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Crossed beam energy transfer, CBET, in high-intensity laser plasma interaction is investigated for
the case of optically smoothed laser beams. In the two approaches to laser-driven inertial confine-
ment fusion (ICF) experiments, the direct-drive and the indirect-drive, CBET is of great importance
because it governs the coupling of laser energy to the plasma. We use the two-dimensional wave-
coupling code Harmony to simulate the transfer between two laser beams with speckle structure
that overlap in a plasma with an inhomogeneous flow profile. We compare the CBET dynamics for
laser beams with spatial incoherence and with spatio-temporal incoherence; in particular we apply
the smoothing techniques using random phase plates (RPP) and smoothing by spectral dispersion
(SSD), respectively. It is found that for laser beams (wave length λ0) with intensities (IL) above
IL ∼ 2×1015Wcm−2(λ0/0.35µm)−2(Te/keV), both the so-called plasma-induced smoothing as well
as self-focusing in intense laser speckles induce temporal incoherence; the latter affects the CBET
and the angular distribution of the light transmitted behind the zone of beam overlap. For RPP-
smoothed incident beams, the resulting band width of the transmitted light can already be of the
same order as the effective band width of the SSD available at major laser facilities. We examine
the conditions when spatio-temporal smoothing techniques become efficient for CBET.
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I. INTRODUCTION

Crossed Beam Energy Transfer, ”CBET”, is a process that arises when two or more propagating laser beams intersect
in an active medium like an underdense plasma[1–3]. Crossing laser beams induce periodic density perturbations via
the ponderomotive force of the overlapping fields acting on the electrons. These density perturbations are periodic in
the direction of the difference wave vector between the laser beams. CBET leads to a net transfer between the beam
energy, if the induced plasma response is in resonance with the ponderomotive force. The interaction between the laser
beams and the induced density perturbation can become a resonant wave coupling process either when the laser waves
have different frequencies or when the laser waves have equal frequencies in case of sonic flow inside a plasma flow
profile. The understanding of the transfer between intense laser beams is of great importance for Inertial Confinement
Fusion (ICF), in order to control the laser-plasma coupling both for the direct drive and the indirect drive schemes.
Target design studies can produce highly optimized laser plasma coupling scenarios for both schemes. However, the
quality of the target design is strongly affected by changes in the laser beams resulting from uncontrolled CBET, in
particular when the on-target energy deposition does not correspond to what is assumed in the design study.

CBET belongs to the numerous laser-plasma interaction processes that are difficult to describe within computa-
tional target design. The reasons for these difficulties are spatial and temporal scale separations between large scale
hydrodynamical modelling and the rapid and small-scale evolution of wave coupling processes leading to CBET.

In this article we will study the impact of currently available optical laser beam smoothing techniques on the
energy transfer between crossing beams. On the fine scale of laser wavelength (λ0) the intensity profiles of so-called
smoothed laser beams have a speckle structure with known statistical distribution f(Isp) of the speckle peak intensity
Isp[4]. Statistical distribution of speckles prevents large intensity variation within laser beam and this mitigates the
onset of self-focusing and other laser plasma interaction instabilities. These nonlinear processes occur only in a small
percentage of high intensity speckles of the randomized laser beam, which should limit their effect on the overall
energy coupling to the plasma.

We will focus here on CBET and laser plasma instabilities in the presence of spatio-temporal smoothing. In
particular we compare CBET between crossing beams with spatial smoothing using Random Phase Plates (RPP)[4]
and beams that have spatio-temporal smoothing by means of the Smoothing by Spectral Dispersion (SSD) technique
[5–8]. In SSD the temporal smoothing, in addition to the spatial smoothing, is introduced via a frequency modulation
and an amplitude modulation in the phase of the light field. Similarly to the phase plate method , SSD also produces
in the focal region of the beam an intensity pattern that consists of numerous speckles. However, and in contrast to
the case of RPP, these speckles continuously move around[9]. The latter motion is supposed to reduce the coherence
of parametric instability processes which are undesired effect in the context of laser fusion. SSD is the spatio-temporal
smoothing technique which is currently available and used at all major laser facilities.

In our recent work[10, 11] we have investigated the role of laser speckles (or laser hot spots) on CBET of two crossing
spatially smoothed laser beams. We have shown that taking into account speckles of RPP beams changes considerably
both (i) the energy transfer and (ii) the angular spread of transmitted light (beyond the spread defined by the optics
of two crossed beam) as compared to the standard description of CBET that ignores speckle structure[12–16].

Recently studies taking into account the speckle structure of beams in the context of CBET in laser fusion schemes
have been performed both for direct drive[17, 18] and indirect drive[19, 20] schemes, partly relying on the linear
plasma response[18, 19].

Our study is focused on the case of beam crossing under a relatively small angle of the order 20◦, and on the non
linear response of the plasma to the ponderomotive force that acts on the plasma fluid due to the overlapping beams
and the speckle structure inherent to each beam. In particular, we have found that nonlinear processes produced
by the intense speckles in the flowing plasma such as beam bending [21–23] and plasma-induced smoothing [24–26]
develop already at laser beam intensities, IL ∼ 2 × 1015Wcm−2(λ0/0.35µm)−2(Te/keV) (with λ0 denoting the laser
wave length and Te the electron temperature). This is particularly relevant for plasmas with sub-sonic flow, close to
the sonic layer, for which it has been shown that the threshold for self-focusing is reduced as compared to stationary
plasmas with zero flow velocity [27, 28]. Another important result of these studies is the onset of temporal incoherence
seen in the light beams transmitted behind the cross-interaction region. The coherence times seen in the simulation
results[11] correspond to a bandwidth range on the order of 50-100GHz, being comparable to the magnitudes of
bandwidth that are currently produced by temporal smoothing techniques such as SSD at major facilities.

