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Regular Article
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Abstract. This paper focuses on multi-physics modeling of encapsulating gels in power electronic modules
for transient and steady-state simulation. With the emergence of wide-bandgap semiconductors such as SiC or
GaN, operating at a higher temperature than conventional Si power chips, this passive element of the packaging
appears as a few studied element sensitive to thermal and mechanical stresses. A thermo-mechanical coupled
modeling of the material, based on bond graph representation, is presented. This approach allows to establish,
under the same formalism, an analogy between the different physical domains. From this analogy, a multi-
physical nonlinear state space representation is built, allowing transient simulation of the thermo-mechanical
behavior of the material. This way of modeling and simulating is particularly adapted for a preliminary study
during the upstream phases of design of the power electronic modules. It quickly establishes the maximum
temperature and mechanical strains experienced by the gel.

1 Introduction

Wide-bandgap semiconductor materials (SiC, GaN,...) are
able to operate at higher temperature ranges than tra-
ditional silicon chips. Thus, their use allows to increase
power densities within the power modules with more
integrated structures and functions [1–5]. However, their
introduction in power electronic leads to an increase in
thermo-mechanical stresses on the various components
of the modules packaging (solder, substrate, encapsu-
lant...). In this packaging, the encapsulating silicone gel
constitutes a particularly sensitive component [6–8] to
thermal, mechanical and dielectric stresses. It is subjected
to specific failure modes [9] during the ageing of the
power modules. Indeed, thermal ageing, may lead to a
decrease in the hydrophobic properties of the gel. The
introduction of resulting moisture can cause oxidation
phenomena, a decrease in dielectric insulation proper-
ties and thus accelerate the ageing of the material itself
or cause a major failure of the power module [10]. Pre-
liminary studies of the encapsulating gel have led to
establish thermal and mechanical models [11,12] in order
to obtain the permanent thermal and mechanical fields
within the encapsulating material, mainly using finite
elements software.
The modeling methodology proposed in this paper,

based on the bond graph representation, leads to establish
a nonlinear multi-physics state space representation of the
system in order to simulate thermo-mechanical behavior of
the gel with a satisfactory accuracy. This modeling allows
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to get rid of finite element models, which are too complex
and cumbersome to process during the upstream phases
of design. Section 2 presents the system under concern
and the associated bond graphs. Section 3 leads to obtain
the nonlinear state space system for simulation. Finally, in
section the Section 4, experimental results on the studied
system are compared with the simulation results obtained
with the proposed methodology.

2 Thermo-mechanical modeling

The proposed modeling method is based on the analogy
of physical domains in terms of power transfers formal-
ized by the bond graph [13–15]. The bond graph also
represents integral causality of the phenomena, leading to
establish all the differential equations of the first order of
the physical system. These equations constitute the state
space representation used for numerical simulations using
numerical integration methods. The proposed approach
is here used to model the thermo-mechanical behavior
of an encapsulating silicone gel used in power electronic
modules.

2.1 Bond graph modeling

The bond graph representation illustrates power transfers
in systems using directional links. Each link carries two
variables necessary for the expression of the power P (t): a
generalized effort e(t) and a generalized flow f(t) (P (t) =
e(t)f(t)). The variables of effort and flow are connected
by means of resistance R, compliance C or inertance I
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Table 1. Analogy between physical domains

Variable Electric Mechanic Thermicor BG element
Effort e Voltage Force Temperature

Flow f Current Speed Heat
flux

R Resistance Friction Thermal
resistance

C Capacitance Compliance Heatcapacity
I Inductance Mass

(1). Note that the elements R, C and I can be nonlinear.
R: e(t) = Rf(t)

C: e(t) = 1
C

∫ t
0
f(u)du

I: f(t) = 1
I

∫ t
0
e(u)du.

(1)

Equations (1) also transcript the concept of integral
causality. Thus, in an element C (resp. I), the generalized
effort (resp. the generalized flow) is a temporal conse-
quence of the generalized flow (resp. of the generalized
effort). In addition to the previous elements, effort sources
Se and flow sources Sf as well as iso-effort 0, iso-flow 1,
transformer TF and gyrator GY junctions are added [16].
Power transfers being common to the different physical

domains, it is possible to express the analogy existing
between these domains, some of which are summarized in
Table 1. Note that there is no inertance element in the
thermal domain.

