

1.2. Previous work

The goal of this paper is to provide non-asymptotic upper-bounds on the Wasserstein distance, with
an appropriate ground cost, between the distribution µk of Xk and the target distribution π.

Langevin Monte Carlo (LMC) under (strong) log-concavity. The Euclidean LMC, correspon-
ding to φ(x) = ‖x‖22 /2, has been extensively studied in the literature, where non-asymptotic er-
ror bounds have been established under various sampling error metrics (Kullback-Leibler, Total-
Variation, or Wasserstein). The case where f is m-strongly convex with a M -Lipschitz gradient is
the one that has been most widely studied (Dalalyan, 2017a,b; Durmus and Moulines, 2017; Cheng
and Bartlett, 2018; Durmus and Moulines, 2019; Dalalyan and Karagulyan, 2019; Durmus et al.,
2019; Dwivedi et al., 2018). In particular, (Dalalyan and Karagulyan, 2019) have shown that, when
using a constant step-size hk = h ∈ (0, 2

M ), the distribution of LMC algorithm samples converge
to the targed distribution with a contraction factor ρ = max(1−mh,Mh− 1). More precisely,

W2(µk, π) ≤ ρkW2(µ0, π) +
1.65Mh

3
2 p

1
2

1− ρ
≤ (1−mh)kW2(µ0, π) + 1.65(M/m)(ph)

1
2 , if h ≤ 2/(m+M),

(4)

where W2 is the 2-Wasserstein distance between two probability measures, i.e.,

W 2
2 (µ, ν)

def.
= inf

X∼µ,X′∼ν
E
[∥∥X−X′

∥∥2

2

]
.

This is the best known result in Wasserstein distance.
Durmus et al. (2018) studied the case of non-Lipschitz-smooth (strongly) convex f via Moreau-

Yosida regularization, and Bubeck et al. (2018); Brosse et al. (2017) the case of log-Lipschitz-
smooth strongly log-concave densities supported on a convex compact set. Cheng et al. (2017);
Dalalyan and Riou-Durand (2018) investigated the case of a kinetic Langevin diffusion (i.e., under-
damped LMC) for the same class of densities, showing that it leads to improved dependence on the
dimension and error.

3
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Non-asymptotic sampling error bounds when f is Lipschitz-smooth and merely convex (but
not strongly so) have been established in the literature in KL and TV Durmus et al. (2019), and in
Wasserstein distance Dalalyan et al. (2019) for various discrete LMC schemes.

LMC beyond log-concavity. Obtaining convergence results is very difficult when f is not convex.
Luu et al. (2017) considered densities that are neither necessarily smooth nor log-concave and provi-
ded asymptotic consistency guarantees. Assuming convexity at infinity, Cheng et al. (2018); Majka
et al. (2018) obtained convergence results in the 1-Wasserstein distance by using results in Eberle
(2016). When replacing convexity with a dissipativity condition, a non-asymptotic bound was first
provided by Raginsky et al. (2017) in the 2-Wasserstein distance, and then improved by Chau et al.
(2019). In Zhang et al. (2019), assumptions are further weakened by assuming only local Lipschitz
continuity of∇f and by relaxing conditions of convexity at infinity and uniform dissipativity.

Continuous Riemannian Langevin dynamics. The SDE (3) is a special case of the so-called
Riemannian Langevin dynamics, which appeared in Roberts and Stramer (2002); Girolami and
Calderhead (2011); Patterson and Teh (2013), when considering X as a Riemannian manifold with
Hessian metric D2φ. For this Riemannian Langevin SDE setting, it is known since Kent (1978) that
Xt has π as its unique invariant measure as long as Xt is non-explosive. For the conditions on the
non-explosion of diffusions, see Stroock and Varadhan (2007). Moreover, the linear convergence
theory of the corresponding Fokker-Planck equation is known since Arnold et al. (2001), relying
on the positivity of Bakry-Emery tensor; see (Bakry et al., 2014) for a comprehensive account.
Discretization schemes of the Riemannian Langevin SDE (3) were proposed in Roberts and Stramer
(2002); Girolami and Calderhead (2011); Patterson and Teh (2013). For instance, Roberts and
Stramer (2002) provided a linear convergence result of the Ozaki discretization under quite stringent
conditions. In particular, for the Hessian manifold, this theory requires φ to be strongly convex,
which in turn restricts the target distribution to be strongly log-concave.

In this paper, instead, we take the Euler-Maruyama discretization of (2) and map the process
back to Xk by the mirror map Xk = ∇φ∗(Yk). This is a key difference between our HRLMC
algorithm (1) and those proposed in Roberts and Stramer (2002); Girolami and Calderhead (2011);
Patterson and Teh (2013). However, the restriction to a Hessian Riemannian geometry is crucial in
our method and theory, which strongly rely on convex analysis tools and bijective duality mappings.
To the best of our knowledge, there is no proof of convergence or error bounds for such Euler-
Maruyama discretization of (2) or (3).

Relation to Hsieh et al. (2018). In 2018, Hsieh et al. (2018) studied a mirror-type discretization
of Langevin dynamics. Though it seems that their work shares apparent similarities with ours at
first glance, both their scheme and results are, however, markedly different from our HRLMC.
More precisely, a key difference lies in the fact that here, we use an appropriate diffusion term
entailing a Gaussian noise in the discrete scheme with iteration-dependent covariances that account
for the Hessian Riemannian structure. In contrast, Hsieh et al. (2018) adopted a standard Gaussian
noise instead. Moreover, they provided the existence of good mirror maps assuming f is strongly
convex and gave convergence of their sampling algorithm under 1-strongly convex mirror maps. In
this paper, we relax these requirements to relative versions and aim to generalize results from the
literature relying on strong convexity and Lipschitz-smoothness of f .

4
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1.3. Contributions

In this paper, by relaxing strong convexity and Lipschitz-smoothness of f to the relative versions
with respect to a Legendre-type entropy φ, we prove that, if the step-sizes hk are chosen sensibly,
the law of discrete process (1) contracts into a Wasserstein ball centered at the desired invariant
distribution, whose radius is given explicitly. This Wasserstein distance relies on a ground cost,
which is a Riemannian distance that captures the squared Hessian structure of the manifold. In
fact, convergence to π is not achieved in general unless φ is quadratic, but our bound allows us to
isolate a bias term that depends on the interleaved geometries of f and φ. In particular, our method
recovers the state-of-the-art non-asymptotic sampling error bounds in Wasserstein distance when
φ(x) = ‖x‖22 /2 (Dalalyan and Karagulyan, 2019).

Section 2 states the main contribution of this paper, Proposition 1, whose proof relies on a
more general result (Theorem 2) detailed in Section 3. In the appendices, we collect all details
of the discussions and proofs. This includes discussions of our assumptions (e.g., intuition behind
condition (A1), relation of (A3) and (A4) to relative strong convexity and relative smoothness). We
also present a generalized Baillon-Haddad inequality (8) that is of independent interest, and give
the detailed proofs of Proposition 1, Corollary 3, and Proposition 5. We also report some numerical
experiments to illustrate and support our theoretical predictions.

Notations. Thought out the paper,Mk×l is the ring of k × l matrices on R. ‖v‖2 is the Euclidean
norm of a vector v; for a matrix M ∈ Mk×l, ‖M‖2 stands for its spectral norm. That is, ‖M‖2 =√
λmax(MTM), where λmax represents the largest value of eigenvalues. By definition, ‖M‖2 ≤ δ

is equivalent to MTM � δ2Ip, i.e., MTM − δ2Ip is negative semi-definite. Another matrix norm

we use here is the Frobenius norm ‖M‖F =
√∑

i,j=1 M
2
ij =

√
Tr(MTM), where Tr is the trace

operator. The commutator of two square matrices M1,M2 ∈ Mp×p is denoted as [M1,M2]
def.
=

M1M2 −M2M1.

