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Abstract

This paper considers the deconvolution problem in the case where the target signal is multidimensional
and no information is known about the noise distribution. More precisely, no assumption is made on the
noise distribution and no samples are available to estimate it: the deconvolution problem is solved based
only on the corrupted signal observations. We establish the identifiability of the model up to translation
when the signal has a Laplace transform with an exponential growth smaller than 2 and when it can be
decomposed into two dependent components. Then, we propose an estimator of the probability density
function of the signal without any assumption on the noise distribution. As this estimator depends of the
lightness of the tail of the signal distribution which is usually unknown, a model selection procedure is
proposed to obtain an adaptive estimator in this parameter with the same rate of convergence as the estima-
tor with a known tail parameter. Finally, we establish a lower bound on the minimax rate of convergence
that matches the upper bound.

1 Introduction
Estimating the distribution of a signal corrupted by some additive noise, referred to as solving the deconvo-
lution problem, is a long-standing challenge in nonparametric statistics. In such problems, the observation
Y is given by

Y = X + ε , (1)

where X is the signal and ε is the noise. Recovering the distribution of the signal using data contaminated
by additive noise is an all-pervasive problem in all fields of statistics, see [Meister, 2009] and the references
therein. It has been applied in a large variety of disciplines and has stimulated a great research interest for
instance in signal processing [Moulines et al., 1997, Attias and Schreiner, 1998], in image reconstruction
[Kundur and Hatzinakos, 1996, Campisi and Egiazarian, 2017] or in astronomy [Starck et al., 2002].

Although a great deal of research effort has been devoted to design efficient estimators of the distribution
of the signal and to derive optimal convergence rates, the results available in the literature suffer from a
crucial limitation: they assume that the distribution of the noise is known. Estimators based on Fourier
transforms are the most widespread in this setting as convolution with a known error density translates into
a multiplication of the Fourier transform of the signal by the Fourier transform of the noise. However, this

1
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assumption may have a significant impact on the robustness of deconvolution estimators as pointed out in
[Meister, 2004] where the author established that the mean integrated squared error of such an estimator can
grow to infinity when the noise distribution is misspecified.

The aim of this paper is to solve the deconvolution problem without any assumption on the noise distri-
bution and based solely on a sample of observations Y1, . . . ,Yn. In particular, we do not assume that some
samples with the same distribution as ε are available as in [Johannes, 2009, Lacour and Comte, 2010]. We
prove this is possible as soon as the signal X (i) has a distribution with light enough tails and (ii) has at least
two dimensions and may be decomposed into two subsets of random variables which satisfy some weak
dependency assumption. We then propose an estimator of the density of its distribution which is shown to
be minimax adaptive for the mean integrated squared error.

The main reason why it becomes possible to solve the deconvolution problem in this multivariate setting
is the structural difference between signal and noise in term of dependence structure of the two components:
the signal has dependent components and the noise has independent components. We prove that such a hid-
den structure may be discovered based solely on observations Y1, . . . ,Yn. A first step to establish the identi-
fiability in deconvolution without any assumption on the noise was obtained by [Gassiat and Rousseau, 2016]
with a dependency assumption on the signal, but under the restrictive assumption that the signal takes a finite
number of values. This identifiability result was extended recently by [Gassiat et al., 2020] who proved the
identifiability up to translation of the distributions of the signal and of the noise when the hidden signal is a
hidden stationary Markov chain independent of the noise. Building upon these ideas, the first part of our pa-
per establishes the identifiability up to translation of the deconvolution model when the signal X which lies
in Rd, d > 2, can be decomposed into two dependent components X(1) ∈ Rd1 , d1 > 1, and X(2) ∈ Rd2 ,
d2 > 1, with d1 + d2 = d:

Y =

(
Y (1)

Y (2)

)
=

(
X(1)

X(2)

)
+

(
ε(1)

ε(2)

)
= X + ε . (2)

The identifiability up to translation of the law of X ∈ Rd1+d2 and of ε ∈ Rd1+d2 based on the law of Y
when the noise is independent of the signal only requires that the Laplace transform of the signal has an
exponential growth smaller than 2 and some dependency assumption between the two components of the
signal.

The second objective of this paper is to propose a rate optimal estimator of the probability density func-
tion of X without any assumptions on the noise distribution. In the pioneering works on deconvolution for
i.i.d. data, the distribution of X is recovered by filtering the received observations to compensate for the
convolution using Fourier inversion and Kernel based methods, see [Devroye, 1989, Liu and Taylor, 1989,
Stefanski and Carroll, 1990] for some early nonparametric deconvolution methods and [Carroll and Hall, 1988,
Fan, 1991] for minimax rates. On the other hand, more recent works were dedicated to multivariate deconvo-
lution problems such as [Comte and Lacour, 2013] for kernel density estimators, [Sarkar et al., 2018] for a
Bayesian approach or [Eckle et al., 2016] for a multiscale based inference. In all these works, deconvolution
is solved under two restrictive assumptions: (a) the distribution of the noise is assumed to be known and (b)
this distribution is assumed to be such that its Fourier transform is nowhere vanishing.

An important step toward solving the deconvolution problem without such restrictions on the noise dis-
tribution was achieved in [Meister, 2007] for signals in R with a probability density function supported on
a compact subset of R. In [Meister, 2007], the estimation procedure only requires the Fourier transform of
the noise to be known on a compact interval around 0. The procedure relies first on recovering as usual the
Fourier transform of the signal by direct inversion on the compact interval where the noise distribution is
known, and by choosing a polynomial expansion on this compact interval. Then, the Fourier transform is
extended to larger intervals before using a Fourier inversion to provide a probability density estimator. Un-
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der standard smoothness assumptions, [Meister, 2007] established an upper bound for the mean integrated
squared error which is shown to be optimal under a few additional assumptions.

In this paper, we propose an estimation procedure inspired from our identifiability proof. We provide an
identification equation on Fourier transforms which can be used to build a contrast function to be minimized
on possible estimators for the unknown Fourier transform of the distribution of the signal. Once an estimator
of the Fourier transform of the signal on a neighborhood of 0 is available, we use polynomial expansions
of this estimator as in [Meister, 2007] to extend it to Rd1+d2 before using a Fourier inversion to obtain an
estimator of the density. One of the main hurdles to overcome is then to relate the value of the contrast
function to the error on the Fourier transform. Under common smoothness assumptions, we provide rates of
convergence for the estimator of the probability density function of X depending on the lightness of its tail.
Both the regularity and the tail lightness have an impact on the rates of convergence. Surprisingly, while
this estimation procedure does not require any prior knowledge on the noise, we obtain the same rates as
in [Meister, 2007] when the signal distribution has a compact support: not knowing the noise distribution
does not affect these rates.

We then propose a model selection method to obtain an estimator that is rate adaptive to the unknown
lightness of the tail. Finally, we establish a lower bound on the minimax rate of convergence that matches
the upper bound. Minimax rates of convergence in deconvolution problems may be found in [Fan, 1991],
[Butucea and Tsybakov, 2008a], [Butucea and Tsybakov, 2008b] and in [Meister, 2009]. In most works on
deconvolution, not only the distribution of the noise is assumed to be known (or estimated for instance as
in [Johannes, 2009] and [Lacour and Comte, 2010]) but the rates of convergence depend on the decay of its
Fourier transform (ordinary or super smooth). It is interesting to note that in our context where the noise is
completely unknown, the minimax rate of convergence depends only on the signal and not on the noise.

The paper is organized as follows. Section 2.1 displays the general identifiability result which estab-
lishes that the distributions of the signal and of the noise can be recovered from the observations up to a
translation indeterminacy. This general result allows to identify submodels as illustrated in Section 2.2 with
several common statistical frameworks. Section 3 describes the adaptive estimation procedure and provides
convergence rates. Section 4 states the lower bound on the minimax rates of convergence and Section 5
suggests a few possibilities for future works and settings in which our results may contribute significantly.
All proofs are postponed to the appendices.

2 Identifiability results

2.1 General theorem
The following assumption is assumed to hold throughout the paper.

H1 The signal X belongs to Cd with d > 2 and the observation model is given by (2) in which ε is
independent of X and ε(1) is independent of ε(2).

Consider model (2) in which ε is independent of X and ε(1) is independent of ε(2). Let PR,Q be the
distribution of Y when X has distribution R and for i ∈ {1, 2}, ε(i) has distribution Q(i), with Q =
Q(1) ⊗ Q(2). Denote by R(1) the distribution of X(1) and by R(2) the distribution of X(2). For any ρ > 0
and any integer p > 1, let Mp

ρ be the set of positive measures µ on Rp such that there exist A,B > 0
satisfying, for all λ ∈ Rp, ∫

exp
(
λ>x

)
µ(dx) 6 A exp (B‖λ‖ρ) ,
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where for a vector λ in a Euclidian space, ‖λ‖ denotes its euclidian norm. WhenR ∈Md
ρ, the characteristic

function of R can be extended into a multivariate analytic function denoted by

ΦR : Cd1 × Cd2 −→ C

(z1, z2) 7−→
∫

exp
(
iz>1 x1 + iz>2 x2

)
R(dx1,dx2) .

Let us now introduce the structural assumption on the signal X. Note that no assumption other than H1 is
made on the noise ε, and that assumption H2 may be understood as a dependency assumption between the
components X(1) and X(2) of X as discussed below.

H2 For any z0 ∈ Cd1 , z 7→ ΦR(z0, z) is not the null function and for any z0 ∈ Cd2 , z 7→ ΦR(z, z0) is not
the null function.

Assumption H2 means that for any z1 ∈ Cd1 , there exists z2 ∈ Cd2 such that ΦR(z1, z2) 6= 0 and for any
z2 ∈ Cd2 , there exists z1 ∈ Cd1 such that ΦR(z1, z2) 6= 0.

In the following, the assertion R = R̃ and Q = Q̃ up to translation means that there exists m =
(m1,m2) ∈ Rd1 × Rd2 such that if X has distribution R and for i ∈ {1, 2}, εi has distribution Qi, then
(Xi −mi)i∈{1,2} has distribution R̃ and for i ∈ {1, 2}, εi +mi has distribution Q̃i.

Theorem 1. Assume thatR and R̃ are probability distributions on Rd which satisfy assumption H2. Assume
also that there exists ρ < 2 such that R and R̃ are inMd

ρ. Then, PR,Q = P
R̃,Q̃

implies that R = R̃ and

Q = Q̃ up to translation.

One way to fix the “up to translation” indeterminacy when the noise has a first order moment is to assume
that E[ε] = 0. The proof of Theorem 1 is postponed to Appendix C.

Comments on the assumptions of Theorem 1. First of all, Theorem 1 involves no assumption at all
on the noise distribution. This noise can be deterministic and there is no assumption on the set where its
characteristic function vanishes. In addition, there is no density or singularity assumption on the distribution
of the hidden signal. The signal may have an atomic or a continuous distribution, and no specific knowledge
about this is required. The only assumptions are on the tail of the signal distribution and assumption H2
which, as discussed below, is a dependency assumption.

The assumption that R ∈ Md
ρ is an assumption on the tails of the distribution of X. If R is compactly

supported, then R ∈ Md
1, and if a probability distribution is inMd

ρ for some ρ, then ρ > 1 except in case
it is a Dirac mass at point 0. The assumption ρ < 2 means that R is required to have tails lighter than that
of Gaussian distributions. It is useful to note that R is inMd

ρ for some ρ if and only if R(1) is inMd1
ρ for

some ρ and R(2) is inMd2
ρ for some ρ.

Let us now comment assumption H2. Hadamard’s factorization theorem states that entire functions are
completely determined by their set of zeros up to a multiplicative indeterminacy which is the exponential
of a polynomial with degree at most the exponential growth of the function (here ρ). If R ∈ Mρ for some
ρ < 2, then a consequence of Hadamard’s factorization theorem (arguing variable by variable) is that ΦR (·)
has no complex zeros if and only if R ∈ Mρ is a dirac mass. Since we are interested in non deterministic
signals, in general ΦR(·, ·), ΦR(·, 0) and ΦR(0, ·) will have complex zeros. Now, if the variables X(1) and
X(2) are independent, then for all z1 ∈ Cd1 and z2 ∈ Cd2 , ΦR (z1, z2) = ΦR (z1, 0) ΦR (0, z2), so that
ΦR(z1, ·) is identically zero as soon as z1 is a complex zero of ΦR (·, 0). Thus, assumption H2 implies
that the variables X(1) and X(2) are not independent except if they are deterministic. Moreover, if for
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i ∈ {1, 2}, X(i) can be decomposed as X(i) = X̃(i) + ηi, with η1 and η2 independent variables independent
of X̃ = (X̃(1), X̃(2)), and if for some z1, E[eiz

>
1 η1 ] = 0 or for some z2, E[eiz

>
2 η2 ] = 0, then H2 does not

hold. In other words, H2 can hold only if all the additive noise has been removed from X. Here, additive
noise means a random variable with independent components.When the components X(1) and X(2) of the
signal have each a finite support set of cardinality 2, Assumption H2 is even equivalent to the fact that X(1)

and X(2) are not independent.
Other examples in which assumption H2 holds are provided in Section 2.2, showing that assumption H2

is a mild assumption which may hold for a large class of multivariate signals with dependent components.

2.2 Identification of structured submodels
This section displays examples to which Theorem 1 applies, and in particular, for each model, we explicitize
conditions which ensure that assumption H2 holds. This means of course that such models are identifiable.
But, since they are submodels of the general model, it also means that they may be recovered in this larger
general model. Further examples that could be investigated are discussed in Section 5.

2.2.1 Noisy Independent Component Analysis

Independent Component Analysis assumes that Y ∈ Rd is a random vector such that there exists an unknown
integer q > 1, an unknown matrix A of size d× q, and two independent random vectors S ∈ Rq and ε ∈ Rd
such that

Y = AS + ε , (3)

where all coordinates of the signal S are independent, centered and with variance one and all coordinates of
the noise ε are independent. The statistical challenge lies in estimating A and the probability distribution of
S while only Y is observed. The noise free formulation of this problem, i.e. Y = AS, was proposed in the
signal processing litterature, see for instance [Jutten, 1991]. The identifiability of the noise free linear in-
dependent component analysis has been established in [Comon, 1994, Eriksson and Koivunen, 2004] under
the following (sufficient conditions).

- The components Si, 1 6 i 6 q, are not Gaussian random variables (with the possible exception of
one component).

- d > q, i.e. the number of observations is greater than the number of independent components.

- The matrix A has full rank.

A noisy extension of the ordinary ICA model which implies further identifiability issues was considered
for instance in [Moulines et al., 1997]. A correct identification of the mixing matrix A can be obtained by
assuming that the additive noise is Gaussian and independent of the signal sources which are non-Gaussian,
see for instance [Hyvarinen et al., 2002]. In our paper, identifiability of the ICA model with unknown addi-
tive noise is established using Theorem 1 under some assumptions (discussed below). In the following, for
any subset I of {1, . . . , d} and any matrix B of size d× q, let BI denote the |I| × q matrix whose lines are
the lines of B with index in I , where |C| is the number of element of any finite set C.

Corollary 2. Let A and Ã be two matrices of size d × q. Assume that there exists a partition I ∪ J =
{1, . . . , d} such that all columns of AI , ÃI , AJ and ÃJ are nonzero. Assume also that (Sj)16j6q (resp.
(S̃j)16j6q) are independent and that there exists ρ < 2 such that the distributions of all Sj (resp. S̃j) are in

5
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M1
ρ. Denote by Q (resp. Q̃) the distribution of ε (resp. ε̃) and by R (resp. R̃) the distribution of AS (resp.

ÃS̃) in (3). Then, PR,P = PR̃,P̃ implies that R = R̃ and Q = Q̃ up to translation.

Corollary 2 is proved in Section D. Apart from the assumption that the independent components of the
signal have distribution with light tails, the main assumption is that the observation Y may be splitted in two
known parts so that the corresponding lines of the matrix A have a non zero entry in each column. Although
this assumption is not common in the ICA literature, as explained in [Pfister et al., 2019, Section 1.1.3], a
wide range of applications require to design source separation techniques to deal with grouped data. Identifi-
ability of such a group structured ICA is likely to rely on specific assumptions and we propose in Corollary 2
a set of assumptions which allow to apply Theorem 1.

2.2.2 Repeated measurements

In deconvolution problems with repeated measurements, the observation model is

Y (1) = X(1) + ε(1) and Y (2) = X(1) + ε(2) , (4)

where X(1) has distribution R(1) on Rd1 and is independent of ε = (ε(1), ε(2))> where ε(1) is independent
of ε(2) and ε has distribution Q, see [Delaigle et al., 2008] for a detailed description of such models and all
the references therein for the numerous applications. Let R be the distribution of (X(1), X(1))> on R2d1 .

Corollary 3. Assume that there exists ρ < 2 such that R(1) and R̃(1) are in Md1
ρ . Then, PR,Q = P

R̃,Q̃

implies that R = R̃ and Q = Q̃ up to translation.

Proof. Assumption H2 holds since ΦR(z1, z2) = ΦR(1)(z1 + z2) for all z1 ∈ Cd1 and z2 ∈ Cd1 , and ΦR(1)

can not be identically zero since ΦR(1)(0) = 1. We then apply Theorem 1.

Therefore, deconvolution with at least two repetitions is identifiable without any assumption on the noise
distribution, under the mild assumption that the distribution of the variable of interest has light tails. The
model may also contain outliers with unknown probability and still be identifiable.

Corollary ?? generalizes [Kotlarski, 1967, Lemma 1], in which Y is assumed to have a non vanish-
ing characteristic function, which implies that the characteristic functions of X(1) and of the noise are
not vanishing everywhere. Identifiability of model (4) has been proved by [Li and Vuong, 1998] under the
assumption that the characteristic functions of X(1) and of the noise are not vanishing everywhere. In
[Delaigle et al., 2008], kernel estimators where proved equivalent to those for deconvolution with known
noise distribution when X(1) has a real characteristic function and for ordinary smooth errors and signal.

2.2.3 Errors in variable regression models

The observations of errors in variable regression models are defined as

Y (1) = X(1) + ε(1) and Y (2) = g(X(1)) + ε(2) , (5)

where g : Rd1 → Rd2 , X(1) has distribution R(1) on Rd1 and is independent of ε = (ε(1), ε(2))>, ε(1) is
independent of ε(2) and ε has distribution Q. Let R be the distribution of (X(1), g(X(1))) on Rd1+d2 . If the
distribution of (X(1), g(X(1))) is identified, then its support is identified and the support of (X(1), g(X(1)))
is the graph of the function g so that g is identified on the support of the distribution of X(1).
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Corollary 4. Assume that there exists ρ < 2 such that R(1) and R̃(1) are inMd1
ρ and that R(2) and R̃(2)

are inMd2
ρ . Assume also that the supports of X(1) and g(X(1)) have a nonempty interior and that g is one-

to-one on a subset of the support of X1 with nonempty interior. Then, PR,Q = P
R̃,Q̃

implies that R = R̃

and Q = Q̃ up to translation.

This identifiability relies on weaker assumptions on the errors in variable regression models than in
[Delaigle et al., 2008] where the noise distribution is assumed to be ordinary-smooth (which implies in par-
ticular that its Fourier transform does not vanish on the real line) and where the distribution of X(1) is as-
sumed to have a probability density with respect to the Lebesgue measure on R. In [Schennach and Hu, 2013],
the authors also assumed a nowhere vanishing Fourier transform of the noise distribution and that the dis-
tribution of X(1) admits a probability density with respect to the Lebesgue measure uniformly bounded and
supported on an open interval. In this setting (more restrictive on the noise and with different restrictions on
the signal), the identification result in [Schennach and Hu, 2013] is not comparable to ours.

