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Abstract 

 

Objective: We propose an innovative approach for 18F-FDG PET analysis based on an 

interval-valued reconstruction of 18F-FDG brain distribution. Its diagnostic performance 

for Alzheimer’s disease (AD) diagnosis with comparison to a validated post-processing 

software was assessed. 

 

Method: Brain 18F-FDG PET data from 26 subjects were acquired in a clinical routine 

setting. Raw data were reconstructed using an interval-valued version of the ML-EM 

algorithm called NIBEM that stands for Non-additive Interval Based Expectation 

Maximization. Subject classification was obtained via interval-based statistical 

comparison (intersection ratio, IR) between cortical regions of interest (ROI) including 

parietal, temporal, and temporo-mesial cortices and a reference region, the sub-cortical 

grey nuclei, known not to be affected by AD. In parallel, PET images were post-processed 

using a validated automated software based on the computation of ROI normalized uptake 

ratios standard deviation (SUVr SD) with reference to a healthy control database 

(Siemens Scenium). Clinical diagnosis made during follow-up was considered as the 

gold-standard for patient classification (16 healthy controls and 10 AD patients). 

 

Results: Both methods provided cortical ROI indices that were significantly different 

between controls and AD patients. The area under the ROC curve for control/AD 

classification was statistically identical (0.96 for NIBEM IR and 0.95 for Scenium SUVr 

SD). At the optimal threshold, the sensitivity, specificity, accuracy, positive predictive 

value and negative predictive value were respectively 100%, 88%, 92%, 83%, and 100% 

for both Scenium SUVr SD and NIBEM IR methods. 

 

Conclusion: This preliminary study shows that interval-valued reconstruction allows self-

consistent analysis of brain 18F-FDG PET data, yielding diagnostic performances that 

seems promising with respect to those of a commercial post-processing software based 

on SUVr SD analysis. 

  

Keywords: Brain 18F-FDG PET, Alzheimer’s disease, Interval-valued reconstruction, 

Assisted diagnosis. 



 2 

Introduction  

 

As the world population ages, early diagnosis of neurodegenerative dementia represents 

a challenge for both the society and medical community. It is estimated that 46.8 million 

people worldwide are living with dementia in 2015. This number will almost double every 

20 years, reaching 74.7 million in 2030 and 131.5 million in 2050 (1). Alzheimer Disease 

(AD) is considered as the main etiology of neurodegenerative dementia (approximately 

2/3 are AD). AD impairs patient cognitive functions, impacts on daily life autonomy, and 

as such raises major public health policy issues in terms of home care and institutional 

placement (2). Early diagnosis is a key feature in current patient management, since 

treatments become less effective with worsening patient state. 

 

Considerable effort is ongoing to identify and develop reliable biomarkers of incipient 

AD (3,4) and other types of dementia (5) in order to target individuals who would most 

benefit from early treatment intervention (6). Among these biomarkers, 18F-FDG positron 

emission tomography (PET) has been recognized as a valuable imaging modality for the 

positive and differential diagnosis of neurodegenerative dementias (7,8,9,10). Since 

absolute quantification of cortical glucose metabolism requires dynamic acquisitions 

(11,12) that rarely fit with clinical constraints, visual interpretation is usually performed 

using a static scan (13). 18F-FDG uptake is a sensitive marker of synaptic dysfunction 

[14], and as such it has been shown to have good sensitivity in detection of early brain 

dysfunction (15,16) and to follow disease evolution over time (17). Nevertheless, visual 

rating of relative cortical 18F-FDG distribution yields undesirable inter-reader variability 

(11,18) and sub-optimal specificity especially among moderately-skilled readers (19,20). 

