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ABSTRACT

Aims. Large amplitude MHD perturbations are generated in magnetized tenuous relativistically moving plasmas, such as winds emit-
ted by compact stellar objects or galactic nuclei, when a rapid change occurs at their boundaries or when an obstacle is present in
them. These perturbations may involve relativistic motions in the rest-frame of the unperturbed plasma. In this paper, we calculate the
characteristics and the structure of relativistic non-linear Alfvén waves.
Methods. We establish these properties for special-relativistic perturbations occurring in a particular type of non-linear waves, the
simple waves.
Results. We derive the conditions applicable to Alfvénic perturbations in a cold flow. We calculate the characteristics of these per-
turbations and the structure of wave trains of finite extent in the propagation direction of these characteristics, as observed in the
unperturbed fluid proper frame. We determine the velocity of the characteristics with respect to any observer. This velocity is found
to be a first integral, constant in time and space. This implies that relativistic Alfvénic perturbations are channeled, in the unperturbed
fluid proper frame, by the unperturbed magnetic field and travel along this field neither steepening nor breaking into shocks. For finite
wave trains, the Lorentz factor is found to be limited by some maximum value that we calculate and that depends on the ratio of
proper magnetic energy density to material energy density in the unperturbed fluid.

Key words. magnetohydrodynamics (MHD) – waves – relativistic processes – planet-star interactions

1. Introduction

Obstacles moving in classical MHD winds create disturbances
in different propagation modes, among them Alfvénic pertur-
bations that are known to be channeled by the magnetic field
and are associated with similarly propagating current systems
forming a so-called Alfvénic wake. It is this channeling prop-
erty, which avoids the progressive spreading of the currents, that
makes Alfvénic disturbances of particular interest. The wake
created by the motion of the satellite Io in Jupiter’s magneto-
sphere leads to Io-associated jovian radio emissions. Mottez &
Heyvaerts (2011a) considered whether a small body embedded
in a pulsar relativistic wind could develop a similar wake and
demonstrated that the associated current system would have sig-
nificant dynamical effects on small enough bodies (Mottez &
Heyvaerts 2011b). Dense ejecta thrown at relativistic speeds into
a tenuous magnetized environment would involve shock per-
turbations as well as Alfvénic ones. Such situations could be
met, for example, in the cannon ball model of gamma-ray bursts
(Dado et al. 2002) or in three-dimensional versions of the model
developed by Daigne & Mochkovitch (1998). The generation of
Alfvénic perturbations in relativistically moving tenuous flows is
likely to be an ubiquitous phenomenon from which a number of
observable phenomena may originate, caused by the associated
electric currents, provided they remain channeled by the field.
When these currents become either unstable or dissipative, par-
ticle acceleration is expected to occur and radio or possibly more
energetic radiation is emitted.

It is unknown whether, as classical Alfvén waves, relativis-
tic Alfvénic perturbations travel along the unperturbed magnetic
field without steepening. This is because relativistic waves are
compressive, owing to the Lorentz contraction, and fluid iner-
tia in the observer’s frame varies with the Lorentz factor of the
fluid motion. The magnetic field intensity and direction also vary
with the fluid motion. This leads to question whether relativis-
tic non-linear Alfvénic waves may experience a different propa-
gation regime than non-relativistic ones, possibly steepening or
escaping channeled propagation. These are the main questions
considered in this paper.

Growing attention is given to MHD processes in tenuous
highly magnetized plasma, where the magnetic energy density is
comparable to or higher than the rest mass energy density and the
classically-defined Alfvén speed (9) is higher than the speed of
light. For example Lyubarsky (2005) studied the dynamics of re-
connection under these circumstances and Mazur & Heyl (2011)
analyzed the propagation of non-linear electromagnetic waves in
the magnetospheres of magnetars, and found that some types of
non-linear perturbations propagate without breaking into shocks.
A number of relativistic-theoretical works have considered a
covariant formulation of both MHD and MHD wave propaga-
tion (Pham Mau Quan 1965; Lukacevic 1968). In this paper,
we adopt the conventional, but nevertheless Lorentz-invariant,
3+1 formulation in which space and time appear in the equations
on a different footing.

In connection with the non-relativistic wake of Io in Jupiter’s
magnetosphere, Neubauer (1980) showed that on each branch of
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the wake, where waves propagate in an unique sense, a certain
vectorial quantity is constant in space and time. The existence of
this first integral makes it possible, knowing the potential drop
across the wake, to calculate the electric current that the wake
supports (Neubauer 1980). Discussing the interaction of small
bodies with a pulsar wind, Mottez & Heyvaerts (2011a) extended
this result to linear perturbations on a relativistic flow.

In this paper, we consider fully non-linear, but special,
Alfvénic perturbations that we refer to as simple waves.

2. Simple waves

Methods to study non-linear waves have been described in
a number of textbooks, such as Jeffrey & Taniuti (1964) or
Zel’dovitch & Raizer (1966). The structure of so-called simple
waves is assumed to be such that all variables generated in the
perturbation at a point r and time t of a certain reference frame
are functions of only one quantity characterizing the perturba-
tion, u(r, t), which we refer to as the master variable. This often-
used assumption (Zel’dovitch & Raizer 1966; Broer & Sarluy
1964; Jeffrey 1976) selects non-linear perturbations propagating
in a unique direction. The master variable determines all phys-
ical quantities Xi(r, t), regardless of whether they are scalar or
vectorial. They depend on r, t indirectly through u(r, t)

Xi(r, t) = Xi (u(r, t)). (1)

The master variable u may be, but need not be, one particular
physical variable of the perturbation. Its nature need not even be
specified, provided it parametrically determines all the physical
variables in terms of relations such as Eq. (1). In sound waves,
it could be chosen to be either the local density or the local
pressure. The choice is less straightforward for MHD waves.