Proof. The proof boils down to establishing that Assumption H2 holds to apply Theorem 1. If Assumption
H2 does not hold, then either there exists z0 ∈ Cd1 such that for all z ∈ Cd2 , E[ez

>
0 X

(1)+z>g(X(1))] = 0,
or there exists z0 ∈ Cd2 such that for all z ∈ Cd1 , E[ez

>X(1)+z>0 g(X
(1))] = 0. In the last case, since

the support of X(1) has a nonempty interior, this is equivalent to E[ez
>
0 g(X

(1))|X(1)] = 0, which means
that ez

>
0 g(X

(1)) = 0, which is impossible. Thus, since the support of g(X(1)) has a nonempty interior
(which is the case for instance if g is a continuous function), H2 does not hold if and only if for some z0,
E
[
ez
>
0 X

(1)
∣∣∣g(X(1))

]
= 0. The error in variables regression model is then identifiable without knowing the

distribution of the noise as soon as for all z0,

E
[
ez
>
0 X

(1)
∣∣∣g(X(1))

]
6= 0 . (6)

When g is one-to-one on a subset of the support of X(1) with nonempty interior, for all z0, (6) is verified
and the model is identifiable.

3 Upper bounds
In this section, we propose an estimator of the signal density that is adaptive in the tail parameter ρ and
we study its rate of convergence. We first explain in Section 3.1 the construction of the estimator for a
fixed tail parameter. We then study in Section 3.2 the rates of convergence for the estimators with fixed tail
parameter and give an upper bound for the maximum integrated squared error over a class of densities with
fixed regularity and tail parameter. We provide in Section 3.3 a model selection method to choose the tail
parameter based solely on data Y1, . . . ,Yn and prove that the resulting estimator is rate adaptive over the
previously considered classes of regularity and tail parameter. We further study in Section 4 a lower bound
of the minimax rate indicating that our final estimator is rate minimax adaptive.

In the following, the unknown distribution of the signal is denoted R? and we assume it admits a density
f? with respect to the Lebesgue measure. Likewise, the unknown distribution of the noise is written Q?.

3.1 Estimation procedure
Define, for any positive integer p and any ν > 0, Bpν = [−ν, ν]p. For all positive integer p and any ν > 0,
write L2(Bpν) the set of square integrable functions on Bpν (possibly taking complex values) with respect to
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the Lebesgue measure. The first step of our procedure is to estimate the Fourier transform of f?. For all
ν > 0 and all measurable and bounded functions φ : Bd1ν × Bd2ν → C, define

M(φ; ν|R?, Q?) =

∫
B
d1
ν ×B

d2
ν

|φ(t1, t2)ΦR?(t1, 0)ΦR?(0, t2)− ΦR?(t1, t2)φ(t1, 0)φ(0, t2)|2

|ΦQ?,(1)(t1)ΦQ?,(2)(t2)|2dt1dt2 ,

where ΦQ?,(1) (resp. ΦQ?,(2) ) is the Fourier transform of the (unknown) distributionQ?,(1) of ε1 (resp. Q?,(2)

of ε2). This contrast function is inspired by the identifiability proof, see equation (41). Indeed, following
the identifiability proof, we know that for all Q?, if R? satisfies the assumptions of Theorem 1, and if φ is
a multivariate analytic function satisfying Assumption H2, such that there exists A,B > 0 and ρ ∈ (0, 2)
such that for all (z1, z2) ∈ Rd1 × Rd2 , |φ(iz1, iz2)| 6 A exp(B‖(z1, z2)‖ρ) and such that for all z ∈ Rd,
φ(z) = φ(−z), then for any ν > 0,

M(φ; ν|R?, Q?) = 0 if and only if φ = ΦR? . (7)

In practice, R? and Q? are unknown, so the estimator is defined by minimizing an empirical counterpart
ofM over classes of analytic functions to be chosen later. Choose first some fixed νest > 0 and for all n > 0,
define

Mn(φ) =

∫
B
d1
νest×B

d2
νest

|φ(t1, t2)φ̃n(t1, 0)φ̃n(0, t2)− φ̃n(t1, t2)φ(t1, 0)φ(0, t2)|2dt1dt2 ,

where for all (t1, t2) ∈ Cd1 × Cd2 ,

φ̃n(t1, t2) =
1

n

n∑
`=1

eit
>
1 Y

(1)
` +it>2 Y

(2)
` .

For all i ∈ Nd and all analytic function φ defined on Cd, write ∂iφ the partial derivative of order i of φ: for
all x ∈ Cd, ∂iφ(x) = (∂i1/∂x1

) . . . (∂id/∂xd)φ(x). For all κ > 0 and S <∞, let

Υκ,S =

{
φ analytic s.t. ∀z ∈ Rd, φ(z) = φ(−z), φ(0) = 1 and ∀i ∈ Nd \ {0},

∣∣∣∣∣ ∂iφ(0)∏d
a=1 ia!

∣∣∣∣∣ 6 S‖i‖1

‖i‖κ‖i‖11

}
(8)

where ‖i‖1 =
∑d
a=1 ia, and

Gκ,S = {φ− φ′ : φ, φ′ ∈ Υκ,S} . (9)

Note that for all κ > 0 and S < ∞, the elements of Υκ,S are equal to their Taylor series expansion. As
shown in the following Lemma, the sets Υκ,S andMd

1/κ are equivalent in that the set of all characteristic
functions in

⋃
S Υκ,S is the set of characteristic functions of probability measures inMd

1/κ. Its advantage
overMd

1/κ is the more convenient characterization of its elements φ in terms of their Taylor expansion.

Lemma 5. For each ρ > 1 and probability measure µ ∈ Md
ρ, there exists S > 0 such that λ 7→∫

exp
(
iλ>x

)
µ(dx) is in Υ1/ρ,S . Conversely, for all κ > 0, there exists a constant c such that for any

S > 0 and for any probability measure µ on Rd such that λ 7→
∫

exp
(
iλ>x

)
µ(dx) is in Υκ,S , µ satisfies

for all λ ∈ Rp, ∫
exp

(
λ>x

)
µ(dx) 6 c

(
1 + (S‖λ‖)

d+1
κ

)
exp

(
κ(S‖λ‖)1/κ

)
.

In particular, µ ∈Md
1/κ.
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Proof. The proof is postponed to Appendix E.

Let now H be a set of functions Rd → Cd such that all elements of H satisfy H2 and which is closed in
L2([−νest, νest]

d). For all κ > 0, n > 1, the Fourier transform ΦR? of the distribution of X is estimated by

φ̂κ,n ∈ arg min
φ∈Υκ,S∩H

Mn(φ) . (10)

To address possible measurability issues, note that we could take φ̂κ,n as a measurable function such that
Mn(φ̂κ,n) 6 infφ∈Υκ,S∩HMn(φ) + 1/n, and all following results would still hold.

Consistency of φ̂κ,n will follow from (7) and the compactness of Υκ,S ∩H. Now, to get an estimator of
the density f?, there remains to perform Fourier inversion. First, we shall truncate the polynomial expansion
of φ̂κ,n. For all m ∈ N, let Cm[X1, . . . , Xd] be the set of multivariate polynomials in d indeterminates with
(total) degreem and coefficients in C. In the following, if φ is an analytic function defined in a neighborhood
of 0 in Cd written as φ : x 7→

∑
i∈Nd ci

∏d
a=1 x

ia
a , define its truncation on Cm[X1, . . . , Xd] as

Tmφ : x 7→
∑

i∈Nd:‖i‖16m

ci

d∏
a=1

xiaa . (11)

Then, for some integer mκ,n (to be chosen later), the estimator of f? is defined as follows:

f̂κ,n(x) =
1

(2π)d

∫
B
d1
ωκ,n×B

d2
ωκ,n

exp(−it>x)
(
Tmκ,n φ̂κ,n

)
(t)dt , (12)

for some ωκ,n > 0 (to be chosen later).

3.2 Rates of convergence

In this section, we explain how to choose (mκ,n)κ,n and (ωκ,n)κ,n to obtain the rate of convergence of f̂κ,n
to f? in L2(Rd1 × Rd2). For any κ ∈ (0, 1], define

mκ,n =

⌊
1

8κ

log n

log log(n/4)

⌋
(13)

and
ωκ,n = cκm

κ
κ,n/S (14)

for some constant cκ 6 νest ∧ 2κ exp(−(3d+ 5)/2). We will also need to control the regularity of the target
density f? as in the following assumption.

H3 We say that ΦR? satisfies H3 for the constants β, cβ > 0 if∫
Rd1×Rd2

|ΦR?(t)|2(1 + ‖t‖2)βdt 6 cβ .

For all κ, S > 0, β > 0, cβ > 0, ν > 0, cν > 0 and cQ > 0, let

• Ψ(κ, S, β, cβ) be the set of functions in Υκ,S that can be written as ΦR for some probability measure
R on Rd and that satisfy H3 for β, cβ .

9
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• Q(ν, cν , cQ) be the class of probability measures of the form Q(1) ⊗Q(2) where Q(1) (resp. Q(2)) is
a probability measure on Rd1 (resp. Rd2 ) such that |ΦQ(1) | > cν on [−ν, ν]d1 and |ΦQ(2) | > cν on
[−ν, ν]d2 , and such that if ε is a random variable with distribution Q, then E[‖ε‖2] 6 cQ.

Theorem 6. For all κ0 > 1/2, S > 0, β > 0, cQ > 0, cν > 0 and cβ > 0, for all ν ∈ [(d+ 4/3)e/S, νest],

lim sup
n→+∞

sup
κ∈[κ0,1]

sup
Q?∈Q(ν,cν ,cQ)

R? : ΦR?∈Ψ(κ,S,β,cβ)∩H

ER?,Q?
[

sup
κ′∈[κ0,κ]

{(
log n

log log n

)2κ′β

‖f̂κ′,n − f?‖2L2(Rd1×Rd2 )

}]
< +∞ ,

whereH is introduced in the definition of φ̂κ,n, see (10).

Proof. The proof is postponed to Section A.

It is important to note that the procedure does not require the knowledge of ν, which leads to the rate of
convergence (log n/ log log n)

−2κβ without any prior knowledge about the distribution of the noise, since
for any νest > 0, there exists ν ∈ [(d+ 4/3)e/S, νest] such that |ΦQ(1) | > cν on [−ν, ν]d1 and |ΦQ(2) | > cν
on [−ν, ν]d2 provided that S is large enough. Also, the assumption ΦR? ∈ Υκ?,S is not restrictive since by
Lemma 5, f? ∈ Md

ρ implies φ? ∈ Υ1/ρ,S for some S > 0. The assumption κ0 > 1/2 is required only to
apply Theorem 1 and corresponds to the assumption ρ < 2. If the identifiability theorem held for a wider
range of ρ, Theorem 6 would be valid for the corresponding range of κ without any change in the proofs.
The proof of Theorem 6 can be decomposed into the following steps.

(i) Consistency. The fist step consists in proving that there exists a constant c which depends on κ, S, d
and νest such that for all n > 1 and all x > 0, with probability at least 1− 4e−x,

sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest|R?, Q?)| 6 c

(√
1

n
∨
√
x

n
∨ x
n

)
.

This result is established in Lemma 15. A key observation will be that for any ν 6 νest and any φ,

M(φ; ν|R?, Q?) 6M(φ; νest|R?, Q?).

This is enough to establish that, for any ν 6 νest, all convergent subsequences of (φ̂κ,n)n>1 have limit
ΦR? in L2(Bd1ν ×Bd2ν ), provided ΦR? ∈ Υκ,S . Since Υκ,S is a compact subset of L2(Bd1ν ×Bd2ν ), this
implies that (φ̂κ,n)n>1 is a consistent estimator of ΦR? uniformly in κ and R?.

(ii) Rates for the estimation of ΦR? . Then, for fixed ν ∈ [(d+ 4/3)e/S, νest], for h in a neighborhood of
0 in L2(Bd1ν × Bd2ν ), the risk M(ΦR? + h; ν|R?, Q?) is lower bounded as follows:

M(ΦR? + h; ν|R?, Q?) > c‖h‖4
L2(B

d1
ν ×B

d2
ν )

, (15)

where c depends on d and ν. This result is established in Proposition 16 in Appendix A.2 and is
obtained by decomposing M(ΦR? +h; ν|R?, Q?) into two terms, the first one involving the L2(Bd1ν ×
Bd2ν ) norm of h(·, 0)h(0, ·) and the second part involving the L2(Bd1ν ×Bd2ν ) norm of a linear term in h.
The main challenge to prove equation (15) is to establish a lower bound of the first term and an upper
bound of the second term for h in a neighorhood of 0 in L2(Bd1ν × Bd2ν ). Obtaining these two bounds
requires many technicalities and they need to be balanced sharply to establish (15). Then, we show in

10
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Proposition 17 that there exist constants c1, c2 and c3 which depend on κ0, ν, S, d and E[‖Y‖2] such
that for all x > 1, for all n > (1 ∨ xc1)/c2, with probability at least 1− 4e−x,

sup
κ∈[κ0,κ?]

‖φ̂κ,n − ΦR?‖L2(B
d1
ν ×B

d2
ν )

6 c3

(√
x

n
∨ x
n

)1/4

. (16)

(iii) Rates for the estimation of f?. Then, using assumption H3, the error term ‖f̂κ,n − f?‖2L2(Rd1×Rd2 )

is upper bounded based on the Fourier inversion (12) as follows

‖f̂κ,n − f?‖2L2(Rd1×Rd2 ) 6
1

2π2
‖Tmκ,n φ̂κ,n − ΦR?‖2L2(B

d1
ωκ,n×B

d2
ωκ,n )

+
1

2π2

C

(1 + ω2
κ,n)β

.

This allows to establish Theorem 6 by controlling the error between Tmκ,n φ̂κ,n and the truncation of
φ? in Cmκ,n [X1, . . . , Xd] using Legendre polynomials, and the distance between functions in Υκ,S

and their truncations in Cmκ,n [X1, . . . , Xd].

Comments on the practical computation of the estimator. In practice computing the minimum over
the infinite dimensional set defined in (10) requires to introduce a truncation parameter. In other words,
instead of minimizing Mn over all elements φ of Υκ,S ∩ H, we would minimize it over all Tmφ, where m
is the so-called truncation parameter. This truncation has no impact on the result proved in Theorem 6, i.e.
on the rates of convergence derived in this paper, as long as this truncation parameter is chosen sufficiently
large with respect to mκ,n to obtain the rates for the estimation of ΦR? : as observed just after equation (10),
the resulting is an approximate minimizer of Mn. In the case where this new truncation parameter is at
least greater than 2mκ,n, this allows in (16) to control the additional bias term and to balance it with the
term (

√
x/n ∨ x/n)1/4. Although the estimator may be adapted to allow a practical computation, this does

not ensure a stable and numerically efficient result in real life learning frameworks. Moreover, designing a
set H that is closed in L2([−νest, νest]

d) and whose elements satisfy H2 that is in addition rich enough for
Theorem 6 to hold for a wide choice of R? is complex and would be a significant practical contribution.
Designing an efficient and stable implementation of the proposed algorithm is a challenge on its own and is
left for future works, as described in Section 5. The focus of this paper is to derive theoretical properties of
the deconvolution estimator without any assumption on the noise distribution.

3.3 Adaptivity in κ

In Section 3.2, we studied estimators built using the tail parameter κ. Unfortunately this tail parameter is
typically unknown in practice. We now propose a model selection data-driven procedure to choose κ, and we
prove that the resulting estimator converges to the rate corresponding to the largest κ such that ΦR? ∈ Υκ,S

for some S > 0.
Our strategy is based on Goldenshluger and Lepski’s methodology ([Goldenshluger and Lepski, 2008,

Goldenshluger and Lepski, 2013], see also [Bertin et al., 2016] for a very clear introduction). Like in all
model selection problems, the core idea is to perform a careful bias-variance tradeoff to select the right
κ. While a variance bound is readily available thanks to Theorem 6, the bias is not so easily accessible.
Goldenshluger and Lepski’s methodology give a way to compute a proxy of the bias, thus allowing selection
of a proper κ̂.

The variance bound (which can also be seen as a penalty term) will be taken as

σn(κ′) = cσ

(
log n

log log n

)−κ′β
11
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for all κ′ ∈ [κ0, 1], for some constant cσ > 0. While the selection procedure works as soon as this constant
cσ is large enough, the exact threshold depends on the true parameters. This is a usual problem of selection
procedures based on penalization: the penalty is typically known only up to a constant. Heuristics such as
the slope heuristics or dimension jump heuristics have been proposed to solve this issue and proved to work
in several settings, see [Baudry et al., 2012] and references therein.

The proxy for the bias is defined for all κ′ ∈ [κ0, 1] as

An(κ′) = 0 ∨ sup
κ′′∈[κ0,κ′]

{
‖f̂κ′′,n − f̂κ′,n‖L2(Rd1×Rd2 ) − σn(κ′′)

}
.

Finally, the tail parameter is selected as

κ̂n ∈ arg min
κ′∈[κ0,1]

{An(κ′) + σn(κ′)} .

When ΦR? ∈ Υκ,S , f̂κ̂n,n reaches the same rate of convergence as f̂κ,n for the integrated square risk:

Theorem 7. For all κ0 > 1/2, S > 0, β > 0, cQ > 0, cν > 0 and cβ > 0, there exists cσ > 0 such that for
all ν ∈ [(d+ 4/3)e/S, νest], if σn(κ′) > cσ(log n/ log log n)−κ

′β for all κ′ ∈ [κ0, 1],

lim sup
n→+∞

sup
κ∈[κ0,1]

sup
R? : ΦR?∈Ψ(κ,S,β,cβ)∩H

Q?∈Q(ν,cν ,cQ)

(
log n

log log n

)2κβ

ER?,Q?
[
‖f̂κ̂n,n − f?‖2L2(Rd1×Rd2 )

]
< +∞ ,

whereH is introduced in the definition of φ̂κ,n, see (10).

The proof of Theorem 7 is detailed in Section F. It is a consequence of deviation upper bounds developed
for proving Theorem 6 showing that if ΦR? ∈ Υκ,S , with probability at least 1 − 4/n, for all κ′ ∈ [κ0, κ],
‖f̂κ′,n − f?‖L2(Rd1×Rd2 ) 6 σn(κ′).

4 Lower bounds
In this section, we provide a lower bound showing that the rate of convergence (log n/ log log n)

−2κβ ob-
tained in Theorem 6 and in Theorem 7 is minimax optimal. The lower bound in [Meister, 2007] holds for
κ = 1, so in the following we only consider κ ∈ (0, 1). In this section (and only this section), we use
the notation F [h] (resp. F [Q]) for the Fourier transform of the probability density function h (resp. the
probability measure Q). Our lower bound is stated in Theorem 8.

The proof of Theorem 8 is based on Le Cam’s method, also known as the two-points method, see
[Le Cam, 2012], one of the most widespread technique to derive lower bounds. The minimax risk based on
n observations is lower bounded by considering observations from model (3) i.e. assuming that Y = AS+ε
where S ∈ Rd with d = d1 +d2 in which the coordinates Sj , j = 1, . . . , d, of S are independent. Let f0 and
fn be the probability densities of AS associated with different choices of densities for the distributions of
Sj , j = 1, . . . , d, and Q be the distribution of the noise ε. Then, following Le Cam’s method, the minimax
risk is lower bounded by

1

4
‖f0 − fn‖2L2(Rd)

[
1− 1

2

∥∥(f0 ∗Q)⊗n − (fn ∗Q)⊗n
∥∥
L1(Rd)n

]
, (17)

12
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where ∗ denotes the convolution operator. The goal is then to find two functions f0 and fn such that the
right most term is greater than 1/2 while the left most term is as large as possible. In this lower bound,
we consider a closed set H of functions from Rd to Cd such that all elements of H satisfy H2 and which
contains the probability densities of the form given by f0 and fn. This is the starting point of the proof
of Theorem 8 which also relies on a technical conjecture (Conjecture 10) which is strongly supported by
numerical experiments, see Section L in the supplementary material.

Theorem 8. Assume that Conjecture 10 is true. Then for all κ ∈ (0, 1), β > 0, cβ > 0, cQ > 0 and ν > 0,
there exists a constant c > 0 such that

inf
f̂

sup
Q?∈Q(ν,cν ,cQ)

R?:ΦR?∈Ψ(κ?,S,β,cβ)∩H

ER?,Q?
[
‖f̂κ,n − f?‖2L2(Rd)

]
> c

(
log n

log log n

)−2κβ

.

The infimum is taken over all estimators f̂ , that is all measurable functions of Y1, . . . ,Yn.

