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This paper provides a procedure for the design of a reduced order observer of a state linear functional for a linear lime-invariant system. The case, defined in [!], where the observer order pis given by the number m of single independenl linear functionals to be observed, is called in this paper the minimum case where p = m. The minimum case is revisited and numerically simpl{fied The aim of this paper is lo extend the minimum case to the case where m < p < n-l, narned minimal case. A constructive procedure is given to design the linear functional observer.

Nomenclature

From the seminal Luenberger's paper [START_REF] Lucnbcrgcr | An introducuon to observers[END_REF], several at tempts have been proposed to design a reduced order observer of a linear functional of the state of a linear time-invariant system (see for instance [l], [3] - [START_REF] Tsui | On the order reduction of linear function observcrs[END_REF]). Thus:

-For the state space linear system x(t) = Ax(t)+ Bu(t) y(t) = Cx (t) (1) -For a linear functional of the state, the aim is to design a system z(t) = Dz(t)+ Hu(t)+ Ey(t) w(t) = Pz(t)+ Vy (t) where for every t, the state z ( t) , such that:

( 2) lim ( w(t)-Kx(t)) = 0

I➔«>
If this last condition is fulfilled, then (2) is a linear functional observer (LFO). For instance, (2) can be used to implement a state feedback control with a minimal order controller.

From [START_REF] Lucnbcrgcr | An introducuon to observers[END_REF], it is known that such an observer exists if and only if the following well-known conditions are satisfied: D is a Hurwitz matrix

TA-DT=EC K= PT+VC H=TB

(3) (4) [START_REF] Fortmann | Design of low-ordcr observers for linear feedback control laws[END_REF] where T is an unknown constant matrix such that /im 1➔ "'( =(t)-Tx(t)) = 0. lt can be seen that the last relation gives H. Thus, the design consists in determining the constant matrices of appropriate dimensions D, E, P, V and T and the order of the observer p such that conditions (3), (4) and ( 5) are verified, keeping in mind that we are looking for a minimal LFO.

Remark 1. ln our study we have to define 2 different cases. ln the first case, the minimum LFO is the LFO where p = m and P = l m . ln the second case, the minimal LFO is the minimal order LFO, where m < p < n-1 which exists when existence conditions for minimum LFO are not fulfilled.

In the aforementioned literature we can underline interesting works. [START_REF] Darouach | Existence and desi gn of functional observers for linear systems[END_REF], [3], [ 4] propose a procedure to design a LFO in case p = m [START_REF] Kondo | A systematic design of single linear functional observers, /111[END_REF] gives a procedure for a single LFO only. ln [START_REF] Moore | A note on minimal-order observers[END_REF], the authors use an LFO without feedthrough from input to output. Thus, the design problem of a minimal order LFO is not, to our standpoint, completely solved. lndeed, it can be seen that [START_REF] Tsui | A new algorithm for the design of multifunctional obser v ers[END_REF] uses the observable lower Hessenberg form of (A, C) which is numerically stable with respect to the observable canonical form. This form is also used in [START_REF] Kondo | A systematic design of single linear functional observers, /111[END_REF], [START_REF] Roman | Design of minimal orders stable observers for linear functions of the state via rcalization thcory[END_REF], [START_REF] Tsui | On the order reduction of linear function observcrs[END_REF]. In the following, for numerical stability sake, we consider that C is full row rank only and the pair (A, C) is not supposed to be in a particular canonical form. Moreover, if a row of K is linearly dependent on the rows of C, the corresponding component of the linear functional (2) can be observed with the output alone. Hence it is supposed in the following that C and K are linearly independent. This property is a very important point of our development.

ln [START_REF] Darouach | Existence and desi gn of functional observers for linear systems[END_REF], a necessary and sufficient condition has been proposed in the case whcn p -111. \\'hen the e>.istence conditions are fulfilled, the observer design is based on the use of the Moore-Penrose pseudo-inverse of a matrix, and on an eigenvalue placement procedure to verify the Hurwitz condition for D. Extending the previous work, [START_REF] Trinh | Design of reduced-order scalar function observers[END_REF] proposes conditions for the existence of a second order observer for a scalar linear functional of the state. 1t can be noted that it uses an observable form for the observer to obtain a procedure for the design of a minimal LFO.