Non-linear simple waves are well-known in the hydrody-
namical regime, such as for example acoustic waves propagating
in an isentropic gas (Zel’dovitch & Raizer 1966). When they be-
come non-linear, acoustic waves, as well as waves of many other
modes such as compressive MHD waves, steepen and then even-
tually break, forming shocks in a finite time. Jeffrey & Taniuti
(1964) looked for solutions that are static in some frame moving
at a given propagation speed V . They illustrate their method by
considering waves depending on only one spatial coordinate x.
Such planar solutions are simple waves in the sense defined by
Eq. (1), the master variable being (x−V t). Their approach, which
excludes the possibility of wave steepening, is less general than
the one developed by Zel’dovitch & Raizer (1966), in which
the dependence of the master variable on space and time remain
unspecified.

The ansatz given in Eq. (1) could a priori describe a number
of different wave geometries. We show however in Appendix B
that when Eq. (1) also applies to vectorial quantities, simple
Alfvén waves should be planar. Perturbations endowed with
other types of symmetry, such as for example cylindrical sym-
metry, may also depend on only one variable, the distance to
the symmetry axis in this case, but could be considered simple
only in a generalized sense because vectorial quantities would
then not be functions of only this master variable. The simple
wave approach would also be useful as a local representation of
quasi-planar structures in which the scale of the perturbation is
much smaller in the direction of propagation than in some other
direction.

We assume the unperturbed fluid to be homogeneous and in
uniform, possibly relativistic, motion with respect to some arbi-
trary inertial rest-frame R. The traveling perturbation is suppos-
edly of finite extent along the direction of propagation, which

implies that any given piece of the fluid has been, or will be, in
an unperturbed state at some time.

The instantaneous rest-frame of a piece of fluid is its proper
frame, denoted by R0, and physical variables observed in this
frame are proper variables, usually denoted by a subscript 0, as
in ρ0. Physical quantities associated with the unperturbed fluid,
as observed from the general frame R, are denoted by a sub-
script r, as in ρr . The proper frame of the unperturbed fluid, the
unperturbed fluid frame, is denoted by Rr0.

In this paper, we only study non-linear relativistic simple
waves of the Alfvénic type, which might form current-density-
conserving (coherent) wakes, while compressive MHD waves of
the fast mode type might not. We define the term Alfvénic in the
non-linear context in Sect. 6.

The stability of our non-linear pure mode solutions should be
assessed because when an instability develops, it may become
inappropriate to consider a pure mode. We note that stability
issues are not however discussed in this paper. It has been re-
ported (Boynton & Torkelsson 1996; Fukuda & Hanawa 1999;
Medvedev 1999; del Zanna et al. 2001; Folini et al. 2004) that
classical non-linear MHD perturbations may suffer a paramet-
ric instability, regardless of whether they either reduce to Alfvén
waves in the linear limit (though otherwise supporting magnetic
pressure gradients) or are full-fledged non-linear Alfvén waves
(with constant magnetic field moduli). The mother wave excites
a compressive perturbation and generates a daughter Alfvén
wave. Such instabilities develop in both the fluid and kinetic
regimes.

3. Equations of perfect MHD in a tenuous medium

Special-relativistic MHD equations for a cold, perfectly con-
ducting and inviscid plasma can be written in an arbitrary inertial
frame R (Birkinshaw 1996; Heyvaerts 2003) as

∂t (γρ0) + div γρ0u = 0 (2)

∂t

(
γ2ρ0 u

)
+ div

(
γ2ρ0 vv

)
= ρeE + j × B (3)

∂t B = −rot E (4)

rot (B/μ0) = j + εo ∂t E (5)

E + u × B = 0 (6)

ε0 divE = ρe (7)

div B = 0. (8)

An event is labeled in R according to its position r and its time
of occurence t. The electric and magnetic fields are denoted E
and B. The fluid velocity is u and its associated Lorentz factor
is γ. The variable ρ0 is the proper mass density, that is, the mass
density measured in the instantaneous rest-frame R0 of the fluid.
Owing to Lorentz length contraction, the apparent mass density
in R is γρ0. The electric current density and the charge density
in R are j and ρe, respectively. We assume the fluid to be cold, so
that no pressure gradient force appears in the equation of motion
in Eq. (3). Our equations are written in the MKSA system of
units, where the magnetic permeability of vacuum is μ0 and its
electric permittivity is ε0.

The linear propagation of MHD waves involves the classical
Alfvén speed

cA0 =
(
B2

0/μ0ρ0

)1/2
. (9)

In dense fluids, this velocity is much less than the speed of
light c. Conversely, in tenuous fluids where the magnetic energy
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density is much higher than the rest-mass energy density, the
classical Alfvén speed is much higher than c. Waves propagat-
ing in this regime are said to be relativistic MHD waves. It can be
easily checked that the modulus vA0 of the propagation speed of
linear relativistic Alfvén waves is related to the classical Alfvén
speed cA0, defined in Eq. (9), by

vA0 =
cA0 c(

c2
A0 + c2

)1/2
· (10)

This velocity is close to cA0 when cA0 � c and close to the
speed of light when cA0 � c. In this latter case, the displacement
current cannot be neglected in Ampère-Faraday’s Eq. (5). More
generally, the charge density is not negligible in relativistically
moving fluids and Coulomb’s Eq. (7) is needed to determine it.
The shorthand notation ∂t designates the partial derivative with
respect to the time t in R. Similarly, ∇ is the space derivative
with respect to position r in R. The modulus of a vector A is de-
noted A. Second-rank tensors in a three-dimensional space are
denoted by boldfaced script letters. The tensor product of two
vectors is denoted similarly and U is the unit second rank ten-
sor. The Lagrangian derivative with respect to time following
the motion of velocity u is denoted dt

dt = ∂t + u · ∇. (11)

Faraday’s equation in Eq. (4) implies that div B is a constant
in time, and then vanishes because it initially vanished. The
solenoidal equation in Eq. (8) is only needed to specify this ini-
tial condition. For this reason, it may be ignored in the following
developments and only be used as a constraint of the structure
of the magnetic field. The electric field can be eliminated from
the system of equations in Eqs. (2)−(7) and expressed in terms
of the velocity and the magnetic field using the perfect MHD re-
lation in Eq. (6). The electromagnetic force density is first ex-
pressed in terms of the electric and magnetic fields E and B by
using Ampère’s and Coulomb’s equations in Eqs. (5) and (7).
This gives (Jackson 1975)