2.2 Studied system

In order to simplify the problem and highlight the mod-
eling approach, this study deals with the case of a
one-dimensional bar of silicone gel. Thermal phenomena
occurring along different directions of the main dimension
of the bar will be neglected. Thus, the bar will be con-
sidered thermally insulated outside of its main dimension.
In the same way, the mechanical movements of the bar
outside its main dimension will be considered as negligible.
Thus, the considered system consists of a cylinder of

length L0 = 16 × 10−2 m at ambient temperature of
295K and of circular section of diameter d = 1.10−2m.
To establish the model, the system is sampled into n = 16
elementary volumes of length ∆x = 1× 10−2 m (Fig. 1).
The thermal boundary conditions are therefore defined

on the two orthogonal bases to the main length of the
bar. One of the bases is in convection with air at ambi-
ent temperature Ta. The thermal boundary condition on
the opposite base is defined as a heating temperature Th.
This temperature corresponds to the operating tempera-
ture of a semiconductor component in a power module.
It is chosen so as to be lower than the maximum limit
temperature of use of the silicone gel. The gel is there-
fore submitted to temperature included between its glass
transition temperature and its destruction temperature.

Fig. 1. Studied system.

Mechanically, one of the bases (the heated one) is
blocked and is submitted to a zero-displacement bound-
ary condition. The second base is free allowing dilation
without stress under thermal excitation of the material.
This configuration is close to the implementation of the
gel in a power electronic module providing an expansion
free volume for the gel.

2.3 Thermal model

Within the framework of the proposed thermal model,
radiative transfer phenomena are neglected. Only conduc-
tive and convective transfers are studied. These transfers
are governed by the heat equation expressed in a single
spatial dimension, without sources of internal heat by (2)
[17,18].

∂T (x, t)

∂t
=

λ

ρCp

∂2T (x, t)

∂x2
(2)

with:

– T (x, t) the local temperature depending on time t,
– λ the thermal conductivity of the material,
– ρ the density of the material,
– Cp the specific heat capacity of the material.

Considering the local temperature, it is possible to spa-
tially discretize heat equation with the finite centered
difference method of order 2 [19,20]. In this case, for a
given x position, in the case of a conductive transfer, the
discretized heat equation with a step ∆x can be written
as (3).

Tx−∆x(t)− Tx(t)

Rth
= Cth

dTx(t)

dt
+
Tx(t)− Tx+∆x(t)

Rth
(3)

with :

– Rth = ∆x
Sλ the thermal conduction resistance,

– S = πd2

4 the conduction surface,
– Cth = ρV Cp the thermal capacity of the material,
– V = S∆x the volume of the sample.

It is demonstrated that in case of convective transfer, a
similar expression of the convection thermal resistance can
be obtained Rcv = 1

hS with h the convection coefficient
[21].

20902-p2
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Fig. 2. 1D thermal bond graph of an elementary volume.

Fig. 3. 1D thermal bond graph of the studied system.

The definition of generalized energy variables and bond
graph elements in the thermal domain (see Tab. 1) as well
as the equation (3), lead to the thermal bond graph of a
elementary volume of material (see Fig. 2). The element C
has for value the thermal capacity Cth of the elementary
volume. The generalized effort imposed by this element
represents the temperature Ti, assumed to be uniform in
the sampled elementary volume noted i. The R elements
consider the thermal conduction resistances Rth between
two elementary neighboring volumes.
By cumulating elementary volumes and with the addi-

tion of the boundary conditions, the complete thermal
bond graph of the system is then obtained. It has to be
reminded that in the studied system, the thermal bound-
ary conditions consist in temperature sources (heating
temperature imposed on a base and ambient temperature
on the opposite one). These temperature sources are there-
fore represented by effort sources Se. The full bond graph
is given in Figure 3. For simplicity, only three elementary
volumes are represented. The element R between the last
elementary volume and the ambient temperature source
considers both the thermal conduction of the material and
the convection resistance with the ambient air.