The aim and the main motivation of our paper is twofold. Firstly, by considering the property between C

and K mentioned before, the minimum case developed by [l J is revisited and some numerical reductions are introduced (minimum case section). Secondly, it is interesting to extend the standpoints proposed in [l] [START_REF] Trinh | Design of reduced-order scalar function observers[END_REF] in case the necessary and sufficient conditions are not fulfilled for a minimum LFO (p = m). The case p > m can therefore be called the minimal case and the observer is called minimal LFO (minimal case section). These points of view induce the following organization for the paper. Firstly, the minimum case is revisited. Secondly, we develop the existence conditions for the minimal case. This leads us to propose a design procedure to get a minimal LFO. ln our work, we propose to use the generalized inverse concept which offers more possibilities in the calculus than the Moore-Penrose pseudo-inverse generally used. Sorne useful results on generalized inverses are developed in [START_REF] Israel | Generalizcd Inverses: Theory and Applications[END_REF].

II. The Minimum Case

Il./. The Minimum Case

We have P = l m and following [! ], the condition (5) is written T = K -VC. lntroducing J = E -D V , condition (4) can be written:

According to [START_REF] Lucnbcrgcr | An introducuon to observers[END_REF] this linear system has a solution if and only if: [START_REF] Kimura | Geometric structure of observers for linear feedback contrai laws[END_REF] When ( 6) is fulfilled, the solution is: [START_REF] Kondo | A systematic design of single linear functional observers, /111[END_REF] where L l 1 1 is a generalized inverse of L (see [START_REF] Israel | Generalizcd Inverses: Theory and Applications[END_REF]).

[J D v] = KAL 1 1 1 +z(, -H( I } ) 2/+m
Thal is to say, it verifies the relationship LL ( t } L = L and Z is an arbitrary (mx(2l+m)) matrix. With the following partitions: we obtain:

E { l } = [ M 1 M 2 M 3 ] f 21+m -EE { l } = [N 1 N 2 N 3 ] J=KAM 1 +ZN 1 D= KAM 2 +ZN 2 V= KAM 3 +ZN 3
As seen in [1) the following theorem is recalled.

Theorem l [/] The necessary and sufficient conditions for the existence and stability of the minimum (p = m) fi mctional observer (2) for system (!} are condition [START_REF] Kimura | Geometric structure of observers for linear feedback contrai laws[END_REF] and the pair (KAM 2 ,N 2 ) is detectable.

The Minimum Case Revisited

The aim of this section is to simplify the Theorem 1 established in [START_REF] Darouach | Existence and desi gn of functional observers for linear systems[END_REF]. We have to consider the prnperties mentioned before between C and K.

A full rank decomposition of E with rank (E) = p leads to write:

FG="i- [START_REF] Moore | Minimal order observers for estimating linear fonctions of a state vector[END_REF] where F and G are such that rank ( F) = rank( G) = p with FE 91(2/+m)xp and GE \llpxn .

Firstly, considering 1:, we order the row of C by making a suitable permutation in the output components in order to assure that theµ first rows of CA are linearly independent from each other and linearly independent of [ �] too. We can deduce:

p=l+m+µ (9)
Let ( CA)' be defined as these µ rows of CA. By (CA)'

We consider a coordinates transformation Q which leads to define a similar matrix such that: fQ=E [START_REF] Raft | A finite lime functional observer for linear systems[END_REF] with f E 91 (m+it)xn . By comparing ( 8) with [START_REF] Raft | A finite lime functional observer for linear systems[END_REF], Q and f are identified.

