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ABSTRACT
We study the global dynamics of the jovian Trojan asteroids by means of the frequency map
analysis. We find and classify the main resonant structures that serve as skeleton of the phase
space near the Lagrangian points. These resonances organize and control the long-term dynam-
ics of the Trojans. Besides the secondary and secular resonances, that have already been found
in other asteroid sets in mean motion resonance (e.g. main belt, Kuiper belt), we identify a new
type of resonance that involves secular frequencies and the frequency of the great inequality,
but not the libration frequency. Moreover, this new family of resonances plays an important
role in the slow transport mechanism that drives Trojans from the inner stable region to even-
tual ejections. Finally, we relate this global view of the dynamics with the observed Trojans,
identify the asteroids that are close to these resonances and study their long-term behaviour.

Key words: celestial mechanics – minor planets, asteroids – Solar system: general.

1 I N T RO D U C T I O N

The problem of the stability of the Trojan asteroids has troubled sci-
entists since they were first discovered 100 years ago. The pioneering
work of Levison, Shoemaker & Shoemaker (1997) opened a door to
a way of studying this problem by performing very long-term dy-
namical simulations. They encountered that the Trojan swarms are
not indefinitely stable and established a one billion (109) years sta-
bility curve. Later on, Michtchenko, Beaugé & Roig (2001) studied
the effect of planetary migration on Jupiter’s Trojans and Nesvorny
& Dones (2002) looked at the hypothetical Trojan population of
Saturn, Uranus and Neptune (nowadays, we know that Martian and
Neptunian Trojans have been observed). All these studies (and other
similar) are based on intensive numerical integrations performed in
the framework of the outer Solar system (OSS) model, where the
influence of the four major planets is taken in consideration.

On the other hand, analytical and semi-analytical studies have
provided important results that give insights on the stability prob-
lem of the Trojans. These works, mainly based on normal form
computations, are generally developed using the restricted three-
body problem (RTBP) (Giorgilli et al. 1989; Simó 1989; Giorgilli
& Skokos 1997; Efthymiopoulos & Sándor 2005; Gabern, Jorba &
Locatelli 2005). Recently, more sophisticated semi-analytical mod-
els (Beaugé & Roig 2001; Gabern & Jorba 2004) have been used in
order to study the stability near the Lagrangian points. Even though
these models are not accurate enough to describe realistically the
long-term dynamics (Gabern, Jorba & Robutel 2004), we believe
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that these initial works are necessary to develop a general semi-
analytical theory of the Trojan problem.

In spite of all these efforts (and of many other not mentioned here),
some fundamental questions remain still open. Besides the stability
problem, which is the core of the present paper, questions related
to the formation of the Trojans, to the large inclination of some of
these asteroids (up to 40◦) and to the dynamical differences between
L4 and L5, are still unsolved. If we have only very few clues about
the last point (see e.g. Dvorak & Schwarz 2005; Robutel, Gabern &
Jorba 2005), an effective scenario developed by Gomes, Levison,
Morbidelli and Tsiganis in 2005 seems to give a reasonable explana-
tion to the formation and inclination problems. Indeed, it is shown
for the first time in Gomes et al. (2005), Morbidelli et al. (2005)
and Tsiganis et al. (2005a) that the planetary migration is compat-
ible with the hypothesis that the Jupiter’s Trojans are captured just
after the crossing the 1:2 mean motion resonance (MMR) between
Jupiter and Saturn. Moreover, these numerical simulations give a
distribution of the Trojans inclination that agrees with the observed
one.

In the present paper, we study the global dynamics near the jo-
vian Lagrangian points by means of the frequency map (FM) anal-
ysis (Laskar 1990), focusing on the resonant structure of the phase
space, or Arnold web. We work on Robutel et al. (2005), where a
preliminary overview of this global resonant structure and its link
with the observed Trojans are given. In contrast, here we describe
in complete detail this structure and explain its dynamical impli-
cations. We make an exhaustive study of all types of resonances
relevant in the Trojan problem and classify them into families ac-
cording to their dynamical sense. Moreover, we link this struc-
ture and classification with the long-term dynamics by using one
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billion years simulations. In this way, we advance the understand-
ing of the long-term stability question initially tackled by Levison
et al. (1997).

To develop this numerically intensive study, we need a model
which is able to reflect the main dynamical structures of the Trojan
swarm in the real system (resonant web, stable regions, chaotic
zones, etc.), but that remains as simple as possible. This will help
us to better understand the mechanisms that generate the instability
and, eventually, the ejection of a particular asteroid. As justified
below, the model involving Sun, Jupiter, Saturn and the asteroid
(SJS model) already satisfies these requirements. In Section 2.3, we
build this model starting from the RTBP by adding, step by step,
the different influences of the SJS model on the Trojans. This way,
we are able to understand which resonant structures dominate the
phase-space dynamics and which planet action do they come from.

The current study is not just theoretical, as we are also able to
place the observed Trojans on the global dynamical pictures. Some
of them are trapped in or very close to the identified resonances and
this helps to understand the possible dynamical future of the actual
asteroids.

The paper is organized as follows. In Section 2, we describe the
global structure of resonances near L4 and classify them depending
on the type of frequencies involved. We first study the phase space
near Jupiter’s plane of motion and afterwards we study the depen-
dence of this structure on the initial inclination. In Section 3, we
perform a one billion years simulation of a large number of initial
conditions and study the dependence of the stability region and the
resonance structure on time. We also describe the generating mech-
anism of a new type of resonances involving secular frequencies and
the one of the great inequality (GI). This new type of resonances
turns out to be crucial in the transport of asteroids from the inner
stable region to the unstable region, possibly leading to ejection.
In Section 4, we compute the basic frequencies of the observed
Trojans, identify the ones that are close to resonance and perform a
long-term study of some of them. Finally, in Section 5, we present
the conclusions and outline future work, emphasizing the study of
the effects of the planetary migration on the Trojan present popula-
tion and stability.

2 G L O BA L S T RU C T U R E S O F P H A S E S PAC E

2.1 FM and fundamental frequencies

In general, the global dynamics of a given system can be obtained
by means of numerical simulations and analysis of the output data
obtained from this simulation. For instance, a global picture in the
action space is often obtained using one of the well-known Lyapunov
exponent family methods (Froeschlé, Lega & Gonczi 1997; Voglis,
Contopoulos & Efthymiopoulos 1999; Cincotta & Simó 2000;
Cincotta, Giordano & Simó 2003; Lega, Guzzo & Froeschlé 2003;
Skokos et al. 2004; Érdi & Sándor 2005). In this work, however,
we use the FM analysis (Laskar 1990, 1999) to study the global
dynamics of the Lagrangian tadpole region. This method is very
useful when the trajectories of the considered system are close to
quasi-periodic. Indeed, in this case, it is easier to understand the
dynamics as mapped into the frequency space. In particular, the
Arnold web appears naturally and it is easy to identify which are
the main resonances that organize the global structure. Examples
of global maps given by the frequency analysis can be found in
studies of the dynamics of particle accelerators (Laskar 2003), the
asteroid belt structure (Robutel 2005) and the giant planets (Guzzo
2005).

Table 1. Basic frequencies of the planets in the SJS system. Only
the first five frequencies are the fundamental ones (the basis of the
quasi-periodic decomposition). The last three frequencies are linear
combinations of the proper mean motions: νp,q = pn5 − qn6. We in-
clude them in the table because they play a major role in the dynamics
of the Trojan swarms.

Frequency (arcsec yr−1) Period (yr)

n5 109 254.631 65 11.8622
n6 43 995.349 75 29.4577
g5 4.027 60 321 780
g6 28.006 57 46 274.9
s6 − 26.039 12 49 771.3

ν2,5 − 1467.485 45 883.143
ν1,2 21 263.933 15 60.948 2776
ν1,3 − 22 731.4176 57.013 6022

For the numerical simulations, we use the symplectic integrators
of the family SABAn (Laskar & Robutel 2001) with an integration
step of 1/2 yr. The integration is performed in the SJS system during
10 Myr, except for the long-term simulations where we integrate the
trajectories for 1 Gyr (see Section 3).

If we assume that the motion of Jupiter and Saturn is quasi-
periodic (which is a very natural assumption on the 10 Myr con-
sidered here; Laskar 1990; Robutel & Laskar 2000), the orbit of this
planetary system lies on a five-dimensional invariant torus, with
fundamental frequencies (n5, n6, g5, g6, s6). The two first frequen-
cies are the proper mean motions (frequencies associated with the
orbital motion) of Jupiter and Saturn, respectively; the other three
are the secular frequencies (see Table 1).

In these conditions, the motion of the asteroid can be seen as a
trajectory of a three degrees of freedom Hamiltonian system with
five-dimensional quasi-periodic forcing. This implies that a quasi-
periodic trajectory of this system is parametrized by eight funda-
mental frequencies. Five correspond to the quasi-periodic forcing
associated with the fixed frequencies (n5, n6, g5, g6, s6), while the
remaining three frequencies characterize the dynamics of the Trojan
(Jorba & Villanueva 1997). These three fundamental frequencies (ν,
g, s) are, respectively, the proper libration frequency (connected to
the libration in the 1:1 MMR with Jupiter), the perihelion proper
precession frequency of the asteroid and the one corresponding to
its node. They are the image of the FM, which can be defined as
(see Laskar 1999)

Fθ : (a, e, I ) −→ (ν, g, s), (1)

where (a, e, I) are, respectively, the initial semimajor axis, eccentric-
ity and inclination of the particle. The phase vector θ = (λ, ϖ, &)
has the fixed components: λ = λ5 + π/3, ϖ = ϖ 5 + π/3 and & =
&5, where the subscript 5 indicates that the corresponding elliptic
phase is the one of Jupiter.

The accurate determination of the fundamental frequencies ν,
g and s will allow us to study the dynamical structures of the fre-
quency space by estimating the diffusion rate (Laskar 1990; Robutel
& Laskar 2001). Indeed, phenomena associated with resonances
become clear in this space (see Fig. 3) and these are quite easy to
identify (Robutel et al. 2005). In addition, the fundamental frequen-
cies can be considered as proper elements and can be used to locate
observed Trojans on these global maps (Robutel et al. 2005).

More concretely, we proceed in the following way. The basic
frequencies of the two planets are deduced from the quasi-periodic
decomposition of the quantities γ j = a j eiλ j for the proper mean
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motions n j , z j = e j eiϖ j for g j and ζ j = sin(I j/2)ei& j for s j , where
j equals to 5 or 6 depending on whether we are referring to Jupiter or
Saturn. These frequencies are reported in Table 1. The proper mean
motion of the Trojans is equal to the one of Jupiter because, by
definition, the Trojan swarms are in the 1:1 orbital resonance with
Jupiter. Thus, the basic libration frequency can be extracted from
the decomposition of the function γ = aei(λ−λ5). More precisely,
if we restrict to a linear secular approximation (see Appendix A),
equations (A5) and (A6) show that the semimajor axis and the mean
longitude of a Trojan can be written as

a = a5 + d sin(θ ) + · · · ,

σ = λ − λ5 = π/3 + D cos(θ ) + · · · , (2)
where θ = ν(t − t0) is the libration angle and D is the amplitude of
libration inside the 1:1 MMR. The quantities d and D are related,
at least for small amplitudes of libration (Erdi 1988; Milani 1993),
by1

d
a5

=
√

3εD[1 + O(D2)], (3)

where ε ≈ m5/m0 and m0 and m5 are, respectively, the Sun and
Jupiter masses (see Appendix A). Equations (2) imply that

γ = a5eiπ/3

[
1+ 1

2i

(
d
a5

− De−iπ/3

)
eiθ

− 1
2i

(
d
a5

+ De−iπ/3

)
e−iθ + · · ·

]
, (4)

and thus in most of the cases (except for very chaotic trajectories),
the libration frequency ν is easily extracted from the quasi-periodic
decomposition of γ .