2.4 Mechanical model

The proposed mechanical model developed for a silicone
gel is based on macroscopic rheological models using
equivalent spring and dampers assemblies. Several mod-
els can be used such as the Burger, the Kelvin-Voigt,
the Maxwell or the generalized Maxwell models [22]. In
the case of encapsulating silicone gels of power electronic
modules, the mechanical and thermo-mechanical stresses
are generally of sufficiently low amplitude to ensure that
the material keeps linear and reversible properties at a
given temperature. In this study, the Kelvin-Voigt rhe-
ological model given in Figure 4 is chosen. It allows to
represent the reversible visco-elastic behavior of silicone
gels. The elasticity is modeled by a spring of stiffness
equal to the elastic modulus E (i.e. compliance equal to
1
E ) of the material according to the Hooke law (4) [23]
with ε the strain of the material and σc the stress. In the
one-dimensional case, the strain is defined as the ratio
between the variation length ∆l and the initial length l0
(5). Note that in the studied system, initial length l0 of
an elementary volume equals to the step ∆x in (3). In
bond graph, the elasticity is represented by a C element
of value 1

E linking the generalized effort (stress) to the

Fig. 4. Kelvin-Voigt rheological model.

integral of the generalized flux (strain rate ε̇), meaning
the generalized displacement. The viscosity is modeled by
a damper of parameter η, using element R in bond graph.

σc = Eε (4)

ε =
∆l

l0
. (5)

In the Kelvin-Voigt rheological model, spring and
damper share the same strain rate and are therefore
connected by a 1 junction.
In the case of the studied system, the mechanical exci-

tation is related to the coefficient of thermal expansion
α which links the temperature variation of the material
to its strain (6) where T0 represents a reference tempera-
ture. Indeed, l0 is defined as the length of the material at
temperature T0.

εth(t) = α(T (t)− T0). (6)

In the formalism of the mechanical bond graph, the
strain is equivalent to the generalized displacement, i.e.
to the integral of the generalized flow. However, in bond
graph, there is no source of generalized displacement.
Thus, the spring-damping mechanical cell is excited by
a generalized flow source, corresponding to a strain rate
ε̇th(t) sharing the same effort as the cell [12], through a
iso-effort 0 junction. Indeed, it is clear that the total strain
of a mechanical cell is the sum of the strain related to the
applied stress and the strain related to the thermal expan-
sion (7). The relation between the strain rates is directly
deduced (8).

ε(t) = εc(t) + εth(t) (7)

ε̇(t) = ε̇c(t) + ε̇th(t). (8)

Moreover, the source of strain rate modeling the ther-
mal expansion (9) is obtained by derivation of (6) where
α is considered as a constant parameter.

ε̇th(t) = αṪ (t). (9)

For an elementary volume noted i, the mechanical bond
graph is represented in Figure 5. The generalized effort
imposed by the C element represents the local stress on
the σc,i spring.
By cumulating elementary volumes and adding bound-

ary conditions, the complete mechanical bond graph of
the system is obtained. It has to be reminded that in the
studied system, one of the bases of the cylinder is free and
displacement occurs without stresses. This lack of stress

20902-p3
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Fig. 5. 1D mechanical bond graph of an elementary volume.

Fig. 6. 1D mechanical bond graph of the studied system.

results in an effort source Se of value σt(t) = 0, ∀t. The
full bond graph is given in Figure 6. For simplicity, only
three elementary volumes are represented. The different
elementary volumes are contiguous and therefore share
the same effort. It can be seen in the Figure 6 that the
four 0 junctions could be regrouped into one. However,
these 0 junctions allow to clearly differentiate the three
elementary volumes, without impacting the model.
Note that strain rate on the 1 junctions are govern

by first order differential equations with σt(t) = 0. More-
over, at initial time instant, the system is motionless and
εc,i(t = 0) = 0. Then, εc,i(t) = 0, ∀t and εi(t) = −εth,i

2.5 Thermo-mechanical model

The thermo-mechanical bond graph of the complete sys-
tem (Fig. 7) is easily obtained from the bond graphs of
Figures 3 and 6. The thermo-mechanical link is made
through the knowledge of the efforts imposed by the
thermal capacities of the elementary volumes and their
derivatives that modulate the sources of mechanical flux.
Here again, only three elementary volumes are represented
for reasons of clarity.
The thermo-mechanical coupling expressed by the bond

graph in Figure 7 is clearly incomplete. Indeed, the only
expressed link is from thermal part to the mechanical one.
However, it is obvious that other thermo-mechanical links

Fig. 7. 1D thermo-mechanical bond graph of the studied system.

exist. On the one hand, thermal parameters such as ther-
mal resistance and capacitor depend on geometric sizes.
On the other hand, mechanical parameters such as elastic
modulus and viscosity depend on temperature [24–26].
These two thermo-mechanical links can easily be inte-

grated in the model. Indeed, as stated before, the
definition of bond graph elements R and C does not sup-
pose a linear equation between effort and flow. This means
that thermo-mechanical link included in parameters varia-
tion is hidden but exists in the bond graph. Some authors
propose to introduce modulated resistance and compli-
ance [27]. This specific formalism could be applied in our
study to visually describe thermo-mechanical links that
are considered in this paper but is not necessary.

3 State space equations

Using the bond graph, the state space equations of the
system are determined systematically. In order to estab-
lish these equations, it is necessary to identify the state
variables which are simply the generalized effort of the
elements C and the generalized flow of the elements I.
The first step is therefore to identify these variables and
then their derivatives which are linked to the dual vari-
ables of the state ones. The equations at the junctions as
well as those of the passive elements allow to express the
derivative of the state variables as a function, at least, of
the other state variables and, if necessary, of the inputs of
the system.

3.1 Equations of variable parameters

In order to consider the whole electro-mechanical coupling
phenomena, thermal parameters of elementary volumes
(Rth,i and Cth,i) have to take into account variations of
geometry (i.e. the length) of the volume due to thermal
expansion. According to the basic definition of parame-
ters in Section 2.3, parameters equations becomes (10)

20902-p4
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and (11).

Rth,i =
∆x(1 + εi)

Sλ
(10)

Cth,i = ρS∆x(1 + εi)Cp. (11)

Moreover, according to rheological tests at different
temperature, elastic modulus and viscosity of the material
under test vary with the temperature. These tests allow
to identify nonlinear variation laws for these parameters.
Note that these laws are valuable for a range of temper-
ature between the glass transition temperature of the gel
and its maximum temperature of use. The corresponding
identified laws for an elementary volume are given in (12)
and (13).

Ei = 0.333T 2
i − 90.25Ti + 9858 (12)

ηi = 0.08T 2
i − 31Ti + 3340. (13)

3.2 Thermal equations

The thermal equations are deduced from the thermal bond
graph in Figure 3. It has to be assumed that the temper-
ature of an elementary volume is calculated at the center
of the volume. Considering equations of parameters in
Section 3.1, for the volumes noted i, we get the system
of equations (14). It is then necessary to differentiate
boundaries internal volumes of the system.

Ṫ1(t) =
2

Cth,1

[
−
(

2

Rth,1
+

1

Rth,2

)
T1(t)

+

(
1

Rth,1
+

1

Rth,2

)
T2(t)

+
1

Rth,1
Th(t)

]
Ṫi(t) =

2

Cth,i

[(
1

Rth,i
+

1

Rth,i−1

)
Ti−1(t)

+

(
1

Rth,i
+

1

Rth,i+1

)
Ti+1(t)

−
(

2

Rth,i
+

1

Rth,i−1
+

1

Rth,i+1

)
Ti(t)

]
for i ∈ J2 ; n− 1K

Ṫn(t) =
2

Cth,n

[(
1

Rth,n
+

1

Rth,n−1

)
Tn−1(t)

−
(

1

Rth,n +Rth,n−1
+

1

Rth,n + 2Rcv

)
Tn(t)

+
1

Rth,n + 2Rcv
Ta(t)

]
.

(14)
The system of equations (14) can then easily be written

in a matrix form (15) where T(t) is the state vector of
the local temperatures. Note that the thermal dynamic
matrix Ath of size n× n is a sparse matrix. It is the same
for the matrix Bth of size n × 2 which contains only two

non-null terms.

Ṫ(t) = AthT(t) +Bth

(
Th(t)
Ta(t)

)
(15)

3.3 Mechanical equations

The mechanical equations of the system are also obtained
directly from the bond graph in Figure 6. It is assumed
that mechanical properties are constant, at a given
temperature, in an elementary volume. Based on the iden-
tification of the mechanical state variables, it is possible
to directly obtain the state space equations in a matrix
form (16) where σc(t) is the state vector of the mechanical
stresses and 1n,1 is the unit vector of size n× 1.

σ̇c(t) = −E
η
σc(t) +

E

η
1n,1σt(t). (16)

It has to be reminded that in the case of the studied sys-
tem, whose movements are free along the main direction,
the boundary condition of stress σt(t) is null whatever t.
Moreover, without thermal excitation, the system is con-
sidered to stay in the initial state and the local stresses
σc,i(t = 0) are also null whatever t. Thus, it is shown
that the free thermal expansion is carried out at no stress
throughout time.
Moreover, it can be noticed that mechanical state equa-

tion (16) resulting from the identification of the state
variables is incomplete. Indeed, the sources of strain rate
do not appear in these equations. Thus, this state equa-
tion cannot completely describe the whole mechanical
behavior. Thermo-mechanical phenomena must therefore
be considered in order to obtain mechanical equations for
simulating the whole dynamic behavior of the system.