Let a be a (small) real number, in the following it is assumed that A is the (d1 + d2)× (d1 + d2) matrix

A =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
0 0 0 · · · 1

a a · · · a
0 0 · · · 0
0 0 · · · 0
...

. . .
0 0 · · · 0

a a a · · · a
0 0 0 · · · 0
...

. . .
0 0 0 · · · 0

1 0 · · · 0
0 1 · · · 0
...

. . .
0 0 · · · 1


.

Assume that the coordinates of ε are independent identically distributed with density (see [Ehm et al., 2004])

g : x 7→ cg
1 + cos(cx)

(π2 − (cx)2)2

for some c > 0, where cg is such that g is a probability density, with characteristic function

F [g] : t 7→
[(

1−
∣∣∣∣ tc
∣∣∣∣) cos

(
π
t

c

)
+

1

π
sin

(
π

∣∣∣∣ tc
∣∣∣∣)]1−c6t6c .

With an adequate choice of c, Q ∈ Q(ν, cν , cQ). Consider the probability density u : x ∈ R 7→ cu ·
exp(−1/(1− x2))1[−1,1](x) with the appropriate cu > 0 so that the integral of u equals one. For all b > 0
and x ∈ R, write ub(x) = bu(bx).

Lemma 9. Let κ ∈ (0, 1), c, T > 0 and τ > 0. Then, there exists x0 > 0 such that the following holds.
Let hκ = ch exp(−(

√
[1 + (x/x0)2]/2)1/(1−κ)) where ch is such that hκ is a probability density. For all

b > 1/x0, any probability density ζ such that ζ 6 c([x 7→ hκ(x)(1+(x/x0)2)τ ]∗ub) satisfiesF [ζ] ∈ Υκ,T .

Proof. The proof is postponed to Appendix K in the supplementary material.

13
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Let x0 and hκ be as in Lemma 9. Since hκ is infinitely differentiable with square integrable derivatives,
for all β > 0, there exists L such that for all b > 0,

∫
|F [hκ ∗ ub](t)|2(1 + t2)βdt 6 L. Let (PK)K>0

be the family of orthonormal polynomials for the scalar product 〈f, g〉 =
∫
f(x)g(x)hκ(x)2dx such that

deg(PK) = K. Consider the following conjecture on the properties on these polynomials.

Conjecture 10. There exists an nonnegative envelope function Fenv that has at most polynomial growth at
infinity such that the family (PK)K>1 satisfies supK>1K

(1−κ)/2‖PKhκ/Fenv‖∞ < ∞ and there exists
constants c0, c1, c2 such that for all K large enough, there exists at least c0Kκ intervals of length at least
c1K

−κ in [−1, 1] on which |PKhκ| > c2K
(κ−1)/2.

Let us comment on the different elements of this conjecture. As discussed above, our objective is to
construct two probability densities f0 and fn that are as far from each other as possible while the resulting
distributions of Y are as close as possible, see equation (17). The boundedness of PKhκ/Fenv ensures that
the densities we construct are nonnegative, and the assumption on the intervals is used to prove Corollary 11,
which controls how large ‖f0 − fn‖ is.

For the sake of simplicity, assume in the following that ‖Fenvhκ‖L1(R) = 1. Then there exists c > 0 and
τ > 0 such that Fenv(x) 6 c(1 + (x/x0)2)τ for all x ∈ R, thus making it possible to use Lemma 9. To use
the lemma, it is important to note that this c does not depend on the choice of x0.

Another conjecture that gives a better idea of the behaviour of these functions is that there exists a shape
function Fshape such that

sup
K>1

∥∥∥∥x 7→ (PKhκ)(x)

K(κ−1)/2Fshape(Kκ−1x)

∥∥∥∥
∞
<∞ . (18)

This function Fshape diverges at x0 and −x0 for some finite x0 > 1, as illustrated in Figure L.1 of Section L.
As K grows, the peak of PKhκ comes closer to this divergence point, but slowly enough that Fenv only
grows polynomially.

Corollary 11. Assume Conjecture 10 is true, then there exist cb, c3, c4 such that for K large enough, for all
b > cbK

κ,

c3K
κ−1 > ‖PKh2

κ‖2L2(R) > ‖(PKh
2
κ) ∗ ub‖2L2(R) > c4K

κ−1 .

Proof. The proof is postponed to Appendix K in the supplementary material.

Note that in the limit κ = 1, hκ is the indicator function of [−1, 1], and the orthonormal polynomials
PK are the (normalized) Legendre polynomials. In this setting, Conjecture 10 (and therefore Equation 18)
have been proved with Fenv = Fshape = 1[−1,1], see Lemma 1 of [Meister, 2007].

In the limit κ = 1/2, hκ is a normal density, and the functions PKhκ are the Hermite functions. Ap-
proximations of Hermite funtions close to zero and near the turning points are known and corroborate our
conjecture, see for instance [Boyd, 2018, Section A.11]: the behaviour near zero is approximately a trigono-
metric function times a shape function, validating equation (18) (near zero) and the second part of Conjec-
ture 10. Near the turning points, they are best approximated by Airy functions with a scaling corresponding
to Fenv(x) = O(x1/3).

Let (αn)n>1 be a sequence of nonnegative real numbers with limit zero, (Kn)n>1 a sequence of integers
tending to infinity and (bn)n>1 a sequence of real numbers tending to infinity. Define f0 as the density of X
when for all 1 6 j 6 d, sj = ζ0 = (Fenvhκ) ∗ ub, and fn as the density of X when S1 has density

ζn = (Fenvhκ + αnPKnh
2
κ) ∗ ubn = ζ0 + αn(PKnh

2
κ) ∗ ubn (19)
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and S2, . . . , Sd have density ζ0. The function ζn is nonnegative as soon as αn 6 (‖PKnhκ/Fenv‖∞)−1,
which is of order K(1−κ)/2

n by Conjecture 10. Its integral equals one for Kn > 1 since by definition
the function PKnh

2
κ is orthogonal to P0 (which is a constant function) in L2(R), so that the integral of

PKnh
2
κ ∗ ubn is zero. Therefore, ζn is a probability density. In addition, F [ζ0] ∈ Υκ,T and F [ζn] ∈ Υκ,T

follow immediately from Lemma 9.

Lemma 12. The probability densities f0 and fn are in Υκ,T .

Proof. The proof is postponed to Appendix K in the supplementary material.

Lemma 13. For all κ ∈ (0, 1], β > 0 and cβ > 0, there exist x0 > 0 and ch > 0 such that F [f0] and F [fn]
belong to Ψ(κ, T, β, cβ) as soon as the two following assumptions are met:

αn 6 ‖PKnhκ‖−1
∞ , (20)

α2
n‖PKnh2

κ‖2L2(R) 6 chb
−2β
n . (21)

Proof. The proof is postponed to Appendix K in the supplementary material.

Following [Meister, 2007], it is straightforward to establish that

1− 1

2
‖(f0 ∗Q)⊗n − (fn ∗Q)⊗n‖L1(Rd)n >

(
1− 1

2
‖(f0 ∗Q)− (fn ∗Q)‖L1(Rd)

)n
.

Then, by (17), the minimax risk based on n observations is lower bounded by c‖f0 − fn‖2L2(Rd) for some
constant c > 0 if (αn)n>1, (bn)n>1 and (Kn)n>1 are chosen such that∫

Rd
|(f0 ∗Q)(x)− (fn ∗Q)(x)|dx = O

(
1

n

)
. (22)

Lemma 14. Assume that (21) holds and that

Kn =
ch
κ

(
log n

log log n

)
. (23)

Then, (22) holds.

Proof. The proof is postponed to Appendix K.

Therefore, the minimax risk based on n observations is lower bounded by c‖f0 − fn‖2L2(Rd) for some
constant c > 0. In addition, by definition of f0 and fn, for all u ∈ Rd,

f0(u) = Det(A)−1
d∏
j=1

ζ0((A−1u)j) and fn(u) = Det(A)−1ζn((A−1u)1)

d∏
j=2

ζ0((A−1u)j) .

Therefore, there exists a constant c > 0 such that,

‖f0 − fn‖2L2(Rd) > c‖ζ0‖2(d−1)
L2(R) ‖ζ0 − ζn‖

2
L2(R) > cα2

nK
κ−1
n ,

15



É. Gassiat, S. Le Corff, L. Lehéricy Deconvolution with unknown noise

by Corollary 11 and (21). Then, choosing bn = cbK
κ
n , α2

n ∝ K−2κβ
n /‖PKnh2

κ‖2L2(R) ∝ K1−κ−2κβ
n (by

Corollary 11) and Kn as in (23) yields

‖f0 − fn‖2L2(Rd) > cb−2β
n > cK−2κβ

n > c

(
log n

log log n

)−2κβ

.

The condition αn 6 (‖PKnhκ/Fenv‖∞)−1 corresponds to K(1−κ)/2−κβ
n = O(K

(1−κ)/2
n ), which is always

true.

5 Conclusion and future works
Recently, in [Belomestny and Goldenshluger, 2019], the authors summarized the standard assumptions on
the noise distribution and their implications on the minimax risk of the estimator of the signal distribution.
In particular, they pointed out that obtaining assumptions under which standard rates of convergence can be
established when the Fourier transform of the noise can vanish have not received satisfactory solutions in
the existing literature. In the direction of weakening the assumptions on the noise, such limitation has been
completely overcome in this paper, where we propose a general optimal rate which depends on the lightness
of the tail distribution of the signal which extends the work of [Meister, 2007] to multivariate signals without
the compact support assumption and with no prior knowledge on the noise distribution. The optimal rate
of convergence in our setting does not depend at all on the unknown noise. In another direction, one could
try to find if it is possible, in the context of unknown noise, to recover noise dependent minimax risk by
restricting the set of possible unknown noises. One way could be to make in our methodology ν = νest go to
infinity and to study the square integrated risk with cν having a precise decreasing behavior. This can not be
directly obtained by the proofs in this work in which we use the fact that ν is finite to derive equation (26)
which is itself a basic stone to establish Proposition 17.

There are numerous avenues for future works. We specifically chose to focus on the theoretical prop-
erties of the deconvolution estimator obtained from the risk function Mn without assumption on the noise
distribution, leaving mainly open the question of designing efficient numerical solutions. Recently, in this
unknown noise setting, [Gassiat et al., 2020] provided two algorithms to compute nonparametric estimators
of the law of the hidden process in a general state space translation model, i.e. when the hidden signal
is a Markov chain. More thorough and scalable practical solutions remain to be developed. Although the
estimator proposed in this paper enjoys interesting theoretical properties, designing a stable and numerically
efficient algorithm remains mainly an open problem.

In a more applied perspective, the recent emergence of blind spot neural networks such as [Batson and Royer, 2019]
or [Krull et al., 2019] represent a breakthrough in the field of blind image denoising. In these papers, the
authors manage to improve state-of-the-art performance in signal prediction using mainly local (spatially)
dependencies on the signal and assuming that the noise components are independent. Our results which
in addition do not require any assumption on the noise are likely to provide new architectures or new loss
functions to extend such works.

We are particularly interested in applying our results to widespread models such as noisy independent
component analysis and nonlinear component analysis, see for instance [Khemakhem et al., 2020]. As men-
tionned in [Pfister et al., 2019], a wide range of applications require to design source separation techniques
to deal with grouped data and structured signals. The identifiability of such a group structured ICA is likely
to rely on specific assumptions similar to the one derived in our paper which should provide new insights
to derive numerical procedures. Additive index models studied in [Lin and Kulasekera, 2007, Yuan, 2011]
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could also benefit from this work to weaken the assumptions on the signal and on the functions involved in
the mixture defining the observation.

As underlined in Section 2.2, submodels may be identified in the larger general deconvolution model
studied in this paper. It could be of interest to study statistical testing of such structured submodels, for
instance using the minimax non parametric hypothesis testing theory.

In another line of works referred to as topological data analysis (TDA), see [Chazal and Michel, 2017],
[Chazal et al., 2017], the aim is at providing mathematical results and methods to infer, analyze and exploit
the complex topological and geometric structures underlying data. Despite fruitful developments, geometric
inference from noisy data remains a theoretical and practical widely open problem. Although they appear to
be concentrated around geometric shapes, real data are often corrupted by noise and outliers. Quantifying
and distinguishing topological/geometric noise, which is difficult to model or unknown, from topologi-
cal/geometric signal to infer relevant geometric structures is a subtle problem. Our paper is likely to apply
to multidimensional signals supported on manifolds and opens the way to find strategies to infer relevant
topological and geometric information of signals additively corrupted with totally unknown noise. One way
to proceed is to use the distance to measure strategy developed in [Chazal et al., 2011] which shows that it is
possible to build robust methods to estimate geometric and topological parameters of supports of probability
distribution from perturbed versions of it in Wasserstein’s metric. This is the subject of an ongoing research
project.

A Proof of Theorem 6
For any discrete set A, |A| denotes the number of elements in A. For any matrix B, ‖B‖F denotes the
Frobenius norm of B and B> the transpose matrix of B.

A.1 Uniform consistency

The risk function at φ̂κ,n satisfies, by definition, for all R? and all Q? in Υκ,S ∩H,

M(φ̂κ,n; νest|R?, Q?) 6Mn(φ̂κ,n) + sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest|R?, Q?)| ,

6Mn(ΦR?) + sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest|R?, Q?)| ,

6 |Mn(ΦR?)−M(ΦR? ; νest|R?, Q?)|+ sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest|R?, Q?)| . (24)

Lemma 15 provides a control on the deviation |Mn(φ)−M(φ; νest|R?, Q?)| for φ ∈ Υκ,S .

Lemma 15. There exists a numerical constant cM and a constant x0 depending only on d (for instance
x0 = supκ>0(d+4/3

κ )κ) such that the following holds. For all C ′ > 0, n > 1, x > 0, and probability
measures R? and Q? on Rd such that ER?,Q? [‖Y‖2] 6 C ′, with probability at least 1 − 4e−x under
PR?,Q? , for all κ > 0 and S > 0,

sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest|R?, Q?)|

6 cMν
d
est(Sνest ∨ x0)4 d+1

κ exp
(

4κ(Sνest ∨ x0)1/κ
)[

d

√
1 ∨ ν2

estdC ′

n
∨
√
x

n
∨ x
n

]
.
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In particular, for all κ0 ∈ (0, 1], S > 0 and C ′ > 0, there exists a constant c such that for all n > 1 and
x > 0, for all ν 6 νest,

sup
R? : ΦR?∈Υκ0,S

Q? :ER?,Q? [‖Y‖2]6C′

PR?,Q?
(

sup
κ∈[κ0,1]

M(φ̂κ,n; ν|R?, Q?) > c

(√
x

n
∨ x
n

))
6 4e−x . (25)

(Even though it is not visible in the notations, S is involved in the definition of φ̂κ,n.)

Proof. The proof of the first inequality is postponed to Section G in the supplementary material.
The second follows from taking the supremum over all κ ∈ [κ0, 1] first together with equation (24) and

the key observation that for all ν 6 νest,

M(φ̂κ,n; ν|R?, Q?) 6M(φ̂κ,n; νest|R?, Q?).

Since supR?:ΦR?∈Υκ,S ER? [‖X‖2] is bounded by a constant that depends only on κ and S, assuming
EQ? [‖ε‖2] 6 C ′′ and ΦR? ∈ Υκ,S ensures ER?,Q? [‖Y‖2] 6 C ′ for some constant C ′ depending on κ, S
and C ′′. Thus, assuming EQ? [‖ε‖2] 6 C ′′ and R? ∈ Υκ,S is enough to apply the above lemma.

For any ν > 0, by the proof of Theorem 1 and Lemma 5, if ΦR? ∈ Υκ,S ∩ H, the only zero of the
contrast function φ 7→ M(φ; ν|R?, Q?) on Υκ,S ∩ H is φ = ΦR? as soon as 1/κ < 2 since all functions in
H satisfy H2. Moreover, the mapping (φ,ΦR? ,ΦQ?) ∈ L∞(Bd1ν ×Bd2νest

)3 7→M(φ; ν|R?, Q?) is continuous
and for all κ > 0, S > 0 and C ′ > 0, the sets Υκ,S and {ΦQ : Q s.t. EQ[‖ε‖2] 6 C ′} are compact
in L∞(Bd1ν × Bd2ν ) by Arzelà–Ascoli’s theorem (the second derivative of ΦQ is bounded by the second
moment of Q and likewise for ΦR, so these sets are uniformly equicontinuous and all of their elements have
value 1 at zero). Thus, for all κ > 1/2, S > 0, C ′ > 0 and η > 0,

inf
φ,ΦR?∈Υκ,S∩H
‖φ−ΦR?‖L2(Bdν )

>η

Q? :EQ? [‖ε‖2]6C′

M(φ; ν|R?, Q?) > 0 .

Fix now η ∈ (0, νest]. This equation and Lemma 15 together with the fact that the family (Υκ,S)κ is
nonincreasing in κ ensure that for all κ0 ∈ (1/2, 1] and all S > 0, C ′ > 0 and η > 0, there exists c > 0
such that for all n > 1, x ∈ (0, cn] and κ ∈ [κ0, 1],

sup
R? : ΦR?∈Υκ,S∩H

Q? :ER?,Q? [‖Y‖2]6C′

PR?,Q?
(

sup
κ′∈[κ0,κ]

‖φ̂κ′,n − ΦR?‖L2(Bdν) > η

)
6 4e−x . (26)

In particular, the family of estimators (φ̂κ,n)κ is L2(Bdν)-consistent uniformly in κ ∈ [κ0, 1], and uniformly
in the true parameters R? and Q?.
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A.2 Upper bound for the estimator of the Fourier transform of the signal distribu-
tion

Recall, for all bounded and measurable functions h : Bd1ν × Bd2ν → C, for any ν > 0 and any probability
measures R? and Q? on Rd,

M(ΦR? + h; ν|R?, Q?)

=

∫
B
d1
ν ×B

d2
ν

|h(t1, t2)ΦR?(t1, 0)ΦR?(0, t2)− ΦR?(t1, t2)h(t1, 0)ΦR?(0, t2)

− ΦR?(t1, t2)ΦR?(t1, 0)h(0, t2)− ΦR?(t1, t2)h(t1, 0)h(0, t2)|2

|ΦQ?,(1)(t1)ΦQ?,(2)(t2)|2dt1dt2 .

Recall that for all Q ∈ Q(ν, cν , C
′), inf

B
d1
ν
|ΦQ(1) | ∧ inf

B
d2
ν
|ΦQ(2) | > cν . Using that for all (a, b) ∈ R,

(a − b)2 > a2/2 − b2 and ‖ΦQ?,(1)‖∞ = ‖ΦQ?,(2)‖∞ = ‖ΦR?‖∞ = 1 yields for all probability measures
R? and Q? on Rd such that Q? ∈ Q(ν, cν , C

′),

M(ΦR? + h; ν|R?, Q?) > c4νM
lin(h,ΦR? ; ν)/2− c4ν‖h(·, 0)h(0, ·)‖2

L2(B
d1
ν ×B

d2
ν )

, (27)

where

M lin(h, φ; ν) =

∫
B
d1
ν ×B

d2
ν

|h(t1, t2)φ(t1, 0)φ(0, t2)− φ(t1, t2)h(t1, 0)φ(0, t2)

− φ(t1, t2)φ(t1, 0)h(0, t2)|2dt1dt2 . (28)

Section B provides an upper bound for ‖h(·, 0)h(0, ·)‖2
L2(B

d1
ν ×B

d2
ν )

and a lower bound for M lin(h,ΦR? ; ν)

which allows to establish the lower bound given in Proposition 16.

Proposition 16. For all S > 0 and κ ∈ (0, 1], there exists η > 0 depending on d, κ, νest and S and cM > 0
depending only on d such that for all ν ∈ [(d+ 4/3)e/S, νest] and all h such that ‖h‖

L2(B
d1
ν ×B

d2
ν )

6 η, the
risk satisfies

inf
R? : ΦR?∈Υκ,S

Q?∈Q(ν,cν ,+∞)

M(ΦR? + h; ν|R?, Q?) > cMc
4
ν‖h‖4L2(B

d1
ν ×B

d2
ν )

.

Proof. The proof is postponed to Section B.