 

To overcome these limitations of visual interpretation, several automated semi-

quantitative techniques have been developed. Although complex computational 

approaches based either on deep learning (21), neural networks (22), or Support Vector 

Machine (SVM) (23) showing promising classification capabilities have recently been 

reported, most of semi-quantitative methods rely on the statistical mapping of voxel-

based normalized cortical uptake ratio with respect to some reference region 

(24,25,26,27,28). 
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The aim of the present study is to propose and highlight the potential and the relevance 

of brain 18F-FDG PET analysis based on an interval-valued reconstruction of 18F-FDG 

distribution (29,30). The proposed framework allows for a direct estimation of voxel-wise 

confidence intervals accounting for the statistical variability of voxel values. Subject 

classification was obtained via interval-based statistical comparison between cortical 

regions of interest and a reference region (extracted from the same reconstruction), known 

to be spared by AD. For the analysis, only raw data from current PET acquisition were 

required. Diagnostic performances were confronted to those of PET data post-processing 

using a validated automated software based on the computation of regional normalized 

uptake ratios SD with reference to a healthy control database (31). 

 

Materials and methods 

 

Patients characteristics 

 

Twenty-six patients were prospectively recruited from the outpatients of the Nuclear 

Medicine Department at Montpelier University Hospital from November 2016 to July 

2017. All included patients were referred for brain 18F-FDG PET in routine conditions 

for the exploration of memory or executive dysfunction. Clinical diagnosis made during 

follow-up was considered as the gold-standard for patient classification. 

 

The AD group (10 patients, 3 men and 7 women, 76 ± 6 years, range 64-84 years) was 

composed of patients diagnosed with probable AD according to the NINCDS-ADRDA 

criteria (32) during a clinical follow-up of 320 ± 204 days (range 101-606). 

 

The control group (16 patients, 9 men and 7 women, 61 ± 13 years, range 36-77 years) 

was constituted of patients with null or low pre-test probability of neurodegenerative 

disease, for whom 18F-FDG PET data were within the range of normal, and/ or rated as 

normal during a clinical follow-up of 158 ± 162 days (range 0-590). 

 

PET data acquisition and reconstruction 
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PET examinations were performed on a Siemens Biograph mCT 20 Flow PET-CT system 

(Siemens Medical Solutions Knoxville, USA) about 30 minutes after intravenous (IV) 

injection of 2.5 MBq/kg of 18F-FDG. Data were acquired in three-dimensional (3D) time-

of-flight mode during 10 minutes. Emission data were corrected for attenuation using the 

embedded computerized tomography (CT) scanner. Random coincidences (where the two 

photons did not arise from the same annihilation event), scatter coincidences, and dead-

time were also corrected using dedicated manufacturer tools. Patient characteristics and 

technical data are summarized in Table 1. For the needs of the comparison experiments, 

PET data were reconstructed with two different reconstruction methods. 

 

First, PET images were obtained using the routine workflow implemented at our 

institution for brain PET imaging. Iterative reconstruction was performed using 3D 

OSEM (21 subsets, 8 iterations) including PSF correction, followed by a 5, 5, 5 mm 

FWHM Gaussian post-smoothing procedure. Images were sampled on a 400x400x109 

grid with a voxel size of 2.04x2.04x2.03 mm3. 

 

Second, PET data were reconstructed using an interval-valued extension of the maximum 

likelihood-expectation maximization (ML-EM) algorithm (33,34) called NIBEM (29,30) 

that stands for Non-additive Interval Based Expectation Maximization. The main 

motivation for using this algorithm resides in its ability to directly reconstruct voxel-wise 

confidence intervals. The considered confidence intervals account for the statistical 

variability affecting reconstructed voxel values. The confidence level associated to these 

intervals was shown to be about 90% (29). As the current version of the mentioned 

algorithm was only described in 2D, 3D emission data were rebinned into a stack of 109 

2-dimensional (2D) sinograms using the Fourier rebinning (FORE) algorithm (35). Then, 

the 2D sinograms were reconstructed using NIBEM on a 200x200 grid with a voxel size 

of 4.1x4.1x2.03 mm3. Reconstructions were performed using 70 iterations, which allows 

to reach images with a similar noise level as obtained with 3D OSEM algorithm described 

in the routine workflow. Time-of-flight information was not exploited in this preliminary 

work. Instead of computing scalar values for each voxel, the algorithm used was interval-

valued (i.e. the algorithm produces interval values for each voxel), then the measure 
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associated with each voxel i was a real interval denoted [ ], which lower and upper 

bounds are respectively denoted  and . Here, [ ] represents the set of real numbers 

lying between its respective lower et upper bounds  and . The central image  (i.e. 

the image that minimizes the Hausdorff distance between   and )  was defined, for 

each voxel i, as .  In other words, for each voxel i of the reconstructed 

volume, the value  is the center of the interval [ ] reconstructed with NIBEM. A 

graphical illustration of the reconstruction procedure is presented in Figure 1. 

