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Abstract—This paper proposes a novel method for the pre-
diction of stator current modulations applied to the detection of
load torque oscillations in asynchronous drives. In faulty cases,
the stator current presents amplitude and phase modulation (AM
- PM) leading to sideband frequency components in the current
spectrum. The characteristics of these modulations depends on
the electrical and mechanical parameters of the drive, on the
fault frequency and on the operating point. The knowledge of
these properties mean helpful information for the definition of
a detection scheme. A full analytic approach is then proposed
to predict the faulty stator current behavior. This theoretical
analysis is based on the state space representation of the induction
machine and allows expressing the frequency variation law of the
sideband components for a given drive. Amplitude and phase
modulation indexes are determined using proposed model that
is validated with experimental results.

Keywords-Stator current modulations, Diagnosis, Load torque
oscillations, Asynchronous drive, State space model

I. INTRODUCTION

Industrial electrical drives with induction motors are widely

used because of their low cost and high robustness. In

order to increase the productivity, reliability and safety of

electromechanical asynchronous drives, monitoring techniques

have been more and more investigated. Traditionally, me-

chanical drives can be monitored using vibration analysis,

but measuring such quantities to detect mechanical faults is

often expensive. To overcome this problem, available electrical

quantities such as stator current may be used. A general review

of monitoring and fault diagnosis schemes using stator current

can be found in [1].

Detection and diagnosis techniques for mechanical faults,

such as shaft misalignment, eccentricity, load unbalance, bear-

ing or gearbox faults, focus on frequency combinations in the

stator current spectrum [2] - [12]. The relevant frequencies

are fs ± fd, where fs is the supply frequency and fd the

mechanical defect frequency. In this paper, the load torque

oscillations applied on the induction machine are considered.

This particular mechanical defect can be caused by the fol-

lowing: load unbalance, gearbox fault such as broken tooth,

bearing faults. Many researches deal with the diagnosis of

modulation on stator currents to identify the presence of load

torque oscillations [5], [13] - [15].

This paper proposes a new approach to predict, through

an analytic approach, the modulations of stator currents in

case of load torque oscillations. Including both the electrical

and mechanical part of the drive, the analytic model allows to

study the fault signature evolution, helpful for the definition

of a detection and diagnosis scheme. Section II presents the

building of a complex signal, related to real three phase stator

currents, suitable for the modulation diagnosis. Secondly, a

complex vector, reflecting the modulation characteristics, is

introduced. In Section III, a state space system expressed in

the frequency domain, associated to the induction motor, is

used to analytically determine stator current components due

to load torque oscillations. Section IV applies the theoretical

considerations presented in section II to the diagnosis of

stator current modulations induced by load torque oscillations.

The predominant modulations on stator current are identified

and theoretical analysis are compared and validated with

experimental results.

II. DIAGNOSIS OF STATOR CURRENT MODULATIONS

A. Construction of a suitable complex signal for modulations

diagnosis

In order to diagnose modulations of a real stator current,

it is necessary to associate with this signal a complex one.

Traditionally, Hilbert transform is used [16] - [19]. However,

in case of fast modulations, i.e. when the modulation frequency

is higher than the carrier frequency, Hilbert transform is sub-

missive to the Bedrosian theorem conditions. Consequently, it

has been demonstrated in [13] that Hilbert transform leads to a

wrong interpretation of modulation type and frequency. Thus,

in case of three phases stator currents, Concordia transform

(1) may be used to build a complex vector from two signals

x1(t) and x2(t) with a phase shift of − 2π
3 (2).

(
xα(t)
xβ(t)

)

=

(√
3
2 0

1√
2

2√
2

)(
x1(t)
x2(t)

)

(1)

{
x1(t) = Xcc(t) cos(Ψ(t))
x2(t) = Xcc(t) cos(Ψ(t)− 2π

3 )
(2)

As xα(t) and xβ(t) are in quadrature, the Concordia trans-

form allows to obtain a complex signal zTC(t) (3) where



Xcc(t) and Ψ(t) are respectively the instantaneous amplitude

and phase [13], [14].

zTC(t) =

√

2

3
(xα(t) + jxβ(t)) = Xcc(t)e

jΨ(t) (3)

Then, the complex envelope i.e. the instantaneous amplitude

IA(t) (4), related to amplitude modulations, and the instanta-

neous frequency IF (t) (5), related to phase modulations, may

be extracted from zTC(t).