The two basic secular frequencies of the Trojan trajectories, g
and s, are computed, respectively, using the analysis of the func-
tions z = e exp(iϖ ) and ζ = sin(I/2) exp(i&). It is not difficult
to recognize the frequency g among the quasi-periodic decomposi-
tion of z. Indeed, this frequency takes generally values between 260
and 430 arcsec yr−1 (Robutel et al. 2005) and, thus, it is well sepa-
rated from the planetary secular frequencies (see Table 1). On the
other hand, sometimes it is difficult to differentiate the frequency s,
that takes values in the interval [−50, 10 arcsec yr−1], in the quasi-
periodic decomposition of ζ . This is especially true when the con-
sidered Trojan moves near the secular resonance s = s6. Even though
this can be a problem in the determination of s for a single trajectory,
it is not for global studies. Indeed, a few wrong frequencies out of
tens of thousands do not affect the global structure.

The FM allows us to evaluate the diffusion rate of the trajectories.
We proceed as follows. The integration and frequency analysis is
performed in two consecutive intervals of 5 Myr. In this way, we
obtain two different sets of basic frequencies [named (ν1, g1, s1)
for the first interval and (ν2, g2, s2) for the second one]. If a given
trajectory is quasi-periodic, the two sets of frequencies are identical
(up to a given threshold depending on the accuracy of the method).
On the other hand, if the trajectory is not quasi-periodic but wan-
ders around tori, a drift in the frequencies is observed and this drift
measures somehow the chaoticity of the orbit (how far it is from
quasi-periodic motion) (see Laskar 1999). Furthermore, we use the
relative change of the frequencies,

σν = ν1 − ν2

ν1
,

1 A more general relation can be found in Erdi (1997).

namely diffusion index (defined similarly for the other frequencies),
as an indicator of the regularity of the motion for a particular tra-
jectory. In Fig. 1, we show several global pictures of the diffusion
indicator, where we assign a colour to log σ ν . The colour scale goes
from blue, that corresponds to stable regions (σ ν < 10−6), to red for
very chaotic regions (σ ν > 10−2). In black, we display the particles
that have been ejected. More details on these plots will be given in
the forthcoming sections.

We obtain similar pictures for the diffusion index of the frequen-
cies g and s, although the last one gives slightly larger frequency
variations due to the poorer accuracy on the determination of the
frequency s (that may need longer integration times).

Of course, one can generate pictures similar to the ones in Fig. 1,
draw the resonant structure and have an estimation of the dif-
fusion by using other methods. For example, methods based on
Lyapunov exponents (Nesvorny & Dones 2002) or spectral analysis
(Michtchenko et al. 2001) have been used in the past and given sim-
ilar global pictures, but with much less detail. In the present work,
we obtain very high precision global dynamical pictures and, with
the aid of the FM analysis, we are also able to identify and classify
the resonances that generate the instability and govern the long-term
diffusion.

2.2 The SJS model

We perform our main study using the SJS model. In this section, we
aim to justify this particular choice.

The SJS model already captures the main features of the co-orbital
region obtained in the (more realistic) OSS model (see Fig. 1). This
is explained more in detail in Section 2.3.2. Indeed, the dynam-
ical structures in both models are practically the same (compare
Figs 1d and e). The SJS model is a restricted four-body problem
that includes the main forcing secular frequencies (see Gabern 2003;
Gabern et al. 2004), namely the frequencies g5, g6 and s6 associated
with the couple Jupiter–Saturn, but also the short periodic terms
associated with the mean motion combinations n5, ν1,2 = n5 −
2n6, ν1,3 = n5 − 3n6 and the frequency of the GI ν2,5 = 2n5 − 5n6.

Obviously, given a concrete initial condition, the frequencies as-
sociated with the corresponding trajectory (assuming that this orbit
is quasi-periodic) in the SJS model are slightly different from the
ones in the OSS. However, if we want to compare a particular tra-
jectory of an observed Trojan with its dynamical environment, the
global picture is consistent provided that the same model is used for
both simulations (Robutel et al. 2005).

Also, for high inclinations, secular resonances with s7 and s8

(s7 ≈ −3 arcsec yr−1, s8 ≈ −0.7 arcsec yr−1) are of certain impor-
tance (Milani 1993; Tsiganis, Dvorak & Pilat-Lohinger 2000). Of
course, these resonances do not appear in the SJS model but, again,
their relevance is only local and they do not influence the global
dynamical structure which is essentially the same. For instance, in
the case of 1868–Thersites, the resonance that causes its ejection
from the co-orbital region is s = s6. The resonances involving the
frequencies s7 and s8 just increase the diffusion speed and help the
asteroid to reach rapidly the large chaotic zone associated with the
s6 secular resonance. In the SJS model, the same kind of chaotic
behaviour is observed but on a larger time-scale.

A second reasoning that justifies the use of the SJS model is as
follows. It is not difficult to deduce, from the secular linear theory
given in Morbidelli (2002) (see also Appendix A), that the contri-
bution of the planet j to the frequency g is equal to
n
4

m j

m0
α2

j b
(1)
3/2(α j ), with α j = a

a j
, (5)
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Figure 1. Global pictures of the diffusion index around L4. Blue colour corresponds to stable regions and red to strongly chaotic motion. The black zone
denotes trajectories that lead to ejection before 10 Myr. The axis is (a, e) everywhere except in the (i) frame. In (a) and (d) frames, the diffusion index is
computed in the SJS system by fixing the initial inclination to I = I5 and I = I5 + 2◦. In the (b), (c) and (e) frames, we use, respectively, the ERTBP, QPTBP
and OSS models and I = I5 + 2◦ as initial inclination. The frames (f)–(i) are devoted to study the dependence of the diffusion index on the initial inclination
in the SJS model. In particular, we set I = I5 + 10◦ in (f), I = I5 + 20◦ in (g) and I = I5 + 30◦ in (h), and in (i) we fix e = e5 and study the diffusion index in
the (a, I) plane. See the text for more details.

where m0 corresponds to the mass of the Sun, m j corresponds to the
mass of the planet j, n corresponds to the mean motion of the particle
and b(1)

3/2 is a Laplace coefficient (Morbidelli 2002). For the secular
frequency, s, we have a contribution which is exactly the same with
an opposite sign. This computation gives a value of 7.24 arcsec yr−1

for Saturn, 0.08 arcsec yr−1 for Uranus and 0.02 arcsec yr−1 for
Neptune. The relative smallness of Uranus’ and Neptune’s con-
tributions to the frequencies g and s justifies as well that these two
planets are not taken into account in a model for the dynamics of the
Trojans. In the worst case, we observe that the secular frequencies
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obtained in the SJS model are slightly shifted (by an amount of the
order given above) from the ones obtained with the OSS.

2.3 Dynamics in Jupiter’s plane of motion

2.3.1 Symmetries in the global pictures

Fig. 1(a) shows a dynamical map of the tadpole region of the leading
Lagrangian point L4. The image is created by computing the diffu-
sion index for 70 000 initial conditions and assigning, as explained
above, a colour code to the corresponding trajectories. The semima-
jor axis and eccentricities of these initial conditions are taken on an
equidistant grid of points belonging to the domain (a, e) ∈ [5.005,
5.403] × [0, 0.4]. The remaining initial elliptic elements are fixed
to I = I5, λ − λ5 = π/3, ϖ − ϖ 5 = π/3 and & = &5. This is
a natural choice since, in the elliptic RTBP (ERTBP), these are the
elliptic elements of the L4 point.

This figure shows that, even close to L4, there is a web of unsta-
ble structures (initial conditions with a diffusion index σ ν > 10−3).
However, before studying this resonant structure (this will be done
in Section 2.3.2), we want to note that these regions of high diffusion
are symmetric. More precisely, we can clearly observe two different
types of symmetries in Fig. 1(a). The first one is a symmetry with
respect to a curve that is close to the straight line a = a5 ≈ 5.2035 au
(i.e. the initial semimajor axis of Jupiter), and tangent to it at L4. This
is essentially due to the symmetry with respect to the libration centre.
In a neighbourhood of L4, this symmetry can be easily justified from
the linear secular approximation (see equation A8 in Appendix A).
When the distance from L4 is increased, the separation of the sym-
metry curve from a = a5 is a consequence of the displacement of
the libration centre with respect to the eccentricity (Namouni &
Murray 2000; Nesvorný et al. 2002). The second symmetry that
we observe is the one with respect to a curve close to the axis
e = e5 ≈ 0.0489. In a neighbourhood of L4, this symmetry can be
explained analytically (in the simpler ERTBP) by equation (A8), if
we remember that in our choice of coordinates ϖ = ϖ 5 + π/3, and
thus cos σg = 1.

Moreover, the fundamental frequencies corresponding to a given
initial condition and the ones corresponding to one of its two sym-
metric points are the same. These frequencies parametrize the KAM
torus on which the given trajectories lie. This does not mean that the
two corresponding trajectories are the same, but that they lie on the
same invariant torus. From the dynamical point of view, these tra-
jectories are equivalent. These symmetries point out the fact that
there are manifolds (even close to L4) where the FM is degenerated
(see Gabern et al. 2005). These symmetries allow us to restrict the
sample of initial conditions to the subset {(a, e): a ! a5, e ! e5}.
This is done in Figs 1(b)–(h) for different models and different ini-
tial conditions. In particular, Fig. 1(d) corresponds to this subset of
initial conditions for the SJS model, with initial inclination I = I5 +
2◦. Figs 1(b) and (c) correspond to the simulation in simpler models.
Fig. 1(e) shows the same type of computation for the OSS model
(i.e. taking also in consideration the effects of Uranus and Neptune).
All these simulations use small initial inclinations (I = I5 +
2◦). Figs 1(f)–(h) correspond to different initial inclinations, and
Fig. 1(i) shows a simulation for the (a, I) plane. For more details,
see the sections below.

2.3.2 The resonant structure for low inclinations

Here, we describe the dynamics of the tadpole region of the leading
Lagrangian point L4 for small initial inclinations. This particular

choice of the slice of initial conditions is not arbitrary at all. In-
deed, the dynamical structure is the richest for small inclinations.
In particular, the four families of resonances that affect the global
dynamics (see below) appear in this slice. The complete description
of the resonant structure for low inclination will allow us to under-
stand the main dynamical features for all initial inclination values
(see Section 2.4).

In order to identify the resonances associated with the unstable
regions and to understand where do they come from, we investigate
three different models. The first model is the planar ERTBP. In a
second model, we consider the actual motion of Jupiter in the SJS
problem, but we neglect the direct effect of Saturn on the Trojan.
The third one is our model problem, the SJS system. In this way, it is
very nice to see how adding new features to the models, new families
of resonances appear. In our model, we are able to identify four
different families. The first two families correspond to secondary
resonances: resonances between the proper libration frequency ν

and frequencies of the planetary system (see Lemaitre & Henrard
1990; Morbidelli 2002, for more details). The third family contains
the secular resonances and the last one is associated with the GI.