3.4 Thermo-mechanical equations

Using the bond graph in Figure 6, it is demonstrated that
the strain rate of the elementary volumes ε̇i(t) can be
written as a function of the strain rate sources ε̇th,i(t) and
the derivative of local stresses (16). These equations then
take the form of a state space matrix (17) where ε(t) is
the state vector of strain and ε̇th(t) the vector of strain
rates of thermal origin.

ε̇(t) = −1

η
σc(t) +

1

η
1n,1σt(t) + ε̇th(t). (17)

Using (9) and (15), (17) is developed and strain rates
are expressed only using state variables (18).

ε̇(t) = −1

η
σc(t)+

1

η
1n,1σt(t)+αAthT(t)+αBth

(
Th(t)
Ta(t)

)
.

(18)
Finally, equations (15), (16) and (18) allow to obtain the

thermo-mechanical state space equations of the studied
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system (19) where In is the identity matrix of size n× n. Ṫ(t)
σ̇c(t)
ε̇(t)

 =

 Ath 0n,n 0n,n
0n,n −Eη In 0n,n
αAth − 1

η In 0n,n

(T(t)
σc(t)
ε(t)

)

+

 Bth 0n,1
0n,2

E
η 1n,1

αBth
1
η1n,1

(Th(t)
Ta(t)
σt(t)

)
.

(19)

Once the strains have been obtained, the displacement
qi of elementary volume noted i can be expressed (20).

qi =

i∑
k=1

εk∆x. (20)

4 Experimental results

4.1 Experimental setup

The proposed experimental setup allows to measure the
thermal and mechanical behavior of an encapsulating gel
bar dedicated to power electronic modules submitted to
thermal stress. The material is a silicone gel (Silgel 616),
cast and crosslinked in a glass tube of internal diameter
of 1× 10−2 m over a length of 16× 10−2m. Using a glass
tube ensures that the mechanical strength of the mate-
rial while minimizing the friction between the gel and the
tube. The tube is then placed vertically on a temperature-
controlled heating plate. Thermocouples are inserted into
the silicone gel at different positions to measure the local
temperature. Two thermocouples measure the boundary
conditions: the temperature of the heating plate Th and
the ambient temperature Ta. Figure 8 depicts the exper-
imental setup. Finally, a thermal insulator composed of
extruded polystyrene is positioned around the tube. It
has a thermal conductivity approximately ten times lower
than the silicone gel, which maximizes the heat flux in
the axis of revolution of the tube and thus maximize the
mono-dimensional nature of thermal phenomena.
As shown in Figure 9, a digital camera is positioned to

film the free base of the silicone gel and thus to measure
the global displacement due to the thermal excitation.
Constant thermo-mechanical properties of the material

have been experimentally measured or deduced from its
datasheet:

Thermal properties:

– conductivity: λ = 0, 1W.(m.K)−1,
– heat capacity: Cp = 80W.K−1.kg−1,
– density: ρ = 970 kg.m−3,
– convection coefficient: h = 70W.m−2.

Mechanical properties:

– thermal expansion: α = 5.10−4.

4.2 Thermal behavior

In order to compare the experimental and simulated
data, the measured temperatures of the heating plate

Fig. 8. Experimental setup.

Fig. 9. Free base view of the silicone gel.

and the ambient air are considered as inputs of the
thermo-mechanical model. Temperatures are simulated at
the same positions as those by thermocouples. Figure 10
allows to compare the results of measurement and simu-
lation. The indicated distances are measured between the
heated base of the gel and the thermocouple.
It can be seen in Figure 10, that simulated temperatures

and measured ones have similar values in steady state. It

20902-p6
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Fig. 10. Thermal behavior of the system.

is supposed that most of the discrepancies may be due to
inaccurate positioning of the thermocouples in the gel. It
can also be noted that the simulated thermal curves have
different response times from those that are measured.
This could come from several phenomena not considered
in the simulation. On the one hand, the thermal parame-
ters of the materials are considered constant whatever the
temperature. However, the thermal conductivity and the
specific heat capacity are parameters that can depend on
the temperature [28–31]. On the other hand, it is assumed
that the convection coefficient is constant whatever the
temperature. However, due to fluid mechanic effects, ther-
mal exchange coefficient between the gel and ambient air
depends on temperatures of the gel and the air. Finally,
even if the silicone gel bar is thermally insulated outside
its main dimension, this insulation may not be perfect and
some heat flux may exist along the radius of the bar.

