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Purpose -This paper proposes a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction heater. The movement of the plate in a dc magnetic field created by a PM inductor generates induced currents that are at the origin of a heating power by Joule effect. These topologies have a strong magnetic end effects. The analytical model developed in this work takes into account the finite length extremity effects of the conducting plate and the reaction field due to induced currents.

Design/Methodology/Approach -The developed model is based on the combination of the sub-domain's method and the image's theory.

Firstly, the magnetic field expressions due to the PMs is obtained by solving the three dimensional Maxwell equations by the method of separation of variables, using a magnetic scalar potential formulation and a magnetic field strength formulation. Then, the motional eddy currents are computed using the Ampere law and the finite length extremity effects of the conducting plate are taken into account using the image's method.

To analyze the accuracy of the proposed model, the obtained results are compared to those obtained from 3D finite element model (3D FEM) and from experimental tests performed on a prototype.

Finding -

The results show that the developed analytical model is very accurate, even for geometries where the edge effects are very strong. It allows directly taking into account the finite length extremity effects (the transverse edge effects) of the conducting plate and the reaction field due to induced currents without the need of any correction factor.

The proposed model presents also an important reduction in computation time compared to 3D finite element simulation, allowing fast analysis of linear permanent magnet (PM) induction heater.

Practical implications -

The proposed electromagnetic analytical model can be used as a quick and accurate design tool for translational motion PM induction heater devices.

Originality/Value -A new 3D analytical electromagnetic model, to find the induced power in the conducting plate of a novel translational motion induction heater has been developed. The studied heating device has a finite length and a finite width which create edge effects which are not easily considered in calculation. The novelty of the presented method is the accurate 3D analytical model which allows finding the real power heating and real distribution of the induced currents in the conducting plate without the need to use correction factor. The proposed model also takes into account the reaction field due to induced currents.

In addition the developed model improves an important reduction in the computation time compared with 3D FEM simulation.

Introduction

Induction heating is widely used in many industrial applications such as heat treatment and forming processes (V. [START_REF] Rudnev | Handbook of Induction Heating[END_REF]. These devices are applications of Lenz's Law and Joule Effect. The conducting object can be exposed to a variable magnetic field produced by AC winding (V. [START_REF] Rudnev | Handbook of Induction Heating[END_REF][START_REF] Lubin | Induction heating of aluminum billet subjected to a strong rotating magnetic field produced by superconducting windings[END_REF], or moved in a static magnetic field [START_REF] Messadi | Eddy current computation in translational motion conductive plate of an induction heater with consideration of finite length extremity effects[END_REF][START_REF] Fabbri | Temperature distribution in aluminum billets heated by rotation in static magnetic field produced by superconducting magnets[END_REF][START_REF] Mach | Model of induction heating of rotating non-magnetic billets and its experimental verification[END_REF].

To improve the performance of these systems, new induction heating concepts have recently been proposed [START_REF] Mach | Induction heating of cylindrical nonmagnetic ingots by rotation in static magnetic field generated by permanent magnets[END_REF][START_REF] Mach | Model of induction heating of rotating non-magnetic billets and its experimental verification[END_REF][START_REF] Karban | Higher-order finite element modeling of rotational induction heating of nonferromagnetic cylindrical billets[END_REF][START_REF] Boubezari | 2D Semi-analytical Analysis of Aluminum Billets heated by Rotating Permanent Magnets Inductor[END_REF], using a permanent magnet (PM) inductor. In these topologies, the PM inductor produces a static magnetic field and the work piece to be heated is subjected to rotation or to linear movement.