 

Figure 1: PET data reconstructed with interval-valued algorithm NIBEM 

 

 

Patient classification using SUV ratio 

 

The first set of images (3D OSEM) was post-processed using the manufacturer’s tool 

dedicated to statistical analyses of brain PET data (Siemens Scenium) (31). PET images 

were automatically registered to the Montreal Neurological Institute (MNI) space, then 

segmented into cortical regions of interest (ROI) including whole brain, parietal, 

temporal, and temporo-mesial cortices. Mean standardized uptake values (SUV) were 

measured in each cortical ROI and normalized to mean whole brain SUV to produce 

cortical SUV ratios (SUVr). Last, these cortical SUVr were converted to standard 



 6 

deviation scores (SUVr SD), commonly called z-score, based on reference distributions 

from age-matched control populations. As the ROI affected by AD appears 

hypometabolic, ROI SUVr SD of AD patients are usually negative. For example, a SUVr 

SD that equals -1 means that the considered SUVr is 1 standard deviations below the 

mean SUVr of the control group.  For a given classification threshold, a subject was 

considered as “not AD” if all the SUVr SD computed in 6 reference ROIs (parietal 

left/right, temporal left/right, and temporo-mesial left/right) were above the threshold. If 

at least one SUVr SD was below the threshold, the subject was classified “AD”. 

 

Patient classification using NIBEM 

 

As Scenium is a commercial software, registration procedure and reference database are 

not accessible. We then designed our own procedure to compare our method. For each 

subject, the NIBEM central image  was smoothed with a Gaussian kernel of 5, 5, 5 mm 

FWHM, then spatially normalized to the MNI space using the widely known tissue 

probability map template provided by SPM12 (Wellcome Trust Centre, London, UK). 

Reconstructed upper and lower NIBEM PET volumes were then spatially normalized 

using the estimated transformation parameters computed over . As upper, lower and 

central volumes are defined in the same space, normalizing the data with the same 

transformation parameters allows to minimize spatial registration bias between upper and 

lower registered volumes. Resulting PET images were sampled on a 91x109x91 grid with 

cubic voxels. Image voxels were labeled according to the AAL21 anatomical atlas (42). 

A graphical illustration of the proposed spatial registration procedure is shown in Figure 

2. 

 

Spatially normalized NIBEM images were then segmented based on voxel labels to define 

cortical ROIs including left (L) and right (R) parietal, temporal and temporo-mesial lobes.  

 

The clinical diagnosis of AD in 18F-FDG PET is made by highlighting the hypo-

metabolism of some specific ROIs that are affected by the disease with respect to 

                                                 
1 available at: http://www.gin.cnrs.fr/AAL2 
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reference regions that are known not to be affected by AD. Sub-cortical grey nuclei can 

be considered as the reference region for such a comparison (41,42).  

 

 

Figure 2: PET data spatial registration procedure 

 

Thus, as NIBEM reconstructions are interval-valued, the interval-valued distribution 

associated with each relevant ROI (L and R parietal, temporal and temporo-mesial lobes) 

needs to be compared to the interval-valued distribution associated with the reference 

ROI (sub-cortical grey nuclei). 

To our knowledge, the literature concerning interval-valued distribution comparison 

remains rather scarce. Albeit an interval-valued generalization of the Wilcoxon rank-sum 

test was proposed (36), it appears to be insufficiently specific for the statistical 

comparison needed to be performed in this present work. Indeed, robust tests like 

Wilcoxon's test are affected by the imprecision of the data: the more the data are imprecise 

the more difficult it is for it to reject the null hypothesis. In the presence of a great 

imprecision (which is the case in the present application), the Wilcoxon test is too weakly 

specific to reject such a hypothesis. 