In this article we present results of a study, based on numerical simulations with our paraxial wave interaction
code Harmony[29]. We will consider the crossing of two laser beams each one generated with the SSD spatio-
temporal smoothing technique. We will study the sensitivity of CBET on the modulation frequency and on the
phase amplitude of the SSD technique, in order to understand the effect of temporal smoothing on the net energy
transfer and the angular spread of the transmitted beams. We will build on the previous results (see Refs. [10, 11])
that demonstrated plasma-induced smoothing with coherence times of 1-3ps for RPP beams (for laser light with a
wavelength of λ0 =0.35µm) .
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FIG. 1. Left panel, (a): intensity contour map snapshot taken at t =43.4τϑ (in units of τϑ = (2k1cs sinϑ/2)−1), showing the
superposition of the two RPP beams for the case when both incident laser beams have an intensity I2 = I1 =3I0. Contour
values correspond to light intensity with respect to the incident beam value, here 3I0. The inserted rhombus (in yellow colour)
indicates the region of beam overlap where CBET taks place. Right panel, (b): angular distribution, as a function of time,
of the light beams transmitted beyond the interaction region. Temporal incoherence in the transmitted light arises for times
t >17τϑ with a typical coherence time τc ∼2.6 -5.2τϑ for this case.

II. GEOMETRY OF INTERACTION AND NUMERICAL MODELLING

We model the interaction between two laser beams crossing at the angle ϑ in a plasma with inhomogeneous flow.
The chosen configuration corresponds to two ‘s’-polarized beams crossing at a relatively small angle ϑ, having the
common wave vector component along the positive x direction. Such a configuration is relevant to the geometry of
many crossing beams at laser entrance holes (LEH) in the indirect drive ICF experiments. Due to the superposition
of the electromagnetic fields and the resulting ponderomotive force, ion acoustic density perturbations will be induced
with a wave vector along the y direction.

The geometry of the beam overlap region is illustrated in Fig. 1(a). In an inhomogeneous plasma with a flow,
characterized by the profile, vp,y(y)~ey, here having the dominating flow direction along the y-axis. In the configuration
of Fig. 1(a), plasma flow is defined by the inhomogeneous flow profile vp,y(y)/cs=(y−Ly/2+Lv)/Lv with Lv =200λ0 in
the simulations. The flow is sonic at y/λ0 = Ly/2 =1100, and is sub- (super)-sonic for y/λ0 < (>)1100, respectively.
This geometry corresponds to strong coupling between beams crossing at a small angle.

For two ‘s’-polarized beams, with wave vectors and frequencies (~k1, ω1) and (~k2, ω2), the matching conditions for
resonance correspond to stimulated Brillouin forward scattering (SBFS); the conditions are satisfied when vp,y/cs =

(ω1−ω2 − σωs)/(csks), with σ denoting the sign of ω1−ω2 − (~k1−~k2) · ~vp, and where cs ≡ [(c2se/(1 + k2sλ
2
De) + 3v2i ]1/2

is the IAW velocity, with cse ≡ (ZTe/mi)
1/2; here Te is the electron temperature, λDe the Debye length, vi the ion

thermal velocity, mi and Z are the ion mass and charge number, respectively.
To describe the propagation of the light beams in Harmony, we model the laser electric field via complex field

envelopes and solve the paraxial wave equation,[
2iω1(∂t + vgx∂x) + c2(∇2)⊥

]
a(~x, t) = ω2

p

δn

ne
a(~x, t) , (1)

in which ω1 is the laser frequency of beam 1 and a(~x, t) the normalized laser field envelope. ωp = (nee
2/ε0me)

1/2 is
the electron plasma frequency; nc = ε0meω

2
0/e

2 denotes the critical density, me and e being the plasma electron mass
and charge respectively, δn = (n − ne) is the density perturbation about the equilibrium density ne. In Eq. (1) the

field envelope, a(~x, t) ≡ a1(~x, t) exp{i~k1,y · ~y} + a2(~x, t) exp{−i~k1,y · ~y} is composed of two superposed fields, a1, a2,

corresponding to the two beams incident at the angles ±ϑ/2 to the x-axis; ~k‖ and ~kj,y are the parallel and transverse

components of the wave vectors, respectively, with |~k‖| = |~kj | cos(ϑ/2), |~kj,y| = |~kj | sin(ϑ/2) and |~kj |=(ω2
j−ω2

p)1/2/c

(j=1,2). The group velocity in Eq. (1) is given by vgx = c2k‖/ω1. The total field is defined as

E(~x, t) =
Ê

2
e−iω1t+i~k‖·~x

[
a01e

i~k1,y·~y + a02e
−i(ω2−ω1)t+i~k2,y·~y

]
+cc, (2)
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in which Ê is the dimensional field strength, and ω1, ω2 are the frequencies of laser beam 1 and 2. The envelope
approximation holds for |∂taj | � |ωjaj | and |∂xaj | � |k‖aj | (j = 1, 2).