μ0c2 (ρeE + j × B) = −dt (E × B) + (u · ∇) (E × B)

+ c2 div
(
BB −

(
B2/2

)
U
)
+ div

(
EE −

(
E2/2

)
U
)
. (12)

Equation (6) implies that E2 = B2v2⊥ and E × B = B2u⊥. The
subscripts ⊥ and ‖ respectively refer to components orthogo-
nal or aligned with the direction of the local and instantaneous
magnetic field such as, for example

u‖ = (B · u) B/B2 u⊥ = u − (B · u) B/B2. (13)

Using Eq. (6), the force density in Eq. (12) is expressed only
in terms of B and u. As a result, the set of Eqs. (2)−(7) re-
duces to the induction equation and the number and momentum
conservation equations, involving only B, u, and ρ0

dt (γρ0) + γρ0 div u = 0 (14)

μ0γρ0c2 dt (γu) + dt

(
B2u⊥

)
+ B2u⊥ div u + ∇

(
c2B2/2γ2

)
+∇

(
(B · u)2 /2

)
− (B · ∇)

(
c2B/γ2 + (B · u) u

)
= 0 (15)

dt B − (B · ∇) u + B div u = 0. (16)

4. Equations of simple waves

In a simple wave, all physical quantities observed in some rest
frame R are functions of the unique master variable u which de-
pends on the position and time in this frame. Solving equations
Eqs. (14)−(16) first amounts to determining this function u(r, t).
This solution reveals the characteristics of the non-linear motion,
which contain all the information that we need to know about
non-linear wave propagation and steepening, if any. The func-
tions that determine the physical quantities in terms of the master
variable can then be found. Denoting by du the derivative with
respect to u, the usual vector operators acting on a variable that
depends on u(r, t) can be expressed as

div A = ∇u · du A (17)

(B · ∇) A = (B · ∇u) du A (18)

∇F = ∇u duF (19)

curl A = ∇u × du A. (20)

Under the simple wave ansatz, the system of Eqs. (14)−(16)
becomes

du (ln (γρ0)) dtu + duu · ∇u = 0 (21)(
μ0γρ0c2 du (γu) + du

(
B2u⊥

) )
dtu

+B2u⊥ (duu · ∇u) + du

(
B2/2γ2 + (B · u)2/2

)
∇u

−
(
du

(
c2B/γ2 + (B · u) u

) )
(B · ∇u) = 0 (22)

duB dtu − (B · ∇u) duu + B (∇u · duu) = 0. (23)

The vectorial Eqs. (22) and (23) must be projected onto some set
of basis vectors. A moving set based on the directions of the lo-
cal and instantaneous magnetic field and plasma acceleration ap-
pears to be the most appropriate. We define the three projection
vectors by

eB = B/B, e× = eB × duu, and e⊥ = e× × eB. (24)

These vectors are orthogonal to one another but, except for eB,
they are neither unit vectors nor dimensionless when u is not
assigned the dimension of a velocity. The vector e⊥ is in fact the
component of duu perpendicular to B

e⊥ = (duu)⊥. (25)

However, e⊥ is not the derivative with respect to u of u⊥. These
basis vectors are local and vary with u, that is, with both position
and time. The three projections of the induction equation given
in Eq. (23) on these vectors are

(duu)⊥ · ((duB)⊥ dtu − (duu)⊥ (B · ∇u)) = 0 (26)

(eB × (duu)⊥) · (duB)⊥ = 0 (27)

(eB · duB) dtu − (eB · duu) (B · ∇u) + B ∇u · duu = 0. (28)

Equation (28) can also be given in the form of the flux
conservation equation

du (ln B) dtu + (duu)⊥ · ∇u = 0. (29)
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The projections of the equation of motion in Eq. (22) on the
vectors e⊥, e×, eB provide us with the three equations[(
μ0γ

2ρ0c2+B2
)

e2
⊥ +

(
μ0γρ0c2duγ + duB2/2

)
(u · e⊥)

]
dtu

−
[(

c2/γ2
)
(e⊥· duB)+2(B · u) e2

⊥+(u · duB) (u · e⊥)
]

(B·∇u)

+
[
du

(
c2B2/2γ2

)
+ du

(
(B · u)2/2

)]
(e⊥ · ∇u) = 0 (30)[

((e⊥ × u⊥) · eB)
(
μ0γρ0c2duγ + duB2/2

)]
dtu

− [((e⊥ × u⊥) · eB) (u · duB)] (B · ∇u)

+
[
du

(
B2/2γ2 + (B · u)2/2c2

)]
(e× · ∇u) = 0 (31)[

eB · γρ0 du (γu)
]

dtu = 0. (32)

The system of seven equations generated from Eqs. (21)−(23)
by projecting onto the vectors eB, e⊥, and e× leads to Eqs. (21),
(26), (27), (29)−(32). As a result of Eq. (27), the vectors (duu)⊥
and (duB)⊥ are parallel to each other and Eq. (26) effectively
projects onto only one axis and can be written in the form of the
scalar relation

(e⊥ · (duB)⊥) dtu − (e⊥ · (duu)⊥) (B · ∇u) = 0. (33)

Equation (27) can be replaced by Eq. (33), leaving us with six
equations.