The geometry of linear induction heating device is planar with finite dimensions. It has strong magnetic edge effects that need to be considered in the modeling [START_REF] Messadi | Eddy current computation in translational motion conductive plate of an induction heater with consideration of finite length extremity effects[END_REF]Bensaidane & al., 2015;Paul & al., 2014;Zhang & al., 2014). Such devices can be modeled by 3D Finite Element Method (FEM) [START_REF] Fabbri | Experimental and numerical analysis of DC induction heating of aluminum billets[END_REF]Selçuk & al., 2008;[START_REF] Bíró | Fast time-domain finite element analysis of 3-D nonlinear time periodic eddy current problems with T, Φ-Φ formulation[END_REF][START_REF] Karban | Higher-order finite element modeling of rotational induction heating of nonferromagnetic cylindrical billets[END_REF]. However, this method has some drawbacks in terms of CPU time.

Many studies have been proposed to compute induction heating systems with rotating billets using 2D analytical models [START_REF] Boubezari | 2D Semi-analytical Analysis of Aluminum Billets heated by Rotating Permanent Magnets Inductor[END_REF][START_REF] Lubin | Induction heating of aluminum billet subjected to a strong rotating magnetic field produced by superconducting windings[END_REF][START_REF] Fabbri | Experimental and numerical analysis of DC induction heating of aluminum billets[END_REF]. These models are not suitable to take into account the edge effects and the power heating is not correctly evaluated. In (Bensaidane & al., 2015), the authors developed a 2D analytical model where the end effects are taken into account using a correction factor. This paper presents a new 3D electromagnetic analytical model to compute eddy currents and heating power in the conducting plate of a novel planar induction heater (Bensaidane & al., 2015). The sub-domain's method and the image's theory are combined to compute the eddy currents with consideration of finite length effects and the reaction field. The boundary's conditions on the lateral faces of the conducting plate are taken into account thanks to the image's theory by exploiting the fictitious poles imposed by the fictitious anti-periodic condition. To analyze the accuracy of the proposed model, the obtained results are validated through those obtained from 3D finite element model and from experimental tests performed on a prototype.

The studied induction heating device is shown in Fig. 1. It is composed of two permanent magnets (PM) inductors with quasi Halbach magnetization arrangement. A conducting plate subjected to a linear oscillatory motion is placed between these two inductors [START_REF] Messadi | Eddy current computation in translational motion conductive plate of an induction heater with consideration of finite length extremity effects[END_REF]. The geometric parameters of the studied device are given in the Table. I. Geometry of the studied device.

Computation method

Solving the Maxwell equations in the 3-D Cartesian coordinates to calculate the eddy currents and heating power in the conducting plate are done in two steps:

-Firstly, we compute the magnetic flux density and the eddy current density for an infinite width conducting plate.

-Secondly, the image's theory is used to introduce the finite boundaries of the conducting plate in eddy currents components. 

Magnetic flux density

We assume that the iron-yokes have an infinite permeability. In these conditions and by considering the geometric symmetry of the device, the whole domain of the field problem is divided into three regions: Magnets region (I), the air-gap (II) and the conducting plate (III), (Fig. 2). To solve the 3-D boundary value problem, the boundary conditions of our system in the x-and y-directions must be defined.

Due to the alternate polarity of the PMs the boundary condition in the x-direction is naturally anti-periodic. The same anti-periodic condition is applied at the boundaries on the y-direction, while respecting the ly >>b (Fig. 3), to avoid any magnetic coupling between the fictitious poles along the y axis. This boundary condition allows to cancel the magnetic flux density at y = ± ly (Fig. 3) [START_REF] Lubin | 3-D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions[END_REF]. To solve this problem, a magnetic scalar potential formulation is used in both magnets and air gap regions and a magnetic field strength formulation in the conducting plate.

Taking into account the presence of permanent magnets with (Mx) and (Mz) magnetization, the magnetic scalar potentials in the magnets region (I) and in the air-gap region (II) are respectively the solution of the Poisson and Laplace equations. In Cartesian coordinates, they are given by:
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Where is the magnetization of the magnets.

By considering the previous boundary value problem, the magnetization distribution is obtained by expanding it into a double Fourier series along x-and y-directions (Fig. 3) as follows:
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Where m, n are odd integers and B r is the remanent flux density.