2.3.2.1 Elliptic restricted three-body problem. The planar ERTBP
considers the motion of a particle under the influence of Sun and
Jupiter, assuming that the motion of the planet is prescribed in
a fixed ellipse around the Sun. Despite its simplicity, this time-
periodically perturbed two degrees of freedom problem (where the
fundamental frequencies are ν, g and n5) already contains large
chaotic structures. The diffusion index is represented in Fig. 1(b).
This figure describes the global dynamics of this problem and shows
a very sharp transition from regular (blue) regions to the escap-
ing trajectories zone (black). Three large unstable regions (yellow
to red zones), lying respectively around (a, e) = (5.32, 0.275),
(5.36, 0.175) and (5.4, 0.075), penetrate the stable zone from the
black outer part. Their shape is very typical of the overlapping of
resonant multiplets. For small eccentricities, each resonance of a
given multiplet is isolated, while a partial overlapping occurs for
larger values of the initial eccentricity (see Morbidelli 2002, for
details). The phenomenon that generates these unstable regions is
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Figure 2. FM of the ERTBP. Dual image of Fig. 1(b) in the frequency space
(g, ν). We can see the image of the limit segments of initial conditions (a =
a5 and e = e5) as the lower edges of the black triangle with a vertex at about
(g, ν) = (355, 8825). This vertex corresponds to L4.
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easy to understand in the frequency space (see Fig. 2). Indeed,
as n5 is a constant frequency, the frequency space is only two
dimensional, and, thus, a single resonance corresponds to a straight
line of rational slope in the (ν, g) plane with equation

pν + qg = −k5n5, (p, q, k5) ∈ Z3. (6)

The resonant lines defined by equation (6) are clearly visible in
Fig. 2. This picture shows in frequency space (small black dots)
the image of Fig. 1(b) by the FM, Fθ : (a0, e0) )−→ (g, ν), and it
can be seen as the dual image of that figure. This image is smooth
in regular regions, but singularities arise in chaotic zones. Indeed,
singularities of the FM are directly correlated to instabilities of the
corresponding trajectories (Laskar 1999). To further clarify the rela-
tionship between the frequency space and the action space (Fig. 1b),
we have superimposed on this figure the labels corresponding to the
image of the boundaries of the sample of initial conditions, i.e.
a = a5 and e = e5. They correspond to the lower edges of the thin
black triangle. The middle vertex of this triangle where black dots
accumulate, at about (g, ν) = (355, 8825), corresponds to the L4

point. Thus, the boundary of the domain of the FM (Fig. 1b) does
not correspond to the boundary of the image (Fig. 2). This is due
to the fact that the image of the initial domain at (a, e) by the FM
is folded along a curve where the FM is singular (see Laskar 2003;
Gabern et al. 2005).

The three chaotic regions mentioned above are easily identifiable
in Fig. 2. They correspond to the three zones where frequencies
gather along straight lines and form a very irregular network. These
resonant structures are represented in Fig. 2 by the three families of
dashed lines, identified respectively, from top to bottom, by p = 12,
13 and 14:

12ν + qg − n5 = 0, q ∈ {8, . . . , 13}, at ν ∼ 8800 arcsec yr−1;
13ν + qg − n5 = 0, q ∈ {−4, . . . , 8}, at ν ∼ 8300 arcsec yr−1;
14ν + qg − n5 = 0, q ∈ {−3, . . . , 3}, at ν ∼ 7800 arcsec yr−1.

These resonant multiplets overlap when the eccentricity increases
to give rise to the main chaotic structures in Fig. 1(b), for a = 5.32,
5.36 and 5.4, respectively.

This is very different from the circular RTBP (see Sandor, Erdi &
Murray 2002; Sandor & Erdi 2003), where resonances do not gener-
ate large chaotic structures. Indeed, due to symmetries (D’Alembert
relations), the secondary resonances are not defined by equation (6)
but by

pν + k5(n5 − g) = 0, (p, k5) ∈ Z2. (7)

Thus, for fixed values of k5 and p, rather than a one-parameter family
of resonances, we have only a single resonance. Deprit, Henrard
& Rom (1967) mention the existence of denominators associated
with the resonances (p, k5) = (11:1), (12:1), (13:1), (14:1) during
the Birkhoff normalization process. However, these terms do not
generate any difficulty up to degree 15.

2.3.2.2 Quasi-periodic three-body problem. In the second model for
the Trojan motion, we consider the influence of Sun and Jupiter on
the particle, but now assuming that Jupiter lies in the actual solution
of the SJS system. Assuming that Jupiter’s motion is quasi-periodic,
the system can be described by the five fundamental frequencies of
the planets: n5, n6, g5, g6 and s6. It is important to point out that in
this model, in contrast with the SJS model, we disregard the direct
effect of Saturn on the particle.

This model is then a RTBP where the motion of Jupiter is a
quasi-periodic motion on a 5D torus. We will call it quasi-periodic
three-body problem, or QPTBP for short.

Table 2. Quasi-periodic decomposition of z5 = e5 exp i ϖ 5 in the QPTBP.
In the first two columns, we write the amplitudes and frequencies of the
frequency analysis. In the last three columns, the decomposition in basic
frequencies is shown.

Amplitude Frequency (arcsec yr−1) n5 n6 g5 g6

4.41 × 10−2 +4.027 603 × 100 +0 +0 +1 +0
1.59 × 10−2 +2.800 657 × 101 +0 +0 +0 +1
6.44 × 10−4 −2.126 393 × 104 −1 +2 +0 +0
6.28 × 10−4 +5.198 554 × 101 +0 +0 −1 +2
3.86 × 10−4 +1.411 472 × 103 −2 +5 +0 −2
1.31 × 10−4 +2.270 341 × 104 −1 +3 +0 −1
1.05 × 10−4 −8.652 321 × 104 −2 +3 +0 +0
9.92 × 10−5 +1.387 493 × 103 −2 +5 +1 −3
8.06 × 10−5 +4.399 535 × 104 +0 +1 +0 +0
6.45 × 10−5 −4.255 587 × 104 −2 +4 +0 −1
4.60 × 10−5 −2.123 995 × 104 −1 +2 −1 +1
4.28 × 10−5 −2.128 791 × 104 −1 +2 +1 −1
3.66 × 10−5 −1.517 825 × 105 −3 +4 +0 +0
3.49 × 10−5 +7.596 451 × 101 +0 +0 −2 +3
3.45 × 10−5 +1.092 546 × 105 +1 +0 +0 +0
2.54 × 10−5 +1.435 452 × 103 −2 +5 −1 −1
2.01 × 10−5 −1.078 152 × 105 −3 +5 +0 −1
1.93 × 10−5 −1.995 139 × 101 +0 +0 +2 −1
1.85 × 10−5 +2.267 943 × 104 −1 +3 +1 −2
1.82 × 10−5 +1.363 514 × 103 −2 +5 +2 −4

In Table 2, we show the 20 terms with larger amplitude of the
quasi-periodic decomposition of z5 = e5 exp(iϖ 5). The two largest
terms are associated with the frequencies g5 and g6, that are secular
frequencies of the considered planetary system. The rest of the terms,
for which the amplitude is 50–100 times smaller than the previous
ones, are mainly associated with short period arguments, especially
ν1,2, ν2,5 and ν1,3 (see Table 2). The frequency s6 does not appear
in this table, because in the decomposition of z5 it first appears in
the 26th, in order of significance, term. As for the quasi-periodic
decomposition of the other quantities, i.e. z6, ζ 5, ζ 6, γ 5 and γ 6, the
leading frequencies are essentially the same, except for ζ 5 and ζ 6

where s6 is dominant. These additional frequencies that appear in the
quasi-periodic model will generate new resonances, and eventually
new chaotic regions.

Fig. 1(c) shows the diffusion index for the QPTBP. Let us start the
description of this figure by noting that the three chaotic structures
identified for the ERTBP appear again. They are located at the same
place but they are larger than those in Fig. 1(b). The first region
(the one with p = 14 and a ≈ 5.32) now lies almost entirely in the
ejection region (in black). The two other regions are thicker (in the
a direction), but shorter in height due to the shift of the ejection
region. This phenomenon arises for, at least, two reasons. First,
the new frequencies injected by the quasi-periodic perturbation, in
particular the secular frequencies, increase the number of possible
resonant harmonics of the secondary resonances. Hence, this type
of resonances, that we will call Family I, satisfies a more general
relation than equation (6) defined by

Family I : pν − n5 + qg + q5g5 + q6g6 = 0 (8)

with q + q5 + q6 = 1 imposed by d’Alembert rules. For high in-
clinations, we note that linear combinations of the secular frequen-
cies s and s6 should be added to this equation. The second reason is
based on the fact that new families of resonances appear and overlap
with the first family. Indeed, Fig. 1(c) shows two different kinds of
new unstable structures. (i) Unstable tongues penetrating the stable
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region from the escaping zone are visible as yellow to orange straight
band structures. These are members of Family II (see Robutel et al.
2005). (ii) Two arcs of ellipses centred at the bottom left-hand cor-
ner; the largest one in red, bounding the black escaping region, and
the other one in light blue close to the bottom left-hand corner. These
are members of Family III.

The second family of resonances corresponds to a commensura-
bility between the proper libration frequency ν and the frequency
ν1,2 mentioned above (see also Table 2). For this reason, we call these
resonances secondary three-body resonances. The equation satisfied
by this second family is thus

Family II : 5ν − 2ν1,2 + pg + p5g5 + p6g6 = 0 (9)

with p + p5 + p6 = −2. For small eccentricities, each one of these
regions is isolated from the others. However, for larger eccentricities,
these regions overlap in the border of the stable zone. As we will
see below, this border corresponds to a secular resonance and, thus,
it belongs to a different family.

It is important to stress that the secondary three-body resonances
are not related to the direct action of Saturn (because it is not
present in the QPTBP model), but to the short period perturbations
of Jupiter’s orbit due to Saturn. Instabilities associated with this
type of resonances were already mentioned in Nesvorny & Dones
(2002), and similar effects were found in Ferraz-Mello (1997) for a
different problem.

We have previously mentioned that the frequencies ν1,2, ν1,3 and
ν2,5 play an important role in the temporal evolution of Jupiter’s
elliptic elements (see Table 2). Actually, the frequency ν1,3 generates
secondary three-body resonances but only for high inclinations (we
will see this in Section 2.4). Therefore, we could generalize the
second family by adding to equation (9) the following relation:

3ν + ν1,3 + pg + p5g5 + p6g6 = 0 , with p + p5 + p6 = 2. (10)

The frequency corresponding to the GI, ν2,5 =−1467 arcsec yr−1,
can only generate high-order secondary three-body resonances. In-
deed, the simplest resonances of this kind that a Trojan can encounter
are given by the equation

ν + 5ν2,5 + pg + p5g5 + p6g6 = 0, with p + p5 + p6 = 15.

(11)
However, as we will see later on, the GI plays a key role in the
generation of the fourth family of resonances.

The third family of resonances, that already appears in the QPTBP,
is the family of secular resonances. The most important member
of this family is the s = s6 resonance, which is clearly visible in
Fig. 1(c) as a wide red arch that delimits the region of stability.
The importance of this resonance in the study of the stability of the
Trojan asteroids was already known more than 25-yr ago (see Yoder
1979; Bien & Schubart 1984). It induces very strong instabilities
in the neighbourhood of the long-term stability zone. Indeed, most
of the integrated trajectories that cross this secular resonance escape
the libration region before several million years. Many other secular
resonances are also present in the co-orbital region. They can be
formulated as

Family III : qs + q6s6 + p5g5 + p6g6 = 0 (12)

with q + q6 + p5 + p6 = 0 and (q + q6) even. For instance, the light
blue circular resonance in the bottom left-hand part of Fig. 1(c) (it
goes from e ≈ 0.13 to a ≈ 5.255), where the diffusion index is of
about 10−5, corresponds to the sixth-order secular resonance s −
s6 + g5 − g6 = 0.