5. Alfvénic perturbations

The remaining six equations in Eqs. (21), (29), (33), (30), (31),
and (32) can be regarded as a linear homogeneous system for the
four unknowns dtu, (e⊥ · ∇u), (e× · ∇u), and (eB · ∇u). Since we
wish to identify propagative solutions, dtu should not identically
vanish, for otherwise the perturbation would simply be advected
by the fluid. Since Eq. (32) involves only the unknown dtu,
the factor of this variable should vanish. Equation (34) be-
low results from substracting Eq. (29) from Eq. (21). With this
slight change, Eqs. (21), (29), (33) (30), (31), and (32) can be
respectively written as

T1 dtu − K1 (eB · ∇u) = 0 (34)

T2 dtu + K2 (e⊥ · ∇u) = 0 (35)

T3 dtu − K3 (eB · ∇u) = 0 (36)

T4 dtu + A (e⊥ · ∇u) − K4 (eB · ∇u) = 0 (37)

T5 dtu + A (e× · ∇u) − K5 (eB · ∇u) = 0 (38)

T6 dtu = 0 (39)

where

T1 = du(ln (B/γρ0)) K1 = eB · duu (40)

T2 = du (ln (B)) K2 = 1 (41)

T3 = e⊥ · duB K3 = B e2
⊥ (42)

T4 = 2
(
μ0γ

2ρ0+B2/c2
)

e2
⊥+

(
μ0ρ0 duγ

2+duB2/c2
)

(u · e⊥) (43)

K4 =
(
2B/γ2

)
(e⊥ · duB) +

(
4B/c2

)
(B · u) e2

⊥

+
(
2B/c2

)
(u · duB) (u·e⊥) (44)

T5 = ((e⊥ × u⊥) · eB)
(
μ0ρ0c2duγ

2 + duB2
)

(45)

K5 = ((e⊥ × u⊥) · eB) 2B (u · duB) (46)

T6 = eB · du(γu) (47)

A = du

(
B2/γ2 + (B · u)2/c2

)
. (48)

The system of equations in Eqs. (34)−(39) should have a
non-obvious solution and be consistent with a non-identically-
vanishing dtu. To achieve this, it is necessary that all the deter-
minants of the (4 × 4) minors extracted from its (6 × 4) matrix
in Eq. (49) vanish. If only a single one of them were to differ
from 0, the corresponding homogeneous system of four equa-
tions for four unknowns would be a Cramer one, allowing only
for the obvious solution. The rank r of the system is otherwise
less than 4, which means that r column vectors, which we might
consider to be the r first ones, form a linearly independent set,
but that no larger set of column vectors does. Since any of the
(r + 1) . . .n column vectors depend on the first r ones, any lin-
ear combination of the (r + 1) . . .n column vectors may be ex-
panded on the basis formed by the r first ones. This means that
the system has a solution for arbitrary values of the unknowns
associated with columns (r + 1) . . .n and thus has non-obvious
solutions. The matrix of the system (34)−(39) is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1 0 0 −K1

T2 1 0 0
T3 0 0 −K3

T4 A 0 −K4

T5 0 A −K5

T6 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

There are fifteen (4 × 4) minors, each of which is formed by
suppressing two lines from the matrix in Eq. (49). The last line
of this matrix represents Eq. (32). Since, for physical reasons
explained above, dtu should not vanish, the vanishing of T6 is
a necessary condition to obtain a propagating solution. We then
demand that

eB · du(γu) = 0. (50)

We must now ensure that all 4 × 4 determinants extracted from
the five first lines vanish. The determinant of the minor formed
by the first four lines obviously does. In all other minors, the
third column consists of zeroes except for the bottom line, where
the element is A. These determinants are then all proportional
to A and therefore

A = 0 (51)

is a sufficient condition for the system represented by the ma-
trix in Eq. (49) to have non-obvious solutions. The condition
in Eq. (51) is however not a necessary one. Other non-obvious
solutions could be obtained by imposing conditions other than
Eq. (51). They would describe MHD perturbations that are com-
pressive, even in the classical limit. As explained in the intro-
duction, no coherent electric current wake is expected to result
from the propagation of these waves. We therefore concentrate
on the solutions characterized by Eq. (51) which, for the reasons
explained below, correspond to Alfvénic perturbations.

The condition in Eq. (51) is mathematically sufficient to find
solutions of the equations represented by the five first lines of
the matrix in Eq. (49) in which dtu, (e⊥ · ∇u), (e× · ∇u), and
(eB · ∇u) do not all vanish. However, this is physically insuffi-
cient, since it only warrants the existence of a solution to the five
first equations in which the variable (e× · ∇u) could be given a
non-zero value, all other variables possibly vanishing. However,
as noted earlier in this section, the variable dtu should also have
a non-vanishing value if the solution is to have the character of
a propagating wave. Supplementary conditions, which we estab-
lish in Sect. 7, are necessary to achieve this. The system of the
five first lines of Eq. (49) should then be of a rank strictly less
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than 3 to yield a physically meaningful solution. Having adopted
the condition in Eq. (51), all the 3 × 3 minors extracted from the
5 × 3 matrix obtained by suppressing the third column and the
last line in Eq. (49) should then also vanish. Since its second col-
umn has only one non-zero element, we need only demand that
all 2× 2 determinants extracted from the 4× 2 matrix formed by
the first and fourth column of Eq. (49) with the second and sixth
lines suppressed should vanish. This amounts to demanding that
the equations represented by the lines 1, 3, 4, and 5 of Eq. (49)
with A = 0 be compatible.

6. Constancy of the proper field modulus

The condition in Eq. (51) defines solutions of the Alfvénic type,
which is justified by the consideration of the classical limit
c→ ∞. Equation (48) shows that in this limit Eq. (51) simplifies
to dB/du = 0, which is known to be the condition defining non-
linear classical Alfvén waves (Neubauer 1980). In these waves,
the modulus of the magnetic field is constant all over space and
time. When motions are relativistic, as considered here, the field
modulus is not constant in the chosen reference frame R. Its
structure is defined by Eq. (51), that is, from Eq. (48), by

du

(
B2/γ2 + (B · u)2/c2

)
= 0. (52)

We may however suspect that the proper field modulus (observed
in the fluid’s instantaneous rest frame) should be constant be-
cause the frame of observationR could always be chosen to coin-
cide, at the considered time, with the instantaneous rest frameR0
of some fluid element. In the vicinity of this fluid element, the
motion is, for a while, non-relativistic. That the modulus B0
of the field in the instantaneous rest frame is constant can be
shown formally by noting that under the perfect MHD condi-
tion in Eq. (6), B2

0 equals the relativistic invariant B2 − E2/c2 be-
cause E vanishes in R0. This invariant is readily calculated in the
observation frame because perfect MHD implies that E = B× u,
hence

E2 = v2B2 − (u · B)2 . (53)

The invariant B2 − E2/c2 then is

B2
0 = B2/γ2 + (u · B)2 /c2. (54)

From Eq. (52), this quantity is indeed seen to be constant with u,
that is with space and time.