Using the method of separation of variables, the general solutions of the magnetic scalar potential ( ), can be written as:
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The problem in the conductive region (III) is solved using an H-formulation. The reference frame is fixed to the magnets region and the field source is static. So we can write:

) ( 0 2 III III H V H        (6)
Where is the conductivity and V= v x the velocity of the conducting plate.

In a Cartesian coordinate system, the development of (6) gives us three partial differential equations (PDEs):

x H v z H y H x H x x x x x            0 2 2 2 2 2 2  (7) x H v z H y H x H y x y y y            0 2 2 2 2 2 2  (8) x H v z H y H x H z x z z z            0 2 2 2 2 2 2  (9)
Considering the boundary's conditions along x-and y-directions, the magnetic field strength in the region III (H x , H y , H z ), is obtained using the method of separation of variables:
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From the expression (div B=0) we can find the expression of Hy given by:
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Substituting ( 10) and ( 11), in (12), we obtain: 
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The analytical expressions of the complex coefficients, A I , B I , A II , B II ,A xIII , B xIII , A zIII and B zIII are determined using the boundary's and interfaces conditions between the different regions given by: Boundary conditions at z =0 and z = z 3 = h a +e+h p (Fig. 2): Interfaces conditions between the different regions (I, II, II) (Fig. 2): The analytical expressions of the unknown coefficients are given in the Appendix.
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Eddy currents expressions in conductive plate

The eddy currents in an infinite conductive plate are computed using the Ampere law and is given by: (17) Substituting the expressions of the magnetic field strength (10), ( 11), ( 13) into (17), after calculation, the components of the induced current density in the conducting plate are given as follows: 
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In the case of finite dimensions, the normal components of eddy currents at lateral faces of the conducting plate are vanish. To satisfy these boundary's conditions with the concept of images method [START_REF] Messadi | Eddy current computation in translational motion conductive plate of an induction heater with consideration of finite length extremity effects[END_REF][START_REF] Pluk | Modeling and Measurements on a Finite Rectangular Conducting Plate in an Eddy Current Damper[END_REF]Zhang & al., 2014), an infinite multiplication of images can be introduced outside the plate in y-direction. Thus, the eddy current density produced in a point of the plate with finite dimensions is the superposition of the source eddy current density calculated in the case of an infinite width plate and the eddy current densities of the images (Fig. 4).

In our model the boundary's conditions on the lateral faces of the conducting plate are taken into account by exploiting the fictitious poles imposed by the fictitious anti-periodic condition on the y-direction. So to apply the image's eddy current densities it is enough to impose ly =b (Fig. 3). The induced current density distribution, for one layer of images, is shown in the fig. 4, where is the real distribution of the eddy current density (conducting plate of finite dimensions with transverse edge effect), resulting from the current density calculated for an infinite dimensions conducting plate , and that of images .

Heating power

The heating power, due to the induced currents is computed by the integration of the power density in the volume of the conducting plate as follows:
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Where X p , Y p and 2h p are respectively the length, the width and the thickness of the conducting plate, Fig. 1.

Results

In this section, we use the proposed 3D analytical model to analyze the performances of the studied induction heater. In order to show the accuracy of the 3-D analytical model, the results are compared with those obtained from 3D FEM implemented in COMSOL-Multiphysics software and experimental measurements performed on the test rig shown in Fig. 5.

To perform the 3D finite element computations with COMSOL software, a 3D mesh of 841263 tetrahedral elements leading to solve a global algebraic system having 5360005 degrees of freedom is used. Obviously, the 3D model take into account all the edge effects. The oscillatory linear motion of the workpiece is obtained by transformation of rotary motion using a crank-rod system (Fig. 5). Fig. 6 gives the linear velocity evolution versus time for a peak value Vmax = 0.5 m/s. We can observe that the linear velocity presents a sinusoidal waveform. Fig. 9 and Fig. 10 show respectively the distribution of the flux density component B z along the x-direction and y-direction, on workpiece surface at z = z 2 (z 2 = h a +e) and in the middle of the workpiece at z = z 3 (z 3 = h a +e+ h p ) for a velocity peak of 0.5m/s. We can observe that the flux density is little variable across the thickness of the workpiece.