 

Therefore, we propose to compare interval-valued distributions by using a consistency 

measure between the two interval-valued distributions:  for the tested 
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ROI and  for the reference region. These two distributions can be 

considered as being two random empirical distributions of intervals. Note that the 

probability density associated to each interval-valued reconstruction is unknown.  

 

Two intervals  and  are said to be inconsistent if  and 

consistent if . The consistency function  is equal to 1 

if both intervals are consistent, 0 if they are inconsistent. If we consider the pair 

 , assume these two intervals independent and since there are  possible 

comparisons, the weight  can be associated with the pair. Under this assumption, 

in the theory of belief functions (39), the more common way to calculate a consistency 

measure between the two interval distributions is to consider the cumulative mass on the 

pairs that are consistent. The consistency measurement denoted  between the region to 

test and the reference region is thus defined by the equation: 

 

    (1) 

 

 means that all intervals of the tested region intersect the intervals of the 

reference region. On the opposite,  means that none of the intervals 

intersect between the two considered regions. Varying a given classification threshold 

from 1 to 0, a subject was considered as “not AD” if all the concordance measures IR 

computed independently between the 6 ROIs (left/ right temporal, left/ right temporo-

mesial and left/ right parietal lobes) and the reference (sub-cortical grey nuclei) region 

were above the threshold. If at least one intersection ratio was below the threshold, the 

subject was classified “AD”. ROI segmentation and comparison processes are graphically 

detailed in Figure 3. Illustration of both post-processing and proposed methods outputs 

for an AD patient extracted from the database can be found in Figure 4. For each method, 

one score by ROI is extracted from the analysis, albeit with different meanings: deviation 

scores for SUVr SD analysis and consistency measure between the analyzed ROI and a 

reference ROI for NIBEM IR analysis. An overview of the reconstructions for both 

compared methods is presented in Figure 5.  
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Figure 3: PET data segmentation and ROI comparison step 

 

Figure 4: Illustration of brain 18F-FDG PET analysis for a patient diagnosed with 

Alzheimer’s disease. Both compared methods are presented. 

 

 

Figure 5: 18F-FDG PET brain axial slice of an AD patient. a) NIBEM lower bound, b) 

NIBEM upper bound, c) OSEM 3D reconstruction used in SUVr SD method, d) SUVr 

SD map with its colorbar. Same colorbar was used for a) and b). All volumes were 

registered to template space. 
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Statistical analysis 

 

Differences between the control group and the AD group in the distribution of SUVr SD 

and NIBEM IR computed on a ROI basis were assessed using Mann-Whitney’s test. 

The ability of the two methods in discriminating between controls and AD subjects was 

evaluated using a receiver operating characteristic (ROC) analysis by varying the 

classification thresholds (from -10 to 10 with a step. ROC analysis is performed with pre-

defined criteria that respectively state false positive (FP), false negative (FN), true 

positive (TP) and true negative (TN) definitions: 

- FP: a patient classified “AD” whilst labelled “control” 

- FN: a patient classified “not AD” whilst labelled “AD” 

- TP: a patient classified “AD” whilst labelled “AD” 

- TN: a patient classified “not AD” whilst labelled “control” 

For each threshold, FP, FN, TP and TN were computed. Then, always for each threshold, 

(sensitivity) vs (1-specificity) was computed and plotted to obtain the corresponding ROC 

curve. Areas under the ROC curve (ROC AUC) were compared [40] and the optimal 

threshold was defined as that maximizing Youden’s index (sensitivity + specificity - 1). 

Diagnostic performances of the two methods were compared using Fisher’s exact test. A 

p-value  0.05 was considered as significant. All statistical computations were performed 

using Matlab (The MathWorks, Inc). 