Using the above proposition for κ = κ0 together with equation (26) is enough to establish Proposition 17.

Proposition 17. For all κ0 ∈ (1/2, 1], S > 0, cν > 0 and cQ > 0, there exists a constant c > 0 such that
for all ν ∈ [(d+ 4/3)e/S, νest], n > 1, x ∈ (0, cn] and κ ∈ [κ0, 1],

inf
R? : ΦR?∈Υκ,S∩H
Q?∈Q(ν,cν ,cQ)

PR?,Q?
(

sup
κ′∈[κ0,κ]

‖φ̂κ′,n − ΦR?‖L2(Bdν) 6 c

(√
x

n
∨ x
n

)1/4
)

> 1− 4e−x . (29)
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A.3 Upper bound for the estimator of the density of the signal distribution

Let κ′ ∈ (0, 1]. Assume H3 holds for the constants β, cβ , then by definition of f̂κ′,n together with
Plancherel’s theorem,

‖f̂κ′,n − f?‖2L2(Rd1×Rd2 )

=
1

(4π2)d

∫
Rd1×Rd2

∣∣∣∣1t∈Bd1ω
κ′,n
×Bd2ω

κ′,n
Tmκ′,n φ̂κ′,n(t)− ΦR?(t)

∣∣∣∣2 dt ,

=
1

(4π2)d

∫
B
d1
ω
κ′,n
×Bd2ω

κ′,n

∣∣∣Tmκ′,n φ̂κ′,n(t)− ΦR?(t)
∣∣∣2 dt

+
1

(4π2)d

∫
(Rd1×Rd2 )\(Bd1ω

κ′,n
×Bd2ω

κ′,n
)

|ΦR?(t)|2 dt ,

6
1

(4π2)d
‖Tmκ′,n φ̂κ′,n − ΦR?‖2L2(B

d1
ω
κ′,n
×Bd2ω

κ′,n
)

+
1

(4π2)d
cβ

(1 + ω2
κ′,n)β

.

Let ν ∈ [(d+ 4/3)e/S, νest] be fixed in the remaining of the proof. For all i > 0, let Pi be the i-th Legendre
polynomial and

P norm
i = (i+ 1/2)1/2ν−1/2Pi(X/ν) (30)

the normalized i-th Legendre polynomial on [−ν, ν]. For all positive integer p, define the orthonormal basis
(Pnorm

i )i∈Np of C[X1, . . . , Xp] (seen as a subset of L2(Bpν)), where for all i ∈ Np,

Pnorm
i (X1, . . . , Xp) = (P norm

i1 ⊗ · · · ⊗ P norm
ip )(X1, . . . , Xp) =

p∏
a=1

P norm
ia (Xa) . (31)

Since Tmκ′,n φ̂κ′,n and Tmκ′,nΦR? are in Cmκ′,n [X1, . . . , Xd], there exists a sequence (ai)i∈Nd such that

ai = 0 if ‖i‖1 > mκ′,n and Tmκ′,n φ̂κ′,n−Tmκ′,nΦR? =
∑
i∈Nd aiP

norm
i (X), where Pnorm

i is defined in (31).
By properties of the Legendre polynomials, see [Meister, 2007, page 11], for all x ∈ R, |Pi(x)| 6 (2|x|+2)i

so that |P norm
i (x)| 6 ((2i+ 1)/(2ν))1/2(2|x/ν|+ 2)i. Therefore, for all i ∈ N,∫ ωκ′,n

−ωκ′,n
|P norm
i (x)|2dx 6

1

2

(
2 + 2

ωκ′,n
ν

)2i+1

,

and by Cauchy-Schwarz inequality,

‖Tmκ′,n φ̂κ′,n−Tmκ′,nΦR?‖2L2(B
d1
ω
κ′,n
×Bd2ω

κ′,n
)

6

 ∑
i∈Nd,‖i‖16mκ′,n

d∏
a=1

∫ ωκ′,n

−ωκ′,n
|P norm
ia (x)|2dx

∑
i∈Nd
|ai|2

 ,

6 2−d(mκ′,n + 1)d
(

2 + 2
ωκ′,n
ν

)2mκ′,n+d

‖Tmκ′,n φ̂κ′,n − Tmκ′,nΦR?‖2L2(B
d1
ν ×B

d2
ν )

,

6 md
κ′,n

(
2 + 2

ωκ′,n
ν

)2mκ′,n+d

‖Tmκ′,n φ̂κ′,n − Tmκ′,nΦR?‖2L2(B
d1
ν ×B

d2
ν )

.
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Since Υκ,S ⊂ Υκ′,S when κ′ 6 κ, by Lemma 24 and Lemma 25 in the the supplementary material, when
ΦR? ∈ Υκ,S and κ′ 6 κ,

‖ΦR? − Tmκ′,nΦR?‖2L2(B
d1
ω
κ′,n
×Bd2ω

κ′,n
)

6 (8ωκ′,n)d(Sωκ′,n)2mκ′,nm
−2κ′mκ′,n+2d

κ′,n fκ′(Sωκ′,n)2

6 (8ωκ′,n)d(Sωκ′,n)2mκ′,nm
−2κ′mκ′,n+2d

κ′,n × 6(Sωκ′,n)2/κ′ exp(2κ′(Sωκ′,n)1/κ′) ,

and both ‖φ̂κ′,n − Tmκ′,n φ̂κ′,n‖
2

L2(B
d1
ν ×B

d2
ν )

and ‖ΦR? − Tmκ′,nΦR?‖2
L2(B

d1
ν ×B

d2
ν )

are upper bounded by

(8ν)d(Sν)2mκ′,nm
−2κ′mκ′,n+2d

κ′,n × 6(Sν)2/κ′ exp(2κ′(Sν)1/κ′) .

Thus, Proposition 17 shows that for all κ0 ∈ (1/2, 1], S > 0, β > 0, cν > 0, cQ > 0 and cψ > 0, there exist
c > 0 and c′ > 0 such that for all ν ∈ [(d+ 4/3)e/S, νest], n > 1, x ∈ (0, cn] and κ ∈ [κ0, 1],

inf
R? : ΦR?∈Ψ(κ,S,β,cψ)∩H

Q?∈Q(ν,cν ,cQ)

PR?,Q?
(
∀κ′ ∈ [κ0, κ],

‖f̂κ′,n − f?‖2L2(Rd1×Rd2 ) 6 c′max

{
(1 + ω2

κ′,n)−β ,m
−2κ′mκ′,n+2d

κ′,n ω
2mκ′,n+d+2/κ′

κ′,n e2κ′(Sωκ′,n)1/κ
′

,

md
κ′,n

(ωκ′,n
ν

)2mκ′,n+d
[

2m
−2κ′mκ′,n+2d

κ′,n ν2mκ′,n+d+2/κ′e2κ′(Sν)1/κ
′

+

(√
x

n
∨ x
n

)1/2
]})

> 1−4e−x .

Since ωκ,n is chosen of the form ωκ,n = cκm
κ
κ,n/S with cκ ∈ (0, 1], and since by assumption Sν >

x0∨u0 > 1 where x0 and u0 are defined in Lemma 24 in the the supplementary material, there exists c′ > 0
such that the event in the above equation may be rewritten as follows: for all κ′ ∈ [κ0, κ],

‖f̂κ′,n − f?‖2L2(Rd1×Rd2 )

6 c′max

{
(1 +m2κ′

κ′,n)−β ,m3d+2
κ′,n c

2mκ′,n
κ′ e2κ′mκ′,n ,

(2κ′mκ′,n)2κ′mκ′,n(2κ′)−2κ′mκ′,nm2d
κ′,nc

2mκ′,n
κ′

×

[
2m
−2κ′mκ′,n+2d

κ′,n ν2mκ′,n+d+2/κ′e2κ′(Sν)1/κ
′

+

(√
x

n
∨ x
n

)1/2
]}

,

6 c′max

{
2−βm−2κ′β

κ′,n , e[(3d+2)+2 log c′κ+2]mκ′,n , 2(cκ′ν)2mκ′,nνd+2/κ′e2κ′(Sν)1/κ
′

+ e[−2 log(2κ′0)+2d+2 log c′κ]mκ′,n(2κ′mκ′,n)2κ′mκ′,n

(√
x

n
∨ x
n

)1/2
}
,

since cκ′ 6 1, κ′ 6 1 and mκ′,n > 1. Then, choosing cκ′ 6 exp(−(3d+ 5)/2 + log(2κ0)) ∧ 1/νest and

mκ′,n 6
1

2κ′
α log n

log(α log n)
,
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for some α > 0 yields, for all κ0 ∈ (1/2, 1], S > 0, β > 0, cν > 0, cQ > 0 and cψ > 0, there exist c > 0
and c′ > 0 such that for all ν ∈ [(d+ 4/3)e/S, νest], n > 1, x ∈ (0, cn] and κ ∈ [κ0, 1],

inf
R? : ΦR?∈Ψ(κ,S,β,cψ)

Q?∈Q(ν,cν ,cQ)

PR?,Q?
(
∀κ′ ∈ [κ0, κ], ‖f̂κ′,n − f?‖2L2(Rd1×Rd2 )

6 c′max

{
2−βm−2κ′β

κ′,n , e−mκ′,n
[
1 ∨ x

1/4nα

n1/4
∨ x

1/2nα

n1/2

]})
> 1− 4e−x .

Now, assume α 6 1/4 and (cm log n)/ log log n 6 mκ,n 6 (Cm log n)/ log log n for all κ and n for some
constants cm > 0 and Cm > 0 and take x = log n. It follows that there exists n0 such that for all n > n0,

sup
κ∈[κ0,1]

inf
R? : ΦR?∈Ψ(κ,S,β,cψ)

Q?∈Q(ν,cν ,cQ)

PR?,Q?
(

sup
κ′∈[κ0,κ]

{
m2κ′β
κ′,n ‖f̂κ′,n − f

?‖2L2(Rd1×Rd2 )

}
6 c′2−β

)
> 1− 4

n
.

(32)
Finally, note that m2κ′β

κ′,n ‖f̂κ′,n − f?‖2L2(Rd1×Rd2 )
6 (CM

logn
log logn )2βdiam(Υκ0,S)2 by construction, so that

Theorem 6 follows.

B Proof of Proposition 16
By (27), Proposition 16 may be proved by balancing a lower bound for M lin(h, φ; ν) and an upper bound
for ‖h(·, 0)h(0, ·)‖2

L2(B
d1
ν ×B

d2
ν )

.

The lower bound on M lin(h, φ; ν) is first obtained on polynomials with known degree m:

Lemma 18. Let d = d1 + d2 and g be the function defined in (56). There exist a constant c > 0 such that
for all κ, S, ν > 0, m ∈ N∗, φ ∈ Υκ,S and h ∈ Gκ,S ,

M lin(Tmh, Tmφ; ν) > c(4
√

2)−2d(4e)−6mm−5d−3(ν ∨ ν−3)−2mg(κ, S)−6md−6m‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

,

where M lin, Υκ,S , Gκ,S and Tmφ are defined in (28), (8), (9) and (11). The function g is defined in (56) in
the the supplementary material..

Proof. The proof is postponed to Section I in the the supplementary material.

Then, we extend this lower bound on all functions h and φ by controlling the difference between h and
φ and their truncations to degree m:

Lemma 19. Let d = d1 +d2. There exist c > 0 and c̃ > 0 such that for all κ, ν, S > 0, φ ∈ Υκ,S , h ∈ Gκ,S
and m > d/κ,

M lin(h, φ; ν) > (c/2)α(m, ν, κ, S)‖h‖2
L2(B

d1
ν ×B

d2
ν )

− (cα(m, ν, κ, S) + c̃C4
Υ(κ, S, ν))22d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 ,

where
α(m, ν, κ, S) = (2

√
2)−2d(4e)−6mm−5d−3(ν ∨ ν−3)−2mg(κ, S)−6md−6m (33)

and where M lin(h, φ; ν), Υκ,S , Gκ,S , fκ and g, are defined in (28), (8) (9), and (55), (56) in the supplemen-
tary material.
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Proof. The proof is postponed to Section J in the supplementary material.

Finally, a careful choice of m allows to show that M lin(h, φ; ν) is lower bounded by ‖h‖2+o(1) when
‖h‖ is small enough:

Proposition 20. Assume that S > 1 is such that Sν > x0 ∨ u0 where x0 and u0 are defined in Lemma 24
in the supplementary material. Then, for all h such that

‖h‖
L2(B

d1
ν ×B

d2
ν )

< exp

(
−
(

1 ∨ δe
γ

ϑ

)2/κ
)
,

where γ = (7d + 3)/2, ϑ = ((8ed)3(ν ∨ ν−3))−1(Sν)−1(ed+2S)−3/κ exp(−6κ(ed+2S)1/κ) and δ2 =
288 · 74(c̃/c)(64ν)dκ−4d−6 exp((2d+ 9)κ(Sν)1/κ),

M lin(h, φ; ν) >
c

8
8−d‖h‖2

(
κ log log(1/‖h‖)

4 log(1/‖h‖)

)5d+3

‖h‖

−8 log(bSν)

κ log log (1/‖h‖) , (34)

where b = ((8ed)3(ν∨ν−3))−1(Sν)−1(ed+2S)−3/κ exp(−6κ(ed+2S)1/κ) and where c̃ and c are numerical
constants defined in Lemma 19.

Note that ν > (d+ 4/3)e/S entails Sν > x0 ∨ u0 where x0 and u0 are defined in Lemma 24.

Proof. The proof is postponed to Section J in the supplementary material.

The upper bound on ‖h(·, 0)h(0, ·)‖2
L2(B

d1
ν ×B

d2
ν )

is likewise first obtained on polynomials with known
degrees m then extended to any function h by controlling the difference between h and its truncation:

Lemma 21. Let d = d1 + d2. There exists a numerical constant c5 > 0 such that for all κ > 0, S < ∞,
ν > 0, m > d/κ and h ∈ Gκ,S ,

‖h(·, 0)h(0, ·)‖2
L2(B

d1
ν ×B

d2
ν )

6 16
{

(2c5m/ν)2d1 + (2c5m/ν)2d2
}
‖h‖4

L2(B
d1
ν ×B

d2
ν )

+
{

(4(2c5m/ν)d1 + 2)2 + (4(2c5m/ν)d2 + 2)2
}

24d(2ν)2d(Sν)4mm−4κm+4dfκ(Sν)4 ,

where Gκ,S and fκ are defined in (9) and (55).

Proof. The proof is postponed to Section J in the supplementary material.

Finally, a careful choice of m shows that this term is upper bounded by ‖h‖4−o(1) when ‖h‖ is small
enough:

Proposition 22. Assume that S > 1 is such that Sν > x0 ∨ u0 where x0 and u0 are defined in Lemma 24
in the the supplementary material. Then, for all h such that

‖h‖
L2(B

d1
ν ×B

d2
ν )

< exp

−(1 ∨ δ̃e
γ̃

ϑ̃

)2/κ


where γ̃ = d, ϑ̃ = (Sν)−1 and δ̃ = 3
√

6 · 2d(2ν)d/2(Sν)1/κ exp(κ(Sν)1/κ), and with c5 the numerical
constant of Lemma 21,

‖h(·, 0)h(0, ·)‖2 6 64

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)(
4

κ

log(1/‖h‖)
log log(1/‖h‖)

)2(d1∨d2)

‖h‖4 . (35)
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Proof. The proof is postponed to Section J in the supplementary material.

By Proposition 20, Proposition 22 and (27),

M(φ?; ν|R?, Q?) > c4ν
c

16
‖h‖28−d

(
κ log log(1/‖h‖)

4 log(1/‖h‖)

)5d+3

‖h‖

−8 log(bSν)

κ log log(1/‖h‖)

− 64c4ν

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)(
4

κ

log(1/‖h‖)
log log(1/‖h‖)

)2(d1∨d2)

‖h‖4 .

Therefore, assuming

c

16
‖h‖28−d

(
κ log log(1/‖h‖)

4 log(1/‖h‖)

)5d+3

‖h‖

−8 log(bSν)

κ log log(1/‖h‖)

> 128

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)(
4

κ

log(1/‖h‖)
log log(1/‖h‖)

)2(d1∨d2)

‖h‖4 (36)

yields

M(φ?; ν|R?, Q?) > 64

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)(
4

κ

log(1/‖h‖)
log log(1/‖h‖)

)2(d1∨d2)

‖h‖4 . (37)

Note that (36) is implied by

(
κ log log(1/‖h‖)

4 log(1/‖h‖)

)3(d+1)(
1

‖h‖

)2− −8 log(bSν)

κ log log(1/‖h‖) > 2048 · 8dc−1

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)

.

Assume ‖h‖ 6 exp(−(bSν)−8/κ) ∧ e−e, then this equation is implied by

1/‖h‖
log(1/‖h‖)3(d+1)

> 2048 · 8dc−1

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)(
4

κ

)3(d+1)

.

Since log x 6 x for all x > 1, log x1/(2α) 6 x1/(2α) for all x > 1 and α > 0, so that (log x)α 6 (2α)α
√
x

for all x > 1 and α > 0. Thus, this equation is implied by√
1/‖h‖

(6(d+ 1))3(d+1)
> 2048 · 8dc−1

(
2c5
ν
∨ 2κ

3

)2(d1∨d2)(
4

κ

)3(d+1)

,

that is

‖h‖ 6 2−22 · 64−dc2

(
ν

2c5
∧ 3

2κ

)4(d1∨d2)(
κ

24(d+ 1)

)6(d+1)

.

In this case, log(1/‖h‖)/ log log(1/‖h‖) in equation (37) is lower bounded by a constant, which concludes
the proof of Proposition 16.
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C Proof of Theorem 1
The proof follows the same lines as that of Theorem 1 in [Gassiat et al., 2020]. The following statement,
which may be established by arguing variable by variable, is used repeatedly. If a multivariate function is
analytic on the whole multivariate complex space and is the null function in an open set of the multivariate
real space or in an open set of the multivariate purely imaginary space, then it is the null function on the
whole multivariate complex space. Assume PR,Q = PR̃,Q̃ and let φi (resp. φ̃i) be the characteristic function

of Q(i) (resp. Q̃(i)) for i ∈ {1, 2}. Since the distribution of Y (1) and Y (2) are the same under PR,Q and
PR̃,Q̃, for any t ∈ Rd1 ,

φ1 (t) ΦR (t, 0) = φ̃1 (t) ΦR̃ (t, 0) (38)

and for any t ∈ Rd2 ,
φ2 (t) ΦR (0, t) = φ̃2 (t) ΦR̃ (0, t) . (39)

Since the distribution of Y is the same under PR,Q and PR̃,Q̃, for any (t1, t2) ∈ Rd1 × Rd2 ,

φ1 (t1)φ2 (t2) ΦR (t1, t2) = φ̃1 (t1) φ̃2 (t2) ΦR̃ (t1, t2) . (40)

There exists a neighborhood V of 0 in Rd1×Rd2 such that for all t = (t1, t2) ∈ V , φ1 (t1) 6= 0, φ2 (t2) 6= 0,
φ̃1 (t1) 6= 0, φ̃2 (t2) 6= 0, so that (38), (39) and (40) imply that for any (t1, t2) ∈ V 2,

ΦR (t1, t2) ΦR̃ (t1, 0) ΦR̃ (0, t2) = ΦR̃ (t1, t2) ΦR (t1, 0) ΦR (0, t2) . (41)

Since (z1, z2) 7→ ΦR (z1, z2) ΦR̃ (z1, 0) ΦR̃ (0, z2)−ΦR̃ (z1, z2) ΦR (z1, 0) ΦR (0, z2) is a multivariate an-
alytic function of d1 + d2 variables which is zero in a purely real neighborhood of 0, then it is the null
function on the whole multivariate complex space so that for any z1 ∈ Cd1 and z2 ∈ Cd2 ,

ΦR (z1, z2) ΦR̃ (z1, 0) ΦR̃ (0, z2) = ΦR̃ (z1, z2) ΦR (z1, 0) ΦR (0, z2) . (42)

Fix (u2, . . . , ud1) ∈ Cd1−1 and let Z be the set of zeros of u 7→ ΦR(u, u2, . . . , ud1 , 0) and Z̃ be the set of
zeros of u 7→ ΦR̃(u, u2, . . . , ud1 , 0). Let u1 ∈ Z . Write z1 = (u1, u2, . . . , ud1) so that by (42), for any
z2 ∈ Cd2 ,

ΦR (z1, z2) ΦR̃ (z1, 0) ΦR̃ (0, z2) = 0 . (43)

Using H2, z2 7→ ΦR (z1, z2) is not the null function. Thus, there exists z?2 in Cd2 such that ΦR (z1, z
?
2) 6= 0

and by continuity, there exists an open neighborhood of z?2 such that for all z2 in this open set, ΦR (z1, z2) 6=
0. Since z 7→ ΦR̃ (0, z) is not the null function and is analytic on Cd2 , it can not be null all over this open
set, so that there exists z2 such that simultaneously ΦR (z1, z2) 6= 0 and ΦR̃ (0, z2) 6= 0. Then (43) leads
to ΦR̃ (z1, 0) = 0, so that Z ⊂ Z̃ . A symmetric argument yields Z̃ ⊂ Z so that Z = Z̃ . Moreover, the
analytic functions u 7→ ΦR(u, u2, . . . , ud, 0) and u 7→ ΦR̃(u, u2, . . . , ud, 0) have exponential growth order
less than 2, so that using Hadamard’s factorization Theorem, see [Stein and Shakarchi, 2003, Chapter 5,
Theorem 5.1], there exists a polynomial function s with degree at most 1 (and coefficients depending on
(u2, . . . , ud)) such that for all u ∈ C,

ΦR(u, u2, . . . , ud, 0) = es(u)ΦR̃(u, u2, . . . , ud, 0) .