The flux density waveforms predicted by the 3D developed model are in a good agreement compared to the finite element simulation. To show the effect of the reaction field due to induced currents, we compare the normal flux density distribution (Bz) along the x-direction obtained at rest and with a velocity peak of 2m/s (linear speed with sinusoidal variation) (Fig. 11). It can be seen that the reaction field due to the induced currents in the conducting plate tends to shift and distort the flux density.

The analytical results show a good agreement with those calculated by the finite element method. These eddy currents densities are calculated in the middle of the aluminum conducting plat at , for a velocity Vmax = 0.5 m/s.

It is noted that for an infinite width conducting plate, the obtained results underestimate the induced current component Jx and overestimate the component Jy, compared to those calculated by the finite element method.

However, after applying the image's method to take into account the real dimensions of the conducting plate, along the ydirection, the proposed model with image's gives very similar results compared to the 3D finite element simulations. The average induced heating power in the aluminum conducting plate as a function of peak velocity values (Vmax) is shown in Fig. 15.

The results obtained before and after the use of the image's method, along the y-direction, are compared with those obtained from the 3-D finite element simulations and experimental measurements. Again, it can be seen that for an infinite conducting plate (neglecting the finite length effects) the obtained results over estimate the heating power (error about 45% compared to the measured value at 1.2 m/s). After the use of the image's method, our model gives very close results compared to the 3D finite element simulations and to the measurements.

- It can be seen that for an infinite width conducting plate (neglecting the finite length effects) the error varies between 40% and 45% for peak velocity values ranging from 0.2 m / s to 1.2 m/s. However, after applying the image's method (finite width conducting plate) the error doesn't exceed 2% at a speed of 1.2 m/s.

The proposed model presents an important reduction in computation time. Indeed, for a given velocity, the calculation time for the 3D finite element method is about 196s, while that of the analytic model is 0.39s. So the proposed model can be used as an effective tool in a design optimization procedure of the induction heater. We note that for all analytical calculations we have considered a same number of harmonics in the x and y directions, n=25 and m=25. 

Conclusion

In this paper, a 3-D electromagnetic model based on sub-domain's method and the image's theory is developed for calculating the eddy currents and the heating power, dissipated by Joule effect, in a conductive plate with consideration of finite length effects and the eddy-current reaction field. 
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TABLE I

 I 

	.	GEOMETRIC PARAMETERS OF THE HEATER	
	Symbol	Quantity	Value
	2hp	Conducting plate thickness	15 mm
	Xp	Conducting plate length	240 mm
	Yp	Conducting plate width	50 mm
	e	air gap	3 mm
	eg	Distance between two magnets	2 mm
	ha	Permanent magnet thickness	10 mm
	2a	Longitudinal and Transversal PM width	20 mm
	2b	Permanent magnet length	50 mm
	zc	Iron yoke thickness	20 mm
	xc	Iron yoke length	400 mm
	yc	Iron yoke width	60 mm
	Vx(t)	Oscillatory linear velocity	Variable
	Vmax	Velocity peak value	Variable
	Br	Residual induction of permanent magnets	1.21 T
		Aluminum conductivity at 20°C	33.16 10 6 Sm -1

  Heating power in the conducting plate versus peak velocity values (Vmax).
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The results show the accuracy of the developed model to properly account for the transverse edge effects. The results are in good agreement with those obtained by 3D FEM and experiments. The calculation times are considerably reduced using the proposed method.

APPENDIX

The analytical expressions of the complex coefficients, A I , B I , A II , B II ,A xIII , B xIII , A zIII and B zIII are given by: , , , , With: