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We assess the capability of fast wave models to deterministically predict nonlinear ocean surface waves from non-uniformly distributed data such as sampled 
from an optical ocean sensor. Linear and weakly nonlinear prediction algorithms are applied to long-crested irregular waves based on a set of laboratory 
experiments and corresponding numerical simulations. An array of wave gauges is used for data acquisition, representing the typical spatial sampling an 
optical sensor (e.g., LIDAR) would make at grazing incidence. Predictions of the weakly nonlinear Improved Choppy Wave Model are compared to those of 
the Linear Wave Theory with and without a nonlinear dispersion relationship correction. Wave models are first inverted based on gauge data which provides 
the initial model parameters, then propagated to issue a prediction. We find that the wave prediction accuracy converges with the amount of input data used 
in the inversion. When waves are propagated in the models, correctly modeling the nonlinear wave phase velocity provides the main improvement in 
accuracy, while including nonlinear wave shape effects only improves surface elevation representation in the spatio-temporal region where input data are 
acquired. Surface slope prediction accuracy, however, strongly depends on the appropriate nonlinear wave shape modeling.

1. Introduction

The availability of real-time phase-resolved wave fields is key for
the optimization of a vast range of marine applications. The prediction
and control of the wave-induced motion is crucially important to
extend the operational envelope and optimal maneuvering of many
surface vessels, such as to stabilize aircraft or helicopter carriers during
takeoff/landing manoeuvres, ships during ship-to-ship transfer, or to
perform installation and maintenance operations on marine structures.
For ocean renewable energy harvesting systems, advance knowledge of
incoming waves conditions the performances of control strategies. For
instance, it is shown that the optimal control of wave energy converters
relying on wave-to-wave predictions significantly improves their effi-
ciency (Li et al., 2012). Also, the life-time of floating wind turbines
could be increased by mitigating fatigue loads through appropriate
control of the structure motions induced by wave loads (Ma et al.,
2018).

The deterministic prediction of ocean wave fields requires inverting
a model describing the wave dynamics based on a set of observations,
i.e., measurements that contain information about the wave geometry
and kinematics (e.g., Nouguier et al., 2014). Based on such an inversion
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(i.e., nowcast), the properly parameterized wave model can then be
used to propagate the wave field forward in time (i.e., forecast) to
the area of interest. Note that the later can itself be in motion (e.g., a
moving ship).

X-band radars, such as WaMoS II developed by OceanWaveS
GmbH™ (Hilmer and Thornhill, 2015), the prediction systems of Next
Ocean™ (Naaijen et al., 2018), or FutureWaves™ (Kusters et al., 2016),
have been used to generate large spatio-temporal data sets of wave
elevations surrounding the structure upon which they are mounted.
Such radars make use of the backscattered signal resulting from the
Bragg resonance between the radar microwaves (∼3 cm wavelength)
and short-wavelength capillary–gravity waves (∼1.5 cm wavelength)
covering the ocean surface due to wind generation. Hydrodynamic
and tilt modulations of such short ripples by longer gravity waves
carrying them, that affect the backscattered signal, allow inverting
for surface elevations by means of a modulation transfer function
(MTF) (Nieto Borge et al., 2004), provided that a calibration is enabling
a retrofit on this MTF in the measurement chain. This technology has
been successfully implemented in commercial products (Hilmer and
Thornhill, 2015; Kusters et al., 2016; Naaijen et al., 2018).
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Similar data sets can be obtained by the way of LIDAR (LIght
Detection and Ranging) cameras (Belmont et al., 2007; Grilli et al.,
2011; Nouguier et al., 2014; Kabel et al., 2019), which operate in
the visible light (e.g., green; 532 nm wavelength). Instead of using
modulation properties of Bragg waves to estimate gravity waves char-
acteristics, LIDAR cameras provide direct geo-referenced measurements
of free surface elevations, computed based on laser beam travel times.
One advantage of this technique, as compared to X-band radars, is
the higher spatial resolution resulting from the smaller divergence of
the laser beams compared to the microwave beams (Sviridov, 1993),
providing a more accurate phase resolved (instantaneous) measurement
of the ocean surface.

When mounted on an ocean structure or surface vessel to remotely
measure ocean surface elevations, both X-band radar and LIDAR cam-
era have limitations resulting from the grazing incidence angles of the
beams. First, it will cause wave shadowing effects, leading data sets ac-
quired by these systems to exhibit spatial gaps behind illuminated wave
fronts which have an area increasing with the distance from the sensor.
Second, assuming a uniform distribution of beams over the sensor’s
aperture angles, the density of the measurement points geometrically
decreases with the distance from the sensor. In the case of X-band
radars, shadowing effects are used to generate a shadowing mask that
is implemented in the MTF used for wave inversion (Nieto Borge et al.,
2004). For LIDAR cameras, the lack of information in the shadowed
area can be compensated for by using spatio-temporal data sets, i.e., at
a slightly later time, shadowed areas without measurement points can
become illuminated due to wave motion. This, however, also requires
performing a spatio-temporal wave field inversion (Grilli et al., 2011;
Nouguier et al., 2014; Desmars et al., 2018). In addition to generating
spatial gaps, shadowing effects cause laser beams to hit the ocean
surface at unknown horizontal locations, leading the measurement
points to be distributed over an a priori unknown unstructured grid.
These properties, together with the non-periodicity of observations,
prevent using standard signal-processing techniques based on Fourier
decomposition in the wave inversion, unless a pre- or post-processing
method is used (e.g., interpolation, end-matching, filtering).

Due to real-time constraints, i.e., sufficient computational effi-
ciency, existing deterministic wave prediction systems have typically
used models based on linear wave theory (LWT) (Hilmer and Thornhill,
2015; Kusters et al., 2016; Naaijen et al., 2018). However, this limits
their applicability to sea states with a small characteristic steepness,
and further assumes that: (i) bound waves (i.e., harmonic waves that
do not obey the dispersion relation) can be neglected, and (ii) the
space and time scales of observations and the prediction horizon do not
allow time-dependent nonlinear wave-wave interactions (e.g., nonlin-
ear phase shift) to significantly affect wave dynamics. Whenever these
limitations are not met, the accurate prediction of ocean surface waves
will require modeling weakly or fully nonlinear wave properties.

Weakly nonlinear models have been developed and used for wave
simulation and prediction based on expanding Eulerian wave properties
up to the second-order in wave steepness (e.g., Zhang et al., 1996,
1999), which for instance allows separating free- and bound-wave
components in wave measurements. A model based on the Modified
NonLinear Schrödinger (MNLS) equation, which simulates third-order
wave properties such as phase speed, was used to predict bichromatic
waves (Trulsen and Stansberg, 2001), then extended to both one-
directional and directional irregular seas (Simanesew et al., 2017).
The latter study showed that the MNLS equation is able to provide
satisfactory predictions of long-crested irregular waves, but the lack
of directional input data prevented properly estimating its predic-
tion performance for short-crested waves with increasing directional
spread. Higher-order wave models based on the High-Order Spectral
(HOS) method were also applied for nonlinear prediction of ocean
surfaces (e.g., Wu, 2004; Blondel et al., 2010; Qi et al., 2018a). Based
on a pseudo-spectral approach, this method solves the nonlinear free

surface boundary conditions to an arbitrary order for a velocity po-
tential, and allows to simulate the propagation of any wave fields
over large space and time scales with a high accuracy. Predictions
of long-crested irregular waves using both HOS, LWT and nonlinear
Schrödinger approaches were recently compared (Klein et al., 2020),
showing that the appropriate modeling of nonlinear dispersion effects
plays a significant role from moderate to high wave steepness, with
HOS being the most accurate prediction model. The main counterpoint
of HOS is its initialization process that necessitates a high number
of operations, exponentially increasing with its order of nonlinearity.
Recent works have been carried out on improved assimilation methods
for HOS to be adequate for real-time prediction (Köllisch et al., 2018;
Fujimoto and Waseda, 2020).

In this study, we apply and experimentally validate a wave recon-
struction and prediction algorithm based on the recently developed
Improved Choppy Wave Model (ICWM) (Guérin et al., 2019), which
extends with higher-order corrections the weakly nonlinear Lagrangian
Choppy Wave Model (Nouguier et al., 2009), which was used in our
earlier work on ocean wave reconstruction algorithms based on LIDAR
camera data (Grilli et al., 2011; Nouguier et al., 2014).

The paper is organized as follows. Section 2 provides a descrip-
tion of the wave models that are used in this study, namely the
LWT, the ICWM and a linear wave model corrected with a nonlinear
dispersion relation. Section 3 details the data assimilation procedure
that is employed here, as well as key aspects relative to the deter-
mination of the accessible prediction zone. Section 4 describes the
experimental and numerical modeling setups used in our applications,
together with an analysis of the experimental data perturbations, fol-
lowed by definitions of the prediction misfit indicators used in this
study. Section 5 investigates the sensitivity of the proposed predic-
tion algorithms to assimilation parameters. Their accuracy is finally
discussed in Section 6.