For the cases we consider in this study, we assume always that both beams have the same frequency ω2 = ω1, which is
consistent with the CBET resonance around sonic flow (at y ' Ly/2 '1100λ0). Furthermore we restrict our analysis to

the case when both beams have initially the same average intensity, I0 = I2,in = I1,in with I1,2,in = (1/4)ε0cÊ
2〈|a1,2|2〉,

where the averaging denoted by 〈. . .〉, means for spatially smoothed beams the average across the beam (perpendicular
to the propagation axis), and for beams with spatio-temporal smoothing 〈. . .〉 indicates averaging across the beam
and along the axis for a distance comparable to the propagation length, ∼ c/νSSD, with /nuSSD denoting the effective
band width of the temporal smoothing technique.

1. Optical smoothing: RPP and SSD

In our simulations we compare spatially smoothed beams, generated by RPPs, with spatio-temporally smoothed
beams generated by the SSD technique. Spatio-temporal smoothing is achieved by introducing phases φj,i in the near
field (near lens) of the two light beams aj , via

aj(y) = ei
~kj,y·~y

4k∑
ki=−4k

|âj,i|eikiy+iφj,i (j = 1, 2) , (3)

where the index i numbers the i-th phase plate of NPP elements in total, having the amplitude âj,i and the wave
number ki with respect to the central beam wave number component kj,y. The wave number spread 4k is related to

the angular width of the beams; it is determined by the so-called ’focusing f -number’, namely 4k = |k1|/
√

1 + 4f2

' |k1|/(2f).[30]

To generate spatial smoothing via RPP beams[30], the phases introduced in the fields φj,i = φj,i,RPP are random
values between 0 and π for each different phase plate element. The spacing between NPP elements follows ki+1− ki=
24k/NPP. The field amplitudes âj,i of the phase plate elements i =1. . .NPP are considered to be constant in the
interval kj,y −4k ≤ ky ≤ kj,y +4k. With respect to the angular width of the beam, it has to be ensured that both
beams (j =1,2) are well separate in the near field representation. For this reason, the angle between their initial

directions of propagation has to be greater than the angular width of each beam, yielding the condition 4k < |~k1,y|.
The field in the interaction region where the beams cross is computed from the expression of Eq. (3) via a Fourier
transform and a paraxial propagator.

For the case of spatio-temporal smoothing with SSD, an additional phase φj,i,SSD is introduced in the near fields,
Eq. (3) of the beams, following a deterministic expression often written in the form[7] φj,i,SSD = 3δ sin[2πνmod(t +
ξx,ix + ξy,iy)]. The phase φj,i,SSD depends on the frequency modulation νmod and the amplitude of modulations,
the phase depth δ. In the case of a tripled laser frequency, for the wavelength λ0 =0.35µm as considered in our
study, the effective depth assumes a three times higher value, namely 3δ in φj,i,SSD. The spatial phase variation
ξx,ix and ξy,iy terms stand for ’longitudinal’ and ’transvere’ smoothing, respectively, both considered for MJ-class
lasers. We concentrate here on transverse smoothing only, most commonly used because of its better smoothing
efficiency[31]. The spatial dependence in the phase,φj,i,SSD, of transverse SSD is related to the angular aperture via
2πνmodξy,iy → 2πNccki/(2 4k), with ∆k and discrete values ki from the phase plates, via the so-called number
of ’colour cycles’ Ncc. The total phase φj,i in Eq. (3) for spatio-temporal smoothing with SSD, for the case of
frequency-tripled lasers, can then be written in the form[6, 9, 32]

φj,i = φj,i,RPP + φj,i,SSD = φj,i,RPP + 3δ sin[2πνmodt+ πNcc(ki/4k)] , (4)

in which, ki assumes again NPP discrete values in the interval −4k ≤ ki ≤ 4k. In the majority of our simulations we
use a single colour cycle Ncc = 1, except where indicated differently. Using expansion of the phase factor ei3δ sin[2πνmodt]

into a sum of Bessel functions Jm(δ), it can easily be shown that the Bessel modes m = ν/νmodof the order −3δ <
m < 3δ have to be retained, resulting in the effective temporal bandwidth of SSD beam 3νSSD ∼ 3(2δνmod). Typical
values for modulation frequencies reported for major laser facilities are νmod =14.25GHz at the French LMJ[8] ,
νmod =3.3GHz with δ =6.15 for transverse and 10.4GHz with δ =14.3 for longitudinal SSD at LLE Rochester[7], and
νmod =17GHz at NIF[6].
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2. Plasma dynamics

The interaction with the plasma is modeled in the isothermal approximation via the system of the standard conti-
nuity and momentum fluid equations for plasma density and velocity, respectively,

∂tn+∇ · (n~υ)=0, (5a)

∂t~υ + (~υ ·∇)~υ + c2s
∇n
n

+ 2νs~υ = −c2se∇U/Te . (5b)

We assume for the damping operator νs a linear wave-number dependence accounting for Landau damping; nνs~υ is
computed in Fourier space with νs(ks) = ν̂ ωs(ks).