4.3 Mechanical behavior

The free base of the silicone gel is filmed all along the
test and all the images of the film are post-processed by
an image analysis software. This allows to extract the
displacement of the free base of the gel along time. The
total displacement is simulated and compared in Figure 11
to the measured one.
Once again, there is a relatively good accuracy between

the thermo-mechanical simulation and the experimental
measurement. The observed discrepancies can be inter-
preted in several ways. First of all, the differences on
the mechanical quantities may come from the differ-
ences on the thermal quantities. Indeed, the displacement
is directly related to the elementary strains (20) which
themselves are only linked (in the configuration of the
test) to the thermal field (19). Any inaccuracy on the
thermal model is therefore reflected on the mechanical
response. In addition, it is assumed in the model that the
gel does not adhere the glass tube in which it is cast.

Fig. 11. Total displacement of the silicone gel bar submitted to
heating.

This hypothesis may induce a higher increase rate for the
simulated mechanical response than the measured one.
Indeed, adhesion acts as a brake on thermal expansion
and thus slows down the evolution of strains and then dis-
placement along time. Finally, it is assumed in the model
that all effects are mono-dimensional. Obviously, thermal
expansion occurs in all directions, along the length of the
silicone gel bar but also along its radius. A strain occurring
according to the radius of the cylinder will result, through
the Poisson’s ratio, by a strain along the length of the
cylinder. Thus, in steady state, the global displacement
found experimentally should be larger than the simulated
one.

4.4 Thermodynamic conservation of energy

Finally, in order to verify the proposed model, it is
possible to check the thermodynamic principle about con-
servation of energy. The first law of thermodynamics links
the infinitesimal variations of internal energy dU to heat
flow δQ and work δW exchange with its environment
(21).

dU = δQ+ δW. (21)

Firstly, an input heat flow Qin comes from the heating
plate to the system and an output heat flow Qout pulls out
to the environment. Secondly, it can be noticed that there
is no work exchange between the system the environment.
Indeed, it is assumed that the material is free to expand
due to thermal phenomena. Moreover, δW = pdV where
p is the pressure of external efforts. In the model, external
stress σt(t) = 0, then we get p = 0 and finally δW = 0.
Thirdly, internal energy is evaluated using bond graph
through energy of C and I elements. Equation (21) can
be rewritten as (22).

n∑
i=1

Cth,idTi +

n∑
i=1

1

Ei
dσc,i = δQin − δQout. (22)
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Fig. 12. Energy variation in the system.

Figure 12 shows internal energy dU evaluated along
time using model and δQin − δQout evaluated along time
using measurements on experimental system and model.
As it can be seen, internal energy equals variation of
heat flux during the experiment, validating the proposed
model. Moreover, it can be noticed than steady state is
reach during the experiment as the infinitesimal variation
of internal energy tends to 0.

5 Conclusions and further work

In this paper, a thermo-mechanical modeling approach
was presented for the simulation of a few studied material
used in power electronic modules: the silicone gel used for
encapsulation. The proposed approach is based on bond
graph representation which easily leads to the potentially
nonlinear state space equations of the considered sys-
tem and thus to simulate it, with the usual numerical
integration tools, under transient and steady-state. The
proposed model provides dynamic simulation results with
a low computational cost and thus allows a preliminary
and rapid evaluation of the design of the encapsulant used
in the power electronic modules. Although the results may
be considered as less accurate than finite element simula-
tions, they are obtained much more rapidly, because finite
element models are usually hard to calculate. Moreover,
finite element softwares do not make dynamic systems
solving, they only solve succession of steady-states, which
complicates the analysis if the temporal discretization is
not adequately chosen. The proposed model is therefore
much better suited than finite element simulations in the
upstream phases of power electronic modules design when
many simulations are needed.
The work presented still needs to be developed for three-

dimensional simulations. The extension of the thermal
model 1D to 3D does not induce any specific problems,
except on the size of the obtained matrices. However, the
development of the 3D mechanical model is more difficult
because of the couplings existing between the different
dimensions of the space. In addition, some phenomena are
not considered in the present study, such as the variation
of thermal properties with the temperature as well as the

phenomena of adhesion. These points will be developed in
future works.
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