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Abstract: A novel all-metal graded index Gutman lens is proposed. It exploits an interleaved
metasurface unit-cell with glide symmetry that can provide high values of equivalent refractive
index with low frequency dispersion. The result is a compact lens with broadband performance
and a wide field of view up to ±70°. The proposed lens exhibits low loss, directive beams and is
an appealing candidate for space applications. The design approach introduced can be applied to
other graded index lenses with circular symmetry using rectangular or circular periodic structures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Lenses have been used for a wide range of applications such as radars, medical systems, space
applications, acoustics, plasmonics and optics. Luneburg lenses, firstly introduced in [1], have
been studied extensively because of their superior performance in terms of spherical aberrations
in relation to beam scanning. In particular, the radiated beam can be scanned over a wide field
of view by displacing the feed mechanically along the lens periphery. However, Luneburg
lenses call for materials that can provide graded index (GRIN) of refraction, which make
their implementation complicated. To overcome such challenges, Luneburg lenses utilizing
metasurfaces or metamaterials have been implemented [2]. This approach provides more
flexibility as the index variation along the lens surface can be controlled by modulating the
geometry of an otherwise periodic structure. The latter can lead to a simplified manufacturing
process and potentially also to reduced mass. 2D and 3D GRIN Luneburg lenses have been
largely implemented using various periodic structures for a wide range of applications from
microwave to optical frequencies [3–7] including in plasmonics. For example, in [8] electron
beam lithography has been used to fabricate a plasmonic Luneburg lens based on holes in a
dielectric thin film. Luneburg lenses have also inspired various types of integrated photonic
circuits such as waveguide tapers [9] and couplers [10].
For antenna applications in the microwave and mm-wave range, the bulkiness of traditional

Luneburg lenses can be a disadvantage. An approach to reduce the physical volume of quasi-
optical devices with media with variable refractive indices has been introduced in [11] and [12]
and is referred to transformation optics (TO). This method exploits coordinate transformations
between the initial reference mesh and a transformed mesh, which enables the calculation of
new values of permittivity and permeability for the transformed design that leads to similar
performance behaviour as the reference one [13]. This class of transformation techniques has
been applied to design new lenses [14–17], including evolutions of the Luneburg lens towards
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more compact designs [18,19]. In these works, a curved part of the focal surface of the Luneburg
is transformed into a planar surface. The planar transformed surface of the new lens enables
the integration of traditional planar feeds such as phased array configurations. However, these
transformed lenses call for high values of refractive index, which can be difficult to implement.
An alternative design consists in using materials that can be found in nature [20,21]. However, as
mentioned above, such approaches lead to more complex and less flexible designs.

An alternative transformation technique to reduce the volume of the traditional Luneburg lens
has been presented by [22]. An asset of this radiator is that the focal point can be placed closer to
the center of the lens and thus leading to a more compact lens. It can be proven that, similar to
the Luneburg lens, the Gutman lens is free of spherical aberrations and achieves similar radiation
performance [22]. A first implementation of this type of lens has been presented in [23] where
a Gutman lens with wide scan and broadband performance has been synthesized by multiple
dielectric layers. In [24] a 3D GRIN Gutman lens has been designed and tested using additive
manufacturing utilizing a dielectric cubic periodic cell. However, in both configurations a planar
surface approximation of the lens is selected and resulted on aberrations for the offset beams.
All-metal periodic structures in a parallel plate waveguide (PPW) technology have been

extensively analysed in [25] where it is demonstrated that double-pin structures in a glide
symmetry topology, and especially when interleaved, can provide artificial dielectrics with
high index values and lower frequency dispersion in comparison with the single pin unit-cells.
For instance, in [26] a horn lens is designed using the glide symmetry cell in gap waveguide
technology where very low dispersion is achieved using the double-pin unit-cell. In [27] a
Luneburg lens has been implemented using a glide symmetry unit-cell at Ka-band and resulted
on a lens with wide field of view up to ±50◦. Moreover, the glide index cell has been applied to
design transformed lenses where high index values are needed. In [28] this cell is used to form
a very compact transformed lens. A new degree of freedom (DoF) of the double-pin topology
glide symmetry cell consists in interleaving topology of the top and bottom pins of the PPW. This
DoF can lead to even higher index values with low dispersion and this will be further discussed
in section 2.2.2.
In this work, a mm-wave 2D GRIN Gutman lens in an all-metal PPW implementation is

introduced, which can be of relevance in e.g. multi-beam satellite missions. The novelty of the
manuscript is twofold. First the GRIN Gutman lens that is presented uses all-metal artificial
dielectrics, thereby avoiding dielectric losses while simplifying manufacturing. Additionally, the
proposed design provides a wide field of view free of spherical aberrations while maintaining a
compact size. A design methodology is presented which can be applied to every all-metal GRIN
lens with circular symmetry in a PPW technology. The manuscript is organised as follows. The
operation of the Gutman lens is presented in Section 2 together with the design methodology
for synthesizing the lens. The lens performance is reported in Section 3. Conclusions are then
drawn in section 4.

2. Design methodology

2.1. Description of the GRIN Gutman lens

The Gutman lens is introduced in [22] as a modified Luneburg lens. It has the same dimensions as
the Luneburg lens, however the excitation source can be moved in smaller focal circles. This, in
turn, enables accommodating the feed network within the area that would otherwise be occupied
by a Luneburg lens. To calculate the required permittivity values along the surface of the lens,
Hamiltonian transformation optics are applied to the Luneburg lens based on ray tracing. The
corresponding distribution of the lens relative permittivity is provided by Eq. (1) where f is the
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focal distance, R the radius of the lens and r the spatial position from the origin.
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Based on Eq. (1), smaller focal distance f (focal circles) is associated with higher permittivity
values, εr, and therefore higher values for the effective index of refraction, neff , since the latter is
related to the dielectric permittivity according to neff =

√
εr. For the Luneburg lens, which is

obtained at the limit f = R, the index distribution along the lens varies from neff=1 to neff=1.4.
However, since smaller focal circles are selected, the required index varies and higher index
values are required to synthesize the lens. For instance, for a focal circle f = R/2, the index values
varies from neff=1 to neff=2.2 (see Fig. 1(a)) and for f = R/3 the index values varies from neff=1
to neff=3.1.

Fig. 1. (a) Effective refractive index neff of the Gutman Lens with focal arc f = R/2, (b)
PPW GRIN Gutman lens layout using an IGS unit cell (top view), (c) 2D cut view, p=2.4,
a=0.8, s=0.4, h’=1.9, h=4, w=12, all dimensions in mm.

In this work, we employ an example of a Gutman lens with focal circle f = R/2. To synthesize
the lens, modulated periodic structures comprised of metal pins in a PPW housing are utilized
as depicted in Fig. 1(b) and Fig. 1(c). Achieving a range that covers the highest required index
neff=2.2 with low dispersion is therefore requested to implement a lens with stable performance
across the entire Ku-band. An interleaved unit-cell has been selected to modulate the required
indices along the surface of the lens. This type of cell is an artificial periodic structure and will
be extensively analysed in section 2.2.
In order to provide efficient matching of the fields travelling from the feed to the edge of the

lens such that they can radiate into free space, a radiation horn flare is accommodated along the
periphery of the lens (see Fig. 1(b) and Fig. 1(c)). The excitation sources along the focal arc
of the lens are accommodated by virtue of removing a portion of the lens (see Fig. 1(a)). This
allows for increased compactness compared to the traditional Luneburg lens. Since the feeds are
placed along a focal circle that is smaller than the radius of the lens R, at their interface with the
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lens they experience an effective index of refraction larger than unity. Consequently, impedance
matching for the excitation feeds needs also to be addressed.

2.2. Interleaved glide symmetry unit cell

The maximum index value of the considered Gutman lens is neff=2.2 (at its center, r= 0). It
defines the highest value for the effective index of refraction that the artificial dielectric should
provide. For operation of the lens across a wide bandwidth, low frequency dispersion of the
artificial dielectric is also required. Glide symmetry double-pin all-metal structures in a PPW
[29] provide favourably high effective index values with low dispersion. As discussed next, an
interleaved glide symmetry (IGS) unit-cell is introduced here that results in maximum index
values up to neff=2.2 with dispersion stability ±0.05 across the entire Ku-band.

We commence by defining the PPW height, which in Fig. 2(a) is noted as h. In particular, in
order to avoid higher order modes the PPW height should be selected to be less than λ/2 where
λ is the free space wavelength at the highest operating frequency. Otherwise, larger values are
preferred in terms of ohmic losses and manufacturing tolerances. In the example considered here
we therefore define h=4 mm. We next select the dimensions of the square unit-cell, which in
Fig. 2(a) is marked as p. Lower values provide closer approximation to an artificial dielectric but
increased ohmic losses, reduced design flexibility as well as more demanding manufacturing
tolerances. Here we select p=2.4 mm, which corresponds to λ/10 at center frequency f = 12.5
GHz.

Fig. 2. (a) LoL propoagation (b) fakir unit cell - first DoF (c) dispersion and (d) effective
index values.

Once periodicity is introduced in the PPW housing by means of the pins, the phase velocity of
the propagating mode is reduced [30], leading to an increase of the effective index of refraction.
In order to calculate the effective index of refraction associated with the unit-cell, full wave
electromagnetic simulations are conducted using CST Microwave Studio. Periodic boundary
conditions are applied to the unit-cell along the tangential plane with an appropriate phase shift
imposed across opposing sides that corresponds to the propagation constant, β. The frequency
associated with the given propagation constant is the calculated by means of an eigenmode
solution. Repeating the process for the range of propagation constants, β, along the irreducible
Brillouin zone provides the dispersion curve associated with the unit-cell. Finally, the equivalent
effective index neff is derived from neff = cβ/2πf .

We next study the effective index of refraction as a function of the geometrical parameters of
the unit-cell. In order to reduce the geometrical degrees of freedom, we fix the cross sectional
edge of the pins to a suitable value in light of the unit-cell dimensions, here at a=0.8 mm. With
reference to Fig. 2(a), we then study the impact of the height, t, of the top metal post (green post
in Fig. 2(b)) on the equivalent index of refraction. Simulated dispersion curves and extracted
effective index of refraction are depicted in Fig. 2(c) and Fig. 2(d).
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The minimum height of the cell is tmin=0 mm and in the absence of lower pins, this leads to a
uniform PPW. The latter supports a pure TEM mode with dispersion coinciding with the line of
light (LoL) and hence an equivalent index of refraction neff=1. For large values of the pin height,
t, that approach the PPW height, h, high dispersion is observed. Thus, the maximum height of
the pin is selected at t=2.6 mm leading to neff=1.48, Fig. 2(d).

Another degree of freedom arises from the metal posts on the bottom part of the PPW section
placed in a glided symmetry position, Fig. 3(a) where g varies from g=0 mm to g=1.2 mm. The
last DoF is the interleaving between the top and bottom metal posts, Fig. 3(b) where g varies from
g=1.2 mm to g=2.09 mm (s=a/2). Simulated dispersion curves obtained for a fixed height of the
top metal post at t=2.6 mm and associated extracted effective index of refraction is depicted in
Fig. 3(c) and Fig. 3(d). As shown, varying the height g of the bottom post (red posts) from g=0
mm to g=1.2 mm leads to an increasing index of refraction up to neff=1.8. Then, from g>1.2 mm
to g=2.09 mm the metal posts of the top and bottom plate are interleaved and lead to maximum
index of neff=2.2. In conclusion, the combination of the fakir bed of nails and the interleaved
glide symmetry cell lead to an index coverage from neff=1 to neff=2.2 and the unit-cell can be
utilized to synthesize the Gutman lens.