The ponderomotive potential U in the source term of the momentum equation is given by U = TeΓ ∇|a(~x, t)|2 with
the coupling coefficient Γ = v2osc/(2v

2
th) or, in practical units, Γ '0.09 ILλ

2
0(1015Wµm2/cm2)/Te(keV). The coupling

constant involves the thermal velocity vth = (Te/me)
1/2 and the electron quiver velocity vosc = eÊ/(meω) of the field

strength Ê (to which a1 and a2 are normalized). As we have pointed out in Ref. [11], the ponderomotive force resulting
from the two beams crossing under a small angle can be subdivided into two major components∇U = ∇Ucross+∇Uself ,

namely ∇Ucross/Te ' Γ ∇a1a∗2 e2i|
~k1|y sin(ϑ/2) + cc. and ∇Uself/Te ' Γ ∇(|a1|2 + |a2|2). The ‘cross’ term arises for

wave-coupling interaction between crossing beams even in absence of beam speckle structure; it is therefore usually
retained for the modelling of CBET for unstructured beams or plane waves[12–16, 19]. The term denoted with ‘self’,
standing for beam self-interaction, however, accounts for non linear effects arising inside the beams, such as beam
self-focusing and plasma-induced smoothing[24–26] due to Stimulated Brillouin forward Scattering, as well as beam
bending[21–23] in presence of sonic plasma flow.

As it has been demonstrated in Refs. [10, 11], both terms have to be taken into account for a correct description
of CBET with optically smoothed laser beams in flowing plasmas.

3. Modeling crossed beam energy transfer

The theory describing the crossing of two structure-less beams has been developed in the work by McKinstrie [33]
by describing the coupling in a geometry based on oblique, non-orthogonal coordinates η and ξ, x = η~ex.~eη + ξ~ex.~eξ
and y = η~ey.~eη + ξ~ey.~eξ with ~ey.~eη = − sin(φ− ϑ/2) and ~ex.~eξ = − sin(φ+ ϑ/2). With the choice φ = 0 for the angle

between the plasma flow ~vp and the IAW vector ~ks = ~k1 − ~k2 one obtains ~ey.~eη = sin(ϑ/2) and ~ex.~eξ = − sin(ϑ/2)
in two-dimensional geometry. By neglecting the diffraction term of the paraxial propagation, the coupling can be
described by the system of partial differential equations[15] for the beam amplitudes a1 and a2

∂η∂ξ|a1|2 = −2∂η( β(ξ, η) |a1|2 |a2|2 ) ,

∂ξ∂η|a2|2 = 2∂ξ( β(ξ, η) |a1|2 |a2|2 ) . (6)

The function β(ξ, η) accounts for the geometry of the crossing zone, having a rhombus-like shape, and is given by
β(ξ, η) = (γ20/νscs)[1 + (Q0 − Q(ξ, η))2k2sc

2
s/ν

2
s ], with γ20 ≡ (ne/nc)(ω1/ωs)k

2
sc

2
sv

2
osc/(4v

2
th) = (ne/nc)(ω1/ωs)k

2
sc

2
sΓ/2

where γ0 denotes the SBS standard temporal growth rate. The auxiliary functions Q0 and Q(ξ, η) are given by Q0 =
−1+(ω1−ω2)/(kscs) and, for φ = 0, Q = |(vp(Ly/2)/cs)+2(y−Ly/2) sin(ϑ/2)/Lv| with vp,y(y)/cs=(y−Ly/2+Lv)/Lv.
This allows to identify a gain coefficient for SBS-induced CBET given by[11, 15]

G ≡ 2γ20
νscs

min

{
D

2 sinϑ
,Linh

}
, (7)

by considering the domain of integration as defined by the beam width D; note that γ20 = γ2π sin(ϑ/2) with γπ standing
for the SBS growth rate for backscattering. The length Linh = π(Lvνs/ωs)/ sin(ϑ/2) is related to inhomogeneous flow,
which we consider here together with equal frequencies for both beams, ω1 = ω2.
(a) For the case D/(2 sinϑ) > Linh, the exchange between the beams covers only a restricted zone inside the rhombus-
shaped region of beam overlap; the resulting gain G→ Gmax = 2πγ20Lv/[csωs sin(ϑ/2)] is independent of the damping.
The value of Gmax, given in practical units by Gmax ' 0.75 (IL/1015Wcm−2) (λ0/0.35µm)2 (Te/3keV)−1 (n/0.1nc)
(Lv/200λ0) , indicates in reality an upper bound for G.
(b) For the opposite case Linh > D/(2 sinϑ), the exchange between the beams takes place over the entire region of
overlap.
In most of our simulations presented in the following, case (a) applies.

The principal observable of CBET is the transfer rate between the beams, relating the transmitted power of the
amplified beam to its incoming power; it is defined as T ≡ Pout/Pin. We consider beam 2 as the amplified beam to
which T applies.
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The asymptotic transfer rate[15, 33] for this beam can be expressed, as a function of the gain G by evaluating the
coupling considering the incident beam 1 as the pump beam, Γ ∼ γ20 ∼ I1,in ∼ |a1,in|2. It involves also the intensity

ratio between both beams (I2/I1) ≡ I2,in/I1,in and reads T (G) = 1 + (I1/I2)(1 + log[1 +e−G(1+I2/I1)− e−G]/G);
here we also assume that both beams have the same width D = D1 = D2. For small gain, G �1, the transfer
T ' 1 + (G/2)(1 + I1/I2) increases linearly with G. For the case of the simulations shown here, we always assume
I1 = I2. Using the gain value G = Gmax in the expression and T (G) should be considered as an upper bound of the
effective gain for crossed beams. In Ref. [15], relatively good agreement between the expression T (G) and simulations
is found. In the intensity regime considered in our study, the gain always assumes values G >1 such that the regime
T > 1.5 →2 is attained even in case of high damping (νs/ωs >0.2), corresponding to the above mentioned case (b)
when D/(2 sinϑ) < Linh.