Arguing similarly for all variables, there exists a function S on Cd1 , which is, for any i = 1, . . . , d1,
polynomial with degree at most 1 in ui, and such that for all (u1, . . . , ud1) ∈ Cd1 ,

ΦR(u1, u2, . . . , ud1 , 0) = eS(u1,u2,...,ud1 )ΦR̃(u1, u2, . . . , ud1 , 0) . (44)
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In other words, there exists complex functions ai, bi on Cd1−1 such that, if we denote u(−i) the (d1 − 1)-
dimensional complex vectors with the same coordinates as u except that ui is not included in the coordinates,
then

S(u1, u2, . . . , ud1) = ai(u
(−i))ui + bi(u

(−i)), i = 1, . . . , d1 .

But, for i 6= j, the fact that ai(u(−i))ui + bi(u
(−i)) = aj(u

(−j))uj + bi(u
(−j)) implies that ai(u(−i))

and bi(u(−i)) are polynomial functions with degree at most 1 in uj (this may be seen for instance by taking
complex derivatives), and by induction we get that S is a polynomial function which is, for any i = 1, . . . , d1,
polynomial with degree at most 1 in ui.

Since ΦR(0, . . . , 0) = ΦR̃(0, . . . , 0) = 1, the constant term of the polynomial S is 0. We are now going
to prove that the polynomial S has total degree at most 1. Note that the fact that S has degree at most 1
in each variable is not enough to deduce that S is linear: for instance, u1u2 has degree at most 1 in each
variable but has total degree 2.

Assume that R̃(1) is not supported by 0. Then there exist a = (a1, . . . , ad1) ∈ Rd1 , α > 0 and δ > 0
such that

0 /∈
d1∏
j=1

[aj − α, aj + α] and R̃(1)

 d1∏
j=1

[aj − α, aj + α]

 > δ ,

which gives, for all u ∈ Rd1 ,

ΦR̃(−iu, 0) > δe
∑d1
j=1 infxj∈[aj−α,aj+α] ujxj ,

so that using (44), for all u ∈ Rd1 ,

ΦR(−iu, 0) > δeS(u)e
∑d1
j=1 infxj∈[aj−α,aj+α] ujxj .

If S has total degree at least 2, then there exist i 6= j and polynomial functions with degree at most one in
each variable c1 on Cd1−2 and c2, c3 on Cd1−1 such that, if we denote u(−i,−j) the (d1 − 2)-dimensional
complex vectors with the same coordinates as u except that ui and uj are not included in the coordinates,
then S(u) = c1(u(−i;−j))uiuj +c2(u(−i))+c3(u(−j)). Without loss of generality say that i = 1 and j = 2.
Then it is possible to find u ∈ Rd1 and δ̃ > 0 such that for all t > 0, S(−itu1,−itu2,−iu3, . . . ,−iud1) >
δ̃t(u2

1 + u2
2) leading to

∀t > 0, ΦR(−itu1,−itu2,−iu3, . . . ,−iud1 , 0) > δeδ̃t(u
2
1+u2

2)e
∑d1
j=1 infxj∈[aj−α,aj+α] ujxj ,

contradicting the assumption that R(1) ∈ Mρ for some ρ < 2. Thus, S has total degree at most 1 and there
exists m ∈ Cd1 such that for all z ∈ Cd1 ,

ΦR(z, 0) = eim
>
1 zΦR̃(z, 0) . (45)

On the other hand, if R̃(1) is supported by 0 then (44) leads to ΦR(−iu, 0) = eS(−iu) for all u ∈ Rd1 and
the same argument leads to (45).

As for all z ∈ Rd1 , ΦR(−z, 0) = ΦR(z, 0) and ΦR̃(−z, 0) = ΦR̃(z, 0), m1 ∈ Rd. Arguing similarly
for the function ΦR(0, z2), there exists m2 ∈ Rd2 such that for all z ∈ Cd2 ,

ΦR(0, z) = eim
>
2 zΦR̃(0, z) . (46)
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Combining (45) and (46) with (42) yields, for all (t1, t2) ∈ Rd1 × Rd2 ,

ΦR(t1, t2) = eim
>
1 t1+im>2 t2ΦR̃(t1, t2) . (47)

Then, using (38), for all t ∈ Rd1 such that ΦR(t, 0) 6= 0, φ1(t) = e−im
>
1 tφ̃1(t). Since the set of zeros of

t 7→ ΦR(t, 0) has empty interior, for each t such that ΦR(t, 0) = 0 it is possible to find a sequence (tn)n>1

such that tn tends to t and for all n, ΦRK (tn, 0) 6= 0. But φ1 and φ̃1 are continuous functions, so that for all
t ∈ Rd1 ,

φ1(t) = e−im
>
1 tφ̃1(t) . (48)

Similarly using (39), we get that for all t ∈ Rd2 ,

φ2(t) = e−im
>
2 tφ̃2(t) . (49)

The proof is concluded by noting that (47), (48) and (49) imply that R = R̃ and Q = Q̃ up to translation.

D Proof of Corollary 2
The noisy ICA model may be written as(

YI
YJ

)
=

(
AIS
AJS

)
+

(
εI
εJ

)
.

Then, the ICA model fits the setting of Theorem 1 with Y (1) = YI , Y (2) = YJ , X(1) = AIS and X(2) =
AJS. Write d1 = |I| and d2 = d − |I| and denote by R the joint distribution of (AIS,AJS). Note first
that if for all 1 6 j 6 q the distribution of all Sj is inM1

ρ then the distribution of AIS is inMd1
ρ as for all

λ ∈ Rd1 ,

E
[
exp

(
λ>AIS

)]
=

q∏
j=1

Ψj

(
(λ>AI)j

)
,

where for all 1 6 j 6 q and all z ∈ C, Ψj(z) = E [exp (zSj)]. Then, by assumption, and the Cauchy-
Schwarz inequality, there exist Aj ∈ R and Bj ∈ R such that

Ψj

(
(λ>AI)j

)
6 Aje

Bj |〈λ;AI(j)〉|ρ 6 Aje
Bj‖AI(j)‖ρ‖λ‖ρ ,

where AI(j) is the j-th column of AI . Therefore, AIS is inMd1
ρ with constants given by A =

∏q
j=1AI(j)

and B =
∑q
j=1Bj‖AI(j)‖|ρ. Similarly, AJS is inMd2

ρ . Then, for any (z0, z) ∈ Cd1 × Cd2 ,

ΦR(z0, z) = E
[
exp

(
(iz>0 AI + iz>AJ)S

)]
=

q∏
j=1

E
[
exp

(
(iz>0 AI + iz>AJ)jSj

)]
,

=

q∏
j=1

Ψj

(
(iz>0 AI + iz>AJ)j

)
.

For all 1 6 j 6 q, the function z 7→ Ψj((z
>
0 AI + z>AJ)j) is analytic therefore z 7→ ΦR(z0, z) is the null

function if and only if there exists 1 6 j 6 q such that the function z 7→ Ψj((iz
>
0 AI + iz>AJ)j) is null
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É. Gassiat, S. Le Corff, L. Lehéricy Deconvolution with unknown noise

(as ΦR(z0, ·) is a finite product of analytic functions). As all columns of AJ are nonzero, for all 1 6 j 6 q,
z 7→ Ψj((iz

>
0 AI + iz>AJ)j) is not the null function. Similarly, for any (z, z0) ∈ Cd1 × Cd2 ,

ΦR(z, z0) =

q∏
j=1

Ψj

(
(iz>AI + iz>0 AJ)j

)
and the proof that ΦR(z, z0) is not the null function follows the same steps.

E Links betweenMd
ρ and Υ1/ρ,S: proof of Lemma 5

First implication. First, note that for all n > 0, n! > (n/e)n, so that by the concavity of x 7→ log x, for all
j ∈ Nd,(

d∏
a=1

ja!

)−1

6 e‖j‖1 exp

(
−

d∑
a=1

ja log ja

)
6 e‖j‖1 exp(−‖j‖1 log(‖j‖1/d)) 6

(
ed

‖j‖1

)‖j‖1
. (50)

Let ρ > 1 and µ ∈ Md
ρ. Write ϕµ : λ ∈ Rd 7→

∫
exp

(
iλ>x

)
µ(dx). Then ϕµ(0) = 1 and for all

j ∈ Nd \ {0}, if X has distribution µ, by the inequality of arithmetic and geometric means and by convexity
of x 7−→ x‖j‖1 on R+,

|∂jϕµ(0)| =

∣∣∣∣∣E
[

d∏
a=1

Xja
a

]∣∣∣∣∣ 6 E

( d∑
a=1

ja
‖j‖1

|Xa|

)‖j‖1
6 E

[
d∑
a=1

ja
‖j‖1

|Xa|‖j‖1
]
6 max

16a6d
E
[
|Xa|‖j‖1

]
.

Since µ ∈Md
ρ by assumption, there exists A and B such that for all λ ∈ Rd,

E[eλ
>X ] 6 AeB‖λ‖

ρ
2 . (51)

Hence, by Markov’s inequality, for all a ∈ {1, . . . , d}, t > 0 and λ > 0,

P(Xa > t) 6
E[eλXa ]

eλt
6 A exp(Bλρ − λt) .

Thus, if ρ = 1, then |Xa| 6 B almost surely, and therefore for all j ∈ Nd \ {0},

|∂jϕµ(0)| 6 B‖j‖1 ,

which concludes the proof together with equation (50). In the following, assume ρ > 1, so that

P(Xa > t) 6 A exp(−Ctρ/(ρ−1)) ,

where C = (ρ− 1)B(ρB)−ρ/(ρ−1) > 0. Therefore, writing γ = ρ/(ρ− 1) > 1 yields

P(|Xa| > t) 6 2A exp(−Ctγ) .
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Let j ∈ Nd \ {0}, then

E
[
|Xa|‖j‖1

]
=

∫
ε>0

P(|Xa|‖j‖1 > ε)dε = ‖j‖1
∫
t>0

P(|Xa| > t)t‖j‖1−1dt ,

6 2A‖j‖1
∫
t>0

t‖j‖1−1e−Ct
γ

dt ,

6 2A‖j‖1
(

1 +

∫
t>1

t‖j‖1−1e−Ct
γ

)
dt .

For all x ∈ R, note that Jx =
∫
t>1

txe−Ct
γ

dt = (γC)−1(e−C + (x − γ + 1)Jx−γ). Since for x 6 0,
Jx 6

∫
t>1

e−Ctdt 6 e−C/C as γ > 1

Jx 6
e−C

γC

(
1 +

x

γC
+ · · ·+

(
x

γC

)dx/γe−1
)

+

(
x

γC

)dx/γe
e−C

C
.

Thus, if x > γC/2, Jx 6 2(e−C/C)(4x/(γC))dx/γe, and if x 6 γC/2, Jx 6 2e−C/C, so that

Jx 6 2
e−C

γC

(
1 +

(
4x

γC

)dx/γe)

and as a consequence

E
[
|Xa|‖j‖1

]
6 2A‖j‖1(1 + J‖j‖1−1) 6 2A‖j‖1

(
1 + 2

e−C

C
+ 2

e−C

C

(
4(‖j‖1 − 1)

γC

)d(‖j‖1−1)/γe
)
,

6 2A‖j‖1

(
1 + 2

e−C

C
+ 2

e−C

C

(
4‖j‖1
γC

)(‖j‖1−1)/γ+1
)
.

Hence, since ‖j‖1 > 1, there exists constants c, c′ > 0 which only depends on ρ, A and B such that

|∂jϕµ(0)| 6 c‖j‖2−1/γ
1

(
1 +

(
4‖j‖1
γC

)‖j‖1/γ)
,

6 2ce‖j‖1(2−1/γ)

((
4

γC
∨ 1

)
‖j‖1

)‖j‖1/γ
,

6 (c′‖j‖1)
‖j‖1/γ .

Bringing the above inequality together with equation (50) implies for all j ∈ Nd \ {0},∣∣∣∣∣ ∂jϕµ(0)∏d
a=1 ja!

∣∣∣∣∣ 6 (2ed(c′)1/γ)‖j‖1‖j‖‖j‖1(1/γ−1)
1 6 S‖j‖1‖j‖−‖j‖1/ρ1 ,

where S = ed(c′)1/γ , which concludes the proof.
Second implication. Let S, κ > 0 and let µ be a probability measure on Rd such that φ : λ ∈ Rd 7→∫

exp(iλ>x)µ(dx) ∈ Υκ,S . Then φ can be extended on Cd and is equal to its Taylor expansion. In
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particular, for all λ ∈ Rd,

φ(−iλ) 6 1 +
∑

j∈Nd\{0}

S‖j‖1‖j‖−κ‖j‖11

d∏
a=1

λjaa 6 1 +
∑
m>1

md(S‖λ‖)mm−κm .

By Lemma 23, there exists a constant x0 > 0 depending only on κ and d such that for all λ ∈ Rd,

φ(−iλ) 6 1 + 6(S‖λ‖ ∨ x0)
d+1
κ exp

(
κ(S‖λ‖ ∨ x0)1/κ

)
,

which implies that there exists a constant c depending only on κ and d such that for all λ ∈ Rd,∫
exp(λ>x)µ(dx) 6 c

(
1 + (S‖λ‖)

d+1
κ

)
exp

(
κ(S‖λ‖)1/κ

)
.

F Proof of Theorem 7
By equation (32) from the proof of Theorem 6, taking mκ,n as in equation (13), for all κ0 ∈ (1/2, 1], S > 0,
β > 0, cν > 0, cQ > 0 and cψ > 0, there exist c′ > 0 and n0 such that for all ν ∈ [(d+ 4/3)e/S, νest] and
n > n0,

sup
κ∈[κ0,1]

inf
R? : ΦR?∈Ψ(κ,S,β,cψ)

Q?∈Q(ν,cν ,cQ)

PR?,Q?
(

sup
κ′∈[κ0,κ]

{(
log n

log log n

)κ′β
‖f̂κ′,n − f?‖L2(Rd1×Rd2 )

}
6 c′

)
> 1− 4

n
.

(52)
Write σn(κ′) = c′ (log n/ log log n)

−κ′β , we will show that

sup
κ∈[κ0,1]

inf
R? : ΦR?∈Ψ(κ,S,β,cψ)

Q?∈Q(ν,cν ,cQ)

PR?,Q?
(
‖f̂κ̂n,n − f?‖L2(Rd1×Rd2 ) 6 5σn(κ)

)
> 1− 4

n
, (53)

and since ‖f̂κ̂n,n − f?‖2L2(Rd1×Rd2 )
6 diam(Υκ0,S)2 by construction, Theorem 7 follows.

Fix κ, R? and Q∗ and assume we are in the event of probability at least 1− 4/n of equation (52) where
‖f̂κ′,n − f?‖2L2(Rd1×Rd2 )

6 σn(κ′) for all κ′ ∈ [κ0, κ]. By the triangular inequality, for all κ′ ∈ [κ0, κ],

‖f̂κ̂n,n − f?‖ 6 ‖f̂κ′,n − f?‖+ ‖f̂κ̂n,n − f̂κ′,n‖ ,

6 σn(κ′) +

{
An(κ̂n) + σn(κ′) if κ̂n > κ′,

An(κ′) + σn(κ̂n) otherwise,

6 σn(κ′) +An(κ̂n) + σn(κ′) +An(κ′) + σn(κ̂n) 6 2An(κ′) + 3σn(κ′)

by definition of κ̂n and since An > 0 and σn > 0. Recall that

An(κ′) = 0 ∨ sup
κ′′∈[κ0,κ′]

{‖f̂κ′′,n − f̂κ′∨κ′′,n‖L2(Rd1×Rd2 ) − σn(κ′′)} ,
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so that as κ′ 6 κ,

An(κ′) 6 0 ∨ sup
κ′′∈[κ0,κ]

{‖f̂κ′′,n − f?‖+ ‖f̂κ′,n − f?‖L2(Rd1×Rd2 ) − σn(κ′′)} ,

= ‖f̂κ′,n − f?‖+

(
0 ∨ sup

κ′′∈[κ0,κ]

{‖f̂κ′′,n − f?‖L2(Rd1×Rd2 ) − σn(κ′′)}

)
,

6 ‖f̂κ′,n − f?‖ 6 σn(κ′) .

Equation (53) follows by taking κ′ = κ.

G Proof of Lemma 15
To simplify the notations, write Φ? : (t1, t2) 7→ ΦR?(t1, t2)Φ?

Q?,(1)
(t1)Φ?

Q?,(2)
(t2) the characteristic func-

tion of Y under the parameters (R?, Q?). By definition of M and Mn and since for any complex numbers
a and b, ||a|2 − |b|2| 6 |a− b|(|a|+ |b|), for any κ > 0, S > 0, φ ∈ Υκ,S , R? and Q?,

|Mn(φ)−M(φ; νest|R?, Q?)| 6
∫
B
d1
νest×B

d2
νest

∣∣∣(φ(t1, t2)φ̃n(t1, 0)φ̃n(0, t2)− φ̃n(t1, t2)φ(t1, 0)φ(0, t2))

− (φ(t1, t2)Φ?(t1, 0)Φ?(0, t2)− Φ?(t1, t2)φ(t1, 0)φ(0, t2))
∣∣∣

×
(∣∣∣(φ(t1, t2)φ̃n(t1, 0)φ̃n(0, t2)− φ̃n(t1, t2)φ(t1, 0)φ(0, t2))

∣∣∣
+
∣∣∣(φ(t1, t2)Φ?(t1, 0)Φ?(0, t2)− Φ?(t1, t2)φ(t1, 0)φ(0, t2))

∣∣∣) dt1dt2

6 2‖φ‖∞,Bdνest
(1 + ‖φ‖∞,Bdνest

)∫
B
d1
νest×B

d2
νest

∣∣∣φ(t1, t2)(φ̃n(t1, 0)φ̃n(0, t2)− Φ?(t1, 0)Φ?(0, t2))

− (φ̃n(t1, t2)− Φ?(t1, t2))φ(t1, 0)φ(0, t2)
∣∣∣dt1dt2

6 4‖φ‖2∞,Bdνest
(1 + ‖φ‖∞,Bdνest

)2νdest‖φ̃n − Φ?‖∞,Bdνest

6 16‖φ‖4∞,Bdνest
νdest‖φ̃n − Φ?‖∞,Bdνest

since ‖Φ?‖∞ 6 1 and ‖φ̃n‖∞ 6 1 by definition. Thus, by (58) in Lemma 24, for any n > 1, κ > 0, S > 0,
x0 > 1 ∨ (d+4/3

κ )κ and any probability measures R? and Q? on Rd,

sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest|R?, Q?)|

6 38 416 νdest(Sνest ∨ x0)4 d+1
κ exp

(
4κ(Sνest ∨ x0)1/κ

)
‖φ̃n − Φ?‖∞,Bdνest

.