Fig. 3. (a) Glide symmetry cell without interleaving (b) Glide symmetry cell with
interleaving (c) dispersion and (d) effective index values.

2.2.1. Misalignments

A parametric study on the misalignments of the bottom and top pins is valuable to evaluate
the impact of manufacturing imperfections. Here the sensitivity of the refractive index value is
studied for its nominal maximum value of neff=2.2 associated with the dimensions g=1.9 mm
and t=2.6 mm. On one parametric setup, the top pin is shifted through the diagonal direction (see
Fig. 4(a)). For the maximum shifted value of a=0.2 mm, the index increases and the dispersion
of the cell slightly increases.

Fig. 4. Parametric study on the misalignments of the interleaved unit-cell (a) top pin
diagonal shifting (b) top pin shifting along axis x .
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On another parametric setup, the top pin is shifted through axis x (see Fig. 4(b)). On this
configuration the impact of the shifting position of the cell on its index values is not significant in
comparison with the diagonal shifting, except for the extreme shifting value of t=0.2 mm.

2.2.2. High index unit cells

As discussed in section 2.2, the unit-cell with interleaved pins and glide symmetry can accommo-
date for effective index values that reach neff=2.2 required in the Gutman lens design. In order to
complete the study towards even higher values and further confirm the choice of the selected
glided symmetry cell, this section presents additional studies. In particular, we study the selected
unit-cell against its variant where the top and bottom pins do not interleave as well as a unit-cell
with a single pin. Results presented in Fig. 5(a) indicate that the refractive index value neff=1.4
of the single pin fakir unit-cell leads to high dispersion at Ku-band, while the double-pin cell
with glide symmetry and no interleaving between the top and the bottom pins [26], reduces the
dispersion. This is in agreement with the conclusions of [25] where the double-pin cell in a glide
symmetry topology is less dispersive compared to the single pin unit-cell.

Fig. 5. Index comparison of (a) single pin unit-cell vs glide symmetry cell without
interleaving (b) single pin unit cell vs glide symmetry cell with slight interleaving vs glide
symmetry cell with maximum interleaving.

Figure 5(a) further indicates that higher values of the effective index of refraction for these
unit-cells lead to high dispersion that can be impractical for lens applications. In contrast, the
selected unit-cell leads to significantly lower dispersion even for higher values of the effective
index of refraction. For instance, in Fig. 5(b) the interleaved double-pin glide symmetry cell
with dimensions t=2.6 mm and g=1.8 mm shows maximum index value neff=2.2 with very low
dispersion compared to the maximum value of the single pin cell. Moreover, if the height of the
top and bottom pins increases (t=3.1 mm, g=3.1), a maximum value of neff=3 is reached with
low dispersion.

2.3. Synthesizing the lens

Following the methodology described in section 2.2 a map of geometrical dimensions to effective
index of refraction is obtained. The next step is the definition of the geometrical dimensions to
synthesize the lens. At this point, a design methodology is proposed which can be applied in
every GRIN lens which has circular symmetry utilizing metal posts. The goal of the design is
to place the relevant metal posts of both top and bottom plates which represent the equivalent
indices of the Gutman lens along its surface.
The first design step is the discretization of the lens and is depicted in Fig. 6(a). While the

radius of the lens is equal to R=125 mm and the periodicity of the unit-cell is p=2.4 mm, for x ∈ A,
where A = {0,R} the discretization gives K=R/p=52 cells. Via exploiting the circular symmetry
of the lens, the analysis of the discretization can converge upon the area A = {X,Y} where
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X = {0,R} and Y = {−a/2, a/2}. Also, the design analysis can focus on the discretized data
which correspond to the to the neff values on the area A = {X, Y} and are approximately depicted
in Fig. 6(b). For x ∈ A, each interleaved glide symmetry unit-cell represents K discretized neff
values.

Fig. 6. (a) Lens discretization, (b) K discretized values of the bottom and top metal posts.