As we will see in Section 2.4, secular resonances are more impor-
tant for high inclinations, except for the s = s6 which dynamical role

is more prominent close to the Jupiter’s orbital plane (approximately
up to 20◦ of initial inclination).

2.3.2.3 Restricted four-body problem. The last model is our
model example, the SJS system, and it was already described in
Section 2.2. This is a restricted four-body problem, since it models
the motion of a massless particle that moves under the gravitational
influence of three primaries (Sun, Jupiter and Saturn), assuming that
these bodies move in the actual solution of the three body-problem.

The global dynamical picture of the co-orbital region correspond-
ing to this model is shown in Fig. 1(d). The new structures that appear
in this figure, the thin yellow resonances in the small libration ampli-
tude region (with a " 5.27), belong to the last family of resonances
presented here. These resonances are associated with the GI and,
due to their dynamical implications, are among the most interesting
ones:

Family IV : pg + ν2,5 + p5g5 + p6g6 = 0 (13)

with p + p5 + p6 = 3. As far as we know, one of these structures
was first mentioned in Michtchenko et al. (2001). Also, Marzari,
Tricarico & Scholl (2003) showed that a constant value of g can be
associated with each resonance.

Even though they are thin and isolated, these structures are the
clue in understanding the slow diffusion process that drive particles
from the inner long-term stable region to the escaping zone (see
Section 3). Moreover, the dynamical role played by this family of
resonances, and to a smaller extent by the secondary three-body
resonances, is enhanced by the fact that some observed Trojans fall
very close to these structures and, thus, may be subject to long-term
transport phenomena (see Section 4).

2.3.2.4 Outer Solar system. In Fig. 1(e), we show the global dy-
namical picture of the co-orbital region for the OSS. That is, we
study the dynamics of the Trojan asteroids under the influence of
the four major planets (Jupiter, Saturn, Uranus and Neptune).

The main structures of this global picture appear already in the
SJS model (i.e. in Fig. 1d), although stronger instability is observed
in the inner region and the resonance lines are slightly shifted.

Indeed, due to the existence of additional degrees of freedom,
the diffusion globally increases. This is particularly true for some
resonant structures that seem to grow when we compare Fig. 1(d)
to Fig. 1(e). We are able to identify at least four regions where
this is observed. The first one, around a = 5.25 au, the resonance
4g + ν2,5 − g5 = 0 persists but, very close to it, two new Family
IV resonances appear.2 These three particular resonances are well
isolated, at least for e " 0.1, and thus no significant chaotic diffu-
sion is expected. The other characteristic structures that are worth
mentioning correspond to subfamilies of Family II (see equation 9)
for p = −3, −2, −1. The regions related to these resonances can
be found, respectively, around a = 5.27, 5.295, 5.305 au. In this
case, the additional degrees of freedom in the OSS model increase
the number of possible resonances and, consequently, their width.
Nevertheless, even in these three cases, the diffusion remains mild,
and the long-term behaviour is the same as the one described in
Sections 4.2.1 and 4.2.2.

Thus, we believe that the comparison of the main structures in
Figs 1(d) and (e) clearly shows that the SJS model is already a good

2 In fact, to be completely rigorous, the four families should be generalized
by adding to the resonance equations the secular frequencies g7 and g8 (and
s7, s8 for high inclinations).
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model to explain the global dynamics of the Sun–Jupiter L4 tadpole
region. This justifies the choice of the main model used in this paper.

2.3.2.5 Summary: frequency space. To summarize the families of
resonances appearing in the SJS model, we show in Fig. 3 (left-hand
panel) the projection into the (g, s) frequency space of the image of
Fig. 1(d) by the FM (equation 1). It is in this space where resonances
are easy to identify and understand.

For instance, the wedges, corresponding to the first family of
resonances (equation 8), that appear in Figs 1(b)–(d) are indicated
with the labels ‘A’ and ‘B’ in Fig. 3 (left-hand panel). Respectively,
they are generated by equation (8) with p = 13 and 14.

The secondary three-body resonances are shown in the frequency
space with the labels 0 to −3. These specific numbers correspond to
the value of the integer p in the resonance relation (9). Actually, this
type of resonances are not isolated but are organized in subfamilies.
For each p = 0, p = −1, . . . , or p = −3, we can see in Fig. 3 that
there is an accumulation of thin resonances which are very close to
each other. Thus, from now on, when we speak of subfamilies of
Family II, we will refer to some of the resonances (9), (10) or (11) for
a fixed value of p (and for variables p5 and p6). The dynamical role
of these resonances is important, as the frequencies corresponding
to ν1,2, ν1,3 and the GI, ν2,5, are associated with terms of large am-
plitude in the quasi-periodic approximation of Jupiter’s eccentricity
(see Table 2).

In Fig. 3 (left-hand panel), we denote by ‘α’, the most important
representative of the secular family, i.e. s = s6. It is clearly visible
as a horizontal line and it corresponds to the border of the stability
region (below the s = s6 line, a strong instability is perceived).

The two most representative elements of the last family are asso-
ciated with the unstable structures denoted by ‘a’ and ‘b’ in Fig. 3.

Figure 3. Projection on the (g, s) plane (units: arcsec yr−1) of the image of (a, e, I) by the FM (1) for different initial inclinations. Left-hand panel: I = I5 +
2◦. Right-hand panels: I = I5 + 10◦ (bottom), I = I5 + 20◦ (middle) and I = I5 + 30◦ (top). The labels inside the left-hand frame indicate specific resonances
belonging to the four different families. See the text for more details.

They correspond, concretely, to the resonances

4g + ν2,5 + p5g5 + p6g6 + q6s6 = 0,

with p5 + p6 + q6 = −1.
These are the basic resonant structures that drive the long-term

dynamics of the Trojan libration region for low inclinations, that is
Families I, II, III and IV (Robutel et al. 2005). The role played by
the inclination in these structures will be described next.

2.4 Dependence on the initial inclination

In Figs 1(f)–(h), we show the resonant structure of three slices of
the phase space in the (a, e) plane corresponding, respectively, to
initial inclinations I = I5 + 10◦, I = I5 + 20◦ and I = I5 + 30◦.
These pictures have been generated in the same way as explained in
Section 2.3.1. A first obvious conclusion that we can extract from
these three figures is that the region from where the Trojans do
not escape in less than 10 Myr (non-black region) is practically not
affected when we increase the initial inclination up to 20◦. For larger
inclinations, the stability region starts shrinking when one increases
the initial inclination (Gómez et al. 2001; Dvorak & Schwarz 2005).

The image of these figures by the FM (see equation 1) can be
seen in the three right-hand frames of Fig. 3. From these figures, we
are able to easily identify several secular resonances of the type s =
constant (straight horizontal lines): s − s6 = 0, 2s − 3g5 + g6 = 0,
3s − s6 − 2g5 = 0 and s − s6 + g5 − g6 = 0. We note that, as the initial
inclination increases, the constant term in these secular resonances
also increases. For inclinations I > 20◦, the secular resonance s = s6

disappears from the phase space and therefore, for high inclinations,
it does not play any more the crucial role it played in the stability
region for low inclinations. This fact may explain why Marzari &
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Scholl (2002) did not find trajectories that, starting near Jupiter’s
plane of motion, reached high-inclination values. Now, we know
that a suitable explanation for the high inclination of the Trojan
asteroids orbits might be that they were captured during the early
planetary migration process (Morbidelli et al. 2005).

It is not difficult to predict that the effect of the secular resonances
associated with the frequency s will increase with the initial incli-
nation I0. Indeed, we can see comparing Fig. 1(d) with Fig. 1(g)
and (h) that the dynamical significance played by the Family IV
resonances at low inclinations is replaced at high inclinations by the
one of Family III.

In Fig. 1(i), we show the resonant structure of the libration region
in the (a, I) plane for a fixed eccentricity e = e5. The most evident
structures in this figure are the yellow-to-red arches landing at the
a-axis at about 5.32, 5.34, ldots, 5.38, etc. The largest one (landing
at about a = 5.38) corresponds to a subfamily of resonances of the
type 3ν + ν1,3 + pg + p5g5 + p6g6 + qs + q6s6 = 0, located around
3ν + ν1,3 − g + g6 + 2s = 0. This structure approximately defines
the border of the stability region in the (a, I) plane. Somehow it
plays an equivalent role to the one the secular resonance s = s6 did
in the plane (a, e). The arch structure more on the left-hand side in
Fig. 1(i) (the one that lands at about a = 5.32) is associated with
another subfamily of resonances: 5ν − 2ν1,2 + pg − (p + p6 + 2)
g5 + p6g6 = 0.

Actually, all these resonances belong to Family II, which has to be
generalized, when the initial inclination is not close to Jupiter’s, by
including the frequencies s and s6. Thus, for high initial inclinations,
relations (9) and (10) satisfied by different subfamilies of Family II
resonances become, respectively,

5ν − 2ν1,2 + pg + p5g5 + p6g6 + qs + q6s6 = 0 (14)

and

3ν + ν1,3 + pg + p5g5 + p6g6 + qs + q6s6 = 0, (15)

where p + p5 + p6 + q + q6 = −2 in equation (14), p + p5 + p6 +
q + q6 = 2 in equation (15) and (q + q6) is even.

Similarly, as we increase the inclination, the resonance relations
corresponding to Family IV (equation 13) should be generalized in
order to include the secular frequencies s and s6:

pg + ν2,5 + qs + p5g5 + p6g6 + q6s6 = 0, (16)

where p + q + p5 + p6 + q6 = 3 and (q + q6) is even.
In order to understand the transition between the resonances that

organize the phase space for different initial inclinations, it is im-
portant to mention that the range of frequencies reachable for ν, g
and s inside the tadpole region strongly depends on this initial incli-
nation. The upper red lines in the three frames of Fig. 4 correspond
to the maximum reachable values for the ν, g and s frequencies
depending on the initial inclination. The middle frame also shows
the line corresponding to the minimum value for g.3

Moreover, in the top frame of this figure, we display Family I res-
onances (the upper short dashed line corresponding to resonances of
the type 12ν and the lower one to 13ν; recall equation 8) and Family
II resonances (long dashed lines, from bottom to top, respectively,
with p = 0 to p = −3 in equation 9). In the bottom frame of Fig. 4,
the three dashed lines correspond to the following members of the
Family III secular resonances (from top to bottom): s − s6 + g5 −
g6 = 0, 3s − s6 − 2g5 = 0 and 2s − 3g5 + g6 = 0.

3 It is clear from Fig. 3 that we cannot define a minimum value for the
frequency s, but we can none the less assert that all s values grow with the
initial inclination.
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Figure 4. Limit values for the fundamental frequencies of the Trojan aster-
oids. Top panel: maximum values of the libration frequency ν with respect
to the initial inclination. Middle panel: maximum and minimum lines for
frequency g with respect to the initial inclination. Bottom panel: maximum
frequency s depending on the initial inclination.