Due to the fact that Q must be nonsingular, transfonnations must be made. If (! + m + µ) < n , ( n -µ -/ -m) arbitrary components noted Y are added to G it can be deduced:

(11)
As a consequence, by adding a column to F we finally obtain:

op.n-p ] 0 ,-,,,11-p ( 12 
)
where L 1 _11 _ p is a known matrix obtained by identifying the sub-matrix of:

By using this state variable change, we obtain A= QA Q -1 and:

ë = co-1 = [1 o o ] � I l.111 l,n-1-m K=KQ-1 =[O m.1 lm Om .n-t -m] ( 13 
)
Remark 2. For notational simplicity, if one of the dimensions of the null matrix vanishes or is negative, this matrix must not be considered.

Let us partition l as:

L=[L i � L_,] ( 14 
)
Moreover A is partitioned as: [START_REF] Tsui | A new algorithm for the design of multifunctional obser v ers[END_REF] where:

From theorem l described before, the following corollary can be deduced: Corollary 1 A necessa,y and sufficienl condition for the existence of an observer of order m is:

1. rank [ ïî 13 ] = rank[� 13 ], A23 2. pair (A 22 ,Li) is detectable.
Proof 1 Starting from ( 6) and according to the state variable change, (2) has a solution if and on/y (f- [START_REF] Tsui | On the order reduction of linear function observcrs[END_REF] where 'f is given by [START_REF] Russell | A frequency domam approach to minimal-order observer desi gn for scveral linear functions of the state[END_REF]. Using ( 13) and ( 15) we get:

A2 2 A23] K A =[ÏÏ21 CA = [ ïî11 A,2 ÏÎ1 3]
Thus, ( 16) becomes:

[ ,, rank O � ,.t A11 r ,, nk 0111./ ra - A11 A2 1 0,,111 o, ,-, -]- 1 /11 O m,n-1-m - A,2 A13 o,.m 0, ,-, -1 '" ' om-!!_-1-m A,2
A1 3 A22 An [START_REF] Moore | A note on minimal-order observers[END_REF] which denotes that then np last columns of A 23 must be null or linearly dependent on the np last columns of A 13. Eventually, the existence condition ( 16) becomes:

rank [ ÏÏ 1 3] = rank [� 13 ]
Az3 [START_REF] Israel | Generalizcd Inverses: Theory and Applications[END_REF] which constitutes condition of corollary 1. Concerning the second condition of this corollary, if [START_REF] Israel | Generalizcd Inverses: Theory and Applications[END_REF] is fui li lied. ( 7) is written in the basis defi ned in [START_REF] Roman | Design of minimal orders stable observers for linear functions of the state via rcalization thcory[END_REF],so:

To solve [START_REF] Brewer | Kronecker products and matrix calcul us in system theory[END_REF], we use the expression of K A defined in [START_REF] Moore | A note on minimal-order observers[END_REF] and as f is defined by [START_REF] Russell | A frequency domam approach to minimal-order observer desi gn for scveral linear functions of the state[END_REF], we can choose for fPl (see [START_REF] Israel | Generalizcd Inverses: Theory and Applications[END_REF]):

f(l} =[ J p Q p.l -1 1 ] 0 ,,-p.p on-p.l-1 1 ⇒ I -�Lill = [ O P,P O p .l-1 1 ] 2t+m -L 1 l-1 1
The particular choice of fil} Jeads to major simplifications in the design of the LFO.

Remembering that p = I + m + µ , î { l} can be partitioned as: ,,_,,

where z, E 91 mxp and Z 2 E 91 mx (i-p). We will see m the following that only 2 2 has to be considered.

Eventually, ( 19) can be expressed as 3 equations:

(23)

Thanks to (23), if ( ÏÏ22 , . Li) is detectable, Z can be determined by using a standard eigenvalue assignment technique (SEAT) which provides D as a Hurwitz matrix.

The last point is to see that the detectability condition is independent of the cboice of L ( ! J and this is shown in the appendix.

This standpoint simplifies the design in the minimum case by introducing numerical simplifications in the necessary and sufficient conditions of Theorem 1. Ali required matrices are obtained without calculation of any generalized inverse.

However when the existence conditions are not fulfi lled, we have to study the case where p > m. This last case constitutes the next section called minimal case.