2. Main contributions

In this section, we state our main contributions, namely that the HRLMC algorithm (1) contracts
into a Wasserstein ball centered at the invariant measure.

2.1. Assumptions on φ and f

In the following, we assume that the domain X ⊂ Rp is open, contractible and ∇
(
dπ
dx

)
= 0 on its

boundary ∂X . To avoid technical issues, we assume that both f and φ are in C3(X ) and φ is of
Legendre type.

Self-concordance-like condition on φ. Our first condition imposes the existence of κ ≥ 0 such
that

∀(x,x′) ∈ X 2,
√

2
∥∥∥D2φ(x)

1
2 −D2φ(x′)

1
2

∥∥∥
F
≤ κ

∥∥∇φ(x)−∇φ(x′)
∥∥

2
. (A1)

In 1D, it is easy to check that this condition is equivalent to self-concordance. The general case
is more intricate. (A1) is important to guarantee the existence and uniqueness of the strong solution
of continuous dynamics (2) (see (Øksendal, 2003, Theorem 5.2.1)). In fact, if it is violated, the

5
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Lipschitz condition of the SDE also fails, which removes the general theoretical guarantee for (2)
to have an unique solution. See Appendix A for further details.

Moment condition on the Hessian of φ. The second constant involved in our analysis is

R
def.
= EX∼π

[∥∥D2φ(X)
∥∥

2

]
=

∫
X

∥∥D2φ(x)
∥∥

2
e−f(x)dx < +∞. (A2)

Relative strong convexity and Lipschitz-smoothness. In this paper, we relax the usual strong
convexity and Lipschitz-smoothness conditions to versions relatively to φ: there exists m ≥ 0,
M > 0 such that ∀(x,x′) ∈ X 2,

m
∥∥∇φ(x)−∇φ(x′)

∥∥2

2
≤ 〈∇f(x)−∇f(x′),∇φ(x)−∇φ(x′)〉; (A3)∥∥∇f(x)−∇f(x′)

∥∥
2
≤M

∥∥∇φ(x)−∇φ(x′)
∥∥

2
. (A4)

In the Euclidean case when φ(x) = ‖x‖2 /2, one recovers the usual notion of strong convexity of
f and Lipschitz continuity of its gradient. The condition (A3) and (A4) imply, respectively, the
relative strong convexity and relative Lipschitz-smoothness defined in Lu et al. (2018); Bauschke
et al. (2017). More precisely, they imply that mD2φ(x) � D2f(x) � MD2φ(x), for all x ∈ X .
The converse is not true in general. See details in Appendix B.

Bound on the commutator of D2φ and D2f . Whenever the Hessians D2f and D2φ do not
commute, we require the following assumption to quantify the commutator:

∃δ ≥ 0, ∀x ∈ X ,
∥∥[(D2φ(x))−1, D2f(x)

]∥∥
2
≤ δ. (A5)

This control is crucial to prove the generalized Baillon-Haddad inequality (Proposition 4).

2.2. Wasserstein Distance

While the de-facto geodesic distance on X endowed with the Hessian structure is the Rieman-
nian distance associated with D2φ(x), this distance cannot be computed in closed form. We thus
settle for a simpler one, which is the Riemannian distance d associated with the squared Hessian
[D2φ(x)]2. One can check that the diffeomorphism∇φ : (X , [D2φ(x)]2)→ (Y, Ip) is an isometry
(see (do Carmo, 1992, Chapter 1) for a detailed account on the isometry of Riemannian manifolds).
Therefore, d(x,x′) = ‖∇φ(x)−∇φ(x′)‖2 for any x,x′ ∈ X .

With this ground distance, the natural associated geometric distance on the space of probability
distributions on X is the Wasserstein distance

W 2
2,φ(µ, ν)

def.
= inf

x∼µ,x′∼ν
E
[
d2(x,x′)

]
= inf

x∼µ,x′∼ν
E
[∥∥∇φ(x)−∇φ(x′)

∥∥2

2

]
. (5)

When φ(x) = ‖x‖2 /2, one recovers the usual W2 distance used in (4).

2.3. Statement of the main result

From now on, we assume that conditions (A1)–(A5) are satisfied. Denote by µk the distribution of
the k-th iterate Xk in (1), i.e., Xk ∼ µk, and define

κ̃
def.
=

√
κ2 +

δ(4M + δ)

2(m+M)
.

6
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Our main contribution is Theorem 2, whose statement and proof will be given shortly in a forthco-
ming section. For the sake of clarity, we first apply it below to the case of constant step-sizes, which
makes it easier to get the gist of our main result and compare it with existing works.

Proposition 1 (Constant step-size) Assume conditions (A1)–(A5) are satisfied with κ̃ <
√

2m

and hk = h < min
(

2m−κ̃2
m2 , 2M−κ̃2

M2

)
. Then

W2,φ(µk, π) ≤ ρkW2,φ(µ0, π) + h
3
2 p

1
2 (1− ρ)−1β2(R,M, κ) + hp

1
2 (1− ρ)−1β1(R, κ), (6)

where ρ
def.
= max

(√
(1−mh)2 + hκ̃2,

√
(1−Mh)2 + hκ̃2

)
< 1, β1(R, κ)

def.
= κR

1
2 , and

β2(R,M, κ)
def.
= M

1
2R

1
2

(
7
√

2M
6 + κ√

3

)
are dimension-free constants.

The error upper-bound is composed of three terms. The first one comes from the time finiteness
that decreases exponentially, while the second corresponds to the discretization error. These two
terms are standard in LMC. The last term is new and reveals the price to be paid if one trades the
standard strong convexity and Lipschitz-smoothness for their relative versions in the Riemannian
geometry induced by φ. If h is sufficiently small, one can see that (1 − ρ)−1 = O(h−1), where
the constant in the order depends on (m,M, κ, δ). In turn, the discretization error term will scale as
O(β2(R,M, κ)p1/2h1/2), which vanishes as h → 0, while the last term is O(β1(R, κ)p1/2). The
latter is a bias term. We conjecture that the bias is unavoidable and that our contraction analysis
is tight. Indeed, this term is not an artifact of the proof since the estimates are based on sharp
inequalities for which lower bounds are available. This is also confirmed by the numerics discussed
in the appendix.

Moreover, our analysis recovers exactly known results for the particular case when f is m-
strongly convex and has an M -Lipschitz continuous gradient, hence satisfying conditions (A1)–
(A5) with φ(x) = ‖x‖2 /2, κ = 0, R = 1, δ = 0, β1 = 0, β2 = 7

√
2M
6 , κ̃ = 0, ρ = max{1 −

mh,Mh− 1}, and W2,φ = W2. In this case, the bias term vanishes, and Proposition 1 recovers the
sampling error bound of LMC from (Dalalyan and Karagulyan, 2019, Theorem 1), recalled in (4).

Besides, our proposition covers new cases not known in the literature, as shown in the forthco-
ming section. We want to emphasize that the condition κ̃ <

√
2m is essential as it connects the

key parameters m,M, κ, δ, which summarize the interleaved geometries of f and φ. It requires
κ <
√

2m even if δ = 0. We now illustrate this condition and assumptions (A1)–(A5) with several
examples.

2.4. Examples

In this section, we provide two tables to include some examples that satisfy the assumptions (A1)–
(A5) and condition κ̃ <

√
2m with explicit parameters. As κ is the only constant that depends

merely on φ, Table 1 presents a list of entropy functions that satisfy (A1) or not, while Table 2
gives the constants involving interplay between φ and f . For instance, in the example of Gamma
distribution (Table 2, middle column), one can see clearly how dimension enters the game via m
and M .