Let NRe(ε, νest|R?, Q?) (resp. N Im(ε, νest|R?, Q?)) be the number of brackets of size ε required to cover
{y ∈ Rd 7→ Re(eit

>y), t ∈ Bdνest
} (resp. with Im instead of Re), where the size of the bracket [u, v] is

ER?,Q? [(v − u)2(Y )]1/2. Since all these functions take values in [−1, 1] and for all y, t, t′ ∈ Rd, |eit>y −
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eit
′>y| 6 |(t − t′)>y| 6

√
d‖t − t′‖∞‖y‖, it is possible to obtain a bracket of size ε for each of these two

sets from a bracket of size ε/(
√
dER?,Q? [‖Y‖2]) of (Bdνest

, ‖ · ‖∞), which means that

NRe(ε, νest|R?, Q?) ∨N Im(ε, νest|R?, Q?) 6

(
4νest

√
dER?,Q? [‖Y‖2]

ε
∨ 1

)d
.

Thus, by [Massart, 2007], Theorem 6.8 and Corollary 6.9, there exists a numerical constant C such that for
all x > 0, R? and Q?,

PR?,Q?
(
‖φ̃n − Φ?‖∞,Bdνest

> C

[
E(R?, Q?)

n
+

√
x

n
+ 2

x

n

])
6 4e−x

(the factor 4 is due to the bilateral control on both the real and imaginary part of φ̃n − Φ?) where

E(R?, Q?) =
√
n

∫ 1

0

√
n ∧ d log

√
1 ∨ 16ν2

estdER?,Q? [‖Y‖2]

u
du+

3

2
d log(1 ∨ 16ν2

estdER?,Q? [‖Y‖2])

=
√
nA

∫ 1/A

0

√
n ∧ d log

1

v
du+ 3d logA where A =

√
1 ∨ 16ν2

estdER?,Q? [‖Y‖2]

=
√
nA

(
√
ne−n + d

∫ en

A

√
log x

x2
dx

)
+ 3d logA

6 d
√
nA

(
e−1 +

∫ +∞

1

√
x

x2
dx

)
+ 3dA

6 6d
√
nA

= 6d
√
n
√

1 ∨ 16ν2
estdER?,Q? [‖Y‖2] .

Hence, for all n > 1, x > 0, R? and Q?, with probability at least 1− 4e−x under PR?,Q? ,

‖φ̃n − Φ?‖∞,Bdνest
6 C?

[
6d

√
1 ∨ 16ν2

estdER?,Q? [‖Y‖2]

n
+

√
x

n
+ 2

x

n

]
,

and finally there exists a numerical constant cM such that for all n > 1 and x > 0, with probability at least
1− 4e−x,

sup
φ∈Υκ,S

|Mn(φ)−M(φ; νest)|

6 cMν
d
est(Sνest ∨ x0)4 d+1

κ exp
(

4κ(Sνest ∨ x0)1/κ
)[

d

√
1 ∨ ν2

estdE[‖Y‖2]

n
∨
√
x

n
∨ x
n

]

where x0 = 1 ∨ (d+4/3
κ )κ.
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H Technical results
Lemma 23. For all d > 0 and all x > 0, let ψx,d be the function defined on R∗+ by ψx,d : u 7→ udxuu−κu.
Let x0 = ((d+ 4/3)/κ)

κ, then for all x > 0,∑
m>1

ψx,d(m) 6 6(x ∨ x0)
d+1
κ exp(κ(x ∨ x0)1/κ) .

Proof. For all x > 0, there exists u?(x) such that ψx,d is nondecreasing on (0, u?(x)] and nonincreasing on
[u?(x),+∞). This real number satisfies

u?(x) = sup {u > 0 : u log(x)− κu log u− κu+ d > 0} .

Hence, for all x > 0, u?(x) > e−1x1/κ and for all x > (d/κ)κ, u?(x) 6 x1/κ, so that

ψx,d(u?(x0)) = u?(x)d
(
x1/κ

u?(x)

)κu?(x)

6 xd/κ exp(κx1/κ) .

Thus,

∑
m>1

ψx,d(m) 6
bu?(x)c−1∑
m=1

ψx,d(m) + ψx,d(bu?(x)c) + ψx,d(du?(x)e) +
∑

m>du?(x)e+1

ψx,d(m) ,

6
∫ bu?(x)c

1

ψx,d(u)du+ 2ψx,d(u?(x)) +

∫ ∞
du?(x)e
ψx,d(u)du ,

so that for all x > (d/κ)κ,∑
m>1

ψx,d(m) 6 2xd/κ exp
(
κx1/κ

)
+

∫
u>1

ψx,d(u)du ,

6 2xd/κ exp
(
κx1/κ

)
+

∫
u>1

ud
( x
uκ

)u
du .

Let u = x1/κv, then∫
u>1

ud
( x
uκ

)u
du 6 x

d+1
κ

∫
v>x−1/κ

vd−κx
1/κvdv ,

6 x
d+1
κ

(∫
06v61

exp(−κx1/κv log v)dv +

∫
v>1

vd−κx
1/κvdv

)
,

6 x
d+1
κ

(
exp

(
κx1/κ 1

e

)
+

∫
v>1

vd−κx
1/κ

dv

)
,

6 x
d+1
κ

(
exp(κx1/κ) +

1

κx1/κ − (d+ 1))

)
,

6 x
d+1
κ

(
exp(κx1/κ) + 3

)
,
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when κx1/κ > d+ 4/3, so that for all x >
(
d+4/3
κ

)κ
,

∑
m>1

ψx,d(m) 6 3x
d+1
κ (1 + exp(κx1/κ)) 6 6x

d+1
κ exp(κx1/κ) .

The case x 6 ((d + 4/3)/κ)κ follows from the fact that x 7→ ψx,d(m) is nondecreasing for all positive
integer m and all d > 0.

The results established in this section involve the following quantities.

CΥ(κ, S, ν) = sup
φ∈Υκ,S

‖φ‖
L∞(B

d1
ν ×B

d2
ν )

, (54)

fκ :u 7→
∑
m>1

(m+ d/κ)−κmum , (55)

g : (κ, S) 7→ sup
x>1

{
(max(S, 1)ed+22κ)xx−κx+1

}
, (56)

where d = d1 + d2.

Lemma 24. Let κ > 0 and u0 = (4/(3κ))κ, then for all u > 0,

fκ(u) 6 6(u ∨ u0)1/κ exp(κ(u ∨ u0)1/κ) , (57)

where fκ is defined in (55). Let κ, S > 0 and x0 = 1 ∨ ((d+ 4/3)/κ)κ, then for all ν > 0,

CΥ(κ, S, ν) 6 7(Sν ∨ x0)
d+1
κ exp(κ(Sν ∨ x0)1/κ) , (58)

where CΥ is defined in (54). For all κ, S > 0,

g(κ, S) 6 2e(d+2)/κ(S ∨ 1)1/κ exp
(

2κe(d+2)/κ(S ∨ 1)1/κ
)
, (59)

where g is defined in (56).

Proof. The inequality (57) follows from Lemma 23 and the fact that fκ(u) 6
∑
m>1m

−κmum for all
u > 0. The inequality (58) follows exactly the same proof as the second implication of Lemma 5. To
prove (59), write, for all κ, S > 0, β(κ, S) = (S ∨ 1)ed+22κ and consider the function ψ : x 7→
β(κ, S)xx−κx+1 = ψβ(κ,S),1(x) with the notation where ψx,d is defined in Lemma 23. By definition,
g(κ, S) = supx>1 ψ(x). In the proof of Lemma 23, it is shown that this function is upper bounded on R∗+
by β(κ, S)1/κ exp(κβ(κ, S)1/κ) as soon as β(κ, S) > (1/κ)κ, which is always true since β(κ, S)1/κ >
2e2/κ > 2× 2/κ > 1/κ.

Lemma 25. Let φ ∈ and d = d1 + d2. For all κ > 0, there exists a function fκ : R+ → R+ such that for
all S <∞, ν > 0, φ ∈ Υκ,S and m > d/κ,

‖φ− Tmφ‖L∞(B
d1
ν ×B

d2
ν )

6 2d(Sν)mm−κm+dfκ(Sν) ,

where Υκ,S , fκ and Tmφ are defined in (8), (55) and (11).
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Proof. Let κ > 0, S <∞ and φ ∈ Υκ,S . By definition of Υκ,S , for all x ∈ Bd1ν × Bd2ν ,

φ(x) =
∑
i∈Nd

ci

d∏
a=1

xiaa , where |ci| 6 S‖i‖1‖i‖−κ‖i‖11 .

Then, for all x ∈ Bd1ν × Bd2ν ,

(φ− Tmφ)(x) =
∑
i∈Im,+d

ci

d∏
a=1

xiaa ,

where, for all m ∈ N,

Imd =

{
i ∈ Nd :

∑
a

ia = m

}
, Im,+d =

{
i ∈ Nd :

∑
a

ia > m

}
. (60)

This yields
‖φ− Tmφ‖L∞(B

d1
ν ×B

d2
ν )

6
∑
i∈Im,+d

‖i‖−κ‖i‖11 (Sν)‖i‖1

and

‖φ− Tmφ‖L∞(B
d1
ν ×B

d2
ν )

6
∑
m′>m

(m′)−κm
′
(Sν)m

′
|Im
′

d | 6
∑
m′>m

(m′)−κm
′
(Sν)m

′
(1 +m′)d ,

6 2d
∑
m′>m

(m′)−κm
′
(Sν)m

′
(m′)d .

Therefore, for m > d/κ, as for all m′ > m, (m′)−κm+d 6 (m+ 1)−κm+d,

‖φ− Tmφ‖L∞(B
d1
ν ×B

d2
ν )

6 2d(Sν)m(m+ 1)−κm+d
∑
m′>m

(m′)−κ(m′−m)(Sν)(m′−m) ,

6 (Sν)mm−κm+d2d
∑
m′>0

(m′ + d/κ)−κm
′
(Sν)m

′
,

which concludes the proof by definition of fκ, see (55).

I Proof of Lemma 18
Let κ, ν > 0, S <∞, m ∈ N∗, φ ∈ Υκ,S and h ∈ Gκ,S .

M lin(Tmh, Tmφ; ν) =

∫
Bdν

|(Tmh)(t1, t2)(Tmφ)(t1, 0)(Tmφ)(0, t2)

− (Tmφ)(t1, t2)(Tmh)(t1, 0)(Tmφ)(0, t2)

− (Tmφ)(t1, t2)(Tmφ)(t1, 0)(Tmh)(0, t2)|2dt1dt2 ,

= ‖A(φ,m)h‖2L2(B2d
ν ) , (61)
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where A(φ,m) is a linear operator onto L2(B2d
ν ). Write

P1 = (Tmφ)(·, 0)(Tmφ)(0, ·) , P2 = −(Tmφ)(·, 0)(Tmφ) , P3 = −(Tmφ)(0, ·)(Tmφ) ,

so that
A(φ,m)h = (Tmh)P1 + (Tmh)(0, ·)P2 + (Tmh)(·, 0)P3 .

Let H be the vector of coordinates of h in the canonical basis of C[X1, . . . , X2d], for all (x, y) ∈ Bdν ,

h(x, y) =
∑
i,j∈Nd

H(i,j)

d∏
a,b=1

xiaa y
jb
b .

Then h = H>M where M is the vector such that for all i ∈ N2d,

Mi =

2d∏
a=1

Xia
a . (62)

Let A be the matrix such that the coordinates of A(φ,m)h in the canonical basis are, for all i ∈ N2d,

Ai =
∑
j∈N2d

Ai,jHj . (63)

Likewise, let Jm be the matrix of the operator Tm in the canonical basis: for all (i, j) ∈ N2d × N2d,

(Jm)i,j = 1‖i‖16m1i=j . (64)

Let f , (P1,i)i∈N2d , (P2,i)i∈N2d and (P3,i)i∈N2d the vector of coordinates of φ, P1, P2 and P3 in the canonical
basis. Then, for all (i, j) ∈ N2d × N2d,

Ai,j = (P1,i−j + P2,i−j + P3,i−j)1‖j‖16m ,

with the convention P1,i = P2,i = P3,i = 0 if there exists a ∈ {1, . . . , 2d} such that ia < 0. For all
(i, j) ∈ (Nd)2, 

P1,(i,j) = f(i,0)f(0,j)1‖i‖16m1‖j‖16m ,

P2,(i,j) = −
∑

u∈Nd:u6i

f(u,j)f(i−u,0)1‖u‖16m1‖i−u‖16m1‖j‖16m ,

P3,(i,j) = −
∑

v∈Nd:v6j

f(i,v)f(0,j−v)1‖i‖16m1‖v‖16m1‖j−v‖16m .

Lemma 26. For all (i, j) ∈ Nd × Nd,

i) Ai,j = 0 if there exists a ∈ {1, . . . , 2d} such that ja > ia (A is lower triangular) ;

ii) Ai,j = 0 if ‖j‖1 > m, so that AJm = A ;

iii) Ai,j = 0 if ‖i‖1 > ‖j‖1 + 2m, so that AJm′ = Jm′+2mAJm′ for all m′ ∈ N ;

iv) Ai,i = −φ(0)2 = −1 ;
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v) the coefficient Ai,j is upper bounded as follows:

|Ai,j | 6 S‖i−j‖1(‖i− j‖1/2)−κ‖i−j‖1
{

1 + (1 + ‖i1 − j1‖1)d1+1 + (1 + ‖i2 − j2‖1)d2+1
}
,

where i = (i1, i2) ∈ Nd1 × Nd2 and j = (j1, j2) ∈ Nd1 × Nd2 .

Proof. Items i) to iv) are direct consequences of the definitions. Let (i, j) ∈ (Nd)2, by definition of Υκ,S ,
|fk| 6 S‖k‖1‖k‖−κ‖k‖11 for all k ∈ N2d. Then, by concavity of x 7→ x log x,

|P1,(i,j)| 6 S‖i‖1+‖j‖1 exp

(
−2κ

[
1

2
‖i‖1 log ‖i‖1 +

1

2
‖j‖1 log ‖j‖1

])
,

6 S‖i‖1+‖j‖1 exp

(
−κ(‖i‖1 + ‖j‖1) log

(
‖i‖1 + ‖j‖1

2

))
,

6 S‖i‖1+‖j‖1
(
‖i‖1 + ‖j‖1

2

)−κ(‖i‖1+‖j‖1)

.

Similarly, using definition (60),

|P2,(i,j)| 6 S‖i‖1+‖j‖1
∑

u∈Nd:u6i

(‖u‖1 + ‖j‖1)−κ(‖u‖1+‖j‖1)‖i− u‖−κ‖i−u‖11 ,

6 S‖i‖1+‖j‖1
‖i‖1∑
k=0

|Ikd|(k + ‖j‖1)−κ(k+‖j‖1)(‖i‖1 − k)−κ(‖i‖1−k) ,

6 S‖i‖1+‖j‖1
‖i‖1∑
k=0

|{0, . . . , ‖i‖1}d| exp
(
− 2κ

[1

2
(k + ‖j‖1) log(k + ‖j‖1)

+
1

2
(‖i‖1 − k) log(‖i‖1 − k)

])
,

6 S‖i‖1+‖j‖1(‖i‖1 + 1)d+1 exp

(
−κ(‖i‖1 + ‖j‖1) log

(
‖i‖1 + ‖j‖1

2

))
,

6 S‖i‖1+‖j‖1(‖i‖1 + 1)d+1

(
‖i‖1 + ‖j‖1

2

)−κ(‖i‖1+‖j‖1)

.

and

|P3,(i,j)| 6 S‖i‖1+‖j‖1(‖j‖1 + 1)d2+1

(
‖i‖1 + ‖j‖1

2

)−κ(‖i‖1+‖j‖1)

,

which concludes the proof.

For all i > 0, let Pi be the i-th Legendre polynomial and P norm
i its normalized version defined as in (30).

Let B be the change-of-basis matrix from the canonical basis formed by the monomials (Mi)i∈Nd , where
d = d1 + d2 and Mi is defined in (62), to the basis generated by the normalized Legendre polynomials: for
all i ∈ Nd,

Pnorm
i (X1, . . . , Xd) =

∑
j∈Nd

Bi,j

d∏
a=1

Xja
a , (65)
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where Pnorm
i is defined in (31). Then, Bi,j = 0 if there exists 1 6 a 6 d such that ja > ia or such that

ia − ja is an odd integer. Otherwise, for all k ∈ Nd such that ka 6 ia/2 for all a ∈ {1, . . . , d},

Bi,i−2k = ν−d/2

(
d∏
a=1

(ia + 1/2)

)1/2

2−‖i‖1ν−‖i−2k‖1(−1)‖k‖1
d∏
a=1

(
ia
ka

)(
2ia − 2ka

ia

)
,

= ν−d/2

(
d∏
a=1

(ia + 1/2)

)1/2

2−‖i‖1ν−‖i−2k‖1(−1)‖k‖1
d∏
a=1

(
ia − ka
ka

)(
2ia − 2ka
ia − ka

)
. (66)

Lemma 27. Let h ∈ L2(Bd1ν ×Bd2ν ) andX be the vector of coordinates of Tmh in the Legendre polynomials
basis. Then,

‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

= ‖X‖2

and
‖A(φ,m)h‖2

L2(B
d1
ν ×B

d2
ν )

= ‖X>BA>B−1‖2 = ‖X>JmBJmA
>J3mB−1J3m‖2 ,

where A, Jm and B are defined in (63), (64) and (65).

Proof. Let h ∈ L2(Bd1ν × Bd2ν ) and L be the vector of Legendre polynomials. By definition of Jm, as
L = BM, by (65),

Tmh = X>L = X>BM = (JmH)>M .

Then, H>Jm = X>B = X>BJm and

A(φ,m)h = (AH)>M = (AJmH)>M = H>JmA
>(B−1L) = X>BA>B−1L

= X>JmBJmA
>J3mB−1J3mL

by Lemma 26 and the fact that JmB−1 = JmB−1Jm since B−1 is lower triangular, so that X> = X>Jm.
The proof is concluded by noting that Legendre plolynomials form an orthonormal basis of L2(Bd1ν ×Bd2ν ),
the operator L> : L2(Bd1ν × Bd2ν )→ L2(Bd1ν × Bd2ν ) is then norm preserving.

A lower bound for ‖A(φ,m)h‖
L2(B

d1
ν ×B

d2
ν )

may then be obtained by lower bounding the smallest sin-

gular values of JmBJm, JmA>J3m and J3mB−1J3m as

inf
h∈Gκ,S

‖A(φ,m)h‖
L2(B

d1
ν ×B

d2
ν )

‖Tmh‖L2(B
d1
ν ×B

d2
ν )

> inf
X∈Im(Jm)

‖X>JmBJmA
>J3mB−1J3m‖

‖X>‖
,

> σrk(Jm)(JmBJm)σrk(Jm)(J3mAJm)σrk(J3m)(J3mB−1J3m) ,

= σ1(JmB−1)−1σrk(Jm)(AJm)σ1(J3mB)−1 . (67)

The following lemmas allow to control the three terms of equation (67).

Lemma 28. Let d = d1 + d2. For all m ∈ N∗ and all ν > 0,

σ1(JmB) 6 ν−d/2md4m(ν−1 ∨ 1)m ,

where Jm and B are defined in (64) and (65).
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Proof. For all k, i ∈ N such that k 6 i,(
i

k

)
6

(
i

i/2

)
∼ 2i/

√
πi/2 and

(
2i− 2k

i

)
6

(
2i

i

)
∼ 4i/

√
πi .

Thus, by (66), for all ν > 0,

|Bi,i−2k| 6 ν−d/2
d∏
a=1

(4/ν)iaν2ka 6 ν−d/24‖i‖1
(
ν−1 ∨ 1

)‖i‖1−2‖k‖1
.