The next step is to extract index values from the dispersion graphs that have been calculated
and depicted in Fig. 2(d) and Fig. 3(d). For x ∈ A based on Eq. (1), the index distribution of
the Gutman lens is depicted in Fig. 7(a). Based on the dispersion study of the previous section,
the top and bottom metal posts need to be placed in the whole surface of the lens to mimic the
required indices of Fig. 7(a). As it is depicted in Fig. 7(b) the fakir bed of nails cell covers
only the area which can be represented by Afakir(cell)=Kn-K42=10 discretized values. These 10
discetized data represent the index range 1<neff<1.48. Thus, 10 index values are extracted from
the fakir unit-cell and are depicted in Fig. 8(a). Then, for the rest area until the center of the lens,
the glide symmetry cell is placed and Aglide(cell)=K42-0=42 index values are extracted and they
are depicted in Fig. 8(b). These 42 discretized data represent the index range 1.48<neff<2.25.
As a result, the required database for the calculation of the equivalent heights of the metal posts
on the surface of the lens is formed.

Fig. 7. (a) Required effective index values of the Gutman lens for x ∈ A, (b) unit-cell design
stages to form the required indices.

In the process of exploiting the circular symmetry of the lens, the next step is the design of a
K × K matrix with K= 52 rectangular metal posts of equal heights. This matrix is the quarter
part of the full lens matrix surface that is depicted in Fig. 9(a). The index values of the quarter
part of the matrix are depicted in Fig. 9(b) and its 3D view in Fig. 9(c). It is composed of K × K
rectangular metal posts with post width a=0.8 mm and periodicity p=2.4 mm. The height of
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Fig. 8. (a) Extracted index data from the dispersion of the fakir cell, (b) extracted index
data from the dispersion of the glide symmetry cell.

the posts is equal to h=2.1 mm and it is located through axis z. This is the maximum height of
the metal post on the bottom part of the lens and taking into account the dispersion study of the
previous section it is settled on the center of the lens. The metal posts are placed on the surface
of a circle which represents the bottom PPW plate and has a radius equal to R=125 mm.

Fig. 9. (a) K × K matrix designed for bottom metal pins with equal heights h, top view (b)
index distribution along its quarter symmetric surface (c) 3D K ×K matrix with equal height
bottom metal plates.

The final step is to calculate the required heights of the metal posts based on the dispersion data
calculated on the previous section. The index values neff along the axis X of the lens is known for
all the discretized positions from Fig. 8(a) and Fig. 8(b). The index values neff for Aglide(cell)=42
discretized heights g of the bottom metal posts are known and are depicted in Fig. 8(b). Thus,
by utilizing data extrapolation the values of Fig. 7(a) and Fig. 8(b), the bottom post heights g
along the axis X of the lens are computed and are shown in Fig. 10(a). For the rest 10 discretized
values, the data vector is filled with zeros as the height of the bottom metal plate is g=0 mm.
Thus, the height of the bottom metal posts has been calculated. The same procedure has been
applied for the calculation of the top plate heights and their heights are depicted in Fig. 10(b).
Through extracting the data of Fig. 10(a) and Fig. 10(b), two 2D splines (one spline for the

bottom and a second for the top plate pins) are designed and imported to the K × K matrix that
was designed with equal heights g of the bottom metal posts. For instance, in Fig. 11(a) the
bottom plate pins with equal heights are depicted. The 2D spline with the data of Fig. 10(a) is
imported and then was reproduced, rotated by 5◦ to create a surface. This surface represents
the modulation of the bottom pins of the PPW. A 2D view is also depicted in Fig. 11(b). The
elements that were out of the range of this surface were removed and the expected height of the
bottom pins of Fig. 10(a) is reached. The final modulated metal posts are depicted in Fig. 11(c)
where the pins are detached on the bottom circular metal plate of the PPW. The rest posts of the
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Fig. 10. Metal post heights of the lens along its X axis (a) bottom plate (b) top plate. The
height of the metal post correspond to the Z axis of Fig. 9(c).

bottom part are added by mirroring three times the part of Fig. 11(c) to compose the final matrix
of Fig. 9(a). The height of the top plate metal posts is calculated with the same methodology
where a 2D spline is imported with the data of Fig. 10(b) for the completion of the design of the
lens.