1. More generally, φ(x) =
∑p

i=1 φi(xi) satisfies (A1) with κ =
√

2M ′ provided that [(φ∗i )
′′]−

1
2

has an M ′-Lipschitz continuous gradient for each i. If f(x) =
∑p

i=1 fi(xi), then it satisfies

7
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Table 1: Common entropy functions and the corresponding κ in (A1)

φ κ Domain

‖x‖2 /2 0 Rp

−
∑

i ln(xi)
√

2 Rp++∑
i xi ln(xi) ∞ Rp++

− ln(x)− ln(1− x)
√

2 (0, 1)∑
i aixi ln(xi)−

∑
i(1− ai) ln(xi)

√
2

1−maxi ai
Rp++; ai ∈ [0, 1]

(1− x2)−1 1.43 (−1, 1)

− ln(x2
2 − x2

1)
√

2 {(x1, x2) : |x1| < x2}
− ln(1− x2)

√
2 (−1, 1)

Table 2: Other parameters in the assumptions (A2)–(A5)

φ = ‖x‖2 /2 φ = −
∑p

i=1 ln(xi) φ = − ln(x)− ln(1− x)
f = xTAx/2 + C f =

∑
i(1− ai) ln(xi) f = (1− a1) ln(x)

(AT = A) +bixi + C +(1− a2) ln(1− x) + C

R 1
∑

i(ai − 3)!/bai−2
i

(a1−3)!(a2−1)!+(a1−1)!(a2−3)!
(a1+a2−3)!

m λmin(A) mini{ai − 1} min{a1 − 1, a2 − 1}
M λmax(A) maxi{ai − 1} max{a1 − 1, a2 − 1}
δ 0 0 0

κ̃ <
√

2m A is positive definite ai > 2, ∀i a1, a2 > 2

(A2) and (A5) with R ≤
∑

iEx∼π[φ′′i (xi)] and δ = 0. Besides, (A3) and (A4) are satisfied
if, for each i, fi is m-strongly convex and has an M -Lipschitz continuous gradient relatively
to φi, in the sense of Lu et al. (2018).

2. Boltzmann-Shannon entropy: When φ(x) =
∑p

i=1 xi ln(xi), however, condition (A1) is
violated on Rp++.

3. Proof of the Main Result

3.1. A general non-asymptotic error bound

We are now in position to state our main theorem.

Theorem 2 (Contractibility) Assume that (A1)–(A5) hold such that κ̃ <
√

2m. Suppose hk+1 <

min
(

2m−κ̃2
m2 , 2M−κ̃2

M2

)
. Then

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + hk+1p
1
2β1(R, κ) + h

3
2
k+1p

1
2β2(R,M, κ). (7)

Here ρk+1
def.
= max

(√
(1−mhk+1)2 + hk+1κ̃2,

√
(1−Mhk+1)2 + hk+1κ̃2

)
< 1, β1(R, κ) =

κR
1
2 , and β2(R,M, κ) = M

1
2R

1
2

(
7
√

2M
6 + κ√

3

)
are dimension-free constants.

8
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The main arguments to prove Theorem 2 will be given in Section 3.2 and 3.3. This result implies
in particular Proposition 1 when the step-sizes are constant. Besides, the result in (7) is invariant in
scalings like φ̃ = αφ for any α > 0.

Theorem 2 has the next corollary. In a nutshell, this corollary states that with vanishing step-
sizes, the HRLMC algorithm contracts toward a Wasserstein ball centered at the target distribution

π with radius r0. The explicit formula of this radius is r0
def.
= 2κp

1
2R

1
2

2m−κ̃2 , which scales as O(p
1
2 ) in

the dimension. This formula is derived from (7) upon applying Lemma 21 (see (44) and the proof
of Corollary 3). Moreover, once entering the ball, the distribution µk never leaves it. When φ =
‖x‖2 /2, it is clear that r0 = 0 and therefore the algorithm converges to the stationary distribution.

In the following, we use the notation Br(π)
def.
= {µ ∈ P(X )|W2,φ(µ, π) < r} and Br(π)

def.
=

{µ ∈ P(X )|W2,φ(µ, π) ≤ r}, where P(X ) is the space of probability distributions on X .

Corollary 3 (Contracting to a Wasserstein ball) Assume (A1)–(A5) hold with κ̃ <
√

2m. Then
the following statements hold:

(i) For any µ0 ∈ P(X ), there exist step-sizes {hk}k∈N such that lim sup
k→∞

W2,φ(µk, π) ≤ r0.

(ii) If µk /∈ Br0(π), then there exists a step-size hk+1 such that W2,φ(µk+1, π) < W2,φ(µk, π).

(iii) If µk ∈ Br0(π), then there exists hk+1 > 0 such that µk+1 ∈ Br0(π).

(iv) If µk ∈ Br0(π)\Br0(π), then for any r > r0, there exists hk+1 > 0, such that µk+1 ∈ Br(π).

The proof can be found in Appendix D where we also construct an example of appropriate
vanishing step-sizes {hk}k∈N that are in the order of 1

k , and which guarantees that the claims of
Corollary 3 hold.

Iteration complexity bounds. From these guarantees, for any ε > 0 small enough, we can now
derive the smallest number of iterations Kε (i.e., iteration complexity bound), such that the corre-
sponding upper-bound of HRLMC with constant step-size is smaller than r0+ε afterKε steps. More

precisely, for any ε such that 0 < ε < min

(
4
√

2p
1
2 β2

m
√

2m−κ̃2 ,
2κ̃2p

1
2 β1

(2m−κ̃2)2
,

32p
1
2 β2

2
κ̃2(4m−κ̃2)2β1

)
, the number of

iterations needed to get W2,φ(µk, π) < r0 + ε with constant step-size is

Kε &
pMR

(√
M + κ

)2

(2m− κ̃2)3

1

ε2
ln

(
1

ε

)
.

When κ = 0, this becomes

Kε &
p(m+M)3M2R

(4m2 + 4M(m− δ)− δ2)3

1

ε2
ln

(
1

ε

)
.

In the classical case when f is m-strongly convex and has an M -Lipschitz continuous gradient, the
bound becomes

Kε &
pM2

m3ε2
ln

(
1

ε

)
,

which coincides with the best result in the literature of Euler-Maruyama LMC (See (Durmus et al.,
2019, Table 1) for an overview).

9
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3.2. Baillon-Haddad type inequality

Baillon and Haddad showed that if the gradient of a convex and continuously differentiable function
is nonexpansive, then it is firmly nonexpansive (Baillon and Haddad (1977)). This is one of the criti-
cal steps in the proof of convergence when φ(x) = ‖x‖2 /2. We extend the Baillon-Haddad theorem
to the case of relative Lipschitz-smoothness (A4). We state a weaker version here, which is suffi-
cient for the proof of the main theorem, and defer a stronger version with proof to the Appendix C,
which is of independent interest.

Proposition 4 (Baillon-Haddad extension) Assume f satisfies assumptions (A3)-(A5), then for
any x1,x2 ∈ X ,

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉
≥A ‖∇f(x1)−∇f(x2)‖22 +B ‖∇φ(x1)−∇φ(x2)‖22 ,

(8)

where the constants are A def.
= 1

m+M and B def.
= 4mM−4Mδ−δ2

4(m+M) .

3.3. Proof of Theorem 2

We first state a proposition that is useful in this section. Its proof is postponed to Appendix D.