 

Results 

 

Distributions of SUVr SD by cortical ROI in controls and AD subjects are presented in 

Figure 6 a). It shows that distributions were significantly different in all tested cortical 

ROIs. It thus highlights that SUVr SD analysis is effective in classifying “AD” and “not 

AD” groups of the study considering the analyzed ROIs. 
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a) 

 

b) 

Figure 6: Box plots of a) SUVr SD distributions and b) NIBEM IR distributions 

both for healthy controls (blue) and AD patients (orange) according to cortical ROI.  

Box: median and inter-quartile range. Whiskers: mean ± 1.5 standard deviations. Round 

markers stand for extremal outliers beyond the whisker’s limits. 

 

The same experiment carried-out with cortical ROI NIBEM IR distributions in controls 

and AD subjects is presented in Figure 6 b). Group distributions were shown to also be 

significantly different between controls and AD patients for all the comparisons ROI vs 

reference except for the left temporo-mesial lobe. However, the classification (see Figure 

7 and Table 2) is not impacted by the lack of IR statistical difference in “AD” and 

“controls” groups in this specific ROI. It thus suggests that, considering these groups and 

this comparison framework, left temporo-mesial lobe ROI does not play a big role in the 

classification framework for this specific study.  

 

Figure 7 shows the ROC curves obtained by varying the classification threshold of each 

method. There was no significant difference between the ROC AUCs of the two methods 

(0.95 vs 0.96) for SUVr SD and NIBEM IR respectively, p = 0.86). Both AUCs values 
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are excellent, and highlight the good classification performance of both frameworks on 

the considered dataset. 

On the carried-out experiment, the optimal classification thresholds that maximize the 

Youden's index are 0.614 for NIBEM IR and -2.1 for Scenium SUVr SD. These threshold 

values are those used for analyzing and comparing the two methods. In Table 2, where 

diagnostic performance of both methods in differentiating healthy controls from AD 

patients are summarized, we can observe that statistical outcomes (sensitivity, specificity, 

accuracy, positive and negative predictive value) are equals for both methods considering 

the formerly specified thresholds.  

 

 

Figure 7: Receiver operating curves (ROC) of SUVr SD (red dotted line) and NIBEM 

IR (blue line and boxes) in differentiating healthy controls from AD patients.  

The black round marker indicates the optimal threshold maximizing Youden’s index 

that is common to both methods. 

 

Discussion 

 

It is well documented that at the first stages of the progression of AD, temporal and 

parietal lobes are usually affected by amyloid deposition (19). It coincides to 

neurofibrilation deposition initially confined in the medial temporal lobe and limbic 

structures [11,19]. These affections tend to be represented as hypo-metabolisms on 18F-

FDG PET reconstructed images. Visual rating of cortical distribution yields undesirable 

inter-reader variability (11,18) and sub-optimal specificity especially among moderately 

skilled readers (19,20). To overcome these limitations, automated semi-quantitative 
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techniques have been developed to help the physician to state whether the ROI can be 

considered as hypo-metabolic or not. In the first stages of the disease, hypo-metabolism 

is not usually observed symmetrically. It thus would seem intuitive to make a relative 

comparison: can the considered ROI be considered as identical in terms of radio-tracer 

concentration with respect to its symmetrical counterpart or a reference region? 

The key limitation, for performing reliable direct ROI comparison in PET, is that no 

information about the statistical variability of the reconstructed data is directly available 

with reconstruction algorithms used in clinical routine (30). 

 

To overcome this problem, most of the diagnostic assistance techniques recently 

proposed in the literature rely on the use of databases. These techniques can be 

decomposed in two families. The first one is Artificial Intelligence (AI) based: for a very 

specific task, a convolutional neural network can be trained using a previously annotated 

database to classify whether the proposed 18F-FDG PET scan belongs to a patient 

suffering from the disease or not. Such approaches can lead to very promising 

classification performance (21). The second family of approaches rely on the statistical 

mapping of voxel-based normalized cortical uptake ratio with respect to some reference 

region (24,25,26,27,28). Each investigated voxel or ROI is characterized by a score that 

reflects its distance to a reference score. The latter is computed based on a database of 