Fig. 11. (a) 3D view of the imported splines over the K ×K matrix of posts of equal heights,
(b) 2D splines representation over the K × K matrix, (c) final modulated metal posts over the
bottom metal plate of the PPW.

2.4. Compact feeds

The next challenge that needs to be addressed on the Gutman lens antenna is the selection and
the placement of the excitation source along its focal arc. In order to integrate the feeds along the
Gutman lens a significant part of the lens needs to be removed. In Fig. 12(a) the surface that has
been removed from the lens to integrate the feeds is depicted. Moreover, the focal arc of Gutman
lens (red arc) is smaller in comparison with the focal arc of Luneburg (blue arc). It needs to
be mentioned that the radii of both Luneburg and Gutman lens are similar and equal to R=125
mm. Thus, compact feeds in a PPW technology that can be integrated along the focal arc of the
Gutman need to be examined. Common feeds that have been used to excite a PPW all-metal lens
are traditional rectangular waveguides [31] or horn antennas [32]. However, the aperture of a
WR75 standard waveguide at Ku-band is equal to 0.79λ and its aperture is very large. One of the
goals of this study is to explore compact feeds with small apertures to integrate the maximum
amount of feeds along the focal arc of the Gutman which is equal to 6.3λ. The proposed solution
is the selection of the single ridge waveguide that is depicted in Fig. 12(b). The compact size of
the single ridge is based on the integration of a metal part inside a rectangular waveguide which
drops its cut-off frequency. The final single ridge has an aperture of 0.37λ and is twice more
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compact than a rectangular waveguide which has aperture 0.79λ. An example of the comparison
of feeds is shown in Fig. 12(b). The focal arc of the Luneburg lens allows the integration of
11 horn antennas while the focal arc of Gutman only 5 horns. The proposed solution of the
single ridge waveguide ends up in 12 feeds. The layout of the final demonstrator is depicted in
Fig. 12(a). Single ridge waveguide to a microstrip line transformer [33] connected with a 50 ohm
SMA connector is finally selected as the final feed. 15 feeds are placed along the focal arc of the
lens to complete the design.

Fig. 12. (a) Layout of the proposed final demonstrator (b) focal arcs of Luneburg and
Gutman lens with the integrated feeds.

3. Lens performance

The main advantage of the Gutman lens is the accommodation of the feeds inside the lens which
leads to a more compact size lens. This is achieved by removing a part of the original lens.
As larger part of the original lens is removed, more compact size and wider field of view can
be achieved. However, as larger parts are removed, the performance of the radiation patterns
is degraded. This is next demonstrated by studying the radiation patterns as progressively
part of lens is extracted. Three separate electromagnetic simulations are actualized using CST
Microwave Studio in order to test the broadside patterns at Ku-band while 3 different portions
of surfaces are removed from the lens. In Fig. 13(a) a small portion of 7% is removed with arc
angle on the periphery of the lens equal to a = π/10. In Fig. 13(b) a larger portion of 12.4% is
removed with arc angle on the periphery of the lens equal to a = π/4 and in Fig. 13(c) the largest
portion of 19% is removed with arc angle on the periphery of the lens equal to a = π/2.6. In

Fig. 13. Broadside beam representation with focal angle (a) a=π/10 (b) a=π/4 (c) a=π/2.6.
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Figs. 14(a)–(c) the E-field is depicted for the broadside beam at center frequency f = 12.5 GHz
for these 3 cases. For a = π/10 and a = π/4 the spherical wave input of the excitation source
is transformed successfully into a plane wave. Moreover, the plane wave that is formed, has a
uniform distribution. For a = π/2.6 the plane wave has aberrations because the highest portion
of the lens is removed. The corresponding radiation patterns are depicted in Figs. 15(a)–(c) for
the broadside beam for these 3 cases and it is noticed that for a = π/2.6 the side lobe level (SLL)
increases. Considering the performance across the entire Ku-band, higher arc angles results
in higher SLL. However, for the broadside beam, the SLL level is under -15 dB for the edge
frequency points as well as at the center frequency which is an acceptable value.