Proposition 5 Let L0 be any random vector drawn from π and Lt be a continuous dynamics
satisfying (10). Then for any s > 0, one has√

E
[
‖∇φ(L0)−∇φ(Ls)‖22

]
≤ s
√
MpR+

√
2spR. (9)

Proof of Theorem 2.
For notation simplicity, we use h, and ρ to represent hk+1, and ρk+1, respectively. Let L0 be

a random vector drawn from π such that W 2
2,φ(µk, π) = E

[
‖∇φ(L0)−∇φ(Xk)‖22

]
. Let Bt =

√
tξk+1, independent of (Xk,L0). Define a stochastic process L such that

∇φ(Lt) = ∇φ(L0)−
∫ t

0
∇f(Ls)ds+

√
2

∫ t

0
[D2φ(Ls)]

1
2dBs. (10)

Then, by (A1), {Lt : t ≥ 0} has π as its stationary distribution and Lt ∼ π for all t > 0. On the
other hand, our HRLMC algorithm reads

∇φ(Xk+1) = ∇φ(Xk)− h∇f(Xk) +
√

2h[D2φ(Xk)]ξk+1. (11)

Let

A
def.
=∇φ(L0)−∇φ(Xk)− h(∇f(L0)−∇f(Xk)),

C
def.
=

∫ h

0
(∇f(L0)−∇f(Ls)) ds,

G
def.
=
√

2h
(

[D2φ(L0)]
1
2 − [D2φ(Xk)]

1
2

)
ξk+1,

10
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H
def.
=
√

2

∫ h

0

(
[D2φ(Ls)]

1
2 − [D2φ(L0)]

1
2

)
dBs.

By definition of W 2
2,φ and triangle inequality, one has

W2,φ(µk+1, π) ≤
√
E
[
‖∇φ(Lh)−∇φ(Xk+1)‖22

]
=

√
E
[
‖A + C + G + H‖22

]
≤
√

E
[
‖A + G‖22

]
+

√
E
[
‖C‖22

]
+

√
E
[
‖H‖22

]
.

(12)

Below, we estimate the three terms in the right-hand side separately.

1. Define ρ =
√
τ2 + hκ2, where

τ2 =

{
(1−mh)2 + hδ(4M+δ)

2(m+M) , for h ∈ (0, 2
m+M );

(1−Mh)2 + hδ(4M+δ)
2(m+M) , for h ∈ ( 2

m+M ,
2
M ).

One can check that ρ < 1 because of κ̃2 < 2m and h < min
(

2m−κ̃2
m2 , 2M−κ̃2

M2

)
. Therefore,

by Proposition 4, we have

E
[
‖A‖22

]
=E

[
‖∇φ(L0)−∇φ(Xk)‖22 + h2 ‖∇f(L0)−∇f(Xk)‖22

− 2h〈∇f(L0)−∇f(Xk),∇φ(L0)−∇φ(Xk)〉
]

≤E
[(

1− h(4mM − 4Mδ − δ2)

2(m+M)

)
‖∇φ(L0)−∇φ(Xk)‖22

+ h

(
h− 2

m+M

)
‖∇f(L0)−∇f(Xk)‖22

]
≤τ2W 2

2,φ(µk, π).

(13)

The last inequality is derived from (A4) if h ∈
(

2
m+M ,

2
M

)
or (A3) if h ∈

(
0, 2

m+M

)
.

On the other hand, from Itô’s isometry (Lemma 18) and assumption (A1), we have

E[‖G‖22] =E

[
h
∥∥∥√2

(
[D2φ(L0)]

1
2 − [D2φ(Xk)]

1
2

)∥∥∥2

F

]
≤hE

[
κ2 ‖∇φ(L0)−∇φ(Xk)‖22

]
=hκ2W 2

2,φ(µk, π).

(14)

Note that E [〈A,G〉] = 0, since ξk+1 is independent of (Xk,L0). Therefore, combining
equations (13) and (14), one has√

E
[
‖A + G‖22

]
=

√
E
[
‖A‖22 + ‖G‖22

]
≤
√

(τ2 + hκ2)W2,φ(µk, π) = ρW2,φ(µk, π).

(15)

11
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2. Applying Minkowski’s integral inequality (Lemma 19), assumption (A4), and Proposition 5,√
E
[
‖C‖22

]
≤
∫ h

0

√
E
[
‖∇f(L0)−∇f(Ls)‖22

]
ds

≤M
∫ h

0

√
E
[
‖∇φ(L0)−∇φ(Ls)‖22

]
ds

≤M
∫ h

0

(
s
√
MpR+

√
2spR

)
ds

≤ 7
√

2

6
Mh

3
2 p

1
2R

1
2 .

3. By Itô’s isometry, assumption (A1), and Proposition 5,

E
[
‖H‖22

]
=

∫ h

0
E

[∥∥∥√2
(

[D2φ(Ls)]
1
2 − [D2φ(L0)]

1
2

)∥∥∥2

F

]
ds

≤ κ2

∫ h

0
E
[
‖∇φ(Ls)−∇φ(L0)‖22

]
ds

≤ κ2

∫ h

0

(
s
√
MpR+

√
2spR

)2
ds

≤ κ2h2pR

(
1 +

√
M

3
h

1
2

)2

.

In conclusion, combining (12) and the above, we arrive at

W2,φ(µk+1, π) ≤
√

E
[
‖A + G‖22

]
+

√
E
[
‖C‖22

]
+

√
E
[
‖H‖22

]
≤ ρW2,φ(µk, π) +

7
√

2

6
Mh

3
2 p

1
2R

1
2 + κhp

1
2R

1
2 +

√
M

3
κh

3
2 p

1
2R

1
2

= ρW2,φ(µk, π) + hp
1
2β1(R, κ) + h

3
2 p

1
2β2(R,M, κ).

�

Conclusion

In this paper, we have proposed the first theoretical guarantees for the discretized Langevin coun-
terpart of the celebrated mirror descent algorithm to sample from distributions whose densities are
not necessarily log-conncave nor log-Lipschitz-smooth. We showed that it is a stable discretization
of the continuous Riemannian Langevin flow, more precisely, that it contracts toward a Wasserstein
ball associated with a Hessian squared Riemannian metric. This analysis highlights the critical role
played by the self-concordance of the entropy function and the relative anisotropy of the entropy
and log-distribution (controlled by bounding the associated commutator).
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Appendix A. Well-posedness of (2)

Let us recall the SDE (2),

dYt = −∇f ◦ ∇φ∗(Yt)dt+
√

2[D2φ∗(Yt)]−1dBt.

Let Y def.
= ∇φ(X ). The following conditions are usually required for existence and uniqueness of

(strong) solutions to this SDE in time interval [0, T ] (see (Øksendal, 2003, Theorem 5.2.1)):

• Lipschitz condition: there exists K1 > 0, such that for all vectors y1,y2 ∈ Y (and all
t ∈ [0, T ]),

√
2
∥∥∥D2φ∗(y1)−

1
2 −D2φ∗(y2)−

1
2

∥∥∥
F

+ ‖∇f(∇φ∗(y1))−∇f(∇φ∗(y2))‖2 ≤ K1 ‖y1 − y2‖2 .
(16)

Let xi = ∇φ∗(yi) for i = 1, 2. Then the above inequality is equivalent to, for all x1,x2 ∈ X ,

√
2
∥∥∥D2φ(x1)

1
2 −D2φ(x2)

1
2

∥∥∥
F

+ ‖∇f(x1)−∇f(x2)‖2 ≤ K1 ‖∇φ(x1)−∇φ(x2)‖2 .

In view of assumptions (A1) and (A4), the Lipschitz condition (16) holds with K1 = M + κ.

• Growth condition: there exist K2 > 0, such that for all y ∈ Y (and t ∈ [0, T ]),

2
∥∥∥[D2φ∗(y)]−

1
2

∥∥∥2

F
+ ‖∇f ◦ ∇φ∗(y)‖22 ≤ K2(1 + ‖y‖22). (17)

Similarly, this is equivalent to the existence of K2 > 0 such that for all x ∈ X ,

2
∥∥∥[D2φ(x)]

1
2

∥∥∥2

F
+ ‖∇f(x)‖22 ≤ K2(1 + ‖∇φ(x)‖22).

Again, owing to (A1) and (A4), one easily sees that (17) holds with K2 depending on M and
κ.