IA(t) = zTC(t)e
−jΨ(t) = Xcc(t) ≃ |zTC(t)| (4)

IF (t) =
1

2π

dΨ(t)

dt
(5)

B. Modulations diagnosis

Consider a system of three real signals, representative of

three phases stator currents (6).

ik(t) = I123 [1 + α cos(2πfdt+ φam)]
× cos (2πfst+ φk + β sin(2πfdt+ φpm))

(6)

with:

• I123 the fundamental amplitude,

• α the amplitude modulation index,

• β the phase modulation index,

• fd the modulation frequency,

• fs the fundamental frequency,

• φam the amplitude modulation phase shift,

• φpm the phase modulation phase shift,

• φk = −(k − 1) 2π3 , k ∈ [1; 3]

The complex envelope and instantaneous frequency of the

signals express respectively as (7) and (8).

IA(t) = I123 [1 + α cos(2πfdt+ φam)] (7)

IF (t) = fs + fdβ cos(2πfdt+ φpm) (8)

A new complex vector G̃, depending on the instantaneous

amplitude frequency components reflecting the modulations

at fd frequency is defined in (9). G̃ allows to diagnose the

predominant modulation. Indeed, it is clear that the phase

(resp. amplitude) modulation is predominant if the argument of

G̃ is higher (resp. lower) than π
4 , as shown in Fig. 1. Moreover,

the modulus of G̃ indicates the power of the modulations.

G̃ = kam + jkpm (9)

with:

• kam = I123α,

• kpm = fdβ.

Fig. 1. Geometrical construction of vector G̃

III. STATOR CURRENT HARMONICS CHARACTERIZATION

IN CASE OF LOAD TORQUE OSCILLATIONS

In order to predict stator current components in case of load

torque oscillations, a model of the drive has to be defined. This

model has to be used to analytically determine stator current

components resulting from load torque oscillations. Then, the

proposed model considers load torque as an external input.

A. Asynchronous drive state space system

The state space representation of the induction machine

depends on the allowed input measurements and the desired

output variables. The supply voltage of the machine can be

measured or calculated with the knowledge of the duty-cycle

applied on the inverter. Consequently, the supply voltages are

defined as the input variables. Stator currents are often already

measured for control purposes. Moreover, in case of load

torque oscillations, stator current analysis [5], [13], demon-

strates the ability of these quantities to ensure the detection

and diagnosis of faulty operations. The stator currents are

then defined as output and state variables. Finally, to get

electromechanical variables such as electromagnetic torque,

the rotor flux has to be estimated [20]. Then, the rotor flux

is defined as a state variable. Concordia transform (1) is

used in the model [21], [22]. This transform is defined to

obtain variables in a reference frame composed of two static

components (relatively to the stator) in quadrature. Then, the

classical first harmonic equations lead to the state space system

defined in (10), where B is the input matrix, A(t) the dynamic

matrix, U the input vector and X(t) the state vector.

Ẋ(t) =







a1 0 a2 a3ω(t)
0 a1 −a3ω(t) a2
a4 0 a5 −ω(t)
0 a4 ω(t) a5







︸ ︷︷ ︸

A(t)







isα(t)
isβ(t)
φrα(t)
φrβ(t)







︸ ︷︷ ︸

X(t)

+







1
σLs

0

0 1
σLs

0 0
0 0







︸ ︷︷ ︸

B

(
vsα(t)
vsβ(t)

)

︸ ︷︷ ︸

U(t)

(10)



with:

a1 = −

(

1
σTs

+ 1−σ
σTr

)

, a2 = 1−σ
σTrMsr

,

a3 = 1−σ
σMsr

, a4 = Msr

Tr
, a5 = − 1

Tr

ω(t) = npΩmech(t)

where:

• Ls is the stator cyclic inductance,

• Lr is the rotor cyclic inductance,

• Ts = Ls
Rs

is the stator electrical time constant i.e. the

stator cyclic inductance divided by the stator resistance,

• Tr =
Lr
Rr

is the rotor electrical time constant i.e. the rotor

cyclic inductance divided by the rotor resistance,

• Msr is the mutual stator-rotor inductance,

• σ is the leakage coefficient,

• np is the number of pole pair of the machine,

• Ωmech(t) is the mechanical rotating speed.