2. Wave models

While it is desirable to account for the nonlinearity of ocean
waves, the development of fast methods for the real-time reconstruction
and prediction of nonlinear sea states cannot be easily or efficiently
achieved using complex (i.e., highly nonlinear) wave models, such as
based on a HOS method (e.g., Wu, 2004; Blondel et al., 2010; Qi et al.,
2018a). Instead, the wave model used to this effect should be able to
properly account for salient nonlinear effects in the propagation of the
considered wave fields, while being sufficiently efficient for providing
real-time predictions. Here, we consider and compare two wave mod-
els: one based on linear wave theory (LWT), and a weakly nonlinear
wave model, referred to as Choppy Wave Model (CWM), derived in an
explicit, efficient, Lagrangian formalism. The improved form of CWM,
referred to as Improved Choppy Wave Model (ICWM) (Guérin et al.,
2019) is used in the present applications. Both models provide an
analytical expression of the free surface elevation, which can be effi-
ciently initiated (the assimilation procedure is detailed in Section 3.1)
and propagated forward in time to forecast the future state of a given
wave field, the latter being simply obtained by increasing the value of
time in the formulation. We limit our developments to the deep water
assumption, but the extension to intermediate depth is straightforward.

2.1. Linear wave theory

LWT refers here to the equations derived from the classical Eulerian
approach, for an inviscid, incompressible fluid with an irrotational
motion, linearized with respect to the wave steepness. Let us consider
a Cartesian coordinate system (𝑥, 𝑦, 𝑧), with the 𝑥- and 𝑦-horizontal
axes located at the mean water surface and the 𝑧-axis being vertical
and positive upward. Under LWT, a generic irregular ocean surface
(wave field) is simply represented as the superposition of 𝑛 = 1,… , 𝑁
individual harmonic wave components propagating in the horizontal
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plane 𝒓 = (𝑥, 𝑦) in direction 𝜃𝑛 with respect to the 𝑥-axis, of amplitude
𝐴𝑛 and angular frequency 𝜔𝑛, following

𝜂lin (𝒓, 𝑡) =
𝑁
∑

𝑛=1
𝐴𝑛 cos

(

𝒌𝑛 ⋅ 𝒓 − 𝜔𝑛𝑡 − 𝜑𝑛
)

, (1)

where 𝑡 is time, 𝜑𝑛 are phases, and 𝒌𝑛 = 𝑘𝑛�̂�𝑛 =
(

𝑘𝑛 cos 𝜃𝑛, 𝑘𝑛 sin 𝜃𝑛
)

and 𝑘𝑛 = 2𝜋∕𝜆𝑛 = |

|

𝒌𝑛|| are wavenumber vectors and wavenumbers,
respectively (with 𝜆𝑛 the wavelength), with the latter found as 𝑘𝑛 =
𝜔2
𝑛∕𝑔 based on the deep water dispersion relationship, and 𝑔 the accel-

eration of gravity. To simplify later mathematical developments, the
free surface will be equivalently described as

𝜂lin (𝒓, 𝑡) =
𝑁
∑

𝑛=1

(

𝑎𝑛 cos𝜓𝑛 + 𝑏𝑛 sin𝜓𝑛
)

, (2)

in which 𝜓𝑛 = 𝒌𝑛 ⋅ 𝒓 − 𝜔𝑛𝑡 are spatio-temporal phases, and
(

𝑎𝑛, 𝑏𝑛
)

=
(

𝐴𝑛 cos𝜑𝑛, 𝐴𝑛 sin𝜑𝑛
)

are wave parameters describing the ocean surface.

2.2. Improved choppy wave model

The CWM was derived based on a first-order Lagrangian description
of water particle motions on the free surface (Nouguier et al., 2009),
and thus corresponds, for a periodic wave, to the classical Gerstner
wave model (Gerstner, 1809). The CWM provides results that include
features from a higher-order Eulerian wave theory (e.g., second-order
Stokes theory), but the wave phase speed is still that given by LWT. A
recent improvement of the CWM was proposed to account for higher-
order nonlinear effects, in particular on the wave phase speed, without
requiring a full second-order Lagrangian description (Guérin et al.,
2019). The resulting wave model ICWM is used in the present work.
Using a formalism similar to that introduced in the previous section,
ICWM represents the free surface elevation 𝑧

(

𝒓0, 𝑡
)

as a function of
time, for water particles initially located at 𝒓0 on the still water level
at rest as
{

𝒓
(

𝒓0, 𝑡
)

= 𝒓0 +
∑𝑁
𝑛=1 �̂�𝑛

(

−𝑎𝑛 sin �̃�𝑛 + 𝑏𝑛 cos �̃�𝑛
)

+ 𝑠0𝑡, (a)
𝑧
(

𝒓0, 𝑡
)

=
∑𝑁
𝑛=1

(

𝑎𝑛 cos �̃�𝑛 + 𝑏𝑛 sin �̃�𝑛
)

+
∑𝑁
𝑛=1

1
2

(

𝑎2𝑛 + 𝑏
2
𝑛
)

𝑘𝑛, (b)
(3)

where �̃�𝑛 = 𝒌𝑛 ⋅ 𝒓0 − �̃�𝑛𝑡 denote phases of wave components, �̃�𝑛 = 𝜔𝑛 −
1
2𝒌𝑛 ⋅ 𝑠0 modified angular frequencies, and  𝑠0 =

∑𝑁
𝑛=1

(

𝑎2𝑛 + 𝑏
2
𝑛
)

𝜔𝑛𝒌𝑛
the free surface Stokes drift vector. The last term in Eq. (3a) and in the
modified angular frequency equation are nonlinear corrections added
to the standard CWM which account for Stokes drift effects on the free
surface. The last term in Eq. (3b) accounts for a correction of the mean
surface level.

Typical measurements of ocean surfaces, such as with an optical sys-
tem, are made at irregularly distributed locations defined in a reference
coordinate system, hence these are Eulerian measurements. The wave
model used to reconstruct the ocean surface must thus be able to use
similar information, which makes the above Lagrangian form of ICWM
not directly usable. Hence, an approximate Eulerian model, equivalent
to ICWM is derived in the following, introducing an approximation
similar to that made of the CWM (Nouguier et al., 2009), for which
an efficient algorithm was developed based on computing horizontal
displacements of a reference linear surface, using efficient Riesz and
spatial Fourier transforms.

An explicit relationship between 𝒓 and 𝑧 in Eqs. (3a) and (3b)
could be derived by performing a Taylor series expansion of particle
vertical locations 𝑧 around their instantaneous horizontal location 𝒓,
thus providing 𝑧 (𝒓). In this case, however, successive Eulerian orders
of expansion lose the Lagrangian formulation’s simplicity, which makes
the model inefficient. Here, we first modify Eqs. (3a) and (3b) by
implicitly incorporating the particle horizontal shift into a modified
angular frequency �̃�𝑛, thus replacing 𝒓0 by 𝒓′0 = 𝒓0 − 𝑠0𝑡, leading to
{


(

𝒓0, 𝑡
)

= 𝒓
(

𝒓′0, 𝑡
)

= 𝒓0 +
(

𝒓0
)

= 𝒓0 +
∑𝑁
𝑛=1 �̂�𝑛

(

−𝑎𝑛 sin �̃�𝑛 + 𝑏𝑛 cos �̃�𝑛
)

,


(

𝒓0, 𝑡
)

= 𝑧
(

𝒓′0, 𝑡
)

=
∑𝑁
𝑛=1

(

𝑎𝑛 cos �̃�𝑛 + 𝑏𝑛 sin �̃�𝑛
)

+
∑𝑁
𝑛=1

1
2

(

𝑎2𝑛 + 𝑏
2
𝑛

)

𝑘𝑛,

(4)

where �̃�𝑛 = 𝒌𝑛 ⋅ 𝒓0 − �̃�L𝑛𝑡 and �̃�L𝑛 = 𝜔𝑛 + 1
2𝒌𝑛 ⋅  𝑠0. Then, as for

the CWM (Nouguier et al., 2009), a simple method for numerically
evaluating ICWM surface elevation at any spatial point is derived by
computing the particle vertical displacement at its instantaneous rather
than its reference location. Earlier work has shown (Grilli et al., 2011;
Nouguier et al., 2014) that errors due to this approximation are on the
order of the mean square surface slope (i.e., the second-order moment
of the wave spectrum ∫ +∞

0 𝑘2𝑆𝜂 (𝑘) d𝑘), which is expected to be small
compared to other sources of error in the ocean surface reconstruction
process. Hence, assuming


(

𝒓0
)

= 
(

 −
(

𝒓0
))

≈  ( − ()) = 𝜂nl () , (5)

Eq. (4) yields an explicit approximate nonlinear free surface elevation
𝜂nl at any spatial point 𝒓 as

𝜂nl (𝒓, 𝑡) =
𝑁
∑

𝑛=1

(

𝑎𝑛 cos𝛹𝑛 + 𝑏𝑛 sin𝛹𝑛 +
1
2
(

𝑎2𝑛 + 𝑏
2
𝑛
)

𝑘𝑛
)

, (6)

𝛹𝑛 = 𝒌𝑛 ⋅

[

𝒓 −
𝑁
∑

𝑖=1
�̂�𝑖

(

−𝑎𝑖 sin �̃�𝑖 + 𝑏𝑖 cos �̃�𝑖
)

]

− �̃�L𝑛𝑡,

where the modified phases are now computed as �̃�𝑖 = 𝒌𝑖 ⋅ 𝒓 − �̃�L𝑖𝑡.