ethnical-, age- and sex-matched healthy controls. As previously mentioned, these 

approaches give promising results. However, they have certain limitations. The major 

drawback is that they inescapably depend on the database on which they rely or from 

which have been trained. This raises the question of performance variations of these 

methods considering changes in acquisition equipment, in reconstruction parameters, 

acquisition conditions, radio-tracer dose, etc. As institution-wide, country-specific or 

equipment manufacturer-wide recommendations are and will ineluctably persist different, 

it appears very difficult to trust a diagnosis relying only in AI or database aided 

techniques. Nevertheless, the comparison with these methods that are now fashionable 

would be of a great interest. Apart from the need to have access to raw data to perform 

NIBEM reconstruction, the comparison between the proposed approach and these state-

of-the-art methods would be straightforward as their output are of a comparable nature 

and the metrics used to assess their performance are similar. 
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The framework proposed in this article is different to the kind of approaches described 

above as it apprehends the problem of ROI comparison in PET in an alternative way. 

Through the reconstruction of confidence intervals, what is proposed is to directly 

compare regions of interest for the dementia with a reference region extracted from the 

same reconstruction thanks to concordance measures. The performed comparison is not 

based on any external information (like a database for instance) for the analysis. Indeed, 

the reference used to perform the hypo-metabolism analysis is specific to each patient. It 

does not require a normalization step either. Only raw data of PET acquisition is needed. 

The preliminary results presented in this paper seems to highlight that such a processing 

framework allows to reach diagnostic performances that are promising as they seem 

similar to a validated post-processing software for AD on the tested data. 

 

However, the current study has also some limitations that raise interesting perspectives 

and necessary improvements. Concerning the clinical validation, the number of patients 

included remains limited. Indeed, as this method requires access to raw PET data, it is 

impossible to use databases such as ADNI (39) because associated raw data are usually 

not available. It thus could be interesting to validate the results on a more consistent 

database. Speaking of database, it could also be interesting to adapt such an analysis to 

broader panel of neurodegenerative diseases like mild-cognitive impairment, fronto-

temporal dementia, Lewy body dementia etc. Another important step in the clinical 

follow-up of patients with dementia is the quantification of the evolution of the brain 

function disorders. A method like the one proposed in this paper could have a role to play 

for this task. In further studies, one could imagine testing the ability to quantify the 

evolution of a disease over time by analyzing the analogous IR scores of PET scans 

acquired at two different times. It may thus be interesting to see if the IR score evolution 

is correlated to the clinical and expected evolution of the disease and thus allows a better 

follow-up of disease evolution over time. On the side of theoretical developments, to be 

in line with current PET standards it may be interesting to perform NIBEM 

reconstructions making use of time-of-flight information. However, this would require 

prior theoretical developments to manage time-of-flight in the NIBEM algorithm. 

Generalizing the NIBEM algorithm to perform 3D reconstruction of CI estimates without 
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making use of re-binning procedures would also be a plus. Comparability of the tested 

methods would be greatly improved. In short, the objective for further studies is to 

propose a reconstruction pipeline that meets all the current PET reconstruction standards. 

The diagnosis-aid performance will also benefit of further theoretical developments on 

statistical testing of interval-valued distributions that could be more specific to the 

statistical population characteristics we are trying to compare. More generally, diagnosis 

of neurodegenerative diseases in PET will surely continue to benefit from image quality 

improvements allowed by hardware and software progresses of PET technology. 

However, chances are pretty good that tools like the one presented that allow to better 

understand and characterize the acquired and processed data will also play an important 

role for early diagnosis in the future. 

 

One last important point concerns the use of a database for comparison analysis. Even if 

the proposed analysis framework does not require external information like metadata or 

database references, it still requires to set beforehand a classification IR threshold that 

allows to state if the analyzed patient is affected by the disease or not. This information 

is required for all the diagnosis assistance methods mentioned above. Obviously, this 

preliminary work does not have the level of proof to establish a definitive threshold that 

have to be used to differentiate AD from healthy controls in clinical routine. As this 

threshold is the only dependence of the proposed method to a database, it would be 

interesting to carry out a study to see if the classification performance is independent to 

the group characteristics, acquisition conditions, radio-tracer dose, etc. In case of positive 

answer, it could be conceivable to propose a decision-making process based on the 

proposed methodology that is freed from the need of using any database which would be 

an important step for aided-diagnosis methods. 