Remark 6 Although the Lipschitz and Growth conditions are general requirements to guarantee the
existence and uniqueness of solutions to SDE (2), one can easily check that the Lipschitz condition
implies the other one.

Remark 7 Examples of entropies φ verifying for instance (A1) are given in the text, e.g., Burg’s
entropy φ(x) = − log(x) on R++. However, this does hold for the Boltzmann-Shannon φ(x) =
x log(x) on R++.
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Appendix B. Assumption (A3) v.s. relative strong convexity; and (A4) v.s. relative
smoothness

Throughout, f and φ are assumed C2(X ). By Cauchy-Schwarz inequality, (A3) implies

∃m ≥ 0, s.t. m
∥∥∇φ(x)−∇φ(x′)

∥∥
2
≤
∥∥∇f(x)−∇f(x′)

∥∥
2
∀x,x′ ∈ X . (18)

Since X is open, for any x ∈ X , (18) and (A4) implies that for all z ∈ Rp and t sufficiently
small

m ‖∇φ(x + tz)−∇φ(x)‖2 ≤ ‖∇f(x + tz)−∇f(x)‖2 ≤M ‖∇φ(x + tz)−∇φ(x)‖2 .

Dividing by t and passing to the limit as t→ 0+, we get

m
∥∥D2φ(x)z

∥∥
2
≤
∥∥D2f(x)z

∥∥
2
≤M

∥∥D2φ(x)z
∥∥

2
, ∀x ∈ X ,∀z ∈ Rp.

Squaring, this is equivalent to

m2
〈
(D2φ(x))2z, z

〉
≤
〈
(D2f(x))2z, z

〉
≤M2

〈
(D2φ(x))2z, z

〉
, ∀x ∈ X , ∀z ∈ Rp, (19)

or
(mD2φ(x))2 � (D2f(x))2 � (MD2φ(x))2, ∀x ∈ X . (20)

where � is the Loewner order defined by the cone of positive semi-definite matrices. We recall the
following lemma due to (Stępniak, 1987, Theorem 1).

Lemma 8 For any positive semidefinite matrices A and B, if A2 � B2, then A � B.

Applying this lemma with A = MD2φ(x) and B = D2f(x), and then with A = D2f(x) and
B = mD2φ(x), we conclude that (20) implies

mD2φ(x) � D2f(x) �MD2φ(x), ∀x ∈ X . (21)

According to (Bauschke et al., 2017, Proposition 1.(i, ii)), (21) is equivalent to smoothness and
strong convexity of f relatively to φ, as defined in Lu et al. (2018).

Overall, we have proved the following claim.

Proposition 9 Suppose that f and φ are C2(X ). Then (A3) implies m-strong relative convexity
with respect to φ and (A4) implies M -relative smoothness of f with respect to φ, i.e. (21) holds.

Observe that the converse implication in Lemma 8 does not hold in general, see Stępniak (1987),
and thus (21) 6⇒ (20) in general. In turn assumptions (A3) and (A4) are strictly stronger than relative
smoothness and strong convexity.

17
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Appendix C. Proof of a stronger version of Proposition 4, the Baillon-Haddad type
inequality

In this section, we will prove a Baillon-Haddad type inequality, as in Proposition 4, but with weaker
assumptions. This inequality serves as an essential step in the proof of Theorem 2.

In the following, we denote byMl×n the space of all matrices that have l rows and n columns
and whose entries have real values.

Lemma 10 ((Horn and Johnson, 2012, Example 5.6.6)) For any matrix M ∈ Ml×n, ‖M‖2 =

maxv∈Rn
‖Mv‖2
‖v‖2

.

Remark 11 From the above lemma, it is clear that ‖M1M2‖2 ≤ ‖M1‖2 ‖M2‖2 for any M1 ∈
Mk×l and M2 ∈Ml×n.

Definition 12 (Contractibility) We say a domain U ⊂ Rp is contractible if there exists some point
c ∈ U such that the constant map x 7→ c is homotopic to the identity map on U .

Definition 13 (Differential Forms) Let 0 ≤ k ≤ p. A differential k-form g : U → Λk will
be written as g =

∑
1≤i1<···<ik≤p gi1···ikdx

i1 ∧ · · · ∧ dxik , where gi1···ik : U → R for every
1 ≤ i1 < · · · < ik ≤ p and Λk = Λk (Rp∗) with Rp∗ being the dual of Rp as a vector space. When
gi1···ik ∈ Cr(U) for every 1 ≤ i1 < · · · < ik ≤ p, we will write g ∈ Cr(U ; Λk).

Lemma 14 (Poincaré lemma, (Csató et al., 2011, Theorem 8.1)) Let r ≥ 1 and 0 ≤ k ≤ p − 1
be integers and U ⊂ Rp be an open contractible set. Let g ∈ Cr(U ; Λk+1) with dg = 0 in U . Then
there exists G ∈ Cr(U ; Λk) such that dG = g in U .

Remark 15 For relaxation on the contractibility of the domain and sharper regularity in Hölder
spaces, see (Csató et al., 2011, Theorem 8.3).

Proposition 16 (Baillon-Haddad extension) Assume thatX is contractible, φ is a Legendre function
on X , f and φ ∈ C3(X ) satisfying (A5), and that there exist 0 ≤ m ≤ M such that for any
x1,x2 ∈ X ,

m ‖∇φ(x1)−∇φ(x2)‖22 ≤ 〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉 ≤M ‖∇φ(x1)−∇φ(x2)‖22 .
(22)

Then for all x1,x2 ∈ X , we have

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥ 1

m+M
‖∇f(x1)−∇f(x2)‖22 +

4mM − 4Mδ − δ2

4(m+M)
‖∇φ(x1)−∇φ(x2)‖22 .

(23)
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Remark 17 1. Under the same assumptions as above and assumingD2φ andD2f are commutable,
then for any x1,x2 ∈ X ,

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥ 1

m+M
‖∇f(x1)−∇f(x2)‖22 +

mM

m+M
‖∇φ(x1)−∇φ(x2)‖22 .

(24)

2. If, in addition, m = 0, then the inequality becomes

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉 ≥ 1

M
‖∇f(x1)−∇f(x2)‖22 . (25)

This is the canonical form of Baillon-Haddad inequality, which is equivalent to equation (24).
3. In general, if m = 0 (but δ may not), the inequality (23) implies relative Lipschitz smoothness

‖∇f(x1)−∇f(x2)‖2 ≤
(
M +

δ

2

)
‖∇φ(x1)−∇φ(x2)‖2 . (26)

Proof [Proposition 16] Denote A(y) := D2f(∇φ∗(y)) and B(y) := D2φ∗(y).
Notice that

d

1

2

∑
i,j

[(AB)ji − (AB)ij ] dyi ∧ dyj


=
∑
i,j,l

1

2
d (∂jlf(∇φ∗)∂liφ∗ − ∂ilf(∇φ∗)∂ljφ∗) ∧ dyi ∧ dyj

=
∑
i,j,k,l

1

2

(
∂jlf(∇φ∗)∂likφ∗ − ∂ilf(∇φ∗)∂ljkφ∗ +

∑
m

∂jlmf(∇φ∗)∂mkφ∗∂liφ∗−

−
∑
m

∂ilmf(∇φ∗)∂mkφ∗∂ljφ∗
)
dyk ∧ dyi ∧ dyj

=
∑
i,j,k,l

1

6
· 0 dyk ∧ dyi ∧ dyj +

∑
i,j,k,l,m

1

6
· 0 dyk ∧ dyi ∧ dyj

=0.