III. The Minimal Case

Our philosophy for the minimal case is to find, for a given p, the necessary and sufficient existence conditions for an asymptotic observer. The minimal order observer will be obtained by increasing p until these conditions are fulfilled. To study the minimal case we have to consider conditions (3), (4) and ( 5), using the frame we have already defined for the minimum case.

I l l. 1. A nalys is

ln order to simplify the design procedure, we suppose that the observer is written in an observable canonical form (see [START_REF] Lucnbcrgcr | An introducuon to observers[END_REF]): with:

P = [1 ,,, O m .p -m],D = [ D 1 D i ) D 2 =[ / p -m ] om,p-m (24) (25)
We choose to define the above mentioned partitioning in order to treat (4). 13), (31) can be expressed as:

As seen in the proof of corollary l, we express �{I} by (20) and l 21 +m -'E { 1 } by (21 ). In addition to the partitioning already defined for L, A and Z respectively in ( 14), ( 15) and ( 22), Ti is partitioned as:

(33)

JJI.2. Design

To salve (30)-(31 ), existence conditions must be established.

Existence condition of (30) is established thanks to { 1 }-inverses properties. Multiplying (30) by f{l}f leads to: to:

(KA-D f.)(1 -fPlf ) =o Furthennore, partition of (31) allows to write:

(36) constitutes the second relation which constrains fi 3 to obt.:in a solution for (31).

So, if T 23 is sucb that (35) is fultilled, a solution for (30) is given by: (37

)
where Z is an arbitrary matrix.

By expressing KA using ( 17) and substituting Ï: (1) and / 2 /+ m -LL { l ) in (37), 3 equations are deduced: 

Oµ J-µ ]

JJJ.3. Determination of Ti and Z

Once 1 1 and r 2 are calculated, T 2 and Z must be found by solving (35), ( 36), ( 43) and (44) using the Kronecker product (see [START_REF] Brewer | Kronecker products and matrix calcul us in system theory[END_REF]). Let vec ( X) be the vector value fonction of a matrix X, defined by:

vec(X)=
where X is defined by:

[XII X= Xml X 1 ••• X ] n mn ... X l ln Xmn T So using the following property, vec( AXB) = (B r ® A) ( X)
where ® is the Kronecker product, ( 35), ( 36), ( 43) and ( 44). Eventually, we obtain (system (47)): l ,,_ with:

vec(r 1 ) = (! m ®-D 12 )vec(Ti 2 )-( J!; ® lm )vec(Z 2 ) vec(r 2 ) =(A { ® I p -m ) vec(fi)-(1 m ® D2 2 ) vec( Tz2) 0 = ( AJ ° ® l p-m ) vec( Ti)-( l,,_,_m ® D 22 ) v e c( fi3 ) [ T ] [ l [ oµ,n-p ] ( - ) -[oµ.n-p ]
vec(f; 2 ) = G 1 vec(f;) vec(fi 3 ) = G2 vec(fi) (48) c, = [ o(p-m)m,(p-m)I l (p -m)m o (p-m)m,( p -m) ( n-1-m)]
and:

G2 = [ O (p-m)(n-1-m).(p-m)(l+m) l (p -m) ( n-1-m)]
By placing ( 48) into ( 4 7) we get:

with:

H = 1 ((ïï[ ©J p -m)-(1,,, © D22 )G 1 ) ((ïï[ © f p _,,,)-(In-1-m © D22)G 2 ) [[ O ;, : :: r ®D,, ) c, vec(r 2 ) o(n-1-m)(p-m).1
A solution for T 2 exists if and only if:

rank(H 1 )=rank([H 1 11 2 ])
and is given by:

(51) (52)
where Y is an arbitrary matrix that can be taken equal to zero as shown in the presented exarnple.

Once T 2 is deterrnined, a solution for Z 2 exists if and only if: and a solution is given by: (54

)
where W is an arbitrary matrix. As mentionned above for Y, W can be taken equal to zero. 