  

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

FIG. 2. Left panel, (a),(c),(e),(g): as in Fig. 1, intensity contour map snapshot taken at t =44τϑ (or 13ps for Te =3keV );
similar to Fig. 1, here the superposition of two SSD beams is shown, (a) SSD with parameters 3δ =6 and νmod =17 GHz,
Ncc=1, (c) SSD with parameters 3δ =6 and νmod =17 GHz, Ncc=2, (e) SSD with with δ =18 and νmod =17 GHz, and (g) SSD
with 3δ =6 and νmod =50 GHz, again for the case when both incident laser beams have an intensity I2 = I1 =3I0. Right panel,
(b),(d),(f),(h): angular distribution, as a function of time of the light beams transmitted beyond the interaction region. Time
is in units τϑ = (2k1cs sinϑ/2)−1 (with the conversion 1ps ≡3.3τϑ for Te =3keV ). The different cases correspond to (b) SSD
with parameters 3δ =6 and νmod =17 GHz, Ncc=1, (d) SSD with 3δ =6 and νmod =17 GHz, Ncc=2, (f) SSD with with 3δ =18
and νmod =17 GHz, Ncc=1, and (h) SSD with 3δ =6 and νmod =50 GHz, Ncc=1. The temporal incoherence in the transmitted
light in cases (b) and (d) is similar to the RPP case of Fig. 1; the case (f) has the lowest transfer but stronger angular spread
in the transmitted light; the case (h) shows considerable reduction in the temporal coherence.



ac
ce
pt
ed
fo
r p
ub
lic
at
io
n
in
Tr
an
sa
ct
io
ns
of
th
e
Ro
ya
l S
oc
iet
y
A

7

III. SIMULATION RESULTS

In a preceding study[11] we have performed simulations with crossing laser beams, in which we have compared
CBET arising from unstructured laser beams to optically smoothed laser beams with the RPP method. As in the
current study, we focused on the case of two laser beams with equal incident mean laser intensity I1,in = I2,in. The
results of this study have clearly shown that the self-interaction in crossing laser beams, originating from the the
ponderomotive force term ∇Uself ∝ ∇(|a1|2 + |a2|2), and acting on the speckle structure in optically smoothed laser
beams must not be neglected for plasmas with subsonic to sonic flow.[22, 27, 28]

The criterion for ponderomotive self-focusing in absence of flow, relating the power Psp in a speckle with intensity
Isp to the critical power, which reads in practical units Psp/Pc=0.06η(Isp/1015Wcm−2) (λ0/0.35µm)2 (Te/3keV)−1

(f/8)2(ne/0.1nc), with η=1.23 for 2D geometry, predicts that only the intense speckles would undergo self-focusing
(e.g. Isp >5IL at the average intensity IL > 3.5×1015W/cm2 for λ0 =0.35µm and Te =3keV ).

However, it has been shown that self-focusing with subsonic flow[22, 28] occurs already at lower intensities than
expected in absence of flow. According to Refs. [11, 22] there is no longer an onset threshold for self-focusing in
the subsonic case. This has consequences for speckles of smoothed light beams that are located in the region of
close-to-sonic flow. Beam bending of speckles and enhanced angular spreading contributes to a net transfer into the
other beam.

In agreement with this, we find that for a plasma with an inhomogeneous flow profile – as in our simulations –
non linear effects due to speckle self-focusing and beam bending come into play already for average laser intensities
I1 = I2 > 0.75 I0 in terms of the reference intensity I0 ' 0.9· 1015Wcm−2 (λ0/0.35µm)−2 (Te/3 keV).

Furthermore plasma-induced smoothing leads to a non stationary evolution of the exchange between the beams,
which has eventually influence on the CBET rates, on the angular aperture as well as on the temporal coherence of
the transmitted light.

In this study we also consider two light beams of equal average intensity I1 = I2 which enter into the system with
an angle of ±10◦ i.e. ϑ =20◦ between them. The time evolution of CBET scales with this angle so that it is useful to
introduce the typical time τϑ ≡ (2k1cs sinϑ/2)−1, being the inverse of the sound wave frequency. This time is used
to normalize the time axes in our figures.

In Fig. 1a we show the snapshot of the intensity contours of the two crossing RPP beams obtained from two-
dimensional simulations with the code Harmony. The transfer between the beams takes place inside the rhombus-
shaped area. The plasma is located in the spatial interval 500< x/λ0 < 4000. The light beam propagates in vacuum
for x/λ0 >4000.

The angular distribution of the transmitted light, as a function of time, shown in Fig. 1b, is determined by taking
a Fourier transform of the electromagnetic fields exiting the right-hand-side boundary of the simulation area in Fig.
1a, a(x = Lx, y, t)→FFT→ âout(ky, t).