7. Structure of the perturbation

The vanishing of the mixed product in Eq. (27) indicates that the
vectors (duu)⊥ and (duB)⊥ are parallel. Their ratio, q, is given by
Eq. (26)

q ≡ (duB)⊥
(duu)⊥

=
B · ∇u
du/dt

· (55)

We now establish the conditions ensuring that Eqs. (34), (36),
(37), and (38) are indeed compatible, given Eqs. (51) and (50).
These conditions constrain the relations between physical vari-
ables in a way that is specific to this particular type of perturba-
tion. The reduction of Eqs. (34), (36), (37), and (38) to relations
between physical variables is outlined in Appendix A.

The ratio q defined in Eq. (55) describes the correlated vari-
ations in (duu)⊥ and (duB)⊥. It is calculated in Appendix A. The
solution yields the relation

(duB)⊥ +
γ2

c

(
(B · u)

c
+ s

(
B2

0 + μ0ρ0c2
)1/2

)
(duu)⊥ = 0, (56)

where s is a sign related to the sense of propagation of the
wave along the field. The velocity perturbation has a component
aligned to the local and instantaneous magnetic field, which we
represent by the variable

Y ≡ (B · u) /c. (57)

A differential equation relating Y to the Lorentz factor γ of the
perturbed flow is obtained in Appendix A. It can be written as

du (γY) + s
(
B2

0 + μ0ρ0c2
)1/2

duγ = 0. (58)

Equation (34) describes the variations in the mass to flux ratio. In
Appendix A, this equation is reduced to a relation between the
proper mass density and the field-aligned velocity component,
which eventually becomes the constancy of the proper mass
density

ρ0 = ρ0r . (59)

To summarize, the rank of the global system of six equations
represented by the matrix in Eq. (49) is 2 provided the rela-
tions in Eqs. (56), (58), (59), (51), and (50) are satisfied. The
system of equations in Eq. (49) can be reduced to any one of
the four equations that give, from Eq. (55), B · ∇u in terms
of dtu and Eq. (35), which gives e⊥ · ∇u also in terms of dtu.
The variables e× · ∇u and dtu can be fixed arbitrarily. A number
of physical consequences on non-linear relativistic Alfvénic dis-
turbances can be derived from these relations. In particular, we
have already shown that the proper mass density and the mod-
ulus of the proper magnetic field are constant in these Alfvénic
perturbations. Equation (58) can be integrated into

γ
(
Y + s

(
B2

0 + μ0ρ0c2
)1/2

)
= D, (60)

where D is some integration constant. The proper choice of this
constant is subtle because, for a given value of D, the solution
is not defined for all values of γ from 1 to infinity. The integra-
tion constant should be chosen such that the relation (60) applies
to the unperturbed state, which must definitely be in the range
of the physically meaningful solution if, as assumed here, any
fluid element is, at some time, in the unperturbed state. We note
that this would not be so in an infinite wave train. We define ur
to be the velocity of the fluid in this unperturbed state, γr the
corresponding Lorentz factor, and Br the unperturbed magnetic
field, all of which are observed in the chosen reference frame R.
Equation (60) then becomes

γ
(
Y + s

(
B2

0 + μ0ρ0c2
)1/2

)
= γr

(
Yr + s

(
B2

0 + μ0ρ0c2
)1/2

)
. (61)

The modulus B of the apparent field (i.e. the field seen in the rest
frame R) can then be calculated as a function of the change in
the Lorentz factor, δ = γ − γr, from Eq. (61) by using Eqs. (54)
and (57)

B2 = B2
r − μ0ρ0c2 δ2 + 2γr

(
B2

0 − s Yr

(
B2

0 + μ0ρ0c2
)1/2

)
δ. (62)

The right hand side of Eq. (62) is not positive for any value
of δ, which limits the set of physically acceptable values of γ.
Moreover, the conservation of flux imposes that the modulus
of the magnetic field remains larger than some strictly positive
value, implying that this provides a more stringent constraint
than merely the positivity of B2. This can be seen by considering
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the solenoidal Eq. (8), which, according to Eq. (17), transforms
under the simple wave ansatz into

dB
du
· ∇u = 0. (63)

Equation (63) implies that B·∇u/|∇u| is a constant if the direction
of ∇u is independent of u, that is if the geometry of the pertur-
bation is planar. It is shown in Appendix B that this is indeed so.
The constraints on the values of γ as observed in the unperturbed
fluid frame are discussed in Sect. 9.

8. An explicit solution

The relations between physical variables in Alfvénic perturba-
tions result from Eqs. (56), (58), (59), (54), and (50). To be
specific, we set the observer’s frame to the unperturbed fluid
frame Rr0. The writing of these relations is simplified by
introducing

B = s
(
B2

0 + μ0ρOc2
)1/2
. (64)

In the frame Rr0, Eq. (61) reduces to

γY + B (γ − 1) = 0. (65)

In Eq. (56), the perpendicular direction refers to the local and
instantaneous field. A fixed reference frame is preferable. We
define it such that its unit vector en is aligned with the com-
mon direction of the normal to the phase planes, the planes
of constant u (Appendix B). The projection of the unperturbed
field onto a phase plane defines another unit vector e2. A third
vector e1 forms with e2 and en a direct orthonormal frame of
unit vectors, in which the unperturbed field can be written as
B0 = B0 sin θ e2 + B0 cos θ en. In this frame, the perturbed mag-
netic field is written as B = B1 e1 + B2 e2 + Bn en, where, from
Eq. (63), Bn = B0 cos θ is constant. The velocity field is simi-
larly expanded as u = v1 e1 + v2 e2 + vn en. It is a simple matter to
express Eqs. (56), (65), and (50) in terms of the variables v1(u),
v2(u), vn(u), B1(u), and B2(u). It appears that the Lorentz factor γ
of the flow, or the modulus v of the fluid velocity, could be cho-
sen as the master variable, wherever they vary monotonically.
After some algebra, we obtain the system

c
dB1

dv
− γ

2v

c
B1 + γB

dv1
dv
= 0 (66)

c
dB2

dv
− γ

2v

c
B2 + γB

dv2
dv
= 0 (67)