In this model, the electrical rotating speed ω(t) is defined

as an internal variable of the model. This variable is obtained

through the interaction between electromagnetic and load

torques, using the mechanical system transfer function. On

the one hand, the load torque Γload(t) is considered as an

input of the asynchronous drive model. On the other hand, the

electromagnetic torque is expressed using state variables (11).

As a simplification, the mechanical system is set as an inertia

Jasm and viscous friction fasm. The resulting mechanical

differential equation is given in (12).

Γem(t) = np
Msr

Lr
(φrα(t)isβ(t)− φrβ(t)isα(t)) (11)

Jasm
dΩmech(t)

dt
+ fasmΩmech(t) = Γem(t)− Γload(t) (12)

B. State space model in the frequency domain

For steady state operating points, in order to get a generic

expression of frequency components of state variables in case

of load torque oscillations, the state model of the asynchronous

machine and mechanical equations are expressed in the fre-

quency domain. This approach transforms products in the

time domain, in convolution products (∗) in the frequency

domain. Thus, the state space system can be rewritten in the

frequency domain (13), where ν is the frequency. Moreover,

the mechanical differential equation can also be expressed

(14).

(2πjν)X(ν)A(ν) ∗







Isα(ν)
Isβ(ν)
Φrα(ν)
Φrβ(ν)







︸ ︷︷ ︸

X(ν)

+B

(
Vsα(ν)
Vsβ(ν)

)

(13)

(2πjνJasm + fasm)Ωmech(ν) = Γem(ν)− Γload(ν) (14)

C. Model of input and variables

In order to solve the state space system in the frequency

domain, some hypothesis have to be set concerning input and

state variables of the system. In steady state conditions, in

the Concordia coordinate system, input voltages are supposed

to be sinusoidal in quadrature (15), with Vαβ the voltage

amplitude and fs the fundamental supply frequency.







Vsα(ν) =
Vαβ

2
[δ(ν − fs) + δ(ν + fs)]

Vsβ(ν) =
Vαβ

2j
[δ(ν − fs)− δ(ν + fs)]

(15)

As an input, in faulty conditions, the load torque is consid-

ered as a constant Γ0 plus an oscillation at fosc frequency and

Γosc amplitude (16).

Γload(ν) = Γ0δ(ν) +
Γosc
2

[δ(ν − fosc) + δ(ν + fosc)] (16)

It can be estimated that a frequency component at fosc
appears in electromagnetic torque due to the mechanical fault

[10] (17). Note that Γ̄d is the complex conjugate of Γd.

Γem(ν) = Γem, 0δ(ν) +
1

2

[
Γdδ(ν − fosc) + Γ̄dδ(ν + fosc)

]

(17)

The mechanical rotating speed expresses itself as a constant

Ω0 plus an oscillation at fosc frequency and Ωosc amplitude,

where Ωosc is a complex parameter reflecting modulus and

phase shift of the oscillation (18).

Ωmech(ν) = Ω0δ(ν)+
1

2

[
Ωoscδ(ν − fosc) + Ω̄oscδ(ν + fosc)

]

(18)

As it is demonstrated in [5], [10], [11], in case of load torque

oscillations at fosc frequency, stator current components at

fs±fosc frequency appear. The same behavior can be supposed

concerning rotor fluxes [11], [23]. Thus state variables are

modelled as (19)-(22), where left and right components, at fs−
fosc and fs + fosc frequencies respectively, are independent

in terms of amplitude and phase shift.

Isα(ν)=
Iαβ

2

[
ejψiδ(ν − fs) + e−jψiδ(ν + fs)

]

+
1

2

[
I+ejψiδ(ν−fs−fosc) +Ī

+e−jψiδ(ν+fs+fosc)
]

+
1

2

[
I−ejψiδ(ν−fs+fosc) +Ī

−e−jψiδ(ν+fs−fosc)
]

(19)

Isβ(ν)=
Iαβ

2j

[
ejψiδ(ν − fs)− e−jψiδ(ν + fs)

]

+
1

2j

[
I+ejψiδ(ν−fs−fosc)−Ī

+e−jψiδ(ν+fs+fosc)
]

+
1

2j

[
I−ejψiδ(ν−fs+fosc)−Ī

−e−jψiδ(ν+fs−fosc)
]

(20)



Φrα(ν)=
Φαβ
2

[
ejψφδ(ν − fs) + e−jψφδ(ν + fs)

]

+
1

2

[
Φ+ejψφδ(ν−fs−fosc)+Φ̄+e−jψφδ(ν+fs+fosc)