From the middle frame of Fig. 4, it is clear that the fundamen-
tal frequency of the longitude of the perihelion of the Trojans g
ranges approximately from 330 to 440 arcsec yr−1 for small inclina-
tions. We know that the frequency related to the GI is approximately
ν2,5 = −1467 arcsec yr−1. Thus, the simplest resonances involving
g and ν2,5 are of the form 4g + k5g5 + k6g6 + ν2,5 = 0 with k5 +
k6 = −1 (upper dashed line in the middle frame of Fig. 4 labelled
4g, 5g and 6g). For higher inclinations, the values of g decrease,
and thus resonances involving 5g (middle dashed line) and even 6g
(lower dashed line) can be reached. It is clear from Fig. 4 that when
the resonances involving 4g exit the phase space, at about I = 18◦,
the resonances involving 5g start playing a role. These ones reach
the maximum g value line, at about I = 27◦, and soon afterwards,
at about I = 29◦, the resonances involving 6g enter the phase space.
In general, commensurabilities of the type (equation 16) are found
for moderate to high inclinations, but have a smaller dynamical in-
fluence than the previous ones (see Tables 3 and 8).

3 L O N G - T E R M DY NA M I C S

3.1 Stable region in a one billion years simulation

In Fig. 5, we look at the dependence on time of ejected particles
(black zone) in a long (109 yr) integration. The initial conditions in
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Table 3. Main Family IV resonances of the form pg + qs + p5g5 +
p6 g6 + q6 s6 + ν2,5 = 0. For the multiplets that have q = 0, we show
in the last but one column the corresponding value of the frequency
g in arcsec yr−1. In the last column, we display the approximate
value of the inclination (in degrees) for which the related resonances
appear.

p q p5 p6 q6 g I

4 0 −1 0 0 367.87 0
4 0 0 −1 0 373.87 0
4 0 −2 1 0 361.88 0
4 −2 1 0 0 0
4 −2 0 1 0 0
5 0 0 −2 0 304.70 20
5 0 −1 −1 0 299.90 20
5 0 −2 0 0 295.11 20
5 −1 0 −2 1 20
6 0 0 −3 0 258.58 30

the white triangle on the bottom left-hand corner of every figure are
not integrated since we know beforehand that they will not escape
during the one billion years simulation. The percentage appearing
inside the white triangles indicates how many particles, among the
ones that escape in the 1-Gyr integration, have already escaped at a
previous given time (this time is written down in Myr in the top right-
hand corner of every figure). It is already known that this dependence
of the number of escaping particles on time is by no means linear
(Simó et al. 1995; Grazier et al. 1999a,b). The coloured part of the
figure is generated in the same way as Fig. 1. That is, for non-escaped
particles, we plot the diffusion index corresponding to the first
10 Myr of integration.

A first look at these pictures tells us that almost all Trojans in a
neighbourhood of the resonance s = s6 and above are ejected in less
than one billion years. Thus, the well-known fact is again verified
that this secular resonance bounds the long-term stability region for
low initial inclination values.

A second comment is that we can clearly see the appearance of a
big (black) gap around the Family IV resonance 4g + ν2,5 − g5 =
0 [see top right-hand frame of Fig. 5 at about (a, e) = (5.28, 0.15)].
This suggests that this type of resonances may play an important role
in a slow diffusion process leading particles from the inner (blue)
stable region to the unstable region. We pursue this first impression
in Section 3.2, where we study in depth this diffusion mechanism.

Finally, we note that all the initial conditions that have a diffusion
index greater than 10−3 in the first 10 Myr lead to an escaping
trajectory, except for two regions related to resonances belonging to
two subfamilies of Family II (equation 9 with p = 0 and −1). In these
regions, a strong bounded diffusion transversal to the secondary
three-body resonances can be observed. This will be studied in more
detail in Section 3.3.

3.2 The role of Family IV

The secondary resonances, like the members of Family II, appear
frequently when studying asteroidal or Kuiper belt objects in MMR.
A secondary three-body resonance was first mentioned by Ferraz-
Mello inside the 2:1 Kirkwood gap (see Ferraz-Mello 1997; Ferraz-
Mello, Michtchenko & Roig 1998a,b, and also in chapter 11 of
Morbidelli 2002). However, in these cases, contrarily to what hap-
pens for the resonances of Family IV, the commensurability involves
the libration frequency ν and the frequency of the GI, ν2,5, (or, even-

tually, ν and 2n7 − n8 in the Kuiper belt). As far as we know, it is
the first time that a resonance, which is neither purely secular nor
secondary (in the sense that ν is not involved), is identified playing
a no-negligible dynamical role.

Even though the effect of Family IV is not dominant in the cur-
rent configuration of the Solar system, it is involved in the chaotic
behaviour of some observed Trojans (see Section 4). Above all, the
slow diffusion along these resonances and their connection with
the secular resonance s = s6 generates a transport mechanism that
drives some Trojans from the inner part of the tadpole region to the
horseshoe domain, and possibly leading the asteroid to ejection (see
Section 3.2.3). Moreover, if Jupiter and Saturn were closer to the
2:5 MMR than they actually are, the role played by the resonances
of Family IV would be dominant.

3.2.1 On the generating mechanism of Family IV

We are now going to show how these ‘unusual’ resonances are gener-
ated. The first clue is that Family IV is due to the direct contribution
of Saturn on the Trojan. This was seen in Section 2, where recall
that every action on the asteroid of the SJS system was added one
at a time. Consequently, we have to focus on the inverse of the mu-
tual distance between the Trojan and Saturn. The elements of the
expansion of this term of the Hamiltonian that bring the main con-
tribution to Family IV are given by the following expression (and
the corresponding complex conjugate):

,zα z̄ᾱzα6
6 z̄ᾱ6

6 exp[i(2λ − 5λ6)], (17)

where z = e expiϖ , z6 = e6 exp i ϖ 6 and (α, ᾱ, α6, ᾱ6) are positive
integers satisfying α − ᾱ + α6 − ᾱ6 = 3 (see Laskar 1985). The
coefficient , in equation (17) depends on Saturn’s mass and on the
semimajor axis of Saturn and the Trojan. However, as it only gener-
ates perturbations that are of the order smaller than (z, z̄, z6, z̄6), its
time dependence will be neglected in the forthcoming discussion.

Denoting ζ = eiσ , equation (17) becomes

,zα z̄ᾱzα6
6 z̄ᾱ6

6 ζ 2 exp [i(2λ5 − 5λ6)]. (18)

Now, if we assume that the considered trajectories are quasi-
periodic, and if we keep only the dominant terms of the decom-
position, we have4

z5 = α5,5eig5t + α5,6eig6t + · · · ,
z6 = α6,5eig5t + α6,6eig6t + · · · ,
z = α0eigt + α5eig5t + α6eig6t + · · · ,
ζ = β0 + β−1e−iνt + β1eiνt + · · · ,
λ5 = λ0

5 + n5t + · · · ,
λ6 = λ0

6 + n6t + · · · .

(19)

By substituting equation (19) into equation (18), we obtain a sum
of monomials which frequency is equal to

nν + pg + p5g5 + p6g6 + ν2,5, (20)

with p + p5 + p6 = 3. If n ̸= 0, this expression leads to secondary
three-body resonances comparable to the ones that generate Family
II. However, as the ratio ν/ν2,5 is close to 13, the value of equa-
tion (20) can never be close to zero [except for unrealistic (high)
values of the integers p, p5 and p6]. However, n = 0 gives rise to

4 See Tables 1, 2 and 4, and more generally (Laskar 2005), for quasi-periodic
representations of planetary solutions.
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Figure 5. Fraction of ejected particles (black zone) depending on time up to 1 Gyr. The final time for each frame is written (in Myr) in the top right-hand
corner of every figure. The initial conditions inside the white triangles are not integrated since we know beforehand that they will not escape before 1 Gyr. See
the text for more details.

a resonant combination (with relatively small integer coefficients)
belonging to Family IV (see Table 3).

3.2.2 Definition of a critical angle

It is usual, when dealing with an isolated resonance, to define a
critical angle: an angle that exhibits a different behaviour ‘inside’
and ‘outside’ of the resonance (i.e. circulation, inside, and libration,
outside). If, in the simplest cases, the choice of this angle is easy and
natural (e.g. for low-order MMRs or secular resonances of second
order), when the resonance involves several degrees of freedom or
when it is of high order (e.g. secular resonances between terrestrial

planets; Laskar 1990), to define the right critical angle is by no
means a trivial task.

In this section, we focus on the main representative resonance of
Family IV (the generalization to any resonance of Family IV will
be obvious):

4g − g5 + ν2,5 = 0. (21)

If we followed the same scheme as to determine the critical angle
of a low-order MMR, the natural candidate would be

ϕ = 4ϖ − ϖ5 + 2λ5 − 5λ6. (22)

To check whether this is the critical angle or not, we look for a tra-
jectory satisfying the resonant relation (21) by means of an accurate
determination of the proper frequencies. In Fig. 6 (top panel), we
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Figure 6. Study of the critical angle of the resonance 4g − g5 + ν2,5 =
0. Top panel: Naı̈ve candidate of critical angle. 4ϖ − ϖ 5 + 2λ5 − 5λ6
(in millions of degrees) versus time (in Myr). Bottom panel: actual critical
angle. Argument of ẑ4 exp i(ν2,5 − g5)t in degrees versus time.

show the evolution on time of the angle ϕ as defined in equation (22).
We note that, even very deep inside the resonance, this angle does
not librate but circulates. This fact is not surprising if we remember
that the two or three first terms of the quasi-periodic decomposi-
tion of z, z5 and z6 are periodic with comparable amplitudes and
different frequencies (see Tables 2 and 4), i.e. they are not proper
modes. In other words, to compute the true critical angle, we should
find coordinates adapted to the resonant torus, i.e. the invariant torus
around which the resonant trajectories evolve.

A rigorous way to do this is to begin by reducing the Hamiltonian
to a normal form, i.e. a Kolmogorov normal form in the neighbour-
hood of the frequencies (ν, g, s, g5, g6, s6, ν2,5), and to stop the
process at the step just before eliminating the term that contains the
divisor corresponding to the considered resonance (see Morbidelli
2002, chapter 11). This procedure, though, is very technical and to
perform such a computation is far from the scope of the present
paper. However, an easy way to produce an approximate critical
angle is to perform a linear transformation, keeping in mind that we
are looking for (linear) proper modes. This corresponds, in some
sense, to diagonalize the quadratic part of the secular Hamiltonian
(Laskar 1990). In particular, the third equation of (19) leads to the
new variable ẑ by

ẑ = α−1
0 (z − α5z5 − α6z6). (23)

The following example shows that transformation (23) is neces-
sary in order to find an approximation of the critical angle. Let us
take a fictitious Trojan evolving inside the considered resonance.
We pick an initial condition in Fig. 1 such that the corresponding
frequencies satisfy approximately equation (21): a0 = 5.2595, e0 =
0.1125, I = I5, λ = λ5 + π/3, ϖ = ϖ 5 + π/3 and & = &5. The
first 10 terms of the quasi-periodic decomposition of z = e exp (i ϖ )
are given in Table 4. Even though for this body, the proper frequency
g satisfies equation (21), the angle ϕ defined by equation (22) does
circulate (see Fig. 6, top panel). As

z = α0eigt + α1eig5t + α2eig6t

+ α3ei(g−νl)t + α4ei(g+νl)t + · · · , (24)

the dominant terms of the quasi-periodic approximation of

w(t) = [z(t)]4e−ig5t eiν2,5t (25)

Table 4. First 10 terms of the quasi-periodic approximation of z =
e exp(iϖ ) for a body inside the resonance 4g − g5 + ν2,5 = 0.
The first column gives the modulus of the complex amplitude of the
coefficients divided by α0 = 5.9510 × 10−2. The frequencies (in
arcsec yr−1) are given in the second column. In the last column, we
show the linear combinations of the main frequencies, where νl =
1.129 71 arcsec yr−1 denotes the frequency of libration.

|αj/α0| νj (arcsec yr−1) Combinations

1 367.878 21 g
0.719 872 4.027 60 g5
0.273 389 28.006 57 g6
0.144 094 366.748 44 g − νl
0.088 2167 369.008 17 g + νl
0.016 275 109 254.631 65 n5
0.014 3341 1071.600 52 − g − g6 − 2ν2,5
0.013 0212 51.985 55 − g5 + 2g6
0.011 1994 731.728 92 2 g − g5
0.010 9928 365.616 96 g − 2νl

are given by the complex function of time

w(t) = α4
0

[
γ1e2i(g5−g)t + γ2ei(g5−g)t] , (26)

with |γ 1| ≈ 3.21 and |γ 2| ≈ 3.17. Then, the argument of w does
not librate as it is shown in Fig. 6, but circulates. Contrarily, if we
suppress the terms in z containing g5 and g6 (this is approximately
what we do by computing ẑ), we have

[ẑ(t)]4ei(ν2,5−g5)t = 1 + δ−1e−iν2,5t + δ1eiν2,5t + · · · , (27)

where |δ−1| + |δ1| < 1. If the modulus of the neglected quantity in
equation (27) is small enough (which is the case here), the argument
of ŵ(t) = [ẑ(t)]4ei(ν2,5−g5)t is the critical angle and librates inside
the corresponding resonance (see Fig. 6, bottom panel). Then, the
argument of ŵ provides a good approximation of the critical angle
for the resonance (equation 21). The generalization of this process
to other resonances of Family IV is straightforward.