Initially both beams have, on average, the same incident intensity and the same angular aperture, ϑ ∼ 1/(2f) where
f=6 is the focusing f -number. The onset of CBET from beam 1 to beam 2 takes place over a transient interval of
∼17τϑ, that corresponds roughly to 3 periods of the acoustic wave induced by CBET ( or 2πτϑ ∼1.9ps for Te=3keV ,
λ0 =0.35µm and ϑ =20◦). Generally the transfer rate stabilizes after this transient interval. Based on the angular
distribution of the transmitted light, we have determined, using ky = k1 sin θ/2, the transfer rate by computing

Pout

Pin
≡

∫
ky>0

|â2,out(k, t)|2dk∫
ky>0

|â2,in(k)|2dk
. (8)

For the RPP case the maximum transfer of Pout/Pin ' 1.75 is reached. As mentioned in section II.II 3, the
maximum transfer rate for beams of equal incident intensity is (Pout/Pin)max=2.

We have performed a series of simulations with SSD for parameters for which we expect that temporal smoothing
effects have impact on the CBET transfer. The cases for which we have carried out simulations are: case (a-d), with
the parameters 3δ =6 and νmod =17 GHz, yielding and effective bandwidth 3νSSD ' 100 GHz (see Sec. II.II 1): Fig.
2(a-b) displays the sub-case with a single colour cycle Ncc=1, and (c-d) the sub-case with two colour cycles Ncc=2;
the other two cases (both for a single colour cycle Ncc=1) correspond to a three times greater effective bandwidth
which is obtained by either increasing the phase depth or the modulation frequency by a factor of 3, namely Fig.
2(e-f) with 3δ =18 and νmod = 17 or Fig. 2(g-h) 3δ =6 and νmod =50 GHz, respectively. The increase of the frequency
modulation to such high values may cause in reality difficulties for the laser system, because high bandwidth implies
lower conversion efficiencies[8] in the frequency tripling. For this reason, the choice of the case with νmod =50 GHz
should be considered primarily as a study case.

The temporal evolution of the transfer rate Pout/Pin for both beams, as a function of time, for the incident intensity
I1,2,in/I0 =3, is shown in Fig. 3 for three SSD cases and for the RPP case. In Eq. (8), â2,in(k) corresponds to the
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FIG. 3. CBET power transfer relating the transmitted power of the two beams with respect to their incident power as a
function of time for the cases with incident intensity I1,2/I0 =3. The cases shown correspond to RPP in blue colour, from
Fig. 1, SSD with parameters 3δ =6 and νmod =17 GHz in yellow, from Fig. 2(a-b), SSD with 3δ =18 and νmod =17 GHz in
magenta, Fig. 2(e-f) and SSD with 3δ =6 and νmod =50 GHz in green, Fig. 2(g-h). All with Ncc.

near field of the incident beam, as defined in Sec. II.II 1, which is time-independent for the RPP beams. Note that
time averaging has to be performed for temporally incoherent incoming SSD laser beams.

The two simulations with higher effective SSD bandwidth show a clear tendency in reducing the net transfer rate.
As far as CBET rates are concerned, the choice of a larger phase depth as in case (e-f) with 3δ =18, seems to be the
better option to reduce CBET, yielding lower transfer rates, Pout/Pin ' 1.05- 1.14 than the case (g-h) with 3δ =6
and νmod =50 GHz, with still shows considerable transfer Pout/Pin ' 1.4.

As is illustrated in Fig. 1b, the transmitted light from crossing RPP beams shows signatures of temporal incoherence
for times t >17τϑ, although the incoming light beams have only spatial incoherence. Fig. 1b, taken from a single RPP
realization, shows clearly speckle-structure in time and angle, reminiscent of plasma-induced smoothing. For the shown
case, namely with I1,2,in/I0 =3 (with I0 denoting the reference laser intensity I0 '0.9· 1015W/cm2 (λ0/0.35µm)−2Te/3
keV ), the shortest typical coherence time deduced from these speckles is τc ∼2.6τϑ. For laser wavelength λ0 =.35µm
and Te = 3keV this correspond to 0.8 - 1 ps. On the basis of this result, it can be expected that spatio-temporal
smoothing would not change significantly the CBET between beams by reducing the net transfer, unless a sufficiently
large effective bandwidth for SSD, >100 GHz, is introduced to the laser source.

Analyzing the intensity contour snapshot and the evolution of angular distribution for the SSD case in Fig. 2, one
can neither see an important change in the CBET transfer rate (Pout/Pin ' 1.5) nor a considerable change in the
coherence time (τc ' 4.7-5.2τϑ), except that oscillations in the transmitted light become more regular. From the point
of view of the angular distribution of the transmitted light, the cases of SSD also differ significantly. While the case
with νmod =50 GHz keeps the beams almost in their original cone, the case with higher phase depth, 3δ =18, has the
tendency to produce a greater angular spread of the depleted light beam 1. Also a slightly enhanced angular spread
is seen in beam 2. This result is systematic even for other realisations with the same parameters of SSD. It is not
surprising that the case with the highest modulation frequency shows the most regular structure in the transmitted
beam due to the strongest smoothing features, which is, however, not sufficient to counteract against important CBET
net transfer. The correlation times of the transmitted light have been obtained by computing the correlation function
from the transmitted intensity signal in angle (θ) and in time of light beam 2,

C(t) ≡

∫ ϑ/2+5◦

ϑ/2−5◦ dθ
∫
dt′|â2,out(θ, t′ − t/2)|2|â2,out(θ, t′ + t/2)|2∫ ϑ/2+5◦

ϑ/2−5◦ dθ
∫
dt′ |â2,out(θ, t′)|4

(9)

taken in the angular interval around θ = ϑ/2±5◦=10◦±5◦ over the time interval 17< t/τϑ <44 (or in real units
5< t/ps <13.5). The correlation functions displayed in Fig. 4 show typically features on short time scale and on a
longer time scale, not belonging to the same type of decrease.