]

+
1

2

[
Φ−ejψφδ(ν−fs+fosc)+Φ̄−e−jψφδ(ν+fs−fosc)

]

(21)

Φrβ(ν)=
Φαβ
2j

[
ejψφδ(ν − fs)− e−jψφδ(ν + fs)

]

+
1

2j

[
Φ+ejψφδ(ν−fs−fosc)−Φ̄+e−jψφδ(ν+fs+fosc)

]

+
1

2j

[
Φ−ejψφδ(ν−fs+fosc)−Φ̄−e−jψφδ(ν+fs−fosc)

]

(22)

where:

• Iαβ =
√

3
2I123 is the amplitude of stator currents funda-

mental component in the Concordia reference frame,

• I123 is the amplitude of stator currents fundamental

component in the three phase reference frame,

• ψi is the phase shift between supply voltages and stator

currents,

• I+ is the complex amplitude of right stator current

frequency component (fs + fosc),

• I− is the complex amplitude of left stator current fre-

quency component (fs − fosc),

• Φαβ is the amplitude of rotor fluxes fundamental com-

ponent in the Concordia reference frame,

• ψφ is the phase shift between supply voltages and rotor

fluxes,

• Φ+ is the complex amplitude of right rotor flux frequency

component (fs + fosc),

• Φ− is the complex amplitude of left rotor flux frequency

component (fs − fosc).

Fundamental components characteristics Iαβ , Φαβ , ψi and

ψφ are determined using transfer functions derived from state

space representation of the system.

D. Fault harmonics due to load torque oscillations

The expression of mechanical rotating speed oscillations is

derived from (16), (17) and the mechanical transfer function

(14). This directly leads to the variable Ωosc (23). Finally, the

mechanical speed Ωmech(ν) and ω(ν) are derived.

Ωosc =
Γd − Γosc

2jπfoscJmas + fasm
(23)

On stator currents and rotor fluxes, it is necessary to

determine sideband components at fs ± fosc frequencies. It

can be noticed that components at frequencies ±fs±2fosc are

neglected in the convolution product between rotating speed

and rotor fluxes.

Considering stator currents and rotor fluxes expressions,

the electromagnetic torque component at fosc frequency is

calculated and identified with Γd (24).

1

2
Γd =

npMsr

2jLr

[

Φαβ

(

I+ej(ψi−ψψ) − Ī−ej(ψφ−ψi)
)

+Iαβ
(
Φ̄−ej(ψi−ψφ) − Φ+ej(ψφ−ψi)

)]

(24)

Finally, stator current and rotor fluxes fault components are

obtained (25).







I+ = −
ej(ψφ−ψi)

2

NI+

D+

I− = −
ej(ψφ−ψi)

2

NI−

D−

(25)

with:






NI+ = npΩoscΦαβ [2π(fs + fosc)a3 + j(a2 + a5a3)]
NI− = npΩ̄oscΦαβ [2π(fs − fosc)a3 + j(a2 + a5a3)]

D+ = [2π(fs + fosc)]
2 − 2π(fs + fosc)ω0 − a1a5 + a2a4

+j(2π(a1 + a5)(fs + fosc)− ω0(a4a3 + a1)
D− = [2π(fs − fosc)]

2 − 2π(fs − fosc)ω0 − a1a5 + a2a4
+j(2π(a1 + a5)(fs − fosc)− ω0(a4a3 + a1)

It can be seen from (25) that mechanical transfer function

takes place in the equations independently of electrical param-

eters and equations. Consequently, the mechanical part of the

drive can be modelled apart from the motor and the resulting

transfer function can be included in the expressions of I+ and

I−.

IV. STATOR CURRENT MODULATION DIAGNOSIS IN CASE

OF LOAD TORQUE OSCILLATIONS

A. Complex vector G̃ in case of load torque oscillations

Using stator current model in case of load torque oscillations

in (19) and (20), the complex signal is directly expressed in

the frequency domain by ZTC(ν) =
√

2
3Isα(ν) + jIsβ(ν).

Then, zTC(t) is derived using the inverse Fourier transform

(26).

zTC(t) =
[

I123 +
√

2
3

(
I+ej2πfosct + I−e−j2πfosct

)]

×ej(2πfst+ψi)

(26)

Finally, the instantaneous amplitude (27) and frequency (28)

of stator currents are calculated using respectively the modulus

and the argument of zTC(t) and first order Taylor expansions

[13].