3.2.3 Diffusion along Family IV resonances

In Fig. 7 (first two rows), we show different examples of fictitious
Trojans that evolve in frequency space following some resonances
belonging to Family IV. The background for the four figures (black
dots) is the same: it is the projection on to the (g, s) space of the
image of the FM. On this background, we display (in red) the evo-
lution of the fictitious particles. That is, we choose some particular
initial conditions (blue triangles) close to the resonance 4g + ν2,5 −
g5 = 0 (label ‘a’ in Fig. 3), compute their basic frequencies every
5 Myr and plot them in the figures. We stop the integration at 1 Gyr
or when the particle is ejected.

More concretely, in the top left-hand panel an example of a par-
ticle that first evolves inside the resonance for the whole simulation
is shown. The top right-hand frame of Fig. 7 shows an example
of a particle that evolve inside the resonance 4g + ν2,5 − g5 = 0
for the first 600 Myr while its s frequency slowly decreases, then
it wanders near the upper part of the s = s6 resonance, and finally
crosses this resonance at about 800 Myr, when it is ejected from the
stable region. The third and fourth examples (second-row frames
of Fig. 7) correspond to particles that leap between the resonances
4g + ν2,5 − g5 = 0 and 4g + ν2,5 − 2 g5 + g6 = 0. The one in the
middle left-hand panel does not escape during the one billion years
simulation, while that of the middle right-hand panel is ejected from
the stability region after about 800 Myr.
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Figure 7. First two rows: diffusion along Family IV resonances of some fictitious Trojans. Long-term evolution of the (g, s) frequencies (red dots) for four
different initial conditions (blue points) close to the resonance 4g + ν2,5 − g5 = 0. We superimpose this evolution on the image of the global FM (Fig. 1).
Bottom row: two fictitious examples of diffusion transversal to the secondary three-body resonances 5ν − 2(n5 − 2n6) + 0g + qg5 − (q + 2) g6 = 0, for q ∈
{−5, 4}. See the text for more details.

3.3 Diffusion transversal to Family II resonances

As mentioned in Section 3.1, all initial conditions in Fig. 5 that
have a diffusion index larger than 10−3 lead to escaping trajectories,

except for those belonging to a subfamily of the secondary three-
body resonances 5ν − 2ν1,2 + pg + p5g5 + p6g6 = 0 with p = 0
and −1 (they correspond to the resonances with labels 0 and −1 in
Fig. 3). Thus, a Trojan starting its long-term simulation near one
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of these resonances is likely to suffer a strongly diffusive (since its
diffusion index is large) but bounded motion (because it does not
escape the tadpole region).

To study in depth this phenomenon, we picked convenient initial
conditions near the resonance 5ν − 2ν1,2 + 0g + 0g5 − 2g6 =
0, integrated them for 1 Gyr, computed their basic frequencies
every 5 Myr and looked at the time evolution of these frequen-
cies. In the bottom row of Fig. 7, we show two examples of these
integrations. More concretely, the small red dots denote the evolu-
tion of the frequencies (g, ν) during the simulation and the green
horizontal lines correspond to members of the subfamily of the sec-
ondary three-body resonance 5ν − 2ν1,2 + 0g + qg5 − (q + 2)g6 =
0, for q ∈ {−5, . . . , 0, . . . , 4}. These particles suffer a strong
bounded diffusion in ν and jump randomly from one member of the
subfamily of resonances to another, giving a global view of diffu-
sion transversal to the secondary three-body resonances. This type
of diffusion is very different from the one generated by Family IV
and it reminds the Chirikov diffusion mechanism (Chirikov 1959,
1960).

4 A NA LY S I S O F T H E O B S E RV E D T RO JA N S

We are now interested in relating the observed Trojans with
the global dynamical maps (Fig. 1), in identifying actual aster-
oids in the resonances described in Section 2 and in studying
the long-term evolution of some of these objects. In this regard,
we obtained from Bowell’s ASTORB database (http://www.naic.
edu/∼nolan/astorb.html) the osculating elliptic elements of the
known Trojan asteroids at the Julian Date 245 2200.5 (2001
October 10) to be used as initial conditions for the simulations.

4.1 Inversion of the FM and resonant Trojans

In Robutel et al. (2005), we described in detail an approximate
method for inverting the FM that allowed us to place the observed
Trojans in global pictures similar to the ones in Fig. 1. The problem
of inverting the FM resides in the fact that generically all Trojans
have different initial phases θ (see equation 1), while the global
portraits have just been computed for a particular constant initial
phase. To solve this problem, we computed the basic frequencies
of the actual Trojans and looked for the closest initial condition in
the global picture that had the same image by the FM. This initial
condition and the initial coordinates of the actual Trojan are not
the same but, as they lie on the same invariant torus, they are dy-
namically equivalent. The choice of these initial coordinates (a∗, e∗,
I∗) as proper elements of the Trojan is natural in the sense that the
frequency vector is not equivalent to a trajectory but to an invariant
torus. See Robutel et al. (2005), for more details.

When we plot these Trojan ‘proper elements’ (a∗, e∗) on the
global dynamical maps for fixed inclinations I∗ as just explained,
we see (Robutel et al. 2005) that most of the Trojans are inside
the stability region of the global maps (Michtchenko, Beaugé &
Roig 2001; Nesvorny & Dones 2002; Tsiganis, Varvoglis & Dvorak
2005b) and also that some of the observed Trojans stay inside (or
very close to) some of the resonances described in Section 2. This
is rather easy to check when the basic frequencies of the asteroids
are available. This is what we do next.

In Table 5, we show the actual Trojans that, for the SJS system,
lie very close (at a distance smaller than 0.1 arcsec yr−1) to some
resonance corresponding to Family I (see equation 8), up to order
25. The first column displays the catalogue number and the name
of the particular asteroid. In the last column of the table, we give

Table 5. Family I. Actual Trojans at a distance smaller than 0.1 arcsec yr−1

from a resonance of the type pν − n5 + q g + q5g5 + q6g6 = 0. In the last
two columns, we write the asteroid’s initial inclination (in degrees) and the
distance to the exact resonance (in arcsec yr−1).

pν − n5 + qg + q5g5 + q6 g6 = 0
Trojan p q q5 q6 I Dis.

1749–Telamon 13 −12 3 10 6.8 0.024
5259–Epeigeus 13 −12 6 7 14.9 0.023
20739–1999XM193 13 −13 4 10 13.4 0.004

the distance to the exact resonance in arcsec yr−1. In the last but one
column, we show the initial inclination of the particular asteroid in
degrees. The remaining columns are devoted to the multiplet that
defines the particular resonance inside the family.

In Section 2.3.2, we introduced the secondary three-body reso-
nances, or Family II of resonances, which are due to the indirect
action of Saturn to the asteroid through Jupiter. Two types of these
resonances are clearly visible in the global maps; they satisfy

5ν − 2ν1,2 + pg + p5g5 + p6g6 = 0 , or

3ν + ν1,3 + pg + p5g5 + p6g6 = 0 ,

where we recall that ν1,2 = n5 − 2n6 and ν1,3 = n5 − 3n6.
In Table 6, we show the actual Trojans that are at a distance
smaller than 0.1 arcsec yr−1 from some resonance corresponding to
Family II. Note that we group the resonant Trojans depending on the
value of p. That is, we can identify subfamilies inside the different
types of resonances of Family II to a constant p value.

In Table 7, we show some of the Trojans that are at a distance
smaller than 0.1 arcsec yr−1 from some representative secular reso-
nance of Family III (see equation 12). The computations are done
up to order 14, and just a few of all the actual cases found are
shown. Note that some Trojans (e.g. 5023–Agapenor, that appears
in Tables 6 and 7) may even be very close to a double resonance.5

Double resonances were already suggested as a possible explana-
tion for the ‘stable chaos’ of some asteroids found in Milani (1993)
and mentioned by Dvorak & Tsiganis (2000), for high-order secular
resonances.

In Table 8, we show some of the actual Trojans that are at a
distance smaller than 0.1 arcsec yr−1 from a resonance belonging to
Family IV (see equation 13). In particular, we classify them on three
subfamilies depending on whether they satisfy 4g + ν2,5 + p5 g5 +
p6 g6 + q6 s6 = 0, 5g + ν2,5 + p5 g5 + p6 g6 + q6 s6 = 0 or 6g + ν2,5 +
p5 g5 + p6 g6 + q6 s6 = 0. The computations are done, respectively,
up to orders 10, 13 and 17. As expected from Fig. 4 and the dis-
cussion in Section 2.4, the initial inclination of the asteroids grows
with the coefficient of g. We note that the initial inclination of the
Trojans inside the resonances 4g, 5g and 6g (Table 8) belongs to the
intervals predicted by Fig. 4. It is also interesting to note that some
asteroids (e.g. 4035–1986WD, 4057–Demophon, 5233–1988RL10,
5907–1989TU5, 17423–1988SK2 and 18228–Hyperenor) are really
very close (distance smaller than 0.002 arcsec yr−1) to one of these
resonances. These asteroids are actually captured inside the corre-
sponding resonances. Indeed, we have checked that all the asteroids
in Table 8 satisfying q = q6 = 0 are captured by the corresponding
resonances. For every particle, we have computed the evolution with

5 Actually, we should call them triple resonances, as all Trojans are already
in the 1:1 MMR.
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Table 6. Family II. Some examples of actual Trojans at a distance smaller
than 0.1 arcsec yr−1 of one of the subfamilies of Family II resonances. In the
last two columns, we show, respectively, the initial inclination of the asteroid
(in degrees) and the distance to the exact resonance (in arcsec yr−1). The first
table is devoted to resonances satisfying equation (9) and the second one to
equation (10).

5 ν − 2ν1,2 + pg + p5g5 + p6g6 + qs + q6s6 = 0
Trojan p p5 p6 q q6 I Dis.