2.3. Linear wave theory with corrected dispersion relation

To quantify effects of nonlinear wave phase corrections on our
wave prediction results, independently of the wave shape asymmetry
represented in the ICWM, we will evaluate the performance of a third
wave model, referred to as LWT-CDR, which is based on LWT Eq. (2),
but uses a dispersion relationship corrected by Stokes drift, as for
the ICWM, i.e., the linear angular frequency 𝜔𝑛 (𝑘) is replaced by
its nonlinear equivalent �̃�L𝑛 (𝑘). This yields the corrected linear free
surface elevation

𝜂cl (𝒓, 𝑡) =
𝑁
∑

𝑛=1

(

𝑎𝑛 cos �̃�𝑛 + 𝑏𝑛 sin �̃�𝑛
)

. (7)

3. Methods

Model-based predictions rely on the model inversion from observa-
tions (measured data) for parameters specifying the initial conditions
prior to model propagation. This model initialization step, referred to as
the assimilation procedure, is detailed in this section for the three wave
models presented previously. We then explain the method to determine
theoretically the accessible spatio-temporal prediction zone from the
assimilated data.

3.1. Data assimilation procedure

A standard method for assimilating wave elevation data is the
variational approach (Blondel, 2009), in which a cost function 𝐹 ,
representing the error between the ‘‘measured wave field’’ and its
representation with a wave model, is minimized. Here, we assume that
an a priori estimate of the solution is not available and statistical pa-
rameters of the aleatory error in observations (or free-surface elevation
measurements) are stationary, i.e., they are not functions of time or
space. Accordingly, similar to earlier work (Grilli et al., 2011; Nouguier
et al., 2014), the cost function is expressed as the mean square of the
difference between spatio-temporal ocean observations and their model
representation as

𝐹 (𝒑) = 1
2

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1

(

𝜂𝑗𝑘 (𝒑) − 𝜂𝑗𝑘
)2 = 1

2

𝐿
∑

𝓁=1

(

𝜂𝓁 (𝒑) − 𝜂𝓁
)2 , (8)

in which 𝒑 =
{

𝑎𝑛, 𝑏𝑛
}

(𝑛 = 1,… , 𝑁) is the control vector of 2𝑁
unknown model parameters, 𝐽 and 𝐾 are the number of spatial obser-
vations made at each observation time and the number of observation
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times, respectively (hence, the total number of assimilated spatio-
temporal observations is 𝐽 × 𝐾 = 𝐿), 𝜂𝑗𝑘 (or 𝜂𝓁) are free surface
elevations measured at spatial locations 𝒓𝑗 (𝑗 = 1,… , 𝐽 ) and times 𝑡𝑘
(𝑘 = 1,… , 𝐾), and 𝜂𝑗𝑘 (or 𝜂𝓁) are estimates of these computed with the
wave model, i.e., with Eq. (2) for LWT, Eq. (7) for LWT-CDR, or Eq. (6)
for ICWM.

Model parameters are obtained next, by minimizing the cost func-
tion with respect to these parameters and solving the system of equa-
tions
{

𝜕𝐹
𝜕𝑎𝑚

= 0, 𝜕𝐹
𝜕𝑏𝑚

= 0
}

⟺ 𝖠𝑚𝑛𝑝𝑛 = 𝖡𝑚, (9)

where 𝑛, 𝑚 ∈ {1,… , 𝑁}2, and 𝑝𝑛 = 𝑎𝑛, 𝑝𝑁+𝑛 = 𝑏𝑛 constitute the
unknown vector of 2𝑁 model parameters associated to wave com-
ponents of predefined wavenumbers 𝑘𝑛. The set of wavenumbers 𝑘𝑛
is distributed in

[

𝑘min, 𝑘max] following a decreasing logarithmic law,
with 𝑘min,max defining the bandwidth of the reconstructed wave field
(see Section 3.3 for details about how to choose 𝑘min,max). Since the
considered wave models have analytical formulations, the system of Eq.
(9) can be explicitly expressed. Note that in practice, and to increase the
accuracy of the parameter estimation, the number of observations used
𝐿 is larger than the number of wave components 𝑁 used to perform
the wave model inversion. Hence, the optimal solution of an overdeter-
mined system of equations is computed to assimilate data in the model,
which can be done using a least squares method. Accordingly, to obtain
an accurate solution, the larger the spatio-temporal region covered by
the observations, the larger the number of degrees of freedom required
in the wave model. In each application considered in the following, 𝑁
will be adequately selected to satisfy this constraint.

3.1.1. Linear assimilation
Linear wave fields are reconstructed by computing the cost function

Eq. (8) using the linear wave model Eq. (2). Thus, in the minimization
Eq. (9), we get

𝖠𝑚𝑛 =
𝐿
∑

𝓁=1
cos𝜓𝑛𝓁 cos𝜓𝑚𝓁 , 𝖠𝑚,𝑁+𝑛 =

𝐿
∑

𝓁=1
sin𝜓𝑛𝓁 cos𝜓𝑚𝓁 ,

𝖠𝑁+𝑚,𝑛 =
𝐿
∑

𝓁=1
cos𝜓𝑛𝓁 sin𝜓𝑚𝓁 , 𝖠𝑁+𝑚,𝑁+𝑛 =

𝐿
∑

𝓁=1
sin𝜓𝑛𝓁 sin𝜓𝑚𝓁 . (10)

and

𝖡𝑚 =
𝐿
∑

𝓁=1
𝜂𝓁 cos𝜓𝑚𝓁 , 𝖡𝑁+𝑚 =

𝐿
∑

𝓁=1
𝜂𝓁 sin𝜓𝑚𝓁 , (11)

where 𝜓𝑚𝓁 = 𝒌𝑚 ⋅ 𝒓𝓁 − 𝜔𝑚𝑡𝓁 .

3.1.2. Nonlinear assimilation
Nonlinear wave fields are reconstructed by computing the cost

function Eq. (8) using the ICWM Eq. (6). Thus, in the minimization
Eq. (9), we now obtain

𝖠𝑚𝑛 =
𝐿
∑

𝓁=1

(

cos𝛹𝑛𝓁 + 1
2
𝑎𝑛𝑘𝑛

)

𝑃𝑚𝓁 , 𝖠𝑚,𝑁+𝑛 =
𝐿
∑

𝓁=1

(

sin𝛹𝑛𝓁 + 1
2
𝑏𝑛𝑘𝑛

)

𝑃𝑚𝓁 ,

𝖠𝑁+𝑚,𝑛 =
𝐿
∑

𝓁=1

(

cos𝛹𝑛𝓁 + 1
2
𝑎𝑛𝑘𝑛

)

𝑄𝑚𝓁 , 𝖠𝑁+𝑚,𝑁+𝑛 =
𝐿
∑

𝓁=1

(

sin𝛹𝑛𝓁 + 1
2
𝑏𝑛𝑘𝑛

)

𝑄𝑚𝓁 ,

(12)

and

𝖡𝑚 =
𝐿
∑

𝓁=1
𝜂𝓁𝑃𝑚𝓁 , 𝖡𝑁+𝑚 =

𝐿
∑

𝓁=1
𝜂𝓁𝑄𝑚𝓁 , (13)

in which
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑃𝑚𝓁 = cos𝛹𝑚𝓁 − 𝑘𝑚
(

𝑎𝑚 sin𝛹𝑚𝓁 − 𝑏𝑚 cos𝛹𝑚𝓁
)

×
{

sin �̃�𝑚𝓁 −
[

𝑘𝑚
(

𝑎𝑚 cos �̃�𝑚𝓁 + 𝑏𝑚 sin �̃�𝑚𝓁
)

+ 1
]

×𝑎𝑚𝜔𝑚𝑘𝑚𝑡𝓁
}

+ 𝑎𝑚𝑘𝑚,
𝑄𝑚𝓁 = sin𝛹𝑚𝓁 − 𝑘𝑚

(

𝑎𝑚 sin𝛹𝑚𝓁 − 𝑏𝑚 cos𝛹𝑚𝓁
)

×
{

− cos �̃�𝑚𝓁 −
[

𝑘𝑚
(

𝑎𝑚 cos �̃�𝑚𝓁 + 𝑏𝑚 sin �̃�𝑚𝓁
)

+ 1
]

×𝑏𝑚𝜔𝑚𝑘𝑚𝑡𝓁
}

+ 𝑏𝑚𝑘𝑚.

(14)

Since both 𝖠𝑚𝑛 and 𝖡𝑚 now depend on model parameters
(

𝑎𝑛, 𝑏𝑛
)

, the
system of Eq. (9) must be solved iteratively. Following Nouguier et al.
(2014), when solving for 𝑝(𝑞+1)𝑛 at iteration 𝑞 + 1, 𝖠(𝑞)

𝑚𝑛 and 𝖡(𝑞)
𝑚 are

computed based on wave parameters obtained at the previous iteration
𝑞. The solution is initialized at 𝑞 = 0 by computing 𝖠(0)

𝑚𝑛 and 𝖡(0)
𝑚 as

for the linear reconstruction, using Eqs. (10) and (11). Based on a
relative error between 𝑝(𝑞)𝑛 and 𝑝(𝑞+1)𝑛 evaluated at each iteration 𝑞 + 1,
convergence of the solution is typically achieved within a few to a few
dozens iterations, depending on the wave steepness. This ensures a very
efficient assimilation procedure in this nonlinear context.

As indicated above, a third system of equations is solved for wave
parameters corresponding to the LWT-CDR (Eq. (7)). This formulation
is not detailed here for the sake of conciseness.

3.1.3. Regularization of the inverse problem
In operative applications, the ocean reconstruction problem may

become ill-conditioned due to practical constraints, such as the hetero-
geneous distribution of spatial observation points, the limited ocean
area observed by the optical sensor, and the frequency and direction
bandwidth cutoffs in the reconstructed wave field. Nevertheless, con-
sistent results can be achieved, independently of the conditioning of
the system matrix to invert (i.e., 𝖠𝑚𝑛), by applying a Tikhonov regu-
larization, in which the matrix inversion is replaced by the following
minimization problem

min
(

|

|

|

|

𝖠𝑚𝑛𝑝𝑛 − 𝖡𝑚||
|

|

2 − 𝜉2 |
|

|

|

𝑝𝑛||||
2
)

, (15)

where 𝜉 denotes the regularization parameter. An optimal value of the
regularization parameter can be found using the ‘‘L-curve’’ method,
which consists in finding the 𝜉 value corresponding to the point of maxi-
mal curvature (i.e., corner) of the parametric curve
(

log |
|

|

|

𝖠𝑚𝑛𝑝𝑛 − 𝖡𝑚||
|

|

, log |
|

|

|

𝑝𝑛||||
)

. This method provides an optimal com-
promise between minimizing the residual error of the assimilation
system and ensuring that the norm of the solution does not become
too large. The L-curve corner can be determined analytically through
solving a singular value decomposition problem (Calvetti et al., 2004;
Hansen, 2000). Note that this procedure is equivalent to adding a
constraint to the minimization problem, physically representing the
total energy of the reconstructed wave spectrum, since the latter is
proportional to the squared norm of 𝑝𝑛. In this case, −𝜉2 can simply
be interpreted as a Lagrangian multiplier.

3.2. Accessible prediction zone from non-uniform observations

Earlier work has shown that the spatio-temporal region over which
wave dynamics can be predicted based on a set of free surface measure-
ments, is bounded (Wu, 2004; Naaijen et al., 2014; Qi et al., 2018b).
When measurements are made using an optical system, at a specific
sampling rate and over a given observation zone, this limits the amount
of data that can be assimilated and used in the wave reconstruction
process, yielding a reconstructed surface in space/time defined with
finite frequency and direction bandwidths. In light of this, the sea-
state prediction obtained by propagating the assimilated information is
similarly limited to a spatio-temporal region referred to as prediction
zone. In the following, we show how the latter can be estimated for a
set of fixed surface observations of a one-directional wave field.
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Fig. 1. Evolution of the wave prediction zone in time and space for the assimilation of: (a) spatial data and (b) spatio-temporal data (dash lines are prediction zones boundaries at
time 𝑡𝑘; the increase in the prediction zone relative to that of spatial only observations is highlighted in red); 𝑐𝑔1 and 𝑐𝑔2 denote the fastest and slowest group velocities transporting
a significant amount of energy in the wave field, respectively.

The accurate description of a wave field is limited to the knowledge
of its wave components energy, which propagates at the wave group
velocity. Further, sea states that are of interest in our study, such as
described by a JONSWAP wave spectrum, yield a fairly concentrated
energy around their peak frequency. This allows using a finite fre-
quency bandwidth to describe the evolution of such sea states. Hence,
the intersection of the slowest and fastest wave components in the finite
frequency bandwidth of the wave field determine the boundary of the
spatio-temporal region within which an amount of information suffi-
cient to issue a prediction is available. Consequently, as time increases,
the accessible prediction region shrinks, to eventually disappear when
the assimilated information is completely dispersed. Fig. 1 illustrates
this phenomenon for a one-directional wave field propagating in the
𝑥-direction. The latest time used in data assimilation corresponds to
the reconstruction time 𝑡𝑟 = 𝑡(𝑘=𝐾). When only spatial data are used
in the assimilation (i.e., 𝐾 = 1, see Fig. 1a), the prediction zone at
reconstruction time 

(

𝑡𝑟
)

is the spatial area where observations were
made. However, when spatio-temporal data sets are acquired (over an
assimilation time 𝑇𝑎, see Fig. 1b), 

(

𝑡𝑟
)

expands due to the advection
of wave information during 𝑇𝑎.

Therefore, a point
(

𝑥, 𝑡 ≥ 𝑡𝑟
)

is included in the prediction zone if

𝑥𝑏 + 𝑐𝑔1
(

𝑡 − 𝑡𝑟
)

≤ 𝑥 ≤ 𝑥𝑒 + 𝑐𝑔2
(

𝑡 − 𝑡𝑟
)

, (16)

where 𝑐𝑔1 and 𝑐𝑔2 are the fastest and slowest group velocities, respec-
tively, and 𝑥𝑏 and 𝑥𝑒 define the beginning and the end of 

(

𝑡𝑟
)

(Fig. 1)
as
⎧

⎪

⎨

⎪

⎩

𝑥𝑏 = min
𝑗

(

𝑥𝑗
)

,

𝑥𝑒 = max
𝑗

(

𝑥𝑗
)

+ 𝑐𝑔2𝑇𝑎,
(17)

where 𝑥𝑗 are spatial locations of the observations. Although future
applications could rely on observations with spatial location variations,
i.e., 𝑥𝑗 functions of time, the presented investigations are restricted to
fixed measurement locations.

3.3. Bandwidths of the reconstructed wave field

As mentioned above, the accurate representation of the wave field
dynamics can be ensured by selecting a finite wavenumber bandwidth
having relevant cutoff limits 𝑘min,max. However, the spatio-temporal
characteristics of the observation grid limit the wave information that
is accessible for reconstruction, thus imposing constraints on these
cutoffs. For instance, the smallest wavenumber that is measurable in a
given grid 𝑘min = 2𝜋∕𝐿𝑜 is function of the largest distance 𝐿𝑜 = 𝑥𝑒 − 𝑥𝑏
between two observation points at reconstruction time 𝑡𝑟 (Fig. 1b). At
the same time, 𝑥𝑒 is a function of the chosen minimum group velocity
𝑐𝑔2 of individual wave components in the wave field.

When reconstructing a wave field over a uniformly sampled obser-
vation grid (i.e., one with constant spatial sampling), the maximum

high cutoff wavenumber must satisfy Shannon’s condition, i.e., 𝑘max ≤
2𝜋∕

(

2𝓁𝑜
)

where 𝓁𝑜 is the distance between two observation points.
However, using an optical sensing method, the observation grid is
highly non-uniform, and 𝑘max must be set such that the spectral en-
ergy truncated at higher frequencies be negligible for the dynamic
description of the wave field. In later applications, we use 𝑘max =
20𝑘𝑝 < min

𝛥𝑥
(2𝜋∕ (2𝛥𝑥)) with 𝛥𝑥 the distance between two consecutive

observation points and 𝑘𝑝 the wavenumber of the peak spectral energy.

3.4. Group velocities for the determination of the prediction zone

In applications, the cutoff frequencies calculated as discussed above
may be too restrictive to estimate the evolution of the prediction zone,
i.e., due to the asymptotic behavior of the wave spectrum as the
wavenumber goes to infinity, the high cutoff wavenumber tends to be
larger than necessary. Instead, the group velocities 𝑐𝑔1,2 governing the
evolution of the prediction zone boundaries are defined on the basis
of angular frequencies 𝜔1 and 𝜔2 corresponding to a low and high
minimum energy threshold, respectively, in the wave energy density
spectrum as

𝑆𝜂
(

𝜔1
)

= 𝑆𝜂
(

𝜔2
)

= 𝜇𝑆𝜂
(

𝜔𝑝
)

, (18)

where 𝑆𝜂 (𝜔) is the wave energy density spectrum, 𝜔𝑝 is the peak
angular frequency and 𝜇 ≪ 1 is a small fraction of the peak spectral
energy (𝜇 = 0.05 is used throughout the paper). In the following, the
linear deep water dispersion relationship is used to estimate the group
velocities from 𝜔1,2, i.e., 𝑐𝑔 = 𝑔∕ (2𝜔).

4. Experimental and numerical frameworks

Applications presented hereafter are based on surface elevations
measured in laboratory experiments and computed in corresponding
numerical simulations. Both data sets are referred to full scale wave
parameters, but they are both performed at a 𝓁∗ = 1:50 geometric
scale (corresponding time scale is 𝑡∗ =

√

𝓁∗ ≈ 7.06 under Froude
scaling), for long-crested wave trains generated in the oceanic 3D tank
of École Centrale de Nantes (ECN), which is 50 m long, 30 m wide,
and 𝑑 = 5 m deep. Waves are generated at one side of the tank by
48 individual rotating flaps, and absorbed by a beach at the other
extremity. Numerical simulations are performed using the open-source
code HOS-NWT1 developed at ECN. It makes use of the HOS method
to simulate a numerical wave tank, and has been extensively used and
validated against real wave tank experiments (Bonnefoy et al., 2010;
Ducrozet et al., 2012). Based on a pseudo-spectral approach, the HOS
method solves, to an arbitrary order𝑀 in wave steepness, the nonlinear
free surface boundary conditions for a velocity potential. A converged

1 https://github.com/LHEEA/HOS-NWT.
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Fig. 2. Spatial sampling of a long-crested wave field by an optical sensor.

Fig. 3. Location of observation wave gauges 1 to 20 (∙) and of two additional downstream gauges 21 (▴) and 22 (■). The wavemaker is located at 𝑥∕𝜆𝑝 = 0 and the beach at
𝑥∕𝜆𝑝 ≈ 14.86.

estimate of the potential (for which a value of 𝑀 = 7 is used hereafter)
gives access to the fully nonlinear solution. In Section 6, this numerical
model is used to improve the analysis pertaining to the experimental
results. As waves of characteristic wave steepness larger than 𝐻𝑠∕𝜆𝑝 ∼
0.035 (where 𝜆𝑝 = 2𝜋∕𝑘𝑝 is the peak wavelength) will start breaking, a
wave breaking model allowing to both detect impending breaking and
absorb wave energy is used in HOS-NWT (Seiffert et al., 2017; Seiffert
and Ducrozet, 2018). The same wavemaker motion is specified in both
laboratory experiments and numerical simulations, which ensures a
consistent comparison between experimental and numerical results.

In the following, we first detail the experimental and numerical
setups used to acquire/compute surface elevation data. An analysis of
experimental measurements is then performed through the characteri-
zation of noisy perturbations. Finally, we present relevant indicators of
the quality of free surface prediction and the procedure implemented
to reliably evaluate them.

4.1. Description of the experimental/modeling setups

As shown in Fig. 2, spatial sampling of a free surface elevation
by an optical sensor exhibits gaps due to shadowing effects from
the illuminated wave fronts and, assuming a uniform distribution of
beams over the sensor’s aperture angles, measurement points density
geometrically decreases with the distance from the sensor.

In experiments/simulations, free surface elevations are measured/
computed at 22 wave gauges (resistive probes in experiments), irreg-
ularly distributed along the wave direction of propagation. Consistent
with an optical sensor facing the ‘‘wavemaker side’’ of the tank, the
first 20 measurement points have a decreasing density away from it,
corresponding to the intersection with a surface of uniformly angularly
spaced beams propagating away from a point source (e.g., LIDAR
camera). We consider the illumination of a flat surface, which al-
lowed us to position the gauges vertically into the water. This way,
wave-shadowing effects are not reproduced but only the geometrically
decreasing density of observations, which is the prominent source of
irregularity in the measurement points locations. The virtual sensor is
located at an elevation 𝑧𝑐 = 30 m (0.6 m in tank scale, 𝑧𝑐∕𝜆𝑝 ≈ 0.19)
and aimed at the water surface with an angle 𝛼 = 76◦ and 20 virtual
beams which are uniformly spread over an aperture angle of 𝛼𝑎 = 20◦

(see Fig. 2 for a representation of 𝛼 and 𝛼𝑎). The resulting geometrical
distribution of the wave gauge locations is depicted in Fig. 3. Two
additional gauges measure downstream elevations for comparison with
predictions. Every gauge is labeled according to its 𝑥-location, from 1
for that closest to the wavemaker to 22 for that furthest away. Wave
gauges provide observations that are used as input to the surface recon-
struction and prediction algorithms. The number of spatial observations
is thus constant at 𝐽 = 20, and the number of observation times 𝐾
depends on the assimilation time duration 𝑇𝑎 and data acquisition time
step τ as 𝐾 = 𝑇𝑎∕τ.

Table 1
Summary of the targeted and generated full-scale sea states in both experiments and
numerical simulations. Each case is labeled in alphabetical order from the smallest to
the largest characteristic wave steepness 𝐻𝑠∕𝜆𝑝.

Case Target Experiments Simulations

𝐻𝑠 [m] 𝐻𝑠∕𝜆𝑝 [%] 𝐻𝑠 [m] 𝐻𝑠∕𝜆𝑝 [%] 𝐻𝑠 [m] 𝐻𝑠∕𝜆𝑝 [%]

A 1.00 0.64 0.89 0.57 1.01 0.65
B 2.00 1.28 1.86 1.19 2.02 1.29
C 3.00 1.92 2.81 1.80 3.02 1.93
D 4.00 2.56 3.79 2.43 4.01 2.57
E 5.00 3.20 4.64 2.97 4.98 3.18
F 6.00 3.84 5.60 3.59 5.87 3.76
G 7.00 4.48 6.46 4.14 6.69 4.28
H 9.00 5.76 8.02 5.13 8.06 5.16

In both experiments and numerical simulations, we consider a full-
scale one-directional wave field extracted from a JONSWAP spectrum
with a 𝑇𝑝 = 10 s peak period (≈ 1.41 s in tank scale) and a 𝛾 =
3.3 peakedness parameter. Eight sea-states were generated using the
same set of wave phases (Table 1), with their significant wave height
𝐻𝑠 = 𝐻𝑚0

= 4
√

𝑚0 (where 𝑚0 = ∫ +∞
0 𝑆𝜂 (𝑓 ) d𝑓 ) selected such that the

characteristic steepness 𝐻𝑠∕𝜆𝑝 varies between ∼ 0.6% and ∼ 5%, with
𝜆𝑝 ≈ 156 m (3.12 m in tank scale). In tank scale we have 𝜆𝑝 < 𝑑, which
confirms that the deep water approximation is applicable.

A theoretical wavemaker motion is deduced by applying a transfer
function based on the one-directional finite-depth linear wavemaker
theory and on the wavemaker geometry, which is, for both experiments
and simulations, a rotating flap that is hinged three meters below the
mean surface level. The amplitude of the wavemaker deflection is ad-
justed according to the target 𝐻𝑠 values. Without further consideration,
the obtained theoretical motion serves as input for our physical and
numerical wavemakers.

We notice differences between the target and generated significant
wave heights (refer to Section 4.2 for the explicit formulation Eq. 4.2
for the calculation of 𝐻𝑠). In experiments, 𝐻𝑠 values are found con-
sistently lower than target values. For sea states of small to moderate
steepness (cases A to D), this is mainly explained by the wavemaker
transfer function leading the physical wavemaker to generate waves of
lower amplitude than according to the input. In contrast, simulations
yield 𝐻𝑠 values that are slightly higher than the targets by an amount
that is of the same order of magnitude as the expected effect pertaining
to the wave reflection on the beach (i.e., lower than 1%). Since the
numerical beach is set such that its reflection rate corresponds to the
physical one, wave reflection is expected to have a similar effect on the
experimental results, i.e., very limited. For high steepness, i.e., 𝐻𝑠∕𝜆𝑝 ≳
3.5% (cases E to H), wave breaking events appear, dissipating energy
and reducing our estimates of 𝐻𝑠. Wave-breaking dissipation is encoun-
tered in both experiments and simulations due to the wave breaking
modeling in the numerical model.
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Fig. 4. Time series of surface elevation measured in experiments at gauge 22 for case E (Table 1). Three characteristic times are marked on the record, 𝑡𝑎: all the generated wave
components have been measured at all gauges; 𝑡𝑏: shutdown of the wavemaker; 𝑡𝑐 : all the generated wave components have propagated past all gauges.

Fig. 5. (a) Noise amplitude to wave amplitude ratio as a function of characteristic wave steepness, and (b) normalized noise ( ) and wave ( ) spectra averaged over
all the characteristic wave steepnesses.

Fig. 6. Normalized surface elevations for case A at the locations of gauges 1 to 22. Components of frequency higher than 1.4𝑓𝑝 has been removed using a low-pass filter.

4.2. Analysis of experimental data

Fig. 4 shows a typical time series of surface elevation measured at a
resistive probe in laboratory experiments. Time 𝑡 = 0 corresponds to the
start of the wavemaker motion, i.e., the beginning of wave generation.
At time 𝑡𝑎, it is estimated based on a truncation of the prescribed
wave energy spectrum (similar to Section 3.4) that all the energetic
wave components generated at the wavemaker have been seen by all
gauges. At time 𝑡𝑏, the wavemaker is shutdown and waves generation
is interrupted. Finally, similar to the determination of 𝑡𝑎, at time 𝑡𝑐 ,
it is estimated that all the generated energetic wave components have
propagated past all gauges. Based on this, the data used for the wave
field prediction study is restricted to the time interval

[

𝑡𝑎, 𝑡𝑏
]

, with
𝑡𝑏 − 𝑡𝑎 ≈ 173𝑇𝑝.

It is desirable to analyze and quantify the influence of the perturba-
tions pertaining to the limitations of our experimental setup (referred
to as ‘‘noise’’ throughout this work) on the recorded wave signal. This
is done by considering that the rest of the data acquired at wave
gauges, for a few dozen peak wave periods beyond 𝑡 = 𝑡𝑐 , provides
a representation of noise during the entire data acquisition duration.
Based on this data, a noise to signal ratio NSR = 𝐻𝑛∕𝐻𝑠 is computed
as a function of characteristic heights for both the primary wave (𝑡 ∈
[

𝑡𝑎, 𝑡𝑏
]

) and noise (𝑡 ≥ 𝑡𝑐) signals following
⎧

⎪

⎨

⎪

⎩

𝐻𝑠 =
1
𝑁𝑝

∑𝑁𝑝
𝑗=1 4 𝜎𝜂

(

𝑥𝑗 , 𝑡𝑎 ≤ 𝑡 ≤ 𝑡𝑏
)

, (a)

𝐻𝑛 =
1
𝑁𝑝

∑𝑁𝑝
𝑗=1 4 𝜎𝜂

(

𝑥𝑗 , 𝑡 ≥ 𝑡𝑐
)

, (b)
(19)

respectively, where 𝜎𝜂 (𝑥, 𝑡) denotes the standard deviation of the free
surface elevation 𝜂 (𝑥, 𝑡) and 𝑁𝑝 = 22 wave gauges. The NSR is com-
puted for each case A to H in Table 1 and plotted in Fig. 5a as a function
of the corresponding characteristic wave steepness. We see that the NSR
decreases as a function of wave steepness, with the largest value being
about 25% for the smallest steepness and the smallest value being about
11.5% for the largest steepness. It thus appears that the geometry of
our experimental set-up, in a 3D wave tank allowing the generation
of directional wave fields, may have significantly affected the targeted
one-directional wave fields. As will be detailed in Section 6.3, this po-
tentially large NSR may affect the performance of the wave prediction
algorithm.