Then,

σ1(JmBJm) 6 |{(i, j) ∈ Nd × Nd : (JmBJm)i,j 6= 0}|1/2‖JmBJm‖∞
6 rk(Jm)‖JmBJm‖∞ 6 md‖JmBJm‖∞ ,

which yields σ1(JmBJm) 6 ν−d/2md4m(ν−1 ∨ 1)m.

Lemma 29. Let d = d1 + d2. For all m ∈ N∗ and all ν > 0,

σ1(JmB−1) 6
√

22dm(d+1)/2νd/2(ν ∨ 1)m ,

where Jm and B are defined in (64) and (65).

Proof. Write L the vector of Legendre polynomials. By definition of M and B, see (62) and (65), L = BM
and for all i ∈ Nd,

‖Mi‖2L2(B
d1
ν ×B

d2
ν )

=

∥∥∥∥∥∥
∑
j∈Nd

(B−1)i,jLj

∥∥∥∥∥∥
2

L2(B
d1
ν ×B

d2
ν )

=
∑
j∈Nd

(B−1)2
i,j ,

as Legendre polynomials form an orthonormal basis of L2(Bd1ν × Bd2ν ). Then, using that

‖Mi‖2L2(B
d1
ν ×B

d2
ν )

=

d∏
a=1

2ν2ia+1

2ia + 1
,

yields

‖JmB−1Jm‖2F 6

{
2d(m+ 1)dνd if ν 6 1 ,

2d(m+ 1)d+1ν2m+d if ν > 1 .

The proof is concluded by σ1(JmB−1) = σ1(JmB−1Jm) 6 ‖JmB−1Jm‖F .

Lemma 30. Let d = d1 + d2. Then,

σrk(Jm)(AJm) > 4−1 (2
√

2)−dm−d−1(de)−3mg(κ, S, d1, d2)−3m ,

where g is defined in (56).
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Proof. By Lemma 26, A = −Jm + N where N is a (3m + 1)-nilpotent strict lower triangular matrix. Let
D = −

∑3m
k=0N

k with the convention N0 = Jm, then DA = Jm, and

σrk(Jm)(A) > σ1(D)−1 .

Therefore,

σrk(Jm)(A)−1 6 σ1

(
−

3m−1∑
k=0

Nk

)
6 σ1

(
J3m

3m−1∑
k=0

NkJm

)
6 (rk(Jm)rk(J3m))1/2

3m∑
k=0

‖Nk‖∞ .

Therefore,

σrk(Jm)(A)−1 6 ((3m+ 1)(m+ 1))d/2

1 +

3m∑
k=1

sup
i,j∈Nd

∣∣∣∣∣∣∣∣∣
∑

a(0),a(1),...,a(k)∈Nd distincts
i=a(0)6a(1)6...6a(k)=j

k∏
u=1

Na(u−1),a(u)

∣∣∣∣∣∣∣∣∣

 .

Let k ∈ N∗ and i = a(0) 6 a(1) 6 . . . 6 a(k) = j distinct in Nd. By Lemma 26, writing for all u > 0,
a(u) = (a

(u)
1 , a

(u)
2 ) ∈ Nd1 × Nd2 ,

|Na(u−1),a(u) | 6 S‖a
(u)−a(u−1)‖1(‖a(u) − a(u−1)‖1/2)−κ‖a

(u)−a(u−1)‖1

×
{

1 + (1 + ‖a(u)
1 − a(u−1)

1 ‖1)d1+1 + (1 + ‖a(u)
2 − a(u−1)

2 ‖1)d2+1
}

so that∣∣∣∣∣
k∏
u=1

Na(u−1),a(u)

∣∣∣∣∣
6 S

∑k
u=1 ‖a

(u)−a(u−1)‖1 exp

(
−κk

k∑
u=1

1

k
‖a(u) − a(u−1)‖1 log(‖a(u) − a(u−1)‖1/2)

)

×
k∏
u=1

(‖a(u)
1 − a(u−1)

1 ‖1 + 1)d1+1(‖a(u)
2 − a(u−1)

2 ‖1 + 1)d2+1 ,

6 S‖j−i‖1exp ((d1 + 1)‖j1 − i1‖1 + (d2 + 1)‖j2 − i2‖1) exp

(
−κ‖j − i‖1 log

‖j − i‖1
2k

)
,

6 S‖j−i‖1(ed1+1)‖j1−i1‖1(ed2+1)‖j2−i2‖1
(
‖j − i‖1

2k

)−κ‖j−i‖1
,

using that x 7→ x log x is convex, log(1 + x) 6 x for x > 0 and using

k∑
u=1

‖a(u) − a(u−1)‖1 =

k∑
u=1

(‖a(u)‖1 − ‖a(u−1)‖1) = ‖j − i‖1 .

It remains to count
ski,j =

∑
a(0),a(1),...,a(k)∈N2d distincts
i=a(0)6a(1)6...6a(k)=j

1 .
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This sum counts the number of paths connecting i and j, going away from 0 in Nd and made of k steps with
non-zero length. Thus, it is upper bounded by the number of paths of length ‖j − i‖1 going away from zero
in Nd and made of k steps with nonzero length. Such a path is entirely described by the direction of each
step (d possibilities each) and the length of each step (or equivalently the distance travelled after each of the
first k− 1 steps, which is equivalent to choosing k− 1 distinct integers in {1, . . . , ‖j− i‖1− 1}). Therefore

ski,j 6 dk
(
‖j − i‖1 − 1

k − 1

)
6 dk‖j − i‖k1/k! 6 dk‖j − i‖k1(e/k)k ,

and

σrk(Jm)(AJm)−1 6 ((3m+ 1)(m+ 1))d/2

(
1 +

3m∑
k=1

(de)k sup
`>k

(Sed1+1ed2+12κ)`
(
`

k

)−κ`+k)
,

6 ((3m+ 1)(m+ 1))d/2

(
1 +

3m∑
k=1

(
de sup

x>1
(Sed1+1ed2+12κ)xx−κx+1

)k)
,

6 ((3m+ 1)(m+ 1))d/2(3m+ 1) max

(
1, de sup

x>1
(Sed1+1ed2+12κ)xx−κx+1

)3m

,

6 4(2
√

2)dmd+1 max

(
1, de sup

x>1
(Sed1+1ed2+12κ)xx−κx+1

)3m

,

which concludes the proof by (56).

The proof of Lemma 18 may then be completed. By equations (61) and (67) and the three above lemmas,
there exists a numerical constant c > 0 such that

M lin(Tmh,Tmφ; ν)

> σ1(JmB−1)−2σrk(Jm)(AJm)2σ1(J3mB)−2‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

,

> c(4−dm−d−1ν−d(ν ∨ 1)−2m)× ((2
√

2)−2dm−2d−2(de)−6mg(κ, S, d1, d2)−6m)

× (νd(3m)−2d4−6m
(
ν−1 ∨ 1

)−6m
)‖Tmh‖2L2(B

d1
ν ×B

d2
ν )

,

> c(4
√

2)−2d(4e)−6mm−5d−3(ν ∨ ν−3)−2mg(κ, S, d1, d2)−6md−6m‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

.

J Proofs of Section B

J.1 Proof of Lemma 19
Let κ, ν, S > 0, m > d/κ, φ ∈ Υκ,S and h ∈ Gκ,S and write V = h− Tmh and U = φ− Tmφ. Using the
inequality |a+ b|2 > |a|2/2− |b|2 for all (a, b) ∈ C2,

M lin(h, φ; ν) >
1

2
M lin(Tmh, φ; ν)− 9(2ν)d‖V ‖2∞‖φ‖4∞ .

By Lemma 25, ‖V ‖∞ 6 2d(Sν)mm−κm+dfκ(Sν) so that

M lin(h, φ; ν) >
1

2
M lin(Tmh, φ; ν)− 9(2ν)d22d(Sν)2mm−2κm+2dfκ(Sν)2C4

Υ(κ, S, ν) .
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Similarly,

M lin(h, φ; ν) >
1

2
M lin(h, Tmφ; ν)− (2ν)d‖U‖2∞‖h‖2∞(6‖Tmφ‖∞ + 3‖U‖∞)2 ,

>
1

2
M lin(h, Tmφ; ν)− (2ν)d22d(Sν)2mm−2κm+2dfκ(Sν)2(2CΥ(κ, S, ν))2

× (6CΥ(κ, S, ν) + 3× 2CΥ(κ, S, ν))2 .

Therefore, there exists a constant c̃ such that

M lin(h, φ; ν) >
1

4
M lin(Tmh, Tmφ; ν)− c̃C4

Υ(κ, S, ν)22d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 .

Then, by Lemma 18, there exists c > 0 such that

M lin(h, φ; ν) > c(4
√

2)−2d(4e)−6mm−5d−3(ν ∨ ν−3)−2mg(κ, S, d1, d2)−6md−6m‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

− c̃C4
Υ(κ, S, ν)22d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 .

Finally, by Lemma 25 and the inequality

‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

> ‖h‖2
L2(B

d1
ν ×B

d2
ν )
/2− ‖h− Tmh‖2L2(B

d1
ν ×B

d2
ν )

,

M lin(h, φ; ν) > (c/2)α(d1, d2,m, ν, κ, S)‖h‖2
L2(B

d1
ν ×B

d2
ν )

− (cα(d1, d2,m, ν, κ, S) + c̃C4
Υ(κ, S, ν))22d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 ,

where

α(d1, d2,m, ν, κ, S) = (4
√

2)−2d(4e)−6mm−5d−3(ν ∨ ν−3)−2mg(κ, S, d1, d2)−6md−6m .

This concludes the proof.

J.2 Proof of Proposition 20
In this proof the subscript L2(Bd1ν ×Bd2ν ) is dropped from the notation ‖h‖ for better clarity. As Sν > x0∨u0

where x0 and u0 are defined in Lemma 24, then by Lemma 24 and Lemma 19, for all m > d/κ,

M lin(h, φ; ν) >
c

2
α(m, ν, κ, S)

(
‖h‖2 − 72(8ν)d(Sν)2m+2/κ exp(2κ(Sν)1/κ))m−2κm+2d

)
− c̃ 74 · 36(8ν)d(Sν)2m+(4d+6)/κ exp(6κ(Sν)1/κ)m−2κm+2d ,

where α is defined in (33). The proposition will follow from a careful choice of m depending on ‖h‖.
Since x1/κ 6 κ−1 exp(κx1/κ/2) for all x > 0,

M lin(h, φ; ν) >
c

2
α(m, ν, κ, S)

(
‖h‖2 − 72(8ν)d(Sν)2mκ−2 exp(3κ(Sν)1/κ))m−2κm+2d

)
− c̃ 74 · 36(8ν)d(Sν)2mκ−4d−6 exp((2d+ 9)κ(Sν)1/κ)m−2κm+2d .
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Assume that

(8ν)d(Sν)2m exp
(

3κ(Sν)1/κ)
)
m−2κm+2d 6

κ2

144
‖h‖2 . (68)

Then,

M lin(h, φ; ν) >
c

4
α(m, ν, κ, S)‖h‖2

− c̃ 74 · 36(8ν)d(Sν)2mκ−4d−6 exp
(

(2d+ 9)κ(Sν)1/κ
)
m−2κm+2d .

The constraint (68) can be written
mκm−a1bm1 > c1‖h‖−1 , (69)

where a1 = d, b1 = (Sν)−1 and c21 = 144κ−2(8ν)d exp(3κ(Sν)1/κ). On the other hand, if S > 1,

α(m, ν, κ, S) = 8−dm−5d−3(4ed)−6m(ν ∨ ν−3)−2mg(κ, S)−6m ,

> 8−dm−5d−3(4ed)−6m(ν ∨ ν−3)−2m2−6m(ed+2S)−6m/κ exp(−12κm(ed+2S)1/κ) ,

= 8−d(ed+2S)−6m/κm−5d−3(8ed)−6m(ν ∨ ν−3)−2m exp(−12κm(ed+2S)1/κ) .

Therefore,

M lin(h, φ; ν) >
c

4
8−d(ed+2S)−6m/κm−5d−3(8ed)−6m(ν ∨ ν−3)−2m exp(−12κm(ed+2S)1/κ)‖h‖2

− c̃ 74 · 36(8ν)d(Sν)2mκ−4d−6 exp((2d+ 9)κ(Sν)1/κ)m−2κm+2d .

Assume that

c

8
‖h‖28−d(ed+2S)−6m/κm−5d−3(8ed)−6m(ν ∨ ν−3)−2m exp

(
−12κm(ed+2S)1/κ

)
> c̃ 74 · 36(8ν)d(Sν)2mκ−4d−6 exp

(
(2d+ 9)κ(Sν)1/κ

)
m−2κm+2d . (70)

Then,

M lin(h, φ; ν) >
c

8
8−d(ed+2S)−6m/κm−5d−3(8ed)−6m(ν ∨ ν−3)−2m

× exp
(
−12κm(ed+2S)1/κ

)
‖h‖2 . (71)

Note that (70) is equivalent to

m2κm−7d−3((8ed)3(ν ∨ ν−3)Sν)−2m(ed+2S)−6m/κ exp(−12κm(ed+2S)1/κ)

>
288 · 74c̃

c
(64ν)dκ−4d−6 exp((2d+ 9)κ(Sν)1/κ)‖h‖−2 .

which can be written
mκm−a2bm2 > c2‖h‖−1 , (72)

where a2 = (7d + 3)/2, b2 = ((8ed)3(ν ∨ ν−3))−1(Sν)−1(ed+2S)−3/κ exp(−6κ(ed+2S)1/κ) and c22 =
288 · 74(c̃/c)(64ν)dκ−4d−6 exp((2d+ 9)κ(Sν)1/κ). Note that a2 > a1, c2 > c1 since κ 6 1 and b2 < b1.
Thus, (69) and (72) hold when

κm log(κm)− (log(b−1
2 )m+ a2 logm+ log c2) > log(1/‖h‖) . (73)
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Equation (73) is satisfied when

κm(log(κm)−
(
log(b−1

2 )/κ+ a2/κ+ log(c2)/κ
)
> log(1/‖h‖) ,

which can be written

κm log

((
b2

c2ea2

)1/κ

κm

)
> log(1/‖h‖) . (74)

Note that for all A > 1, the solution x of the equation x log x = A satisfies x 6 3A/(2 logA), so that
choosing

m =

 2

κ

log(1/‖h‖)

log

{(
1 ∧ b2

c2ea2

)1/κ

log(1/‖h‖)
}
 , (75)

ensures that (74) holds as soon as(
1 ∧ b2

c2ea2

)1/κ

log(1/‖h‖) > 1 and
log(1/‖h‖)

log log(1/‖h‖)
> 2κ ,

which is always true when ‖h‖ < e−1 since κ 6 1. If the condition on ‖h‖ is strenghtened into(
1 ∧ b2

c2ea2

)2/κ

log(1/‖h‖) > 1 ,

then the choice (75) implies

m 6
4

κ

log(1/‖h‖)
log log(1/‖h‖)

.

Since with b2 defined above, (71) can be written

M lin(h, φ; ν) >
c

8
‖h‖28−dm−5d−3(b2Sν)2m ,

and b2Sν 6 1, this yields

M lin(h, φ; ν) >
c

8
‖h‖28−d

(
κ log log(1/‖h‖)

4 log(1/‖h‖)

)5d+3

‖h‖

−8 log(b2Sν)

κ log log(1/‖h‖) .

J.3 Proof of Lemma 21
Let ν > 0 and d = d1+d2. For all h ∈ Cm[X1, . . . , Xd], there exists a unique matrixH = (Hi,j)i∈Nd1 ,j∈Nd2
such that for all (x, y) ∈ Bd1ν × Bd2ν , h(x, y) =

∑
i∈Nd1 ,j∈Nd2 Hi,jP

norm
i (x)Pnorm

j (y), with Pnorm
i defined in
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equation (31). Since Hi,j = 0 if ‖i‖1 + ‖j‖1 > m (as deg(h) 6 m), by Cauchy-Schwarz inequality,

‖h(·, 0)‖2
L2(B

d1
ν )

=
∑
i∈Nd1

∣∣∣∣∣∣
∑

j∈Nd2 :‖j‖16m

Hi,jP
norm
j (0)

∣∣∣∣∣∣
2

6
∑
i∈Nd1

∑
j∈Nd2

|Hi,j |2
∑

j′∈Nd2 :‖j′‖16m

Pnorm
j′ (0)2 ,

=
∑
i∈Nd1

∑
j∈Nd2

|Hi,j |2
∑

j′∈Nd2 :‖j′‖16m

d2∏
a=1

(
4−j

′
a

√
j′a + 1/2

ν

(
2j′a
j′a

))2

.

By Stirling’s formula, for all ja ∈ N,

4−j
′
a

√
j′a + 1/2

(
2j′a
j′a

)
6
√

2/π .

Then, there exists a numerical constant c > 0 such that

‖h(·, 0)‖2
L2(B

d1
ν )

6
∑
i∈Nd1

∑
j∈Nd2

|Hi,j |2
∑

j′∈Nd2 :‖j′‖16m

(c/ν)d2

6 (c/ν)d2‖H‖2F |{0, . . . ,m}d| 6 (2c/ν)d2md2‖h‖2
L2(B

d1
ν ×B

d2
ν )

.

Assume now that h ∈ Gκ,S and m > d/κ. By Lemma 25,

‖h(·, 0)‖2
L2(B

d1
ν )

= ‖Tmh(·, 0) + (h− Tmh)(·, 0)‖2
L2(B

d1
ν )

,

6 2‖Tmh(·, 0)‖2
L2(B

d1
ν )

+ 222d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 ,

6 2(2c/ν)d2md2‖Tmh‖2L2(B
d1
ν ×B

d2
ν )

+ 222d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 ,

6 2(2c/ν)d2md2‖h− (h− Tmh)‖2
L2(B

d1
ν ×B

d2
ν )

+ 222d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 ,

6 4(2cm/ν)d2‖h‖2
L2(B

d1
ν ×B

d2
ν )

+ (4(2cm/ν)d2 + 2)22d(2ν)d(Sν)2mm−2κm+2dfκ(Sν)2 .

Following the same steps for ‖h(0, ·)‖2
L2(B

d1
ν ×B

d2
ν )

yields

‖h(·, 0)h(0, ·)‖2L2(B2d
ν ) 6 16

{
(2cm/ν)2d1 + (2cm/ν)2d2

}
‖h‖4

L2(B
d1
ν ×B

d2
ν )

+
{

(4(2cm/ν)d1 + 2)2 + (4(2cm/ν)d2 + 2)2
}

24d(2ν)2d(Sν)4mm−4κm+4dfκ(Sν)4 ,

which concludes the proof.

J.4 Proof of Proposition 22
In this proof the subscript L2(Bd1ν ×Bd2ν ) is dropped from the notation ‖h‖ for better clarity. By Lemma 21,
there exists a numerical constant c5 > 0 such that for all c′5 > c5, for all κ > 0, S < ∞, ν > 0, m > d/κ
and h ∈ Gκ,S ,

‖h(·, 0)h(0, ·)‖2L2(Bdν) 6 16
{

(2c′5m/ν)2d1 + (2c′5m/ν)2d2
}
‖h‖4

L2(B
d1
ν ×B

d2
ν )

+
{

(4(2c′5m/ν)d1 + 2)2 + (4(2c′5m/ν)d2 + 2)2
}

24d(2ν)2d(Sν)4mm−4κm+4dfκ(Sν)4 .
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Then, by Lemma 24,

‖h(·, 0)h(0, ·)‖2 6 16
{

(2c′5m/ν)2d1 + (2c′5m/ν)2d2
}
‖h‖4

+
{

(4(2c′5m/ν)d1 + 2)2 + (4(2c′5m/ν)d2 + 2)2
}

24d(2ν)2d(Sν)4mm−4κm+4d

× 64(Sν)4/κ exp(4κ(Sν)1/κ)

6 32(1 ∨ 2c′5m/ν)2(d1∨d2)‖h‖4

+ 72 · 64(1 ∨ 2c′5m/ν)2(d1∨d2)64dν2d(Sν)4mm−4κm+4d(Sν)4/κ exp(4κ(Sν)1/κ) .