23075–1999XV83 −4 −1 3 2 −2 13.0 0.004
4792–Lykaon −3 0 3 −1 −1 8.4 0.037
3063–Makhaon −2 −1 5 −1 −3 13.5 0.069
3564–Talthybius −2 1 1 2 −4 15.3 0.089
5638–Deikoon −2 4 0 1 −5 9.8 0.007
12921–1998WZ5 −2 −2 −2 −1 5 12.2 0.048
15536–2000AG191 −2 4 −4 0 0 14.7 0.035
5023–Agapenor −1 2 −3 0 0 13.0 0.010
11554–Asios −1 −3 2 0 0 12.5 0.093
24426–2000CR12 −1 −3 2 0 0 7.4 0.009
2893–Peiroos 0 1 −5 2 0 13.2 0.017
9817–Thersander 0 5 −7 0 0 9.0 0.026
14235–1999XA187 0 −3 3 −2 0 8.0 0.004
23119–2000AP33 0 1 1 1 −5 19.7 0.040
24275–1999XW167 0 −4 4 −2 0 13.9 0.055
3709–Polypoites 1 0 3 −7 1 19.6 0.097
5476–1989TO11 1 1 −2 2 −4 13.9 0.060
15651–Tlepolemos 1 0 3 −5 −1 2.3 0.082
17442–1989UO5 1 2 −3 −1 −1 15.3 0.056
23987–1999NB63 1 −6 3 1 −1 22.6 0.007
1873–Agenor 2 −5 1 1 −1 22.2 0.092
14268–2000AK156 2 3 −5 −2 0 16.4 0.083
22199–Klonios 2 −6 0 2 0 8.4 0.046
22222–Hodios 2 −3 1 0 −2 1.9 0.006

3 ν + ν1,3 + pg + p5g5 + p6g6 + qs + q6s6 = 0

Trojan p p5 p6 q q6 I Dis.

14791–Atreus −11 10 3 0 0 3.0 0.044
11251–Icarion −10 0 8 0 4 2.9 0.010
5284–Orsilocus −9 3 6 −1 3 18.8 0.003
10989–Dolios −9 4 −1 2 6 10.6 0.031
13185–1996TH52 −9 1 0 3 7 9.4 0.038
2241–Alcathous −8 3 −1 3 5 17.8 0.007
4832–Palinurus −8 −2 0 5 7 17.7 0.022
5023–Agapenor −8 3 −3 7 3 13.0 0.010
7543–Prylis −8 2 2 3 3 14.2 0.020
9907–Oileus −8 6 4 0 0 7.4 0.045
11275–1988SL3 −8 5 5 −3 3 23.6 0.001
13383–1998XS31 −8 10 0 −1 1 7.6 0.007
13780–1998UZ8 −8 4 2 −1 5 8.0 0.039
5648–1990VU1 −7 3 −2 2 6 21.3 0.001
4791–Iphidamas −6 7 1 0 0 27.2 0.022
5264–Telephus −6 1 9 −1 −1 31.2 0.019
13062–Podarkes −5 6 −5 5 1 6.6 0.011
7641–1986TT6 −4 2 6 0 −2 35.6 0.010
12444–1996GE19 −4 0 −4 11 −1 31.4 0.008
5027–Androgeos −3 5 0 −6 6 30.2 0.028
5285–Krethon −3 3 −6 −2 10 24.1 0.005
10247–Amphiaraos −3 −1 0 −2 8 3.8 0.050
15663–Periphas −3 −3 0 6 2 33.9 0.004
2363–Cebriones −2 2 −4 0 6 32.7 0.031

respect to time of the critical angle of the corresponding resonance
(see Section 3.2.2). In most of the cases, the period of libration of this
critical angle inside the resonance ranges from about half to several
million years (see the top three rows of Fig. 8 and Section 4.2).

Table 7. Family III. Some examples of actual Trojans at a distance smaller
than 0.1 arcsec yr−1 to a member of the secular resonances qs + q6s6 +
p5g5 + p6g6 = 0, up to order 14. In the last two columns, we show the
initial inclination of the asteroid (in degrees) and the distance to the exact
resonance (in arcsec yr−1).

q s + q6s6 + p5g5 + p6g6 = 0
Trojan q q6 p5 p6 I Dis.

1173–Anchises −5 3 4 −2 7.9 0.092
3391–Sinon −2 2 −1 1 15.7 0.066
3451–Mentor 6 −4 −2 0 10.1 0.099
4138–Kalchas 5 −1 −6 2 2.8 0.081
5023–Agapenor 3 −3 2 −2 13.0 0.032
5126–Achaemenides 2 2 −7 3 28.3 0.065
5130–Ilioneus 6 −4 −2 0 16.9 0.061
6090–1989DJ −1 −1 4 −2 21.4 0.013
6545–1986TR6 −5 5 −2 2 13.3 0.030
7119–Hiera 7 −5 −1 −1 20.6 0.024
7352–1994CO −4 2 3 −1 7.0 0.026
9713–Oceax −3 −1 7 −3 3.6 0.053
9818–Eurymachos 1 −3 5 −3 7.4 0.034
11487–1988RG10 −5 1 6 −2 4.3 0.075
11509–1990VL6 −2 0 3 −1 19.1 0.033
12054–1997TT9 5 −3 −3 1 9.4 0.062
12242–Koon −6 2 5 −1 30.4 0.072
12929–1999TZ1 −2 0 2 0 32.3 0.009

All these Trojans clearly follow a libration except one case: 4543–
Phoinix. Even though it is very close to the exact resonance, the
critical angle does not purely librate. Its motion in frequency space
is close to the separatrix. See the bottom frame of Fig. 8.

Some of the Trojans described above are examples of ‘stable
chaos’ (see Milani & Nobili 1992). For instance, 4543–Phoinix
is in stable chaos according to Milani (1993), and we can locate
it close to the resonance 4g + ν2,5 − g5 + g6 = 0. See Sec-
tion 4.2, for a detailed study of the long-term dynamics of this
asteroid.

A last interesting example that we want to point out is 1173–
Anchises (see Table 7). This asteroid lies inside a region of over-
lapping resonances and it was already in the list of ‘stable chaos’
in Milani, Nobili & Knezevic (1997). It is very close to the s =
s6 resonance, to a resonance of Family II with p = −2, see equa-
tion (9), and to the secular resonance −5s + 3s6 + 4g5 − 2g6 = 0
(see Table 7).

4.2 Long-term behaviour of some observed Trojans

We now study the long-term dynamical implications of the families
of resonances. They provide a mechanism for transport of actual
Trojans from the inner part of the stability region to the chaotic part
and, sometimes, to escaping orbits. In this paper, we shall call this
diffusion mechanism Arnold-type diffusion (Arnold 1964) and it
is observed in actual Trojan asteroids. Moreover, in the numerical
experiments, a second type of diffusion is also observed. This one
is bounded and transversal to the secondary three-body resonances.
This reminds (see Section 3.3) a diffusion mechanism à la Chirikov
(Chirikov 1959), and thus we will call it Chirikov-type diffusion.

4.2.1 Arnold-type diffusion

We take some asteroids from Table 8 and perform a long-term
integration of their trajectories. More concretely, we take the ini-
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Table 8. Family IV. Actual Trojans at a distance smaller than 0.1 arcsec yr−1

of a resonance of the type 4g + ν2,5 + . . . = 0, 5g + ν2,5 + . . . = 0 or 6g +
ν2,5 + . . . = 0. In the last two columns, we show the initial inclination of the
asteroid (in degrees) and the distance (in arcsec yr−1) to the exact resonance.

4g + ν2,5 + p5g5 + p6g6 + qs + q6s6 = 0
Trojan p5 p6 q q6 I Dis.

2893–Peiroos 1 0 −1 −1 13.2 0.091
4035–1986WD 1 0 −1 −1 13.1 0.001
4057–Demophon −1 0 0 0 2.8 0.002
4543–Phoinix −2 1 0 0 16.2 0.064
4722–Agelaos 0 1 −1 −1 7.8 0.010
5123–1989BL −3 2 0 0 7.3 0.086
5233–1988RL10 −1 0 0 0 2.5 0.0003
5638–Deikoon −2 1 0 0 9.8 0.030
5907–1989TU5 −1 0 0 0 0.7 0.0004
9713–Oceax −2 1 −1 1 3.6 0.007
13184–Augeias 0 −1 0 0 5.4 0.013
13463–Antiphos 0 1 −3 1 11.6 0.046
13790–1998UF31 −2 1 0 0 6.8 0.025
14518–1996RZ30 −2 1 0 0 6.2 0.026
15502–1999NV27 −1 2 0 −2 18.0 0.053
17423–1988SK2 −2 1 0 0 1.4 0.000 07
18058–1999XY129 0 −1 −1 1 8.8 0.017
18228–Hyperenor −1 0 0 0 3.2 0.002
21370–1997TB28 −1 0 1 −1 6.5 0.015
22808–1999RU12 −1 2 −2 0 9.9 0.010
24018–1999RU134 0 1 1 −3 15.2 0.085
24452–2000QU167 0 1 −2 0 6.8 0.050

5g + ν2,5 + p5g5 + p6g6 + qs + q6s6 = 0

Trojan p5 p6 q q6 I Dis.

3596–Meriones −1 −3 3 −1 23.8 0.060
5028–Halaesus 2 −4 −1 1 20.9 0.037
5254–Ulysses −3 −1 1 1 22.8 0.017
5648–1990VU1 −3 −1 0 2 21.3 0.081
11887–Echemmon −3 −1 3 −1 25.2 0.039
20424–1998VF30 −1 −1 0 0 24.4 0.050
21595–1998WJ5 0 −2 1 −1 24.0 0.045
23480–1991EL 1 −1 −2 0 23.0 0.020

6g + ν2,5 + p5g5 + p6g6 + qs + q6s6 = 0

Trojan p5 p6 q q6 I Dis.

2363–Cebriones −6 −1 3 1 32.7 0.029
16956–1998MQ11 −1 −4 −1 3 27.1 0.058
19844–2000ST317 1 0 2 −6 40.6 0.085
22014–1999XQ96 1 −4 −2 2 30.5 0.045

tial conditions of 4543–Phoinix, 5638–Deikoon, 5907–1989TU5,
17423–1988SK2 and 18228–Hyperenor, and integrate them for 200
intervals of 5 Myr each. That is, we take a total time of integra-
tion of one billion years or until the asteroid escapes. For each
of these intervals, we compute the basic frequencies of the Trojan
(ν, g and s) to study their evolution in time. In Fig. 9, we show
the results of these long-term integrations. We superimpose the
(g, s) projection of the frequencies of the particular asteroid to the
corresponding global figure, that changes depending on the initial
inclination.

The asteroid 4543–Phoinix starts its ‘journey’ at the resonance
4g + ν2,5 − 2 g5 + g6 = 0, then it is subject to a drift inside the
frequency space during about 34 intervals and finally it is ejected of
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Figure 8. Evolution with respect to time (in Myr) of the critical angle (in
degrees) of, from top to bottom, 4057–Demophon, 5638–Deikoon, 17423–
1988SK2 and 4543–Phoinix, respectively.

the stable region at approximately 170 Myr of integration time (see
Fig. 9, top left-hand panel).

The Trojans 5638–Deikoon, close to the 10◦ inclination global
picture, and 5907–1989TU5 and 17423–1988SK2, at 0◦ inclination,
are transported along their corresponding resonances, but survive
the billion years integration and remain in the libration region (see,
respectively, Fig. 9 (top right-hand panel) and Fig. 9 (bottom left-
hand panel).