For this reason, we decided to determine values corresponding to correlations times taking the following criteria:
for to the short time behaviour we determine τc,1 by taking |C(t = τc,1/2)| = 4/5 and τc,2 for the longer time
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(a)
(b)

FIG. 4. Correlation functions C(t) of the transmitted light intensity signal of beam 2 in the angular window 10◦ ± 5◦as a
function of the time delay t; in panel (a) the case of RPP is compared to SSD cases with νmod =17Ghz (blue curve with 3δ =6,
red with 3δ =18) and the caseνmod =50GHz (green curve 3δ =6) for the beam intensity I1 = I2 =3 at the entry; panel (b)
compares SSD cases with νmod =17Ghz for three different beam intensity values at the entry, I1 = I2 =1.5, 3, and 6I0, namely
light blue / blue /dark blue curves for 3δ =6, respectively, and yellow / orange /dark red curves for 3δ =18. The time delay
axis is in units of τϑ = (2k1cs sinϑ/2)−1 and in ps (upper axis) for λ0 =0.35µm wave length and Te =3keV, via the conversion

τϑ ∼ 3.3ps (Te/3keV)1/2 (λ0/0.35µm)−1.

behaviour |C(t = τc,2)| = 1/2 (see Ref.[26]). The value of τc,1 obtained in this way mimics a lorentzian-type decrease
C(t) ∼ (1 + t2/τ2c,1)−1. Both values τc,1 and τc,2 are reported for each case as possible interval for the correlation
time in Table III. It is remarkable, from Fig. 4(a) that the correlation time values τc,1 for the case of RPP and the
two 17GHz SSD cases are very similar for I1,2,in/I0 = 3. On the other hand, the correlation functions taken for times
corresponding to the period of CBET density perturbations, t/τϑ =2π, show lower correlation for both SSD cases
with respect to RPP. For the different intensities of the SSD cases, Fig. 4(b), the correlation in the transmitted light
diminishes for the short time behaviour.

τc in (2k1cs sinϑ/2)−1 τc in ps

I = 1.5I0 3 I0 6 I0 1.5I0 3 I0 6 I0

RPP 2.6-5.2 0.8-1.6

SSD 3δ=6 3.6-5.7 2.6-4.1 1.4-3.3 1.1-1.7 0.8-1.3 0.4-1.0

SSD 3δ=18 3.5-4.9 2.9-4.5 1.6-4.1 1.0-1.5 0.9-1.4 0.5-1.2

TABLE I. Correlation times of the transmitted light deduced from the correlation function C(t) of the transmitted light intensity
signal in the angular window 10◦ ± 5◦ of beam 2 for SSD cases with modulation frequency νmod =17GHz, and for RPP at
different beam intensities on entry. Values are given in the normalized time units and in ps for the case of λ =0.35µm and
Te =3keV. The time interval indicated, τc,1- τc,2, corresponds to the short time behaviour by taking |C(t = τc,1/2)| = 0.8 and
|C(t = τc,2)| = 0.5 (see Ref.[26]).

We have chosen for the IAWs generated by the CBET the damping of νs/ωs =0.1 with ωs = τ−1ϑ in the majority of
our simulations. The correlation times deduced from the simulation systematically yield τc < ν−1s . For completeness
we have also performed selected cases with lower IAW damping of νs/ωs =0.01, 0.03, and higher damping νs/ωs =0.2
and 0.3. The effective SSD bandwidth considered here, 3δνmod, is always greater than νs. For damping higher than
νs/ωs =0.2 one would expect from the model in section II.II 3 the spatial zone of active CBET coupling should change,
and thus the CBET gain value. While CBET-driven IAW density perturbations are not particularly changed by the
damping value, density perturbations induced by the ponderomotive force of laser speckles are more pronounced for
lower damping. However, similar to what has been seen in Ref. [11], neither the higher nor the lower IAW damping
values affect considerably the net transfer between the beam with respect to the case with νs/ωs =0.1.