Assume that
32‖h‖4 > 72 · 64 · 64dν2d(Sν)4mm−4κm+4d(Sν)4/κ exp(4κ(Sν)1/κ) , (76)

then
‖h(·, 0)h(0, ·)‖2 6 64(1 ∨ 2c′5m/ν)2(d1∨d2)‖h‖4 . (77)

Assumption (76) can be written
mκm−a3bm3 > c3‖h‖−1 , (78)

where a3 = d, b3 = (Sν)−1 and c3 = 3
√

6 · 2d(2ν)d/2(Sν)1/κ exp(κ(Sν)1/κ). Following the same steps
as for the first term yields that choosing

m =

 2

κ

log(1/‖h‖)

log

{(
1 ∧ b3

c3ea3

)1/κ

log(1/‖h‖)
}
 , (79)

ensures that (78) holds as soon as(
1 ∧ b3

c3ea3

)1/κ

log(1/‖h‖) > 1 and
log(1/‖h‖)

log log(1/‖h‖)
> 2κ ,

which is always true when ‖h‖ < e−1 since κ 6 1. If the condition on ‖h‖ is strenghtened into(
1 ∧ b3

c3ea3

)2/κ

log(1/‖h‖) > 1 , (80)

then the choice (79) implies

m 6
4

κ

log(1/‖h‖)
log log(1/‖h‖)

.

Together with (77), this implies that if this m is greater than ν/(2c′5),

‖h(·, 0)h(0, ·)‖2 6 64

(
2c′5
ν

)2(d1∨d2)(
4

κ

log(1/‖h‖)
log log(1/‖h‖)

)2(d1∨d2)

‖h‖4 .

The condition m > ν/(2c′5) with m as in (79) is ensured by

3

2κ

log(1/‖h‖)
log log(1/‖h‖)

>
ν

2c′5
,
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which is in turn ensured by

log(1/‖h‖)
log log(1/‖h‖)

> 1 ∨ κν

3c′5
.

Now take c′5 = c5 ∨ (κν/3). Since for all A > 1, the solution x of equation x/ log x = A satisfies
x 6 2A logA, this is ensured by

log(1/‖h‖) > 2

(
1 ∨

(
κν

3c5
∧ 1

))
log

(
1 ∨

(
κν

3c5
∧ 1

))
= 0 ,

which holds as soon as ‖h‖ 6 1, and this condition is already implied by (80).

K Proofs of Section 4

K.1 Proof of Lemma 9
Let H be defined by hκ(x) = H(x/x0)/x0. Then, ζ 6 c([x 7→ hκ(x)(1 + (x/x0)2)τ ] ∗ ub) is equivalent to
x0ζ(x0x) 6 c([z 7→ H(z)(1 + z2)τ ] ∗ ubx0)(x). In this proof, we show that there exists A and B such that
for all λ ∈ R and b > 1, ∫

eλx([z 7→ H(z)(1 + z2)τ ] ∗ ub)(x)dx 6 AeB|λ|
1/κ

,

in other words [z 7→ H(z)(1 + z2)τ ] ∗ ub ∈ M1
1/κ, which entails (x 7→ x0ζ(x0x)) ∈ M1

1/κ and thus
F [x 7→ x0ζ(x0x)] = F [ζ](·/x0) ∈ Υκ,T ′ for some T ′ by Lemma 5. This ensures F [ζ] ∈ Υκ,T ′x0 for
all b > 1/x0, which yields the result by choosing x0 small enough. Let cH = ch/x0 be the normalizing
constant of H , then for all b > 1 and λ ∈ R,∫

eλx([z 7→ H(z)(1 + z2)τ ] ∗ ub)(x)dx

6
∫

eλx sup
y∈[x−1/b,x+1/b]

H(y)(1 + y2)τdx

6 2τ
2cH
b

+ 2cH

∫
x>0

e|λ|(x+1/b)(1 + x2)τe−([1+x2]/2)1/(2(1−κ))dx

6 21+τ cH + 2cHe|λ|/b
∫
x>0

(1 + x2)τe|λ|x−(x/
√

2)1/(1−κ)dx

6 21+τ cH + 2cHe|λ|Xλ(1 +X2
λ)τe|λ|Xλ

+ 2cHe|λ|
∫
x>Xλ

e|λ|x+τ log(1+x2)−(x/
√

2)1/(1−κ)dx

for all Xλ > 0. Let Xλ be such that |λ|x + τ log(1 + x2) − (x/
√

2)1/(1−κ) 6 −(1/2)(x/
√

2)1/(1−κ) for
all x > Xλ. Taking Xλ = cX |λ|−1+1/κ works for λ large enough for an appropriate constant cX . Then for
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λ large enough,∫
eλx([z 7→ H(z)(1 + z2)τ ] ∗ ub)(x)dx 6 21+τ cH + 2cHe|λ|cX |λ|−1+1/κ(1 + c2X |λ|−2+2/κ)τecX |λ|

1/κ

+ 2cHe|λ|
∫
x>0

e
−2−1(

Xλ+x√
2

)1/(1−κ)
dx ,

6 c · ecst′|λ|1/κ + 2cHe|λ| exp(−2−1−1/(2(1−κ))|λ|1/κ)

∫
x>0

e−2−1(x/
√

2)1/(1−κ)dx ,

6 A · eB|λ|
1/κ

,

by convexity of x 7→ x1/(1−κ) for some constants A and B depending only on κ. Small values of λ are dealt
with by changing A if necessary.

K.2 Proof of Corollary 11
The first inequality follows from the bound on ‖PKhκ/Fenv‖∞: there exists a constant c such that

‖PKh2
κ‖2L2(R) 6 cKκ−1‖Fenvhκ‖2L2(R) ,

and the polynomial growth assumption on Fenv ensures that ‖Fenvhκ‖2L2(R) <∞.
The second inequality is a consequence of Cauchy-Schwarz’ inequality: for any function ϕ (here PKh2

κ),

‖ϕ ∗ ub‖2L2(R) =

∫ (∫
ϕ(y)ub(x− y)dy

)2

dx

6
∫ (∫

ϕ(y)2ub(x− y)dy

)(∫
ub(x− y)dy

)
dx

= ‖ϕ‖2L2(R) .

For the third inequality, let c0, c1, c2 be the constants of Conjecture 10. Write (Ii)i = ([si, ti])i the intervals
of Conjecture 10. Assume b > 2Kκ/c1, so that the support of ub has length smaller than c1K−κ. Then for
all i and for all x ∈ [si + b−1, ti − b−1] (which are non-empty intervals by the assumption on b),

((PKh
2
κ) ∗ ub)(x) =

∫
y∈[−b−1,b−1]

(PKh
2
κ)(x− y)ub(y)dy

> c2K
(κ−1)/2

(
inf

[−1,1]
hκ

)∫
ub(y)dy

= c2K
(κ−1)/2

(
inf

[−1,1]
hκ

)
so that

‖(PKh2
κ) ∗ ub‖2 >

∑
i

∫
[si+b−1,ti−b−1]

((PKh
2
κ) ∗ ub)2(x)dx

>
∑
i

(ti − si − 2b−1)c22K
κ−1

(
inf

[−1,1]
hκ

)2

> c0K
κ(c1K

−κ − 2b−1)c22K
κ−1

(
inf

[−1,1]
hκ

)2

.
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Taking b > 4Kκ/c1 gives the desired inequality.

K.3 Proof of Lemma 12
By definition, f0 is the density of X when for all 1 6 j 6 d, sj = ζ0 = hκ ∗ ub, and fn is the density of X
when S1 has density s1 = ζn and S2, . . . , Sd have density sj = ζ0. The derivative of F [f0] is

∂iF [f0] =
∑

(j1,...,jd1+1)∈Nd1+1:‖j‖1=id1+1

(k1,kd1+1,...,kd)∈Nd2+1:‖k‖1=i1

aid1+1−jd1+1ai1−k1F [s1](k1+j1)F [sd1+1](jd1+1+kd1+1)

×
d1∏
u=2

F [su](iu+ju)
d∏

u=d1+2

F [su](iu+ku) ,

where the vector j corresponds to how ∂
id1+1

d1+1 is split among the F [su], 1 6 u 6 d1 + 1, and k corresponds
to how ∂i11 is split among the F [su], u ∈ {1, d1 + 1, . . . , d}, so that

|∂iF [f0]| 6 T ‖i‖1
∑

(j1,...,jd1+1)∈Nd1+1:‖j‖1=id1+1

(k1,kd1+1,...,kd)∈Nd2+1:‖k‖1=i1

aid1+1−jd1+1ai1−k1
(k1 + j1)!

‖k1 + j1‖κ‖k1+j1‖1
1

(jd1+1 + kd1+1)!

‖jd1+1 + kd1+1‖
κ‖jd1+1+kd1+1‖1
1

×
d1∏
u=2

(iu + ju)!

‖iu + ju‖κ‖iu+ju‖1
1

d∏
u=d1+2

(iu + ku)!

‖iu + ku‖κ‖iu+ku‖1
1

.

Using (k/e)k 6 k! 6 c(k/e)k
√
k for some numerical constant c (for instance 5) and (

∏d
a=1 i

ia
a )−1 6

(‖i‖1/d)−‖i‖1 by convexity of x 7→ x log x,

|∂iF [f0]|∏d
a=1 ia!

6

(
T ed

‖i‖1

)‖i‖1
cde−‖i‖1‖i‖d/21

∑
(j1,...,jd1+1)∈Nd1+1:‖j‖1=id1+1

(k1,kd1+1,...,kd)∈Nd2+1:‖k‖1=i1

aid1+1−jd1+1ai1−k1‖k1 + j1‖(1−κ)‖k1+j1‖1
1

× ‖jd1+1 + kd1+1‖
(1−κ)‖jd1+1+kd1+1‖1
1

×
d1∏
u=2

‖iu + ju‖(1−κ)‖iu+ju‖1
1

d∏
u=d1+2

‖iu + ku‖(1−κ)‖iu+ku‖1
1 ,

6

(
Td

‖i‖1

)‖i‖1
cd‖i‖d/21

∑
(j1,...,jd1+1)∈Nd1+1:‖j‖1=id1+1

(k1,kd1+1,...,kd)∈Nd2+1:‖k‖1=i1

aid1+1−jd1+1ai1−k1
‖i‖‖i‖11

(‖i‖1/d)κ‖i‖1
,

6
(Td1+κ)‖i‖1

‖i‖κ‖i‖11

cd

(1− a)2
‖i‖d/21 ,

6
(c′T )‖i‖1

‖i‖κ‖i‖11

,

for some c′ for all i 6= 0, which concludes the proof.
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K.4 Proof of Lemma 13
Following [Meister, 2007], since without loss of generality bn > 1 and by integration by part the quantity
cu,β = supt∈R |F [u](t)|2(1 + t2)β is finite,∫

|F [αn(PKnh
2
κ) ∗ ubn ](t)|2(1 + t2)βdt = α2

n

∫
|F [PKnh

2
κ](t)|2|F [ubn ](t)|2(1 + t2)βdt ,

= α2
n

∫
|F [PKnh

2
κ](t)|2

∣∣∣∣F [u]

(
t

bn

)∣∣∣∣2 (1 + t2)βdt ,

6 cu,βα
2
nb

2β
n

∫
|F [PKnh

2
κ](t)|2dt ,

6 cu,βα
2
nb

2β
n ‖PKnh2

κ‖2L2(R)

by Cauchy-Schwarz’s inequality and using F [ub](t) = F [u](t/b). Thus, H3 holds for F [ζn] if

α2
n‖PKnh2

κ‖2L2(R) = O(b−2β
n ) .

K.5 Proof of Lemma 14
For any probability density m0 on R, by the Cauchy-Schwarz inequality,

∫
Rd
|(f0 ∗Q)(x)− (fn ∗Q)(x)|dx 6

(∫
Rd
|((f0 − fn) ∗Q)(x)|2

d∏
i=1

m−1
0 (xi)dx

)1/2

.

Choosing m0 : x 7→ (π(1 + x2))−1, yields

∫
Rd
|(f0 ∗Q)(x)− (fn ∗Q)(x)|dx 6 πd/2

(∫
Rd
|((f0 − fn) ∗Q)(x)|2

d∏
i=1

(1 + x2
i )dx

)1/2

.

Note that for all x ∈ Rd,

F [f0](x) =
1

Det(A)

∫
Rd

d∏
j=1

ζ0
(
(A−1t)j

)
eit
>xdt =

∫
Rd

d∏
j=1

ζ0 (tj) eit
>A>xdt =

d∏
j=1

F [ζ0]((A>x)j) ,

F [fn](x) = F [ζn]((A>x)1)

d∏
j=2

F [ζ0]((A>x)j) .

By Parseval’s identity, for all η ∈ Nd,

∫
Rd
|((f0 − fn) ∗Q)(x)|2

d∏
j=1

x
2ηj
j dx =

∫
Rd

∣∣∣∣∣∣
 d∏
j=1

∂
ηj
tj

 ((F [f0]−F [fn])F [Q])(t)

∣∣∣∣∣∣
2

dt .
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Let Ac = {A>x : x ∈ [−c, c]d} ⊂ [−(1 + a)c, (1 + a)c]d. Since F [g] and F [g]′ are supported on [−c, c],
using the change of variables v = A>t, for all η ∈ {0, 1}d,∫

Rd
|((f0 − fn) ∗Q)(x)|2

d∏
j=1

x
2ηj
j dx

6 cd
∑

06η′6η

∫
[−c,c]d

∣∣∣∣∣∣
 d∏
j=1

∂
η′j
tj

 (F [f0]−F [fn])(t)

∣∣∣∣∣∣
2

dt ,

6 cd
∑

06η′6η

∫
[−c,c]d

∣∣∣∣∣∣
 d∏
j=1

∂
η′j
tj

t 7→ (F [ζ0]−F [ζn])((A>t)1)

d∏
j=2

F [ζ0]((A>t)j)

 (t)

∣∣∣∣∣∣
2

dt ,

6 c′d
∑

06η′6η

∫
Ac

|(F [ζ0]−F [ζn])(η′1)(v1)|2
d∏
j=2

|F [ζ0](η
′
j)(vj)|2dv ,

for some constants cd and c′d, so that for some constant c′′d ,

‖(f0 ∗Q)− (fn ∗Q)‖L1(Rd)

6 c′′d

(∫ (1+a)c

−(1+a)c

|F [ζ0]−F [ζn]|(t)2dt+

∫ (1+a)c

−(1+a)c

|(F [ζ0]−F [ζn])′|(t)2dt

)1/2

.

Using that for all t ∈ R, F [ζ0](t)−F [ζn](t) = αnF [PKnh
2
κ](t)F [ubn ](t),∫

Rd
|(f0 ∗Q)(x)− (fn ∗Q)(x)|dx 6 c′′dαn

(∫ c

−c
|F [PKnh

2
κ](t)|2

∣∣∣∣F [u]

(
t

bn

)∣∣∣∣2 dt

+ b−2
n

∫ c

−c
|F [PKnh

2
κ](t)|2

∣∣∣∣F [u]′
(
t

bn

)∣∣∣∣2 dt

+

∫ c

−c
|F [PKnh

2
κ]′(t)|2

∣∣∣∣F [u]

(
t

bn

)∣∣∣∣2 dt

)1/2

,

6 c′′′d αn

(∫ c

−c
|F [PKnh

2
κ](t)|2dt+

∫ c

−c
|F [PKnh

2
κ]′(t)|2dt

)1/2

for some constant c′′′d . Then,

F [PKnh
2
κ](t) =

∫
R
PKn(x)h2

κ(x)
∑
j>0

(ixt)j

j!
dx =

∑
j>Kn

(it)j

j!

∫
R
PKn(x)h2

κ(x)xjdx ,

since by definition PKnh
2
κ is orthogonal to x 7→ xj in L2(Rd) when j ∈ N and j < Kn. By Conjecture 10,

there exists a nonnegative envelope function Fenv, a constant c and a parameter ακ > 0 such that |Fenv(x)| 6
c(1 + |x|ακ) and such that the family (PK)K>1 satisfies supK>1K

(1−κ)/2‖PKhκ/Fenv‖∞ < ∞. Then,
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there exists a constant c which depends on κ,

|F [PKnh
2
κ](t)| 6 sup

K
‖PKhκ/Fenv‖∞

∑
j>Kn

tj

j!

∫
R
hκ(x)|Fenv(x)||x|jdx

6 c sup
K
‖PKhκ/Fenv‖∞

∑
j>Kn

tj

j!

∫
R+

(xj + xj+ακ)e−x
1/(1−κ)

dx

and

|F [PKnh
2
κ]′(t)| 6 c sup

K
‖PKhκ/Fenv‖∞

∑
j>Kn−1

tj

j!

∫
R+

(xj+1 + xj+ακ+1)e−x
1/(1−κ)

dx .

For all j ∈ R+, writeMj =
∫
R+
xje−x

1/(1−κ)
dx. By integration by part with u′(x) = 1

1−κx
1

1−κ−1e−x
1/(1−κ)

and v(x) = (1−κ)xj+1− 1
1−κ and thus u(x) = −ex1/(1−κ)

and v′(x) = (1−κ)(j+ 1− 1/(1−κ))xj−
1

1−κ ,
for all j > 1

1−κ − 1,

Mj = (1− κ)

(
j + 1− 1

1− κ

)
Mj− 1

1−κ
.

In particular, for all j > 1,

Mj 6 (1− κ)(1−κ)j−1j(1−κ)j sup
j′∈[0,1/(1−κ))

Mj′ .

Note that

(j + ακ)j+ακ

jj
∼ (j + ακ)!

j!

ej+ακ
√
j + ακ

ej
√
j

= O((j + ακ)ακeακ
√

1 + ακ/j)

= O((j + ακ)ακ).

Therefore, there exists a constant c such that for all t ∈ R,

|F [PKnh
2
κ](t)| 6 c

∑
j>Kn

tj

j!
(Mj +Mj+ακ) ,

and a similar upper bound for |F [PKnh
2
κ]′(t)|. Note that for all α > 0, there exists a constant c such that for

all t ∈ R, when Kn > α,∑
j>Kn

tj

j!
Mj+α 6 c

∑
j>Kn

(te(1− κ)(1−κ))j

jj
j−1/2(j + α)(1−κ)αj(1−κ)j 6 c

∑
j>Kn

(te(1− κ)(1−κ))j

jκj−(1−κ)α

Therefore, there exists constants c and C such that∫
Rd
|(f0 ∗Q)(x)− (fn ∗Q)(x)|dx 6 cαn

(
C

Kn

)κKn
.

Thus, equation (22) holds if Kn is chosen, for some large enough constant C ′, as

Kn =
C ′

κ

(
log n

log log n

)
.
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L Numerical illustration of Conjecture 10
In this section, we propose some numerical illustrations to support Conjecture 10. First note that the case
κ = 1 is true as it boils down to the results established in [Meister, 2007] on Legendre Polynomials. The
case κ = 1/2 is also strongly supported by properties of Hermite functions, see [Boyd, 2018, Section A.11].

The orthonormal polynomials used in Conjecture 10 were approximately computed using the Python
package OrthoPoly1 which allows to generate orthogonal polynomials with respect to any probability density
functions. The Python code used in this numerical section is available online2. Figure L.1 displays the func-
tions x 7→ K(1−κ)/2(PKhκ)(K1−κx) for degrees 1 6 K 6 16 and for κ ∈ {0.55, 0.6, 0.7, 0.8, 0.9, 0.95}.
We chose to limit our simulations to K 6 16 as for degrees larger than 18 the simulations faced some
numerical instability to compute PKhκ. This figure illustrates Equation (18), i.e. the fact that there exists a
function Fshape such that

sup
K>1

∥∥∥∥x 7→ (PKhκ)(x)

K(κ−1)/2Fshape(Kκ−1x)

∥∥∥∥
∞
<∞ .

Then, Figure L.2 illustrates the second part of the conjecture by displaying x 7→ K(1−κ)/2PKhκ(K−κx)
for the same values of κ and K as in Figure L.1.

1https://github.com/j-jith/orthopoly
2https://sylvainlc.github.io/project/algorithms/
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Figure L.1: Graphical representation of x 7→ K(1−κ)/2PKhκ(K1−κx) for several values of κ and K.
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Figure L.2: Graphical representation of x 7→ K(1−κ)/2PKhκ(K−κx) for several values of κ and K.
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