IAzTC (t) ≃ I123+

√

2

3
|I++ Ī−| cos(2πfosct+∠(I++ Ī−))

(27)

IFzTC (t) ≃ fs+
fosc

I123

√

2

3
|I+−Ī−| cos(2πfosct+∠(I+−Ī−))

(28)

Thus, amplitude and phase modulation amplitudes are de-

rived (29). Finally, the complex vector G̃ is obtained (9).







α=
1

I123

√

2

3
|I+ + Ī−|

β=
1

I123

√

2

3
|I+ − Ī−|

(29)



Fig. 2. Principle of experimental test bench

B. Experimental results

1) Experimental setup: Tests have been performed on an

experimental setup with a three-phase Leroy-Somer, 400V ,

5.5kW , 2 pole pairs LS132S induction motor. The machine

is supplied by a standard industrial PWM voltage inverter

operating in open-loop condition with a constant voltage to

frequency ratio. The load is composed of a DC motor with

separate constant excitation. The armature coils of the DC

machine are connected to a current controlled active load.

Thus, using an appropriate current reference signal, a constant

load torque with an additional oscillating component can be

introduced. Mechanical load torque and stator currents of the

induction machine are simultaneously acquired through a 24

bit data acquisition board at 6.4kHz sampling frequency.

Signal processing is done off-line with Matlab. Experimental

setup is described by Fig. 2.

2) Stator current analysis: Stator currents are measured in

case of load torque oscillations. The supply frequency is set to

fs = 50Hz and the average load torque is about Γ0 = 15N.m.

Load torque oscillations are induced at fosc = 5, 20 and

120Hz with amplitudes of Γosc = 0.4, 2, 4 and 8N.m. Six

experimental measurements are achieved for each set of load

torque amplitude and frequency, to ensure the reproducibil-

ity of results. Moreover, complex vector G̃, experimentally

obtained is compared with the analytic one given in (9) and

(29), using a mechanical model representative of the whole

experimental setup. Results are depicted in Fig. 3.

It can be noticed in Fig. 3(a) that low frequency load torque

oscillations at fosc = 5Hz, mainly induce amplitude modu-

lations of stator currents. On the contrary, in Fig. 3(b) and

3(c), in case of load torque oscillations at fosc = 20Hz and

fosc = 120Hz frequencies, phase modulation is predominant

on stator currents.

A good concordance can be established on Fig. 3, between

theoretical and experimental complex vector G̃, in terms

of modulus and argument. The knowledge of G̃ allows to

decide, through its argument, if stator current modulations at a

determined frequency are induced by a load torque oscillation.

Moreover, it is clear that the modulus of G̃ is proportional

to the load torque oscillation amplitude, thus reflecting the

significance level of the defect.

V. CONCLUSION

In this paper, a new analytic approach for predicting the

stator current modulations in case of load torque oscillations

in asynchronous drives has been presented. For detection

purposes, the sideband component signatures in the current

spectrum are often exploited. To study these signatures, the

state space model of the induction motor in the Concordia

reference frame is used in the frequency domain.

In association with a model of the mechanical part of

the drive, and knowing electrical and mechanical parameters

of the setup, amplitude and phase shift of sideband stator

current components induced by load torque oscillations are

analytically determined. This approach allows the character-

ization of stator fault components for any induction drives

and can be helpful to design a detection scheme. Moreover,

when load torque oscillations occur, both amplitude and phase

modulations appear on the stator current.

Then, for an accurate prediction of the faulty stator current

behavior, the analytic approach is extended to the deter-

mination of the modulation index (PM and AM) of stator

currents. A complex vector used for modulation diagnosis has

been derived from the analytic expression of fault sideband

stator current components. It depicts the significance level

of modulations through its modulus and the predominant

modulation through its argument. Finally, this model has been

experimentally validated on an asynchronous drive, with a

good concordance between analytic and experimental results.

Further works will deal with distinguishing effects of eccen-

tricity and load torque torque oscillations. Indeed, eccentricity

only induces AM on stator current and load torque oscillations

induce AM and PM. An other way of research is to deeply

study interactions between mechanical subsystem and charac-

teristics of the asynchronous motor. As demonstrated, sideband

components amplitude are linked to mechanical transfer func-

tion and electrical parameters of the drive. This lead to the

consideration of possible resonant behavior that could lead to

increase the detection accuracy of early mechanical defects.
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