γB
dvn
dv
= B0 cos θ

γ2v

c
(68)

B1v1 + B2v2 + Bnvn + c B
γ − 1
γ
= 0 (69)

v1
dB1

dv
+ v2

dB2

dv
+ B
v γ2

c
= 0. (70)

The initial conditions that apply when v = 0 are v1 = v2 =
vn = B1 = 0 , B2 = B0 sin θ. This again assumes that the pertur-
bation forms a finite wave train. Equations (66)−(68) can then
be straightforwardly integrated, giving B1, B2, and vn in terms
of v1, v2, and γ(v). These expressions of B1 and B2 are then
inserted into Eqs. (69)−(70). The former gives v2 in terms of
v21 + v

2
2 and γ and the latter then becomes a differential equation

for (v21+v
2
2)(v) that can be integrated. From this solution, v2 and v21

can be expressed in terms of γ. This gives

B1 = − Bγ
v1
c

(71)

B2 = γ
(
B0 sin θ − B

v2

c

)
(72)

vn = c
B0 cos θ

B

(
γ − 1
γ

)
(73)

v2 = c
B2

0 sin2 θ + μ0ρ0c2

B0 B sin θ

(
γ − 1
γ

)
(74)

v21 = c2 (γ − 1)
γ2

1

B
2
B2

0 sin2 θ
· · ·

· · ·
[
2 B2

0 B
2
sin2θ − (γ − 1)

(
B

2 − B2
0

) (
B

2 − B2
0 cos2θ

)]
. (75)

In the linear approximation, vn, v2, and B2 − B0 sin θ are negligi-
ble, while v1 = ±v. In the non-linear relativistic regime, the ratio
v1/B1 is smaller by a factor γ than in the linear regime. Velocity
components in the en and e2 directions are caused by non-linear
effects and scale similarly with γ. In the limit B2 � μ0ρ0c2, these
two components of the velocity add up vectorially such that the
sum is almost parallel to the unperturbed magnetic field.

In the classical limit, Eqs. (74) and (75) become
approximately

v2 = sv2/ (2 sin θcA0) (76)

v21 = v
2
(
1 − v2/

(
4 sin2 θc2

A0

))
. (77)

In the linear regime, when v is much smaller than vMV =
2 sin θ cA0, the polarization of the wave is in the e1 direction.
However, when the modulus v of the velocity builds up, the
polarization rotates progressively toward the e2 direction. This
transfer of polarization only becomes complete when v reaches
the limit velocity vMV. Otherwise, the polarization change re-
verses when v starts diminishing. Since in this non-relativistic
regime both Bn and B are conserved, the non-linear wave ex-
hibits arc-polarization (Barnes & Hollweg 1974; Sonnerup et al.
2010).

9. Constraints on the fluid’s Lorentz factor

Equation (62) is most simply expressed in the proper frame of
the unperturbed fluid, Rr0, where Yr0 = 0, γr0 = 1, and Br0 = B0.
It becomes in this frame

B2 = γ2B2
0 −

(
B2

0 + μ0ρ0c2
)

(γ − 1)2. (78)

To each value of B corresponds one value of γ, which is the
largest root of Eq. (78).

As mentioned in Sect. 7, the normal component Bn of the
magnetic field is constant over space and time. In the frame Rr0
its value is B0 cos θ, where θ is the angle between ∇u and B0.
Thus, the square of the field modulus remains bounded from
below by B2

0 cos2 θ. Considering Eq. (78), this implies that the
Lorentz factor γ should, in that frame, remain less than some
upper limit γMB, namely

γMB =

⎛⎜⎜⎜⎜⎝1 +
B2

0

μ0ρ0c2

⎞⎟⎟⎟⎟⎠ + B0√
μ0ρ0c2

⎛⎜⎜⎜⎜⎝ B2
0

μ0ρ0c2
+ sin2 θ

⎞⎟⎟⎟⎟⎠
1/2

. (79)

For ultrarelativistic Alfvén waves (c2
A0 � c2), this is a large

limit, equal to γMB = 2c2
A0/c

2. For classical waves (c2
A0 � c2)

A128, page 6 of 9



J. Heyvaerts et al.: Non-linear relativistic Alfvén waves

and a large enough angle, such that sin2θ > c2
A0/c

2, this corre-
sponds to a large maximum speed, which is approximately equal
to vMB ≈ (2 sin θ c cA0)1/2. For a very small angle θ, such that
sin2θ < c2

A0/c
2, the modulus of the fluid velocity is constrained

to remain bounded by vMB≈2cA0.
The solution is also constrained by the condition that v21,

given by Eq. (75), be positive. This is so provided that γ does
not exceed a limit γMV given by

γMV = 1 +
2 sin2θ B2

0

(
B2

0 + μ0ρ0c2
)

μ0ρ0c2
(
B2

0 sin2θ + μ0ρ0c2
) · (80)

In the regime when c2
A0 � c2, and when sin2θ is not too small, γMV

is approximately γMV = 2B2
0/(μ0ρ0c2), which coincides with the

limit γMB imposed by the fact that the modulus of the field should
remain larger than B0 sin θ. In the opposite classical regime, the
constraint in Eq. (80) limits the fluid velocity to vMV = 2cA0 sin θ.

In the classical regime, the constraint v < vMV is more strin-
gent than the constraint v < vMB and in the small θ limit it be-
comes very tight, since the condition v < 2cA0 sin θ implies that v
must effectively vanish. This can be readily understood by noting
that in this regime B = B0, while Bn = B0 cos θ is conserved. For
vanishing θ, this prevents any magnetic perturbation from devel-
oping, since it implies that the components B1 and B2 should
vanish. We note that this constraint specifically applies to wave
trains that are of finite extent in the propagation direction of the
characteristics. Infinite wave trains would not leave the fluid any-
where in its unperturbed state. As a result, different integration
constants from those we used to derive the solution in this sec-
tion would be involved, resulting in different constraints on both
the velocity and Lorentz factor.