To better quantify noise effects on the desired experimental data
and relate the generated noise to a physical process, we computed the
power spectral density 𝑆𝑛 of the noisy part of the signal (𝑡 ≥ 𝑡𝑐). For
each steepness, the spectrum was averaged over results obtained at
the 22 wave gauges and normalized as 𝑆∗

𝑛 = 𝑆𝑛𝑓𝑝∕𝑚0, where 𝑚0 =
𝐻2
𝑛∕16 is the zeroth-order moment of the spectrum. These normalized

noise spectra were found to be nearly identical for each steepness.
Fig. 5b shows their average, which is composed of a narrow-banded
peak, centered on ∼ 1.1𝑓𝑝, and a broad-banded high frequency part
of much lower amplitude. The wave spectrum, calculated on

[

𝑡𝑎, 𝑡𝑏
]

,
is given on the same figure as a visual help for interpretation. Fig. 6
shows normalized surface elevations of the noise signal 𝜂∕𝐻𝑛 in which
frequencies 𝑓 > 1.4𝑓𝑝 have been removed by filtering, i.e., these
correspond to the dominant part of the noise signal. It shows that
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Fig. 7. Each sample consists of a time trace from the same generated surface
realization. They can be partially overlapping, separated by a time span 𝛥𝑡 from their
neighbors.

elevations for case A at wave gauges 1 to 22 (which are aligned along
the 𝑥-direction) are mostly in phase, suggesting that the dominant
experimental noise may be caused by resonant excitations of transverse
modes in the 3D wave tank. This hypothesis is confirmed by our visual
observations of these waves during calm-down times between measure-
ments, and is explained by the presence of small interstices between
the wavemaker flaps, locally generating transverse disturbances. The
much less energetic noisy components of the signal, with frequencies
𝑓 > 1.4𝑓𝑝, were not found to be in phase, indicating that they result
from aleatory processes.

4.3. Misfit indicators definitions

The misfit indicator used to quantify the accuracy of the predicted
wave field is defined as

 (𝑥, 𝑡) = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

|

|

𝜂𝑖 (𝑥, 𝑡) − 𝜂r𝑖 (𝑥, 𝑡)||
/

𝐻𝑠, (20)

where 𝜂 is the predicted surface elevation and 𝜂r is the reference
surface (measured or calculated, depending on whether experimental or
numerical data is used). To better assess its overall behavior, the misfit
is averaged over 𝑁𝑠 surface samples, denoted by index 𝑖. An unbiased
estimate can only be obtained for a large number of samples from
independent wave field realizations (i.e., of different sets of random
wave phases) with, to the limit, 𝑁𝑠 → ∞. Instead, we elected to
generate one single surface realization per sea state, but to record or
compute wave gauge data over a long time so that the signals can be
split into a sufficiently large number of samples of meaningful duration
𝑇𝑎. Additionally, the number of samples is increased by selecting them
as partially overlapping, i.e., shifting them in time by 𝛥𝑡 < 𝑇𝑎, as
illustrated in Fig. 7. Therefore, the information used to estimate the
misfit is the surface elevation data in the total time window covered
by the samples, which has a duration 𝑇𝑐 = 𝑇𝑎 +

(

𝑁𝑠 − 1
)

𝛥𝑡. A similar
approach was employed in Naaijen et al. (2014) to investigate the
spatio-temporal evolution of the prediction zone based on experimental
and numerical data. The wave field prediction error at a specific
location 𝑥 is finally computed by averaging the corresponding misfit
over the theoretical time-prediction zone 𝑡 ∈

[

𝑡min, 𝑡max] as

 (𝑥) = 1
𝑡max − 𝑡min ∫

𝑡max

𝑡min
 (𝑥, 𝑡) d𝑡. (21)

Fig. 8 shows, for case E, the evolution of the wave field prediction
error  computed as a function of the amount of data used to calculate
it, quantified by the relative duration 𝑇𝑐∕𝑇𝑝 of the time window used
to evaluate the misfit  . We see that the prediction error converges for
𝑇𝑐∕𝑇𝑝 ∼ 60. Note that the wave gauge network used to generate the
observations covers a zone only slightly larger than 2𝜆𝑝. If this zone
was larger, the optimal number of peak wave periods for the sampling
time window would likely be less than 60.

Additionally, for deterministic comparison, we make use of the
cross-correlation between time series corresponding to the predicted
and the measured surface elevations, which provides a correlation
factor 𝐶 as a function of a time-lag  . The maximal value of the
correlation factor and its corresponding time-lag can be interpreted
as the correspondence in terms of shape and amplitude of the two

Fig. 8. Nonlinear (ICWM) prediction error estimate at the location of gauge 22 as
a function of the length of the time window used to evaluate the misfit, 𝑇𝑐 =
𝑇𝑎 +

(

𝑁𝑠 − 1
)

𝛥𝑡, normalized by the peak spectral period 𝑇𝑝, and in which 𝛥𝑡∕𝑇𝑝 ≈ 0.07.
Here, 𝑇𝑎∕𝑇𝑝 ≈ 7 and τ∕𝑇𝑝 ≈ 0.07, and simulated reference data from case E are used.

elevations, and as an estimate of the time shift between the two
elevations, respectively. The cross-correlation is defined by

𝐶 ( ) = 1
𝑡max − 𝑡min ∫

𝑡max

𝑡min
𝜂∗ (𝑡) × 𝜂∗r (𝑡 +  ) d𝑡, (22)

where 𝑡min,max are the prediction zone boundaries and 𝜂∗ (𝑡) =
𝜂 (𝑡) ∕𝜎𝜂

(

𝑡min ≤ 𝑡 ≤ 𝑡max) is the normalized free surface elevation (sim-
ilarly, 𝜂∗r = 𝜂r∕𝜎𝜂r for the reference surface).

5. Prediction error sensitivity to reconstruction algorithm

We first assess the sensitivity of the prediction error to both the
method used (linear or nonlinear) and parameters of the assimilation
procedure, namely the assimilation time 𝑇𝑎 and the time shift of the
assimilated data τ.

For case A, which corresponds to a mild characteristic wave steep-
ness of 0.65%, Fig. 9a shows that the linear prediction error converges
well as 𝑇𝑎 increases, for the three considered τ values, although conver-
gence is slower for larger τ. Hence, the converged error is independent
of the time resolution of observations. This is a consequence of the
characteristics of the physical description emerging from observations.
As the assimilation time increases, the diversity of wave processes
included in the assimilated information is enhanced, with respect to
the relevant physics simulated in the model, causing the prediction
error to converge. Additionally, the accuracy of the description of
physical phenomena, which is directly function of the time resolution of
observations, affects the prediction error convergence rate: for a given
assimilation time 𝑇𝑎, a smaller time step τ will yield a prediction error
closer to the converged value. For the predictions presented later, we
keep τ∕𝑇𝑝 ≈ 0.07.

For case E, which corresponds to a larger wave steepness of 3.18%
and hence a fairly nonlinear case, Fig. 9b shows that, overall, pre-
diction errors are larger than for case A, increasing from [0.005, 0.05]
to [0.05, 0.075]. Fig. 9b also shows that, as could be expected for
this nonlinear case, the prediction errors are larger with the linear
method than with the nonlinear method. Finally, the convergence of
the nonlinear method to achieve an approximately constant value of
𝜀 requires a slightly larger 𝑇𝑎 than for the linear method. This can be
explained by the higher level of physics represented in the ICWM model
than in LWT, which requires larger time scales to achieve convergence.

6. Prediction results and discussion

Applications of the reconstruction and forecasting algorithms to
cases of Table 1 are presented in the following and the accuracy of the
wave field forecast is discussed, in particular, in terms of its sensitivity
to the linear or nonlinear methods used.
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Fig. 9. Prediction error at the location of gauge 22 as a function of the normalized assimilation time 𝑇𝑎∕𝑇𝑝 in case (a) A (∙) and (b) E (▴). In case A, the linear error is plotted
for τ∕𝑇𝑝 ≈ 0.07 ( ), 0.35 ( ) and 0.71 ( ). In case E, a time step τ∕𝑇𝑝 ≈ 0.07 is used and both the linear (LWT, ) and nonlinear (ICWM, ) errors
are plotted. Simulated reference data is used in both figures.

6.1. Wave group analysis

All cases in Table 1 correspond to sea states generated using a
JONSWAP spectrum with identical peak period 𝑇𝑝 = 10 s (at full scale)
and peakedness 𝛾 = 3.3, but a different significant wave height 𝐻𝑠 and,
hence, characteristic wave steepness 𝐻𝑠∕𝜆𝑝. In both the physical and
numerical wave tanks, these sea states are generated using the same
set of random phases, so time series of surface elevations should be
similar, except for small changes in amplitude due to nonlinear effects,
proportional to 𝐻𝑠.

In the following, we analyze the prediction error for a group of
8 waves of elevation on the order of 𝜂 ∼ 0.5𝐻𝑠 approximately cen-
tered at 𝑡 = 113𝑇𝑝, recorded/simulated at wave gauge 22 for cases
A to H (see Fig. 4). The data used in the prediction algorithms was
selected for the prediction zone to span 𝑡 ≈ 108𝑇𝑝 to 118𝑇𝑝 at the
location of gauge 22. Fig. 10 shows time series of surface elevations
for these wave groups in cases A, E and H, compared to predictions of
the linear (LWT), linear corrected (LWT-CDR), and nonlinear (ICWM)
models, using experimental (a, c, e) and numerical (b, d, f) data. For
each case, only small differences due to experimental noise can be
seen between the experimentally and numerically generated reference
surfaces. While there is an overall agreement between the reference and
predicted surfaces, differences in wave phase and elevation increase
with wave steepness, due to cumulative effects of nonlinearity during
wave propagation. Accordingly, for the smallest wave steepness (case
A), all three models predict the same surface elevation, in good agree-
ment with references, particularly for numerical data (b) for which
predictions almost perfectly overlap the HOS solution, but predictions
become increasingly different between the three algorithms, the larger
the characteristic wave steepness. Although differences do not appear
visually large, this is more pronounced for the algorithm based on
ICWM, which, as will be shown next using various prediction error
metrics, provides the most accurate prediction.