Finally, the asteroid 18228–Hyperenor does not survive the one
billion years integration. It is first transported along the 4g + ν2,5 −
g5 = 0 resonance for about 500 Myr, then it ‘travels’ to the resonance
4g + ν2,5 − 2g6, it jumps to the chaotic region and finally, after
640 Myr of total integration time, it is ejected from the libration
region (see Fig. 9, bottom right-hand panel).

4.2.2 Chirikov-type diffusion

We now take some of the asteroids in Table 6 and study their long-
term dynamics. In particular, we integrate them for one billion years
and compute their basic frequencies every 5 Myr. If we plot the
evolution in time of these basic frequencies on the global (g, ν)
space, for instance, it turns out that some of these objects suffer a
bounded diffusion which is pretty strong in the ν direction and weak
in the g direction (see Section 3.3). Thus, in the frequency space,
this diffusion is not along the resonances but transverse to them. We
show some examples of these simulations in Fig. 10.
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Figure 9. Diffusion along Family IV resonances of some actual Trojan asteroids. We show the projection of the global study into the (g, s) frequency space for
four different initial inclinations. We then superimpose on these figures the evolution in time of the asteroid’s frequencies. Top left-hand panel: 4543–Phoinix at
the 16◦ inclination global picture. Top right-hand panel: 5638–Deikoon at 10◦ inclination. Bottom left-hand panel: 5907–1989TU5 (red) and 17423–1988SK2
(blue) at 0◦ inclination. Bottom right-hand panel: 18228–Hyperenor at 4◦ inclination.

The asteroids 9817–Thersander and 11554–Asios satisfy, respec-
tively, the resonance relations

5ν − 2ν1,2 + qg5 − (q + 2)g6 = 0 , with q ∈ {−8, . . . , 5},
5ν − 2ν1,2 − g + qg5 − (q + 1)g6 = 0 , with q ∈ {−7, . . . , 0},
and are displayed in the top and centre frames of Fig. 10. These as-
teroids are transported across the secondary three-body resonances
suffering a large diffusion in ν. This motivates the classification
made in Table 6 in subfamilies of resonances. Asteroids with a
fixed p value (p = 0 or −1) in equations (9) or (10) are likely to
suffer this type of diffusion by crossing resonances with different p5

values.
Finally, in the bottom picture of Fig. 10, a very interesting example

is shown: asteroid 14791–Atreus. This asteroid suffers, during the
long-term integration, transversal diffusion across the secondary
three-body resonances 3ν + ν1,3 − 11g + qg5 + (13 − q)g6 = 0
with q ∈ {−11, . . . , 7}, and, at the same time, it is transported (in
frequency space) along the resonances due to the GI (or Family IV)
and satisfies 4g + ν2,5 − g5 = 0 or 4g + ν2,5 − 2 g5 + g6 = 0.
After approximately 825 Myr, this body is ejected from the stability
region.

5 C O N C L U S I O N S

In this paper, we have described in detail the resonant structure
of Jupiter’s Trojan asteroids. Understanding the global dynamics
helps to study the Trojan stability problem in depth. We have iden-
tified four different families of resonances (classified depending on
the type of frequencies involved) that have important dynamical
effects: (i) the secondary resonances (Families I and II) generate

large chaotic regions but, usually, with trapped asteroid motion; (ii)
the secular resonances (Family III), which most important member,
s = s6, determines the boundary of the long-term stability region
for low inclinations; and (iii) Family IV resonances, a new type of
resonance that involves the secular frequencies and the frequency
of the GI, but not the libration frequency of the asteroid, and it plays
a very important dynamical role.

The existence of the first three families is not due to the direct
perturbation of Saturn on the Trojans (see Section 2.3.2). Only the
fourth family is generated by this direct influence. This shows that
the unstable structures associated with Family IV are due to the
overlapping of the 1:1 co-orbital resonance with Jupiter and the 2:5
MMR between the Trojan and Saturn.

Two mechanisms of diffusion have been observed in the libration
region with long-term simulations (1 Gyr). The first, generated by
Family II, consists of a transversal diffusion to the secondary three-
body resonances but, usually, the asteroids remain trapped near these
structures. It is thus a bounded diffusion. The second takes place
along Family IV resonances and it is crucial in the slow transport
phenomenon that brings asteroids from the inner stable region to
the unstable region (beyond s = s6) and, often, to ejection.

In this regard, we have identified in Section 3 different paths that
drive Trojans from the ‘inner stable regions’ to the strong diffusion
regions (characterized by a large overlapping of the different fam-
ilies of resonances), from where Trojans may be rapidly ejected.
These mechanisms of global chaos (generated by the overlapping
of the four families of resonance) and of slow diffusion along res-
onances of Family IV seem to be the main generator mechanisms
of long-time depletion of the Trojan swarms discovered by Levi-
son et al. (1997). The study of the observed Trojans, carried out in
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Figure 10. Chirikov diffusion transversal to the secondary three-body reso-
nances in the (g, ν) plane of three actual Trojan asteroids. Top panel: 9817–
Thersander, which crosses the resonances 5ν − 2ν1,2 + qg5 − (q + 2)
g6 = 0. Middle panel: 11554–Asios, which crosses the resonances 5ν −
2ν1,2 − g + qg5 − (q + 1) g6 = 0. Bottom panel: 14791–Atreus, which
crosses the resonances 3ν + ν1,3 − 11g + qg5 + (13 − q) g6 = 0.

Section 4.2, shows that the structures and the mechanisms described
above do really exist in nature. Indeed, Tables 5–8, and Figs 9 and
10 give examples of asteroids trapped (temporarily or permanently)
inside resonances, of bounded diffusion, and of a drift transport
mechanism along resonances towards the outer unstable region.

If Trojans can be ejected from the libration region (as we have
shown in this paper), following the same mechanism, there should
also be possibilities of capture. In the present state of the Solar sys-
tem, this mechanism of capture is far from being effective, and thus
it cannot be the explanation of the formation of the Trojan swarms.

Recently, Morbidelli et al. (2005) showed that resonances between ν

and ν1,2 generate a large chaotic behaviour in the migration process
just after crossing the 1:2 MMR between Jupiter and Saturn, and
suggested that these events probably allowed Trojans to be captured
in the co-orbital region. It is possible to generalize the families of
resonances appearing in the present paper in order to model the res-
onant structure of the Trojans during the planetary migration course.
The study of the evolution of these structures not only shows that the
vicinity of the triangular Lagrangian points undergoes a sequence
of relatively stable and strongly chaotic phases associated with cap-
tures and ejections, but also allows us to identify the resonances that
generate this strong chaos. This mechanism, that is studied theoret-
ically in a forthcoming paper, seems very promising to tackle the
remaining unanswered questions in the Trojan problem.
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Cincotta P. M., Simó C., 2000, A&A, 147, 205
Cincotta P. M., Giordano C. M., Simó C., 2003, Phys. D, 182, 151
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Lega E., Guzzo M., Froeschlé C., 2003, Phys. D, 182, 179
Lemaitre A., Henrard J., 1990, Icarus, 32, 390
Levison H., Shoemaker E., Shoemaker C., 1997, Nat, 385, 42
Marzari F., Scholl H., 2002, Icarus, 159, 328
Marzari F., Tricarico P., Scholl H., 2003, MNRAS, 345, 1091
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A P P E N D I X A :

A1 The linear secular approximation: ERTBP

In the planar ERTBP, the elliptic elements of the triangular equilibrium point L4 are equal to a = a5, λ = λ5 + π/3, e = e5 and ϖ = ϖ 5 +
π/3. In this case, it is useful to expand the Hamiltonian with respect to the quantities δ = (a − a5)/a5, σν = λ − λ5 − π/3, z = e exp iϖ and
z5 = e5 exp iϖ 5 in a neighbourhood of L4, to consider its second-degree terms (linear terms) and to average with respect the fast angle λ5 (see
Morais 2001). Then, the secular quadratic part of the ERTBP Hamiltonian can be written as

H = −3
8

n2
5a2

5

(
δ2 + 3εσ 2

ν

)
− 27

16
εn2

5a2
5 [z − z5 exp(iπ/3)][z̄ − z̄5 exp(−iπ/3)], (A1)

where ε = m5/(m0 + m5), and m0 and m5 are, respectively, the masses of Sun and Jupiter.
Now, we are going to perform a sequence of canonical changes of variables to Hamiltonian (A1) to simplify it as much as possible. Let us
start by using the canonical variables (σν, S, x, −ix̄), that are defined as

S = 05(
√

1 + δ − 1), 05 = √
µa5 and z = x

√
2

05

(
1 − x x̄

205

)
, (A2)

where µ = G(m0 + m5). Then, equation (A1) becomes

H = −3
8

n2
5a2

5

[(
2S
05

)2

+ (
√

3εσν)2

]
− 27

8
εn5

[
x − z5 exp(iπ/3)

√
05

2

] [
x̄ − z̄5 exp(−iπ/3)

√
05

2

]
. (A3)

The second change of variables that we perform is defined by

S = (
√

3ε05/2)1/2u, σν = (
√

3ε05/2)−1/2v, y = x − z5

√
05/2 exp(iπ/3) ≈

√
05/2[z − z5 exp(iπ/3)]. (A4)

In this case, Hamiltonian (A3) simplifies to

H = ν0
u2 + v2

2
+ g0 y ȳ, (A5)

with ν0 =
√

(27ε/4) n5 and g0 = (27/8) εn5.
From this linear dynamics, it is easy to derive equation (2). Also, the identity in equation (3) is obtained from the fact that u2 + v2 is constant.
Finally, if we define the ‘linear’ action–angle variables (Iν , Ig , θν , θ g) as

u − iv =
√

2Iν exp(iθν), y =
√

Ig exp(iθg), (A6)
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Hamiltonian (A5) becomes

H = ν0 Iν + g0 Ig. (A7)

In the first-order approximation, these ‘linear’ actions can be written in terms of the original coordinates as

Iν ≈ 05

4
√

3ε

(
δ2 + 3εσ 2

ν

)
Ig ≈ 05

2

(
e2 + e2

5 − 2ee5 cos σg
)

= 05

2

[
(e − e5 cos σg)2 + e2

5 sin2 σg
]
, (A8)

where σg = ϖ − ϖ 5 − π/3. Therefore, it is clear from this linear approximation that, at least in a neighbourhood of L4, the phase space
should be symmetric with respect to the lines a = a5 and e = e5 cos σg (if cos σg > 0). See Section 2.3.1.

A2 The linear secular approximation: quasi-periodic models

For the ERTBP, the quantity z5 is constant. However, for more general models (e.g. some of the models considered in Section 2.3), z5 is a
quasi-periodic function of time. Thus, in this case, transformation (A4) is time dependent and it should be modified in order to normalize and
autonomize the quadratic part of the secular Hamiltonian (A1) to the normal form (A7) (see Gabern & Jorba 2005).

If we assume the quasi-periodic decomposition of z5 (see Table 2), we can expand it in Fourier series as

z5 =
∑

j

α j exp(i f j t). (A9)

In this case, transformation (A4) should be replaced by

y = x − g0

√
05/2

∑

j

α j

g0 − f j
exp(i f j t + iπ/3) ≈

√
05/2

[
z − g0

∑

j

α j

g0 − f j
exp(i f j t + iπ/3)

]
. (A10)

This paper has been typeset from a TEX/LATEX file prepared by the author.

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 372, 1463–1482