10. Characteristics

We now consider the propagation properties of these perturba-
tions. Associating Eq. (55) and the explicit expression (A.5) of
the ratio q, the master variable u(r, t) is found to satisfy the
advection equation

∂u
∂t
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝u + s
c B

γ2
((

B2
0 + μ0ρ0c2

)1/2
+ s (B · u/c)

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ · ∇u = 0. (81)

Thus, u propagates at the characteristic’s speed

W = u + s
c B

γ2
((

B2
0 + μ0ρ0c2

)1/2
+ s (B · u/c)

) · (82)

The sign s characterizes the sense of the propagation of the per-
turbations along the field. In the instantaneous proper frame of
some fluid element, the velocity of caracteristics reduces to

W0 = s
c B0(

B2
0 + μ0ρ0c2

)1/2
· (83)

The field B0 is the proper instantaneous perturbed magnetic
field, which has the same modulus as the proper unperturbed
field, but may have a different direction. The linear propaga-
tion velocity uA0 of relativistic Alfvén waves within a field B0
in a plasma of proper mass density ρ0 is given by Eq. (10). Its
modulus is the same as that of the non-linear propagation ve-
locity W0 given by Eq. (83). It can be checked that the velocity

of characteristics in Eq. (82) can be obtained from the veloc-
ity (83) by Lorentz transforming this velocity and the magnetic
field from the instantaneous rest frameR0 to the actual reference
frame R.

In the particular case of non-relativistic Alfvén waves,
Eqs. (56) and (A.5) simplify in that only the second term sub-
sists in the square root parenthesis because the classical Alfvén
speed (9) is in this case meant to be much less than the speed of
light. Under non-relativistic conditions, the square root term in
Eq. (A.5) then reduces to c(μ0ρ0)1/2, while the ratio of the first
term to this term is on the order of cA0v/c2, which is negligible in
the Galilean approximation because both v and cA0 are meant to
be much less than c. In contrast, (B·u)/c remains in general in the
relation Eq. (A.5) when applied to relativistic Alfvén waves and
depends on the master variable u. Under classical conditions, the
velocity of characteristics reduces to

Wcl = u + s
B√
μ0ρ0
· (84)

It is known that in a non-relativistic situation the right-hand-side
of Eq. (84) is a first integral of the motion, which in the unper-
turbed fluid rest-frame is aligned with the unperturbed magnetic
field (Neubauer 1980). This results in the velocity of character-
istics being independent of the amplitude of the perturbation and
parallel to the unperturbed magnetic field. At this point, we do
not know yet whether a similar first integral exists for relativistic
Alfvén waves. This is the subject of Sect. 11. In the ultrarelativis-
tic limit (c2

A0 � c2), the modulus of the velocity of characteris-
tics in the instantaneous fluid rest-frame approaches the velocity
of light.

11. A relativistic first integral

The solution in Eq. (61) for Y may be used in Eq. (82) to obtain
a revised expression for the velocity of the characteristics

W = u +
s
γγr

c B(
B2

0 + μ0ρ0c2
)1/2
+ s (Br · ur/c)

· (85)

We now show that the velocity W is a first integral of the
Alfvénic motion, analogous to Neubauer’s non-relativistic first
integral (Neubauer 1980). We consider a change in the state of
the motion of a fluid element, in which the velocity changes
by du and the magnetic field by dB. The corresponding change
in the velocity W is

dW = du +
sc

γr

((
B2

0 + μ0ρ0c2
)1/2
+ s (Br · ur/c)

) d

(
B
γ

)
· (86)

There is no component of B perpendicular to itself. The
perpendicular part of dW then is

(dW)⊥ = (du)⊥ +
sc (dB)⊥

γγr

((
B2

0 + μ0ρ0c2
)1/2
+ s (Br · ur/c)

) · (87)

The relations in Eqs. (55) and (56), combined with the alterna-
tive expression of the velocity of the characteristic’s in Eq. (85),
imply that (dW)⊥ = 0. The field-aligned component of dW is
proportional to

B · dW = B · du +
sc

(
B dB/γ − B2 dγ/γ2

)
γr

((
B2

0 + μ0ρ0c2
)1/2
+ s (Br · ur/c)

) · (88)
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Equation (50) gives an expression for B · du and B2 is expressed
by Eq. (54) in terms of γ and Y, the latter being itself a function
of γ given by Eq. (61). Using these relations in Eq. (88), a short
calculation shows that B · dW vanishes.

Therefore, W appears to be independent of the state of mo-
tion of the fluid element, or equivalently independent of the mas-
ter variable u. It is a first integral, that is constant everywhere and
at all times. Since we assumed that any fluid element has been,
or will be at some time, in the undisturbed state, the value of W,
which is the velocity of Alfvénic characteristics (85), can be cal-
culated from this particular state. This gives

W = ur +
s
γ2

r

cBr(
B2

0 + μ0ρ0c2
)1/2
+ s (Br · ur/c)

· (89)

The proper field modulus B0 is related to the unperturbed field Br

observed in the chosen reference frame R by the relation in
Eq. (54), expressed for unperturbed conditions. In addition, ρ0
is the proper mass density, not the apparent unperturbed density
in R, which is γr ρ0. In the unperturbed fluid frame Rr0, where
ur = 0 and Br = B0r, the velocity of the characteristics (89)
is simply

Wr0 = s
c B0r(

B2
0 + μ0ρ0c2

)1/2
· (90)

The velocity of the characteristics in Rr0 is then the linear prop-
agation speed (83) of relativistic Alfvén waves. The relativistic
expression in Eq. (85) of the first integral agrees with the lin-
ear result of Mottez & Heyvaerts (2011a). In the non-relativistic
limit, the denominator in Eq. (89) reduces to c(μ0ρ0)1/2 because,
as noted above, its other term is of relative order cA0v/c2. We then
recover Neubauer’s classical first integral