Differences between the reference (measured or simulated with
HOS) surface elevations and those predicted by the three algorithms are
quantified by their maximum cross-correlation max(𝐶) (i.e., normalized
convolution, Eq. (22)) and corresponding time-lag 𝑠 = argmax (𝐶).
Both parameters are shown in Fig. 11 for all cases in Table 1, based
on time series measured or simulated at the location of wave gauge 22
(e.g., Fig. 10). The former quantifies the accuracy of the prediction in
terms of wave shape and amplitude, while the latter quantifies the time-
shift of the predicted signal compared to the reference signal. Fig. 11a,
b show that, for all prediction algorithms, time-lag increases with wave
steepness (i.e., nonlinearity), from 0 for the smallest steepness to a
few percent of 𝑇𝑝 for the largest one, consistent with the expected
effects of nonlinearity. As seen for instance in the time series of Fig. 10,
LWT yields the largest time-lags compared to the nonlinear models.

LWT-CDR, which includes a phase shift correction, provides a time-
lag very close to that of ICWM, particularly for the simulated data,
indicating that the nonlinear phase shift prevails over the nonlinear
wave geometry represented in the latter model for these cases. Also,
the rate of increase of time-lag with wave steepness is similar whether
or not the nonlinear phase shift is included in the model. This result
is unexpected since this phase shift its due to nonlinear amplitude
dispersion, which is function of wave steepness.

Fig. 11c, d show the maximum cross-correlations for the same
cases. Consistent with the larger time-lag, max(𝐶) mostly decreases,
the larger the wave steepness, to reach a minimum of 96% for the
largest wave steepness. Except for case G, which is discussed below,
the maximum cross-correlation is larger using ICWM, which is expected
since only this model is able to represent nonlinear wave geometry. The
abnormal behavior of case G, which is seen in both the experimental
and numerical data, likely results from a significant increase in wave
breaking events within the considered wave group for this case. Note,
for case H, which has an even larger steepness, wave phases were such
that breaking was not as widespread as for case G. Wave breaking
affects wave geometry in a non-trivial manner and is not represented
in ICWM. In the case of the wave group considered here, for some
unknown reason, it appears that broken waves are better represented
in the linear model than using ICWM.

Finally, Fig. 12 shows results similar to Fig. 11, using ICWM for
numerical or experimental data, at wave gauges 20, 21 and 22. Ob-
servations are acquired (and reconstructed) at wave gauge 20, which
is the last gauge used in observations, and predictions are made at the
other 2 gauges, which are increasingly distant from it (Fig. 3). For both
the experimental and numerical data, the time-lags and their rates of
increase with wave steepness are lower for prediction locations closer
to the observation gauge (Fig. 12a, b). This results from inaccuracies in
nonlinear wave propagation modeled by ICWM, which yield increasing
differences in predicted surface elevations with time or space trav-
eled, compared to the reference data. Consistent with this observation,
Fig. 12c, d show that, for steepnesses larger than ∼ 2.5%, the maximum
cross-correlation decreases as the distance of the prediction gauge to
the observation location increases.

6.2. Instantaneous misfit of wave prediction

We investigate next the evolution of the instantaneous misfit  (𝑥, 𝑡)
of the wave prediction for case E, which corresponds to a moderate
steepness, although nonlinear effects already have a marked influence
on the wave field dynamics. For both experimental and numerical
cases, we compare the misfit obtained using the LWT, LWT-CDR and
ICWM prediction algorithms.

Fig. 13 shows the temporal evolution of the wave prediction misfit
computed using different algorithms, with respect to data simulated
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Fig. 10. Time series of surface elevations measured/simulated at gauge 22 for a group of 8 waves ( ) for cases: (a, b) A, (c, d) E and (e, f) H, of increasing nonlinearity.
Predicted surface elevations are shown for the: linear (LWT, ), corrected linear (LWT-CDR, ), and nonlinear (ICWM, ) models. Left (a, c, e): experiments;
right (b, d, f): simulations.

Fig. 11. Normalized time-lag (a, b) and maximum cross-correlation (c, d) computed for cases in Table 1, based on reference time series measured (left column)/simulated with
HOS (right column) at the location of wave gauge 22 for wave groups similar to those in Fig. 10, based on: linear (LWT, ), corrected linear (LWT-CDR, ), and
nonlinear (ICWM, ) prediction algorithms. Error bars in (a, b) result from the resolution of the time series..

Fig. 12. Normalized time-lag (a, b) and maximum of cross-correlation (c, d) for the nonlinear (ICWM) predictions, at the location of gauge 20 (■), 21 (▴) and 22 (∙). Left (a,
c): experiments; right (b, d): simulations. Error bars on (a, b) correspond to the time resolution of the time series.
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Fig. 13. Time evolution of wave prediction misfit  , computed with respect to data simulated for case E: (a) at gauge 22 using the linear (LWT, ) and nonlinear (ICWM,
) prediction algorithms; (b) for all gauges using the nonlinear (ICWM) prediction algorithm (black rectangle encompasses assimilated observations; data was collected at

gauges’ 𝑥-locations (vertical lines) and interpolated using the nearest neighbor method). In each subfigure, dotted lines ( ) mark the prediction zone boundaries.

for case E, at both gauge 22 (a) and for all gauges (b). The misfit at
gauge 22 is significantly lower within the accessible prediction zone,
[

𝑡min, 𝑡max] (Fig. 13a), reaching a minimum value of about 3.5% for
ICWM, compared to about 4.5% for LWT, whose misfit is consistently
about 30% larger than that of ICWM. Within the time prediction zone,
the error gradually slightly increases due to the limited physics repre-
sented in both wave models. In the spatio-temporal domain (Fig. 13b),
ICWM’s misfit is lowest within the theoretical prediction zone, reaching
a maximum of about 7% along its boundary. As the 𝑥-location of the
wave gauge increases, the misfit gradient decreases across the predic-
tion zone upper boundary 𝑡max, or in other words the transition of the
misfit values from within to outside the prediction zone becomes more
diffused, which is due to the dispersion of the assimilated information.
More specifically, as detailed in Section 3.2, the energy associated
with the reconstructed wave components disperses as 𝑥 increases,
gradually limiting the physical description of the wave field. Even
within the spatio-temporal region corresponding to the observations
(black rectangle in Fig. 13b), the misfit is non-zero since observations
are discrete rather than continuous samples of elevations. Hence, the
reconstructed elevation (nowcast) is always an estimate of the reference
solution. Note that the accessible prediction horizon in the depicted
configuration is 𝑡max − 𝑡𝑟 ≈ 3.7𝑇𝑝 and 4.3𝑇𝑝 at gauges 21 and 22,
respectively, and is expected to further increase at larger distances (at
the expense of the prediction accuracy). Then, from the location where
the beginning of the prediction zone 𝑡min matches the reconstruction
time 𝑡𝑟, the accessible horizon starts decreasing.

For the same case E, Fig. 14 shows for both experimental or sim-
ulated reference data, the spatio-temporal evolution of the ratio of
the nonlinear (ICWM) to linear (LWT; a, b) or linear with corrected
dispersion (LWT-CDR; c, d) wave prediction misfit. For the simulated
data (Fig. 14b), the misfit is reduced by up to ∼ 35% within the predic-
tion zone when using ICWM instead of LWT. Compared to LWT-CDR
(Fig. 14d), the reduction is smaller and mostly limited to the spatio-
temporal region of assimilated data (within the solid box), particularly
where the wave gauge density is larger. Outside of this region (𝑡 > 𝑇𝑎 ≈
7𝑇𝑝; time propagation) or at the location of gauges 21 and 22 (space
propagation), the misfit ratio rapidly approaches one, indicating that
the improvement achieved using ICWM rather than LWT-CDR becomes
negligible. For the experimental data (Fig. 14a, c), similar patterns
are observed, but the improvement achieved using ICWM is not as
pronounced as for simulated data.

These results indicate that the improved representation of nonlin-
ear wave geometry using ICWM mostly affects the accuracy of the
reconstructed part of the wave field. Once reconstructed waves are
propagated to the prediction zone, the nonlinear phase shift, which
is corrected in LWT-CDR to the same level as in ICWM, becomes the
main source of error and effects of nonlinear wave geometry become

negligible compared to it. The wave models are parameterized to
provide a relevant and consistent approximation of the wave field
over the entire region covered by the observations. Hence, while the
reconstructed wave field is constrained to fit the measurements, when
waves are propagated to issue a prediction, only their propagation
properties featured in the models come into play.