We have also performed simulations with other laser beam intensity values, in the intensity interval 0.5< I1,2/I0 <6,
for the three different SSD cases and for RPP. The results of these simulations for the CBET net transfer rate Pout/Pin

is summarized in Fig. 5. Note that the values shown in this figure are based on the ensemble average over simulation
results from a series of realisations for RPP beams and for SSD beams. For RPP beams the average was made over
8 realisations, for the SSD cases over 2 realisations.
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The net transfer increases in the intensity regime I1, I2 < 2I0. In Ref. [15] it has already been shown that the
increase of T = Pout/Pin for RPP beams follows for I1,2 < 0.75I0 roughly the analytical model mentioned in section
II.II 3 from Ref. [33]. To illlustrate this, the corresponding transfer T (G) for G = Gmax, is also shown in Fig.
5. Although this standard model for CBET does not account for speckle structure or beam self-interaction, our
simulations confirm its validity up to the onset of non linear effects due to speckle structure. Below I1,2/I0 '0.75 the
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FIG. 5. CBET power transfer relating the transmitted power of beam 2 to its incident power as a function of the incident
beam intensity for the cases of RPP (black curve) and SSD with 3δ =6 (blue) as well as 18 (red) and with νmod =17GHz as
well as νmod =50GHz (green curve). All solid curves correspond to a single colour cycle Ncc=1. The dashed blue line shows
the single case with two SSD colour cycles (Ncc =2), otherwise for the same parameters as the 3δ =6 and νmod =17 GHz case.
The dashed curve in orange colour corresponds to the analytic model for power transfer, T (G) as explained in section II.II 3.

fluctuations of the transfer depend only statistically (from realisation to realisation) on the number of speckles in the
region of crossing beams. For values above I1,2/I0 '0.75 the speckle structure in the RPP beams matters, due the
onset of non linear processes related to beam self-interaction[11].

The simulations for the case with lower bandwidth SSD, 17GHz with 3δ =6, shown in the blue line of Fig. 5,
indicate that only the non linear processes in the beams can be mitigated with respect to RPP. This is emphasized
by the fact that for lower intensities up to I2/I0 ' 0.75, in absence of non linear processes, the lower bandwidth SSD
case reproduces the RPP case values. The same is seen when inspecting density perturbations comparing the RPP
and the SSD cases, see Fig. 6: the RPP case shows the strongest nonlinear structures due to the presence of speckles,
which still are present for the SSD case with 17GHz, 3δ =6 SSD. The higher bandwidth cases for SSD, 17GHz with
3δ =18 and 50GHz with 3δ =6, seen in the red and green curves of Fig. 5, respectively, clearly diminish the CBET
net transfer with respect to RPP. This holds already for the lower intensity range in which non linear effects due to
self-interaction in the beams do not arise. The latter is a clear signature that the incoherence of the average beams
1 and 2 induce, in average, smaller density perturbations at the wavelength λ0/(2 sinϑ/2) (i.e. ∼1µm for the case
discussed here) as expected from the coupling via the ∇Ucross term in Eq. (5b), ∼ Γa1a2. The amplification of beam
2 via CBET is hence reduced in time average due temporarily incoherent coupling between the beams[34]. The SSD
cases at high effective bandwidth furthermore show a relatively weak dependence of the net transfer as a function of
the incident beam intensity, with, however, an increasing standard deviation, i. e. significant fluctuations between
different realisations at high intensity.

As already emphasized, see Fig. 3, the SSD case with greater phase depth, δ =18 results in systematically lower net
transfer with respect to all other cases. SSD parameters in a similar range should be available to our knowledge at the
French LMJ at νmod =14.25 with a phase depth of 3δ =15[8]. The higher phase modulation proves to suppress not
only non linear effects arising in speckles but also it leads to an efficient reduction of the coupling efficiency between
the average beams.
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FIG. 6. Plasma electron density lineout, ne/nc, along the y-axis taken at x/λ0 =1600 and t =40τϑ for the cases of SSD
17GHz with 3δ =6 (blue) as well as 3δ =18 (red) , SSD 50GHz with 3δ =6(green) and RPP (black curve). The plasma is
sub-(syper-)sonic for y/λ0 < (>)1100 All cases with single colour cycle Ncc=1.

IV. CONCLUSIONS

We have studied the effects of spatio-temporal smoothing techniques on CBET for the case of two laser beams of
equal frequency that cross each other in a plasma. We have considered crossing under a relatively small angle of
20◦ in a plasma with close to sonic flow in the direction transverse to the common component of light propagation
k-vector. This configuration represents an example of basic configuration for the CBET studies of relevance to many
experiments. We have compared CBET with spatially smoothed laser beams via Random Phase Plates with simulation
results that employ beams with spatio-temporal smoothing by SSD. SSD is the technique currently available on all
large scale laser facilities concerned with problems due to CBET.

We have studied the influence of SSD on the net transfer rate of CBET, on the angular spread as well as on the
plasma-induced incoherence in the transmitted laser beams. It is found that, in order to cause impact on the CBET net
transfer rates, SSD needs to be introduced with sufficiently high laser bandwidth in order to be effective as compared
to the plasma induced incoherence already induced in the RPP beam interactions. The plasma induced smoothing
process that is responsible for the temporal incoherence inside the plasma already results in coherence times on the
order of a picosecond for ICF relevant laser-plasma conditions. For beams crossing at angles ϑ <30◦ the effective SSD
bandwidth needs to be at least on the order of several hundreds of GHz in order to produce a considerable reduction in
the CBET rates. Similar to what was observed for the stimulated backward scattering instability [35], our results show
that increasing the phase depth of the SSD technique is far more efficient to control the crossed beam energy transfer
rate than increasing the modulation frequency of SSD. This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the Euratom research and training programme 2019-2020
under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the
European Commission. Mufei Luo thanks the China Scholarship Council (CSC) for the stipend received. We also wish
to thank the CPHT computer support team.
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