By the Poincaré lemma, there exists a 1-form ω on Y such that

dω =
1

2

∑
i,j

[(AB)ji − (AB)ij ] dyi ∧ dyj (27)

Note that ω is a 1-form on Y , which corresponds to a vector field g : Y → Rp such that
ω = g · dy. Define g̃ := ∇f ◦ ∇φ∗ − g : Y → Rp.
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By Stokes-Cartan theorem, for any U ⊂ Y , one has∫
∂U
∇f ◦ ∇φ∗ · dy =

∫
U
d

∑
j=1

∂jf(∇φ∗)dyj


=

1

2

∫
U

p∑
i,j=1

[(AB)ji − (AB)ij ] dyi ∧ dyj

=

∫
U
dω =

∫
∂U
ω =

∫
∂U

g · dy.

This implies, for any closed curve Γ on Y , one has∮
Γ
g̃ · dy = 0.

That is, g̃ is path-independent. Define f̃ as a function on Y from any given point y0 ∈ Y such that
f̃(y)

def.
= f̃(y0) +

∫
Γ g̃ · dy, where Γ is any smooth curve from y0 to y. Therefore,

∇f̃ = g̃ = ∇f ◦ ∇φ∗ − g. (28)

From (27), we know ∂igj = 1
2 [(AB)ji − (AB)ij ] , for all 1 ≤ i, j ≤ p. Thus, (28) implies

(D2f̃)ji =∂i∂j f̃ = ∂i(∂jf(∇φ∗)− gj) =
∑
k

∂jkf(∇φ∗) · ∂kiφ∗ − ∂igj

=(BA)ij +
1

2
[(AB)ij − (BA)ij ] =

1

2
[(AB)ij + (BA)ij ].

This shows that D2f̃ is symmetric and

D2f̃ =
1

2
(AB + BA) =

1

2

(
D2f ◦ ∇φ∗ ·D2φ∗ +D2φ∗D2f ◦ ∇φ∗

)
. (29)

By assumption, there exist 0 ≤ m ≤M such that for any x1,x2 ∈ X ,

m ‖∇φ(x1)−∇φ(x2)‖22 ≤ 〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉 ≤M ‖∇φ(x1)−∇φ(x2)‖22 .

This implies for any y1,y2 ∈ Y ,

m ‖y1 − y2‖22 ≤ 〈∇f(∇φ∗(y1))−∇f(∇φ∗(y2)),y1 − y2〉 ≤M ‖y1 − y2‖22 .

Thus, for any v ∈ Rp and y ∈ Y , one has

m ‖v‖22 ≤ vT
[D(∇f ◦ ∇φ∗)(y)]T + [D(∇f ◦ ∇φ∗)(y)]

2
v ≤M ‖v‖22 .

This reads, from (29),
mIp � D2f̃(y) �MIp

for all y ∈ Y . By the classical Baillon-Haddad theorem, we know

〈∇f̃(y1)−∇f̃(y2),y1 − y2〉 ≥
1

m+M

∥∥∥∇f̃(y1)−∇f̃(y2)
∥∥∥2

2
+

mM

m+M
‖y1 − y2‖22 . (30)

Now let us estimate 〈g(y1) − g(y2),y1 − y2〉, 〈∇f̃(y1) − ∇f̃(y2),g(y1) − g(y2)〉, and
‖g(y1)− g(y2)‖22.
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1. For any y1,y2 ∈ Y , and any t, s ∈ [0, 1], denote yt = ty1 + (1− t)y2 and ys = sy1 + (1−
s)y2. Then g(y1) − g(y2) =

∫ 1
0 d (g(yt)) =

∫ 1
0 ∇g(yt) · (y1 − y2)dt. Since ∇g(yt) is

anti-symmetric,

〈g(y1)− g(y2),y1 − y2〉 =

∫ 1

0
(y1 − y2)T [∇g(yt)]

T (y1 − y2)dt

=
1

2

∫ 1

0
(y1 − y2)T [(∇g(yt))

T +∇g(yt)](y1 − y2)dt = 0.

(31)

2. As follows, for any t ∈ [0, 1], let C(t) := D2f(∇φ∗(yt))D2φ∗(yt) = A(yt)B(yt). Then,
by assumption,

∥∥C(t)T −C(t)
∥∥

2
≤ δ for all t ∈ [0, 1].

Therefore,

〈∇f̃(y1)−∇f̃(y2),g(y1)− g(y2)〉

=

p∑
l=1

(∂lf̃(y1)− ∂lf̃(y2)) · (gl(y1)− gl(y2))

=

p∑
l=1

∫ 1

0
d(∂lf̃(yt)) ·

∫ 1

0
d(gl(ys))

=

p∑
l=1

∫ 1

0

∑
i

∂ilf̃(yt) · (y1 − y2)idt ·
∫ 1

0

∑
j

∂jgl(ys) · (y1 − y2)jds

=

∫ 1

0

∫ 1

0

∑
i,j,l

(y1 − y2)i · ∂ilf̃(yt) · ∂jgl(ys) · (y1 − y2)jdsdt

=

∫ 1

0

∫ 1

0

∑
i,j,l

(y1 − y2)i ·
(A(yt)B(yt) + B(yt)A(yt))il

2

·
(A(ys)B(ys)−B(ys)A(ys))lj

2
· (y1 − y2)jdsdt

=
1

4

∫ 1

0

∫ 1

0
(y1 − y2)T

[(
C(t) + C(t)T

) (
C(s)−C(s)T

)]
(y1 − y2)dsdt.

Notice that∥∥(C(t) + C(t)T
) (

C(s)−C(s)T
)∥∥

2
≤
∥∥C(t) + C(t)T

∥∥
2

∥∥C(s)−C(s)T
∥∥

2
≤ 2Mδ.

Therefore,

〈∇f̃(y1)−∇f̃(y2),g(y1)− g(y2)〉 ≤ 1

4

∫ 1

0

∫ 1

0
2Mδ ‖y1 − y2‖22 dsdt =

1

2
Mδ ‖y1 − y2‖22 .

(32)

3. Similarly, one has

‖g(y1)− g(y2)‖22 =
1

4

∫ 1

0

∫ 1

0
(y1 − y2)T

[
(C(t)T −C(t))(C(s)−C(s)T )

]
(y1 − y2)dsdt,
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and ∥∥(C(t)T −C(t))(C(s)−C(s)T )
∥∥

2
≤
∥∥C(t)T −C(t)

∥∥
2

∥∥C(s)−C(s)T
∥∥

2
≤ δ2.

Thus,

‖g(y1)− g(y2)‖22 ≤
1

8

∫ 1

0

∫ 1

0
2δ2 ‖y1 − y2‖22 dsdt =

δ2

4
‖y1 − y2‖22 . (33)

Combining equations (30)-(33), one has

〈∇f ◦ ∇φ∗(y1)−∇f ◦ ∇φ∗(y2),y1 − y2〉
=〈∇f̃(y1)−∇f̃(y2),y1 − y2〉+ 〈g(y1)− g(y2),y1 − y2〉
=〈∇f̃(y1)−∇f̃(y2),y1 − y2〉

≥ 1

m+M

∥∥∥∇f̃(y1)−∇f̃(y2)
∥∥∥2

2
+

mM

m+M
‖y1 − y2‖22

≥ 1

m+M
‖∇f ◦ ∇φ∗(y1)−∇f ◦ ∇φ∗(y2)‖22 −

1

m+M
‖g(y1)− g(y2)‖22

− 2

m+M
〈∇f̃(y1)−∇f̃(y2),g(y1)− g(y2)〉+

mM

m+M
‖y1 − y2‖22

≥ 1

m+M
‖∇f ◦ ∇φ∗(y1)−∇f ◦ ∇φ∗(y2)‖22 +

4mM − 4Mδ − δ2

4(m+M)
‖y1 − y2‖22 .

By change of variables, this implies

〈∇f(x1)−∇f(x2),∇φ(x1)−∇φ(x2)〉

≥ 1

m+M
‖∇f(x1)−∇f(x2)‖22 +

4mM − 4Mδ − δ2

4(m+M)
‖∇φ(x1)−∇φ(x2)‖22 .