6.3. Influence of experimental noise on wave prediction

The prediction misfits based on numerical and experimental refer-
ence data are compared in Fig. 15, at gauges 20, 21, and 22, for all
cases listed in Table 1, using the linear (LWT) or nonlinear (ICWM)
algorithms. To better assess the effect of experimental noise on the
prediction misfit, a ‘‘noisy numerical dataset’’ was created by adding
to the numerical data a noise signal having the same spectral shape
(or NSR) as that analyzed for the experiments (Fig. 5b), scaled by
the measured noise amplitude 𝐻𝑛 (Fig. 5a), with independent random
phases for each wave gauge. As would be expected, for both algorithms,
the prediction misfits are larger at all wave gauges using experimental
data, as compared to noise-free numerical data, particularly for cases
with a lower steepness, which have relatively larger noise levels. Using
the noisy numerical data, however, prediction misfits increase to nearly
match those of the experimental data. This indicates that the noisy
numerical data is consistent with the experimental data and provides a
digital twin of experiments that explains, for the most part, differences
observed between predictions issued for experimental and noise-free
numerical data.

6.4. Application to remote sensing: free surface slope prediction

In the free surface elevation predictions described above, the nonlin-
ear phase correction was responsible for the main relative improvement
in prediction misfit, rather than the nonlinear wave geometry rep-
resented in ICWM. While for many ocean engineering applications
predicting instantaneous free surface elevations is most important, such
as when computing wave forces or runup on structures, or controlling
a wave energy converter, in some applications such as remote sensing
the main parameter of interest is free surface slope, which governs
the backscattered signal to the radar or optical sensor used (e.g.,
Nouguier et al., 2010, 2014). Hence, in the following, we quantify
the improvement in free surface slopes representation achieved using
ICWM rather than LWT-CDR. More specifically, at the location of wave
gauge 20, we analyze the evolution as a function of wave steepness
of the maximum prediction misfit ratio 

𝐼𝐶𝑊𝑀∕
𝐿𝑊 𝑇−𝐶𝐷𝑅, for both

surface elevation and slope. As the distance between gauges 19 and 20
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Fig. 14. Spatio-temporal evolution of the ratio of the nonlinear (ICWM) to (a, b) linear (LWT) and (c, d) linear with corrected dispersion relation (LWT-CDR) wave prediction
misfit  , with respect to: (a, c) experimental; and (b, d) simulated reference data for case E. Lines denote prediction zone boundaries ( ) and domain of assimilated data
( ). Data was collected at gauges’ 𝑥-locations (vertical lines) and interpolated using the nearest neighbor method.

Fig. 15. Prediction misfits for all cases in Table 1, using the linear (LWT, ) and nonlinear (ICWM, ) algorithms, based on: experimental (∙), numerical (▴), and
noisy numerical (■) reference data, at gauges (a) 20, (b) 21 and (c) 22.

is small (∼ 0.02𝜆𝑝), the wave surface slope can be approximated by

𝑠 (𝑡) =
𝜂
(

𝑥20, 𝑡
)

− 𝜂
(

𝑥19, 𝑡
)

𝑥20 − 𝑥19
, (23)

where 𝜂 denotes the reference or predicted surface elevation and 𝑥19,20
the location of gauge 19 and 20. We calculate the slope prediction
misfit by replacing 𝜂 with 𝑠 in Eq. (20).

Results in Fig. 16 show a consistently lower misfit ratio for the slope
prediction, whether experimental or numerical data is used (although
in the latter case the ratios are lower in absolute value), indicating that,
unlike with surface elevation predictions, geometrical nonlinearities

included in ICWM provide a significant improvement for predicting
surface slopes.

Further, in ICWM, geometrical nonlinearities are second-order in
wave steepness whereas nonlinear phase shifts are third-
order (Nouguier et al., 2009, 2010; Guérin et al., 2019). Accordingly,
in Fig. 16, the improved performance of ICWM for predicting surface
slopes is much more significant at small wave steepness, when third-
order effects are not prominent yet. Additionally, when using numerical
data, the misfit ratios for surface elevation and slope predictions
become increasingly close, the larger the wave steepness. With ex-
perimental data, the residual noise causes higher-frequency surface
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Fig. 16. Ratio of the nonlinear (ICWM) to the linear with corrected dispersion relation
(LWT-CDR) prediction misfit for the surface elevation ( ) and the surface slope
( ) at the location of gauge 20 using experimental (∙) and numerical (▴)
reference data.

oscillations that significantly affect the slope calculation and prevent
a proper evaluation of the corresponding prediction misfit. Hence, in
Fig. 16 both elevation and slope misfit ratios are close to one at low
wave steepness.

When initializing a nonlinear model based on a superposition of
harmonics linearly extracted from a standard wave spectrum (such as
here a JONSWAP), nonlinearity in the model equations will cause the
generation of higher-frequency wave components that will translate
into additional spectral energy at those frequencies from the onset.
Likewise, waves generated in a wave tank based on a similar standard
spectrum will evolve nonlinearly, which results in energy transfer
towards higher frequencies. This energy redistribution in wave spectra
is referred to as the dressing process (Nouguier et al., 2009). In our
applications, it is thus the dressed spectrum that is calculated based
on the reference surface, both in experiments and simulations. This
is illustrated in Fig. 17, which shows the normalized energy density
spectra of the free surface, 𝑆∗

𝜂 = 𝑆𝜂𝑓𝑝∕
(

𝐻2
𝑠 ∕16

)

, computed for case E
over the time interval corresponding to the prediction zone

[

𝑡min, 𝑡max]

at the location of gauge 20. Waves are only generated by both ex-
perimental and numerical wavemakers in the frequency range 𝑓 ∈

[𝑓𝑙 , 𝑓ℎ], with 𝑓𝑙 ≈ 0.68𝑓𝑝 and 𝑓ℎ ≈ 2.18𝑓𝑝, the low and high cut-
off frequencies, respectively. Within this frequency range (Fig. 17a,
c), spectral amplitudes agree well with each other for the reference
data and all wave models. However, as a result of nonlinearity in
the reference data, for 𝑓 > 𝑓ℎ (Fig. 17b, d), energy increases in all
cases as compared to the targeted spectrum. More specifically, while
for 𝑓 > 𝑓ℎ spectral amplitudes are lower in all the models than in
the reference data, ICWM provides results in much better agreement
with the latter, particularly for the numerical reference data, and
LWT and LWT-CDR provide similar results, both lower than those of
ICWM. These results confirm that high-frequency wave components
that predominantly affect wave slope predictions, are more accurately
predicted with the latter model, due to its representation of nonlinear
wave geometry (e.g., sharper crests).

7. Conclusions

In the context of the deterministic prediction of ocean surface
waves, we assessed and compared the accuracy of three ocean wave
prediction algorithms, based on three wave models having different
nonlinear properties. The algorithms were tested against data (time
series of surface elevation) acquired for long-crested wave fields using
wave gauges, in wave tank experiments as well as in simulations of
similar experiments with a high-order numerical wave tank. A number
of test cases were defined with different characteristic wave steepness,
from mildly to more strongly nonlinear. The set of wave gauges (physi-
cal or numerical) was non-uniformly distributed in space, to mimic the
typical uneven sampling made by optical sensors at grazing incidence.
The wave models used in the prediction algorithms were inverted based
on the wave gauge data and reconstructed waves were then propagated
with the models. Residual oscillations observed in the physical wave
tank were investigated and found to result from perturbations caused
by the wavemaker. These oscillations were identified as the principal
cause for observed differences between the experimental and numerical
data. Adding the experimental noise to numerical reference data in fact
led to similar levels of wave prediction misfit (or accuracy) as when
using experimental data.

Our study showed that the prediction accuracy of the algorithms,
quantified by a misfit parameter, converged with the duration of the
assimilated surface elevation time series (i.e., amount of data used).
In addition, smaller data acquisition time steps yielded higher con-
vergence rates, and the larger the characteristic wave steepness, the
larger the prediction error, in the form of nonlinear phase shifts (related
to wave phase velocity) and wave shape discrepancies. The recently
developed Improved Choppy Wave Model (ICWM, introduced in Guérin

Fig. 17. Normalized energy density spectra of free surface elevations computed for case E over 𝑡 ∈ [𝑡min , 𝑡max], at gauge 20, for the: reference data ( ), ICWM model ( ),
LWT model ( ) and LWT-CDR model ( ), in: (a, b) experiments; (c, d) simulations.

13



et al., 2019) yielded improved predictions within the accessible pre-
diction zone, as compared to a linear wave model, with a maximum
prediction misfit reduction of ∼ 35% for an intermediate wave steep-
ness, 𝐻𝑠∕𝜆𝑝 ≈ 3.18% (based on numerical data). In the spatio-temporal
region corresponding to the observations, the wave shape asymmetry
represented in ICWM improved the surface elevation representation.
For waves that had propagated (in space and/or time), the main factor
for reducing the prediction misfit was the accurate modeling of non-
linear wave phase velocity. For surface slope predictions, however, the
improved representation of wave shape asymmetry in ICWM allowed
to achieve an average prediction misfit reduction of 20% over the
prediction zone, for a low wave steepness of ∼ 1–2%, as compared to
a linear model with a phase speed correction (LWT-CDR). Note that
higher-order wave models (e.g., HOS, MNLS) are expected to further
improve the prediction accuracy, but only provided that the assim-
ilation procedure yields the correct initial model parameters, which
becomes increasingly complex and time-consuming when the model
order increases. Using such models to propagate waves will also require
a much larger computational effort.

Lessons learned in this study will help applying our prediction
algorithms to data acquired at sea using optical sensor systems, such
as LIDARs (e.g., Belmont et al., 2007; Nouguier et al., 2014). As the
method described here is directly applicable for predicting directional
wave fields, further investigation of the performance of our algorithms
for short-crested waves will be pursued in future work.
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