Wcl = ur + s
Br√
μ0ρ0
· (91)

12. Conclusion

As in the case of classical propagation, we have found that
the velocity of the characteristics of non-linear Alfvénic per-
turbations follows, in the unperturbed fluid frame, the unper-
turbed magnetic field and is independent of the amplitude of the
perturbation. Thus, as in the non-relativistic regime, non-linear
Alfvénic signals are channeled by the unperturbed magnetic field
in this frame and do not spread in space. Since the velocity of
the characteristics is independent of the amplitude of the per-
turbation, the Alfvénic perturbations neither steepen nor break.
The relations among the physical variables in an Alfvénic per-
turbation, as observed from the unperturbed fluid frame, have
been derived in Sect. 8 when the normal to the phase planes is
at a sufficient angle from the unperturbed magnetic field. As dis-
cussed in Sects. 7 and 8 the Lorentz factor of the fluid in non-
linear Alfvénic perturbations forming a finite wave train is lim-
ited to a value that depends on the ratio of the proper unperturbed
magnetic to rest mass energy densities.
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Appendix A: Compatibility relations

We first substract (u·e⊥) times the Eq. (38) from Eq. (37) multi-
plied by c2. Accounting for A = 0, this changes Eq. (37) into

T ′4 dtu − K′4 (eB · ∇u) = 0 (A.1)

T ′4 = 2
(
μ0ρ0c2γ2 + B2

)
e2
⊥ (A.2)

K′4 = 2
(
Bc2/γ2

)
(e⊥ · duB) + 4B (B · u) e2

⊥. (A.3)

Equation (A.1) provides us with another expression of q, which
should be compatible with either Eqs. (33), (36), or (55).
Noting that (e⊥ · duB) = q e2⊥ and using (55), Eq. (A.1) can be
changed to

c2e2
⊥

(
q2

γ2
+ 2

(B · u)
c2

q −
(
μ0γ

2ρ0 +
B2

c2

))
= 0. (A.4)

This is a quadratic equation for q, the solutions of which,
accounting for Eq. (54), can be written, with s = ±1, as

q = −γ
2

c

(
(B · u)

c
+ s

(
B2

0 + μ0ρ0c2
)1/2

)
. (A.5)

This expression of q should be compatible with Eq. (55), pro-
viding us with our first compatibility relation in Eq. (56).
The second compatibility condition is obtained from Eqs. (38)
and (A.1). Equation (38) can be written in terms of q as

μ0ρ0c2 duγ
2 + duB2 = 2q (u · duB). (A.6)

The expression in Eq. (A.5) for q, which results from Eq. (A.1),
is introduced in Eq. (A.6), and the field-aligned velocity compo-
nent is expressed in terms of the variable Y defined by Eq. (57).
Using Eq. (50), u · duB is written as

u · duB = c duY + cY du(ln γ). (A.7)

We then take account of Eq. (52). Equation (A.6) eventually
transforms into Eq. (58), which ensures that Eqs. (38) and (A.1)
are compatible. The third compatibility relation stems from
Eq. (34), which can be written in terms of q as

B2 du ln

(
B
γρ0

)
= q (B · duu). (A.8)

The scalar product B · duu is obtained from Eq. (50) and use is
again made of Eq. (52). The ratio q that appears in Eq. (A.8)
is expressed in the form of Eq. (A.5). Equation (A.8) then
transforms into

du ln (ρ0) +
γY
B2

(
du (γY) + s

(
B2

0 + μ0ρ0c2
)1/2

duγ
)
= 0. (A.9)

Equation (58) however shows that the parenthesis in Eq. (A.9)
vanishes, which establishes that the proper mass density is con-
stant, and of course equal to its unperturbed value ρ0r (Eq. (59)).
This result was expected because the mass density is known to be
constant in non-relativistic Alfvénic motions. It would have been
possible to establish the constancy of the proper mass density by
choosing our reference frame R to coincide with the proper rest
frame R0 of some fluid element, in which the motion is, for a
while, classical. The constancy of the proper mass density ex-
presses the compatibility between Eqs. (34) and either Eq. (38)
or (A.6).
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Appendix B: Simple MHD waves are planar

Equation (63) has interesting consequences for the geometry
of the perturbation. It shows that ∇u is perpendicular to duB.
Since B is a function of u, so also is duB. This vector is there-
fore constant over the entire surface of constant u, which is a
phase surface. According to Eq. (63), it is in the tangent plane to
this surface. We now consider Ampere’s Eq. (5). Using Eq. (20),
it can be written under the ansatz (1) as

(∇u × duB) = μ0 ( j(u) + ε0 ∂tu duE). (B.1)

The time-derivative of u is related to its space-derivatives by the
advection Eq. (81), which indicates that u propagates at the ve-
locity W. According to Eq. (82), this velocity is a vectorial func-
tion of u because it consists of vectors depending only on u. We
establish in Sect. 11 that W is really a constant vector, but it is
enough for our purposes to recognize that it may depend only
on u. Substituting (W ·∇u) for −∂tu in Eq. (B.1), then dotting it
by ∇u, it is found that

∇u · j(u) − (ε0∇u · duE) (W · ∇u) = 0. (B.2)

Poisson’s Eq. (7) and Eq. (17) imply that ε0∇u ·duE is the charge
density ρe(u) so that Eq. (B.2) becomes

( j(u) − ρe(u)W(u)) · ∇u = 0. (B.3)

Thus, ∇u is perpendicular to the vector j − ρeW, which depends
only on u and is then constant over all the phase surface. This
vector generally differs from duB, which also depends only on u
and to which ∇u is also perpendicular (Eq. (63)). The normal
to a phase surface is perpendicular to these two vectors, both
of them being constant over the entire surface. The normal vector

therefore has a unique direction over any phase surface that must
then be a plane. Different phase planes must be parallel to each
other since they cannot intersect if they refer to different values
of the master variable u. This shows that simple Alfvénic waves
must have a planar geometry.
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