(34)

Appendix D. Proof of Proposition 1, Corollary 3, and Proposition 5

In this section, we first recall two lemmas that are used in the proof of Theorem 2, followed by the
proof of Proposition 1, Corollary 3, and Proposition 5. The Itô’s isometry theorem can be found,
for instance, in (Øksendal, 2003, Corollary 3.1.7) for the one-dimensional case. Here we state its
apparent consequence in the multidimensional case.

Lemma 18 (Itô’s isometry) Let B : [0, T ] × Ω → Rp be the standard p-dimensional Brownian
motion and M : [0, T ] × Ω → Rp×p be a matrix-valued stochastic process adapted to the natural
filtration of the Brownian motion. Then

E

[∥∥∥∥∫ T

0
MtdBt

∥∥∥∥2

2

]
= E

[∫ T

0
‖Mt‖2F dt

]
, (35)

whenever the integrals make sense.
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Lemma 19 (Minkowski’s integral inequality, (Stein, 1970, Appendix A)) Suppose that (S1, π1)
and (S2, π2) are two σ-finite measure spaces, l ≥ 1 and f : S1 × S2 → R+ is measurable, then{∫

S1

(∫
S2
f(x,y)dπ2(y)

)l
dπ1(x)

} 1
l

≤
∫
S2

(∫
S1
f l(x,y)dπ1(x)

) 1
l

dπ2(y). (36)

Remark 20 Assume the same conditions as above, and fi : S1 × S2 → R+ are measurable for
i = 1, ...p, then{∫

S1

p∑
i=1

(∫
S2
fi(x,y)dπ2(y)

)l
dπ1(x)

} 1
l

≤
∫
S2

(∫
S1

p∑
i=1

f li (x,y)dπ1(x)

) 1
l

dπ2(y). (37)

It can be viewed as Minkowski’s inequality applying on (S1 × {1, ..., p}, π1 × π3) and (S2, π2),
where π3 is uniform measure up to a constant multiplication.

Proof [Proposition 1] From Theorem 2, one has

W2,φ(µk, π) ≤ρW2,φ(µk−1, π) + hp
1
2β1 + h

3
2 p

1
2β2

≤ρ · (ρW2,φ(µk−2, π) + hp
1
2β1 + h

3
2 p

1
2β2) + hp

1
2β1 + h

3
2 p

1
2β2

≤ · · ·

≤ρkW2,φ(µ0, π) + (hp
1
2β1 + h

3
2 p

1
2β2)(1 + ρ+ · · ·+ ρk−1)

=ρkW2,φ(µ0, π) + (hp
1
2β1 + h

3
2 p

1
2β2) · 1− ρk

1− ρ

<ρkW2,φ(µ0, π) +
hp

1
2β1 + h

3
2 p

1
2β2

1− ρ
.

The last inequality holds because 0 < ρ < 1.

Lemma 21 ((Chung, 1954, Lemma 1)) Let {wk}k∈N be a sequence of real numbers such that, for
all k,

wk+1 ≤
(

1− c

k

)
wk +

c1

ks+1
, (38)

where c > s > 0, c1 > 0. Then for any k,

wk ≤ c1(c− s)−1k−s + o(k−s). (39)

Remark 22 The same consequence (39) holds if c1 is replaced by c1 + o(1).
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Proof [Corollary 3] 1. For any 0 < b1 <
2m−κ̃2

2 , there exists a1 > 0 such that hk = a1
k is small

enough and
ρk ≤ 1− b1hk

for all k ∈ N. Thus, from Theorem 2, we get

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + β2p
1/2h

3/2
k+1 + β1p

1/2hk+1

≤ (1− b1hk+1)W2,φ(µk, π) + p1/2(β1 + o(1))hk+1.
(40)

For any 0 < s < a1b1, set wk
def.
= hsk+1W2,φ(µk, π). Multiplying both sides of (40) by hsk+2, and

using the fact that {hk}k∈N is a decreasing sequence, we get

wk+1 ≤
(

1− a1b1
k + 1

)
wk +

as+1
1 p1/2(β1 + o(1))

(k + 1)s+1
. (41)

Applying Lemma 21 with its Remark 22, we have

wk ≤ as+1
1 p1/2(β1 + o(1))(a1b1 − s)−1(k + 1)−s + o((k + 1)−s).

From the definition of wk, we deduce that

W2,φ(µk, π) ≤ a1p
1/2(β1 + o(1))(a1b1 − s)−1 + o(1) = a1p

1/2β1(a1b1 − s)−1 + o(1).

In turn, we conclude that

lim sup
k→∞

W2,φ(µk, π) ≤ a1p
1/2β1(a1b1 − s)−1,

for any 0 < s < a1b1. Taking the limit at both sides when s→ 0, one has

lim sup
k→∞

W2,φ(µk, π) ≤ p1/2β1b
−1
1 . (42)

This implies that W2,φ(µk, π)h2
k+1 has the order o(hk+1) whenever hk = a

k for a ∈ (0, a1].
Now let b = 2m−κ̃2

2 . There exists a ∈ (0, a1] such that hk = a
k is small enough and

ρk ≤ 1− bhk +
m2

2
h2
k

for all k ∈ N. Theorem 2 then implies

W2,φ(µk+1, π) ≤
(

1− bhk+1 +
m2

2
h2
k+1

)
W2,φ(µk, π) + β2p

1/2h
3/2
k+1 + β1p

1/2hk+1

≤ (1− bhk+1)W2,φ(µk, π) + p1/2(β1 + o(1))hk+1.

(43)

Repeating the above argument by using Remark 22 gives lim sup
k→∞

W2,φ(µk, π) ≤ p1/2β1b
−1 = r0

as claimed. 4
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2. Let αi = p
1
2βi for i = 1, 2. Define a function r : [0,∞)→ R such that r(0) = r0 and for all

t > 0,

r(t)
def.
=

tα1 + t
3
2α2

1−
√

(1−mt)2 + κ̃2t
. (44)

One can check that its derivative r′(t) > 0 for all 0 < t < min
(

2
m+M ,

2m−κ̃2
m2

)
and lim

t→0+
r(t) = r0.

If µk /∈ Br0(π), i.e., W2,φ(µk, π) > r0, by the continuity of r at 0, there exists 0 < hk+1 <

min
(

2m−κ̃2
m2 , 2M−κ̃2

M2 , 2
m+M

)
such that W2,φ(µk, π) > r(hk+1) =

hk+1α1+h
3
2
k+1α2

1−ρk+1
. For the µk+1

obtained from the algorithm (1), by Theorem 2, we know

W2,φ(µk+1, π) ≤ρk+1W2,φ(µk, π) + hk+1α1 + h
3
2
k+1α2

<ρk+1W2,φ(µk, π) + (1− ρk+1)W2,φ(µk, π)

=W2,φ(µk, π).

(45)

That is, the distance is strictly decreasing. 4

3. If µk ∈ Br0(π), the function√
(1−mt)2 + κ̃2t (W2,φ(µk, π)− r0) + tα1 + t

3
2α2

is continuous in t and negative at t = 0. Thus there exists

0 < hk+1 < min

(
2m− κ̃2

m2
,
2M − κ̃2

M2
,

2

m+M

)

such that ρk+1 (W2,φ(µk, π)− r0) + hk+1α1 + h
3
2
k+1α2 < 0. Therefore, by Theorem 2, we know

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + hk+1α1 + h
3
2
k+1α2 < ρk+1r0 < r0. (46)

That is, µk+1 ∈ Br0(π). 4

4. Suppose W2,φ(µk, π) = r0. For any r > r0, there exists

0 < hk+1 < min

(
2m− κ̃2

m2
,
2M − κ̃2

M2
,

2

m+M

)

such that r > r(hk+1) =
hk+1α1+h

3
2
k+1α2

1−ρk+1
. Therefore, by Theorem 2, we know

W2,φ(µk+1, π) ≤ ρk+1W2,φ(µk, π) + hk+1α1 + h
3
2
k+1α2 < ρk+1r0 + (1− ρk+1)r < r. (47)

That is, µk+1 ∈ Br(π).