IV. Design Procedure

The following procedure is proposed: 11) and deduce Y, A and L 3. Existence condition:

Minimum LFO l. Set p = m 2. Compute Q with (
if ( 18) is true then go to step 4 else go to step 8 4. [f (A 2 2, L 2 ) is observable, thea go to step 5 else if (A n , L 2 ) is detectable, then go to step 6 else go to step 8 5. Choose eigenvalues for D and calculate Z with a SEAT 6. Compute D , V and J which are defined in [START_REF] Brewer | Kronecker products and matrix calcul us in system theory[END_REF] and compute E = J + DV and T = K. -VC 7. End: a minimum LFO is designed 1 Minimal LFO 8. Increase p: p = p+ 1 if p < n -/ , then go to step 9 else the reduced order observer has to be considered 9. Compute 'I' with (46) 1 O. If ( 'P, [! ,,, 0 D is observable, then go to step 11 else if ('P,[!,,, oD is detectable, then go to step 12 else go to step 8 From this system we get n = 6 , l = 3 and m = 2 .

Using the design procedure we get:

1. Minimum case: p = 2 2. A change in the state variable ( Q) in order to compute C in the form ( 12) is given by:

0 0 0 0 0 Q • [ ( c : J 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0.1 -1
where (CA) 1 (µ = 1) is the first line of CA linearly independent of [ �]. So, the matrix A is sucl, that:

0 0 0 0 0 4 1 -0.2 -1.5 3 2 À =QAQ-1 = -2 0 0.1 1 1 - 1 
1.2 0.5 0.98 -0.2 0.3 0.2 2 -0.1 0.2 0.3 0.9 0 -0.5 0.6 1.74 1.1 0.1 -0.4 Following (9) as p=l+m+µ=6=n, (18) is always fulfilled. 

A= -1 1.5 1 1 2 -1 0.5 -0.25 3 0 -2 -1 -1 0.25 -0.5 0.6 1 0 -2 -2 0.1 0.2 0 1 2 2 0 -1 -5 -2.1 -2.2 -4 -1 -4 0.5 -0.8 -0.6 -2 2 -4.4 0 -0.1 2 -0.4 2 -10 -1 -2.8 -2.6 -6 2 1.2 1.4 0 0 -2 1 -0.25 0.1 2 -1 0 l 0.3 0.1 1 -1 3 0 0 -1.3 1.2 0.8 -1
c a [j 0 0 0 0 0 0 0 0 � 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 and K =[� 0 0 0 1 0 0 0 0 �] 0 0 0 0 0 0 0 Using the design procedure, we obtain:

Minimum case: p = 2 A change in the state variable ( Q) in order to compute C in the form ( 12) is given by: 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 �= 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -1 -2 0 0 0 0 0 0 2 -0. 3. With p = 3, the system is such that p < n-1. 

C K Q= (CA) 1 (CA),

VI. Conclusion

We have shown that the procedure established by [START_REF] Darouach | Existence and desi gn of functional observers for linear systems[END_REF] can be simplified in the case where p =m. Derived from theorem !, corollary I is proposed and summarizes our results. Moreover, when it is not possible to design a LFO in this case, we propose a procedure which enables to desi gn a minimal LFO by increasing order p. Theorem 2 gives necessary and sufficient conditions in this latter case.

  m)x n (p-m)x I (p-m)x m (p-m)x E:

  choosing on the one hand F = [ 1 P ] where L,-µ, p l1-11,p will be identified later and on the other hand G = [ � 1 • (8) is verified .

  ,I on-p.m on-p,Ji on-p.l-11 Using the partition of l defïned in ( 14), we have: I -D:: {'l = [ O.u. 1 2/+m -'4 o p ,m This partition induces to write Z as: op.1-11 ] (21)

Remark 3 . 2 =

 32 D12 and D22 are a specific partitioning of the p -m last columns of D 2 • For a given p, these 2 matrices are known. Using partitions (24) in ( 4) yields: (27) According to the definition of matrix P, Ij = K -VC and by setting J 1 = E 1 -D 11 V and J E 2 -D 21 V, (26)-(27) can be written as: KA-D 12 T 2 =VCA+ D 11 K +J 1 C T 2 A-D 22 Ji = D21 K+J 2 C or equivalently: (28) where q> = [ �l (28)-(29), in the new basis, are defined by:

  particular form of l , , -f {I lf , (34) leads constitutes the first relation which constrains Ti 3 to obtain a solution for (30).