 

 

Conclusion 

 

The method presented in this paper is the first method of the literature that exploits the 

uncertainty quantization associated with the data (in particular the statistical variability 

here) to make an assisting diagnosis tool in PET. The preliminary and original results 

presented in this paper highlighted the fact that clinical routine would directly benefit 
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from theoretical progresses in the field of confidence interval estimation and comparison. 

Moreover, the limited computational cost of the proposed method and its relatively easy 

implementation in the clinical routine framework should allow its use as a complementary 

tool for diagnosis aid and thus to improve the decision algorithm of AD diagnosis. 

 

To conclude, this paper has shown that interval-valued reconstruction can allow 

promising analysis of brain 18F-FDG PET data, yielding diagnostic performances similar 

to those of a SUVr SD based commercial post-processing software. 
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Figure legends 

 

Figure 1: PET data reconstructed with interval-valued algorithm NIBEM 

 

Figure 2: PET data spatial registration procedure 

 

Figure 3: PET data segmentation and ROI comparison step 

 

Figure 4: Illustration of brain 18F-FDG PET analysis for a patient diagnosed with 

Alzheimer’s disease with both compared methods. 

 

Figure 5: 18F-FDG PET brain axial slice of an AD patient. a) NIBEM lower bound, b) 

NIBEM upper bound, c) OSEM 3D reconstruction used in SUVr SD method, d) SUVr 

SD map with its colorbar. Same colorbar was used for a) and b). All volumes were 

registered to template space. 

 

Figure 6: Box plots of a) SUVr SD distributions and b) NIBEM IR distributions  

both for healthy controls (blue) and AD patients (orange) according to cortical ROI. 

Box: median and inter-quartile range. Whiskers: mean ± 1.5 standard deviations. Round 

markers stand for extremal outliers beyond the whisker’s limits. 

 

Figure 7: Receiver operating curves (ROC) of SUVr SD (red dotted line) and NIBEM 

IR (blue line and boxes) in differentiating healthy controls from AD patients.  

The black round marker indicates the optimal threshold maximizing Youden’s index 

that is common to both methods. 
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Tables 

 
 

 Healthy controls 

(N=16) 

Alzheimer’s disease 

(N=10) 

Male 9 (56%) 3 (33%) 

Age (yrs) 61 ± 13 [36 77] 76 ± 6 [64 84] * 

Follow-up (days) 158 ± 162 [0 590] 320 ± 204 [101 606] 

Injected activity (MBq) 147 ± 17 [121 173] 141 ± 18 [121 166] 

Plasma glucose level (g/L) 1.06 ± 0.26 [0.71 1.62] 0.96 ± 0.07 [0.85 1.10] 

Injection-acquisition delay (min) 30 ± 3 [20 35] 32 ± 3 [30 36] 

Table 1: Characteristics of the study groups.  

Categorical variables are given as number (percentage). Continuous variables are given 

as mean ± standard deviation [range]. *: significantly different from healthy controls. 

 

 

 ROC AUC Se Sp Acc PPV NPV 

SUVr SD  0.95 100% (10/10) 88% (14/16) 92% (24/26) 83% (10/12) 100% (14/14) 

NIBEM IR 0.96 100% (10/10) 88% (14/16) 92% (24/26) 83% (10/12) 100% (14/14) 

p-value 0.86 1  1 1 1 1 

Table 2: Diagnostic performances of SUVr SD and NIBEM IR in differentiating 

healthy controls from AD patients.  

Values computed using the optimal threshold maximizing Youden’s index. ROC AUC: 

area under the ROC curve. Se: sensitivity. Sp: specificity. Acc: accuracy. PPV: positive 

predictive value. NPV: negative predictive value. 
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