Fig. 14. E-field at center frequency f = 12.5 GHz for the broadside beam with focal angle
(a) a=π/10 (b) a=π/4 (c) a=π/2.6.

Fig. 15. Radiation patterns for broadside beam of Figs. 13(a)–(c) at Ku-band (a) f = 10
GHz (b) f = 12.5 GHz (c) f = 15 GHz

The same simulation procedure is followed to test the influence of the patterns for one of the
extreme beams at −58◦. The feed is placed at −60◦ and 3 separate electromagnetic simulations
are realized for a = π/10, a = π/4 and a = π/2.6 (see Figs. 16(a)–(c)). The validation of the scan
beam at −58◦ with maximum value of SLL at -12 dB defined the field of view of the lens at −58◦

Fig. 16. −58◦ scan beam representation with focal angle (a) a=π/10 (b) a=π/4 (c) a=π/2.6.
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with maximum scan loss value at 2 dB at the extreme beam. These conclusions can be extracted
from the representation of the E-field patterns for the extreme beam at −58◦ in Figs. 17(a)–(c) as
well as from the directivity patterns in Figs. 18(a)–(c). It is noticed from the E-field at center
frequency f = 12.5 GHz that for a = π/2.6 a nearly plane wave is formed for the opposite edge
direction of the beam which results to the appearance of side lobes. These side lobes can be
seen clearly in Fig. 18(b). Since the rest beams will be placed along the focal arc of the lens for
the fixed multi-beam radiation these side lobes will add interference between the main beams,
however an SLL value of -12 dB is acceptable. It needs to be mentioned that the pointing angle
for the beam at f = 10 GHz and f = 12.5 GHz is −58◦, even though the feed is placed on −60◦.
This shifting in the pointing angle of the beam comes from the slight dispersion of the unit-cell.

Fig. 17. E-field at center frequency f = 12.5 GHz for −58◦ scan beam with focal angle (a)
a=π/10 (b) a=π/4 (c) a=π/2.6.

Fig. 18. Radiation patterns for the −58◦ scan beam of Figs. 16(a)–(c) at Ku-band (a) f = 10
GHz (b) f = 12.5 GHz (c) f = 15 GHz.

Fig. 19. Directivity patterns at center frequency f = 12.5 GHz.
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Finally, the portion of 19% is removed from the lens in order to create the available area for
the placement of the rest feeds as the final demonstrator is a fixed multi-beam system. 15 feeds
are placed along the focal arc of the lens (see inset of Fig. 19) and the radiation patterns at the
center frequency f = 12.5 GHz are illustrated in Fig. 19. High directive beams are achieved with
3 dB losses and wide field of view up to ±70◦. The cross over level is approximately 7◦ between
contiguous beams and for the extreme beam at 70◦ the SLL equals to -10 dB.

4. Conclusion

In this study, the first graded index Gutman lens utilizing all-metal artificial dielectrics is
introduced. The IGS glide symmetry unit-cell is presented and it shows high index value with low
dispersion. This artificial dielectric is used to synthesize the lens and a novel design methodology
is extensively investigated. Interleaved glide symmetry geometries can open new horizons on
the design of periodic structures with high required index values. The radiation performance of
the lens is successfully tested and it ended up in the focusing of the input spherical wave source
on the periphery of the lens. The present study shows that the Gutman lens exhibits similar
radiation performance in comparison with the Luneburg with slightly higher side lobe level.
Its compact size is a significant advantage for spacecraft integration since it reduces the mass.
Finally, the design of all-metal artificial dielectrics results in low losses and the proposed lens
can find applications for satellite missions.
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