The following lemma comes from (Horn and Johnson, 2012, Theorem 7.4.1.4).
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Lemma 23 For any symmetric matrix M with rank p, we have Tr(M) ≤ p ‖M‖2.

The remark below follows clearly from the definition of the spectral norm.

Remark 24 If M is a symmetric matrix, then ‖M‖2 = λmax(M).

Proof [Proposition 5] Firstly, we want to show

EL∼π

[
‖∇f(L)‖22

]
= EL∼π

[
Tr(D2f(L))

]
≤ p ·EL∼π

[∥∥D2f(L)
∥∥

2

]
≤MpR. (48)

For the equality in (48), from integration by parts, we have

EL∼π

[
‖∇f(L)‖22

]
=

∫
X
〈∇f(x),∇f(x)〉 · dπ

dx
(x)dx

=−
∫
X

〈
∇f(x),∇

(
dπ

dx

)
(x)

〉
dx

=−
∫
∂X

dπ

dx
(x)〈∇f(x),n〉dHp−1(x) +

∫
X

dπ

dx
(x)∆f(x)dx

=

∫
∂X

〈
∇
(
dπ

dx

)
(x),n

〉
dHp−1(x) + EL∼π

[
Tr(D2f(L))

]
=EL∼π

[
Tr(D2f(L))

]
.

The first inequality in (48) can be derived using Lemma 23 when M = D2f(x).
For the last inequality in (48), one only need to show

∥∥D2f(x)
∥∥

2
≤ M

∥∥D2φ(x)
∥∥

2
for all

x ∈ X . This can be derived from assumption (A4), as shown in Appendix B.
Secondly, since ‖M‖F ≤

√
p ‖M‖2 holds for any matrix M with rank p, one has

2
∥∥∥[D2φ(x)

] 1
2

∥∥∥2

F
≤ 2p

∥∥∥[D2φ(x)
] 1
2

∥∥∥2

2
= 2p · λmax(D2φ(x)) = 2p

∥∥D2φ(x)
∥∥

2
,

for every x ∈ X . Here the last equality comes from Remark 24. Thus, integrating at both sides
against measure π gives

EL∼π

[∥∥∥√2[D2φ(L)]
1
2

∥∥∥2

F

]
≤ 2pR. (49)

Lastly, √
E
[
‖∇φ(L0)−∇φ(Ls)‖22

]
(50)

=

√√√√E

[∥∥∥∥∫ s

0
∇f(Lr)dr −

√
2

∫ s

0
[D2φ(Lr)]

1
2dBr

∥∥∥∥2

2

]
(51)

≤

√√√√E

[∥∥∥∥∫ s

0
∇f(Lr)dr

∥∥∥∥2

2

]
+

√√√√E

[∥∥∥∥∫ s

0

√
2[D2φ(Lr)]

1
2dBr

∥∥∥∥2

2

]
(52)
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=

√√√√E

[∥∥∥∥∫ s

0
∇f(Lr)dr

∥∥∥∥2

2

]
+

√∫ s

0
E

[∥∥∥√2[D2φ(Lr)]
1
2

∥∥∥2

F

]
dr (53)

≤
∫ s

0

√
E
[
‖∇f(Lr)‖22

]
dr +

√∫ s

0
E

[∥∥∥√2[D2φ(Lr)]
1
2

∥∥∥2

F

]
dr (54)

=

∫ s

0

√
E
[
‖∇f(L0)‖22

]
dr +

√∫ s

0
E

[∥∥∥√2[D2φ(L0)]
1
2

∥∥∥2

F

]
dr (55)

=s

√
E
[
‖∇f(L0)‖22

]
+

√
sE

[∥∥∥√2[D2φ(L0)]
1
2

∥∥∥2

F

]
(56)

≤s
√
MpR+

√
2spR. (57)

Here (52) comes from the triangle inequality; (53) is derived from Itô’s isometry; (54) is obtained
from Minkowski’s inequality; (55) comes from the fact that Lr ∼ π for all r ≥ 0; and (57) is
from (48) and (49).

Appendix E. Numerical Experiments

In this section, we support and illustrate our theoretical findings through a series of numerical simu-
lations involving the Dirichlet distribution supported on the 1D and 2D standard simplex. Despite
their simplicity, these numerical results clearly illustrate our analysis of the sampling error.

E.1. 1D Simplex

We consider sampling from π, where dπ ∝ xa1−1(1 − x)a2−1dx is the symmetric Dirichlet dis-
tribution in R2 with parameters a1 = a2 = 3. A natural choice of the entropy φ is that in the
fourth row of Table 1. Overall, we are in the situation of the last column in Table 2 with parameters
(κ =

√
2, R = 2/3,m = 2,M = 2, δ = 0). The choice of (a1, a2) complies with the condition

κ̃ <
√

2m since κ̃ = κ =
√

2. In turn, r0 = 2/
√

3; recall the definition of r0 from Section 3.1.
Figure 1(a) shows the evolution of W2,φ(µk, π), where µk is the (empirical) distribution of the
sample at iteration k of the HRLMC algorithm, with various constant step-sizes, starting from the
Dirac measure at 10−4. Figure 1(b) displays the empirical distribution of Xk with increasing time
for a constant step-size h = 0.04 and three different initializations. One clearly sees that the stati-
onary distribution is the same independently of initialization. From Figure 1(a), one observes that,
with sufficiently small step-sizes, the Markov chain enters a Wasserstein ball of radius r0 around π.
However, even if running the HRLMC algorithm with vanishing step-sizes for a very long time, the
error does not vanish, which supports our theoretical prediction that the bias term is inevitable.

E.2. 2D Simplex

We now consider sampling on a 2D simplex (represented as a triangle in [0, 1]2). Let dπ ∝
e−f(x1,x2)dx1dx2 be a Dirichlet distribution on this simplex where f(x1, x2) = −2 log(x1) −
2 log(x2) − 2 log(1 − x1 − x2) + C, and C comes from the normalization constant in dπ. We
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Figure 1: Results of sampling from the symmetric Dirichlet distribution in R2 with parameters
a1 = a2 = 3 using HRLMC. Left: Evolution in time of the sampling error for various constant step-
sizes. A horizontal line at r0 = 2√

3
materializes the size of the bias term. Right: Visual display of

the evolution of the empirical distribution of Xk at different times, for three different initializations:
(a) Dirac measure at 10−4; (b) uniform measure on [0.3, 0.8]; (c) two Dirac measures at 0.2 and 0.8.

use φ(x1, x2) = − log(x1)− log(x2)− log(1− x1− x2). Figure 2(a) shows the sampling error of
the HRLMC algorithm initialized with a Dirac measure at (x1, x2) = (0.01, 0.99), and with three
different constant step-sizes. We observe the same behavior as in the 1D case, where the sampling
error does not vanish but rather stabilizes in a ball of radius r0 around π. Figure 2(b) depicts the
empirical distribution of Xk shown in contour plots with increasing time for various initializations.
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Figure 2: Results of sampling from the symmetric Dirichlet distribution on the 2D standard simplex
using HRLMC. Left: evolution in time of the sampling error for various constant step-sizes. Right:
visual display of the evolution of the empirical distribution of Xk shown as contour plots at different
times, for three different initializations: (a) Dirac measure at (0.01, 0.99); (b) mixture of Gaussian
distributions centered at (0.2, 0.5) and (0.5, 0.2), respectively; (c) mixture of Gaussian distributions
centered at (0.2, 0.2), (0.2, 0.5), and (0.5, 0.2), respectively.
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