D

  of A and T-z given respectively in (15) and (33), and by considering that (36) is fulfilled, (31) can be written as: (4 l) (42) with D 11 defined (39) and D 21 (42), D given in (25)can be written as follows: can also be decomposed into the canonicat forrn allowing the application of a SEA T: 2. 'f' is kno,\n, so if the pair ('+ 1 ,;1., 0 .. ,; , , ,J) i� ol>,,ervable, 1 1 and r 2 can be deterrnined by choosing arbitrary eigenvalues and using a SEAT to fulfill (3). If the pair ('l',[i m O m . p-m ]) is detectable (3) is fulfilled and r 1 and 1 2 are fixed and not choosen.

  P ®D 12 vec T 23 =vec A 23 l ,,_ P Due to the decomposition of fi (33), it is assumed that:

Theorem 2 .

 2 The previous development leads to propose the following theorem: The necessary and sufficient conditions for the existence and stability of the minimal functional observer (2) oforder p, for system (1) are: 1. ( 'P, [ / 111 0 m , pm ] ) is detectable, 2. (51) and (53) are fulfilled.

11 .

 11 Choose observer eigeavalue, get Jï and r 2 by taking Y= W = 0. Calculate D with (45) 12. Existence condition Tf (51) and (53) are fulfilled, calculate f,_ and Z 2 with (52) and (54) else go to step 8 13. Compute Z, J with(21-38) and V with(40). Compute E and T with E = and -[ J1 +D 11 V ] J2 + D21 V f =[K. f: c ] 14. End: a minimal LFO is designed

9 ( 5 .

 95 the partition for A defined in (15)A 22 ,Li) is observable: A 21 is a (2x2) matrix and rank( [ ½� tJ) = 2. Eigenvalues for D are chosen in -1 and -, V, J, E and T are such that:

= 2 .

 2 So, matrices A and E are such that:

  .A13] = 2 and rank [ � 1 3 ] = 3 , (J 8) is not A23 fulfilled, then the minimal order observer does not exist, so go to step 8.

4 7 . 2 -

 72 . tp is given by (46):5. ('+',[1 2 0 2 .1]) is observable.6. By choosing observer eigenvalues in -1 , -2 and -3,we get r 1 and r 2 : r = [-3 1.�] T 2 and 2 2 exist as (51) and (53) are fulfi lled: 8. fi=[2.3802 2.1561 -3.8728 -2.7875 5.0277 -1.7078 2.6248 -0.2414 -0.l 1.8] z =[ 0.3423

Appendix

To verify that the detectability condition is independent of the choice of i:{ I } , we consider two different choices for L{i} denoted t{I}' and L: {I}" . Supposing that we get two different solutions for [START_REF] Kondo | A systematic design of single linear functional observers, /111[END_REF]:

[l D ° v'] and [i' D" v"] respectively, we have:

[l n' v']=KAi: 1 'l ' +z'(lzt+m-LL { I } ') [/ ' D" v" ] = KAi:\I}" + z" ( l u+m -i:r Pl " ) rl 1 l ' and rl 1 l " verify:

where Y is an arbitrary matrix with appropriate dimensions:

[/ D' v' ] =KA ( i: l 1 l" +r-L{ l }"i: n_: i:{ 1 l" ) +z' (f21+ m -L( L{I}" + Y -L { l } "i:yE { l }" ))

= KAi:{ I }" + KAY -KAI(t)"In: :r{I}" + z• -z•I::�:: {l l " +-z•Ir +z•Hf 1 l "Irn{ 1 l "

For compatibility reasons KAr l 1 l "r =KA, so: