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Overview and notation modalities

• Course on experimental plasmas (6hrs).

• Hands-on project (24hrs, or 3 times 8hours): 1 day Langmuir probe measurements on
the Helicon reactor with Mr. De Poucques — 1 day on Laser Induced Fluorescence
(LIF) on the magnetron reactor with Mr. El-Farsy — 1 day LIF data analysis and report
redaction with Mr. Ledig.

You will have to write a report for all projects. It will contain a brief introduction on the
plasma device, a part to expose results, and a part for discussions. To be simple, it should
look like an article. The following 6hours course will give you the scientific background to
understand both experiments, to help you for the comprehension and the redaction.

Note that this paper was meant to be my course support during class. But after several
hours of LATEXcompilations, plotting, and Tikz-ing (making the schemes) I decided to give a
copy to you. It may contains some (many!!) grammatical and some (yes,some) mathematical
errors, so let me know if you find, one. Or two.Or even more.

jordan.ledig@univ-lorraine.fr
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1 Langmuir probe measurements on the Helicon reactor

1.1 Experimental device

1.1.1 Generalities on the device

Please note that this section is not very complete because during the day of experiment L.
De Poucques will explain it more precisely – and with the device in front of you. If you want
some more details take a look at X. Glad’s and T. Bieber’s thesis [1, 2], chapter 2 for both.

The helicon is an experimental device which creates a plasma using a RF antenna (νRF =13.56
MHz). The reactor is a superposition of two cylinder:

• the source chamber (radius 75 mm – height 300 mm) placed above. This chamber
contains a Pyrex tube (radius 65 cm – height 300 mm), and around this tube is the RF
antenna. The Pyrex tube protects the antenna from ion flux and from the temperature.

• the diffusion chamber (radius 130 mm – height 260 mm) placed bellow.

There are two coils around each chamber to create a magnetic field. We call B0 the field
from the source chamber, and Bdiff the field from the diffusion chamber. The turbomolecular
pump generate a void of about 10−7 Torr1.

1.1.2 Creation of the plasma

Obviously, the plasma is generated in the source chamber and diffuses along the magnetic
field lines toward the diffusion chamber. It is the antenna that creates the plasma because it
is crossed by an oscillating current at νRF. At our pressure range (1 to 500 mTorr) ions do not
respond to the RF oscillation, because:

ωp,i � ωRF � ωp,e where ωp =

√
ne2

mε0
is the plasma pulsation (1)

We also call this "electron heating".
To ignite the plasma, electrons already present in the neutral gas responds to the strong

RF electric field created by the hight potential variations (several kilovolts) near the antenna.
Those electrons are accelerated and create new electrons thanks to collisions with gas atoms.
Collision after collision, the plasma is generated, and there is the apparition of a sheath
between the antenna and the bulk plasma to screen the RF oscillations inside the plasma (so
that only the sheath reacts to the RF electric field). This collisional heating is the capacitive
mode.

This mode is only used to ignite the plasma because the power absorbed by electrons
decreases when ne (electron density) increases. Indeed, taking Euler equation for homoge-

1The Torr (or mmHg) equivalents to 133.32 Pa. The name comes from Torricelli, inverter of the barometer.
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neous plasma,

mene
due
dt

= −eneE−meneνcoll.ue (2)

and now supposing that ue and E varies with time like X = |X|ejωRFt, Euler becomes

jωRFmeneue = −eneE−meneueνcoll. ⇔ Je = −eneue = ω2
p,e

ε0E

νcoll. + jωRF
(3)

hence,

〈Pcapa. mode〉t = 〈Je · E〉t =
1

2
Re {Je · E∗} =

1

2

ω2
p,eνcoll.ε0|E|2

ν2coll. + ω2
RF
∝ 1

ne
(4)

Once the plasma is ignited and that the electron density is sufficient, it can enters the
inductive mode. Indeed the RF current generates a longitudinal varying magnetic field
BRF = B · ez ; and this varying magnetic field generates an azimuthal electric field ERF =

ERF · eθ according to Maxwell-Faraday equation,

∇× E = −∂B

∂t
(5)

This electric field speeds up electrons and establish a current flow that counter the initial
BRF: this is the induction principle. The generated plasma follows the static magnetic field
and enters the diffusion chamber, where we are going to make some measurements on it.

Note that this quick introduction is very gross, and in reality is is more complex, but is
beyond the scope of this course.

1.2 Langmuir probe measurements

1.2.1 The sheath formation

To understand properly Langmuir probe measurements, one must be clear with the sheath
structure. After that, calculations are straightforward. Let us be a semi infinite 1D-plasma.
A wall is placed at x = s and has an electric potential of φW . The plasma is in the negative x
region and φ(x→ −∞) = φp is the plasma potential.

In the absence of wall, the plasma is quasi-neutral so that ne ' ni. According to Maxwell-
Gauss law, this implies that there is no electric field in the plasma (∇·E = 0). But since there
is a wall, the potential must vary from the plasma potential, to the wall potential. This region
where the quasi-neutrality is broken and where φ 6= φp, is called the sheath.

To understand what happens on the wall, assume we put it into the plasma at time t = 0.
Since electrons are much faster than ions, they will reach the wall at first - and charge it
negatively, i.e. φW < 0. Thus, in the front of the wall there is then a lack of electrons (since
they are on the wall) so ne ≤ ni. Ions are then accelerated toward the wall, and electrons are
repealed. At some point between the wall and the bulk plasma, we assume that the potential
and its derivative (the electric field) are 0. We put this point to x = 0, so: φ(0) = 0 = φ′(0).
We also call this point the "sheath edge".
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Figure 1: Scheme of our sheath (for the cold-ions model) in a positive space-charged config-
uration. Plots of densities and electric potential.

We assume the sheath to be collision-less, the ion flux is then conserved since sources
and losses are balanced :

∂ni
∂t

+∇(niui) = ∇(niui) = 0⇔ ni(x)ui(x) = Cte in the sheath (6)

Exercise. Write down Poisson’s equation, energy conservation and flux conservation for
ions in the sheath. Show that we must have at sheath edge, ui(0) = Cs. Write Cs in term of
kB, Te and mi.

Solution. First of all, let us write the 3 equations. The conservation laws will be taken
between the sheath edge and an arbitrary point x in the sheath, hence:

d2φ

dx2
=

e

ε0
(ne − ni)

1

2
miu

2
i (0) =

1

2
miu

2
i (x) + eφ(x)

nseui(0) = ni(x)ui(x)

(7)
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Using ion energy conservation we can write ui(x) in terms of potential. Putting this inside
ion flux conservation gives an expression for ion density, that we can put inside Poisson:

ui(x) =

√
u2i (0)− 2eφ(x)

mi

⇒ ni(x) = nse

(
1− 2eφ(x)

miu2i (0)

)−1/2
. (8)

In the sheath, the quantity ne − ni must be negative2 (because there are less electrons than
ions in the sheath). So, very close to sheath edge (i.e. at very small potential),

ne − ni < 0⇔ nse exp

[
eφ

kBTe

]
− nse

(
1− 2eφ(x)

miu2i (0)

)−1/2
< 0

∼ nse

(
1 +

eφ

kBTe

)
− nse

(
1 +

eφ

miu2i (0)

)
< 0

⇔ 1

kBTe
− 1

miu2i (0)
> 0 remember φ < 0 in the sheath

Which gives the well known Bohm criterion,

ui(0) > Cs =

√
kBTe
mi

(9)

Cs is the Bohm speed, or the speed of sound for ions.
That means that to ensure stability of the sheath, ions must enter the sheath at the min-

imal speed of Cs. To calculate nse, one must remember that electrons follow a Maxwell-
Boltzmann distribution (i.e. ne(x) = np · exp[e(φ − φp)/kBTe] = nse · exp[eφ/kBTe]), and at
sheath-edge ni(0) = ne(0). Moreover, between sheath-edge and the bulk plasma, the energy
conservation says that:

1

2
miC

2
s =

1

2
miu

2
i (−∞) + eφp ≈ φp ⇔

eφp
kBTe

=
1

2
(10)

In other words, plasma potential equals the half of electron temperature. Finally, nse =

ni(0) = ne(0) = np · exp(−eφp/kBTe) ≈ 0.61 · np.
In all the above considerations, the wall is not initially put at a certain potential. At

steady-state or at equilibrium, electron and ion flux equals each other: we say that the wall
floats. When the wall is at the floating potential, φW = φfl, the net current on the wall is
then zero. Let us calculate the potential difference between the floating wall and the plasma.
Mathematically speaking, floating condition involves that |Je| = |Ji| ⇔ e〈neve〉 = e〈nivi〉 ⇔
eni− s)ui(s) = ene(s)〈|ue|〉/4, indeed, electrons are Maxwellian – the flux equals the random
flux on a surface – and ions are directed by the Bohm flux. Using the fact that ions flux is

2Remember that for all potential bellow plasma potential, electrons are considered as trapped by the po-
tential well: they obey to a Maxwellian distribution. Their density is then given by the following formula:
ne(x) = nA · exp[e(φ(x)− φ(xA))/kBTe] ∀φ ≤ φp and A a point between the wall and the bulk plasma.
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conserved in the sheath, we have:

eni(−s)ui(−s) = enseCs =
1

4
enp exp

[
e
φfl − φp
kBTe

]√
8kBTe
πme

, (11)

or also,

φp − φfl =
kBTe

2e

(
ln

[
mi

2πme

]
+ 1

)
. (12)

1.2.2 The Child-Langmuir Law

From now on we drive our wall to a certain potential V . That causes the sheath structure to
change, because the new potential drop oblige the plasma to widen or to shorten the sheath
to achieve the shielding of the wall. In this section, we are going to calculate the value of s,
the sheath length. With Poisson equation,

d2φ

dx2
= − e

ε0
(ni(x)− ne(x)), (13)

we won’t get an analytical solution for s. We counter that problem with an approximation
by assuming that the wall potential is very negative, so that e(V − φp)/kBTe � 1. With
that condition, electrons will be strongly repealed by the potential drop, so we omit their
presence in the sheath:

d2φ

dx2
= − e

ε0
(ni(x)− ne(x)) ∼ −eni(x)

ε0
. (14)

Ion flux conservation in the sheath remains true and yields to:

eni(x)ui(x) = enseCs = J0
i ⇔ eni(x) =

J0
i

ui(x)
. (15)

Finally, ion energy conservation for strong potential drop between a point in the sheath and
the sheath edge gives:

1

2
miu

2
i (x) + eφ(x) =

1

2
miC

2
s ⇔ ui(x) =

√
−2eφ(x)

mi

√
1− miC

2
s

2eφ(x)
∼

√
−2eφ(x)

mi

. (16)

Thus, the Poisson equation becomes:

d2φ

dx2
= −J

0
i

ε0

(
−2eφ(x)

mi

)−1/2
= −J

0
i

ε0

√
mi

2e
(−φ(x))−1/2 (17)

Exercise. Solve that integral. Tip: first multiply (17) with the first derivative of the poten-
tial. Integrate this new equation between sheath edge (x = 0) and somewhere in the sheath
(x). Then, write the first derivative of φ and solve.
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Solution. The way of integrating this differential equation must be known because it can
helps you in a lot of cases. After multiplying (17) we get:∫ x

x=0

dφ
dx
· d2φ

dx2
dx = −J

0
i

ε0

√
mi

2e

∫ x

x=0

(−φ(x))−1/2
dφ
dx

dx (18)

The l.h.s. integrates straightforwardly and the r.h.s. becomes an integration over φ, from
φ(0) = 0 to φ(x) (remember that φ′(x = 0) = 0):

1

2

[(
dφ
dx

)2
]x
0

= −J
0
i

ε0

√
mi

2e

∫ φ

0

dφ√
−φ

=
2J0

i

ε0

√
mi

2e

[√
−φ
]φ
0

⇔ 1

2

(
dφ
dx

)2

=
2J0

i

ε0

√
mi

2e

√
−φ(x)

⇔ dφ
dx

= −

√
4J0

i

ε0

√
mi

2e
(−φ(x))1/4

⇔
∫ V

0

− dφ
(−φ)1/4

=

√
4J0

i

ε0

√
mi

2e

∫ s

0

dx

⇔ 4

3
(−V )3/4 = s

√
4J0

i

ε0

√
mi

2e

⇔ J0
i =

4ε0
9

√
2e

mi

× |V |
3/2

s2
(19)

Which is the Child-Langmuir law. It shows that the ion current is proportional to the po-
tential drop at a power of 3/2. After some algebra and rearrangements, the sheath length
writes:

s =

√
2

3
λDe

(
2
e|V |
kBTe

)3/4

with electron Debey length λDe =

√
ε0kBTe
npe2

(20)

The whole calculation is also true when considering a strong and positive wall potential:
there will be no ions in the sheath, and the electron current will obey to equation (19) (of
course, after changing mi to me).

1.2.3 The theory of Langmuir probes

Last section we put a voltage on our wall. From now on, we put a name to the wall and call
it a probe. A Langmuir probe is nothing but a metal tip that we put into the plasma. It can
have several shapes, planar, cylindrical, spherical,... Usually the probe potential swipes a
range from -70 to 70 volts and the measured current is plot. The output I(V ) curve is called
the characteristics of the probe. This curve gives access to several plasma parameters, such
as plasma potential, density and temperature.

The probe characteristics can be analytically calculated by computing the collected cur-
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rent,

I(V ) = Ie − Ii =

〈∫∫
probe

e(Γe − Γi) · dS

〉
, (21)

note that here, the ion current is counted as negative, and the electron current is counted as
positive (it is just a question of definition).

To do the derivation of I(V ), we must separate the two cases, V > φp and V < φp. Let
us start with the second condition: the probe repeals electrons and accelerate ions because it
has a potential bellow the plasma potential. For that calculation, we call the z direction, the
direction perpendicular to the probe surface. An electron from the bulk plasma must have a
minimum velocity vz to reach the probe:

1

2
mev

2
z,0 − eφp = 0− eV ⇔ vz,0 =

√
2e

me

(φp − V ) (22)

θ

ϕ

vx

vy

vz

vz,0

v⊥

v

2D projection in (v⊥, vz) plane

v⊥

vz
v(θ)

v(θmax)

θmax

vz,0

Figure 2: Visualisation of θmax in velocity space. On the l.h.s. the sphere has a radius of
v = |v|, and we have represent a velocity vector in blue of length v. On the r.h.s. we show
the projection at ϕ =Cte. As long as the angle θ is below the value θmax the electron of
velocity v will touches the probe.

But as we know, in the plasma electrons have a random distribution of velocity, and the
velocity vector has three component, v. To ensure that an electron of velocity v = |v| have
a z component greater than vz,0 it must verifies (using the standard spherical coordinates)
that:

θ ≤ θmax = arccos
(vz,0
v

)
(23)

Let us now calculate the electron flux that verifies that limiting condition. For recall, the
flux is estimated by averaging over the velocity space the quantity Γ = 〈nv〉. In our case the
only flux that will contribute to the current collection is its z component. Thus,

Γz =

∫∫∫
fe(v)vz dv dθ dϕ (24)

M1 Physique – Nancy page – 8 Experimental Plasma
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Using the fact that vz = v cos θ, that v ∈ [vz,0,+∞[, θ ∈ [0, θmax], ϕ ∈ [0, 2π], and knowing that
the electron velocity distribution function (which we assume to be Maxwellian) writes,

fe(v) d3v = npv
2

(
me

2πkBTe

)3/2

· exp

[
− mev

2

2kBTe

]
dv sin θ dθ dϕ (25)

And now place to the algebra:

Γz = 2πnp

(
me

2πkBTe

)3/2 ∫ +∞

vz,0

v3e−mv
2/2kBTe

∫ θmax

0

sin θ cos θ dθ dv

= 2πnp

(
me

2πkBTe

)3/2 ∫ +∞

vz,0

v3
[

cos2 θ

2

]0
θmax

e−mv
2/2kBTe dv

= πnp

(
me

2πkBTe

)3/2 ∫ +∞

vz,0

v3
(

1−
v2z,0
v2

)
e−mv

2/2kBTe dv

= πnp

(
me

2πkBTe

)3/2

× 2

(
kBTe
me

)2

e−mv
2
z,0/2kBTe

Γz = Γsat. · exp

[
e
V − φp
kBTe

]
(26)

where Γsat. is the random flux on a surface,

Γsat. =
1

4
np〈v〉 =

1

4
np

√
8kBTe
πme

(27)

It is also the electron flux on a surface when they are no more trapped (i.e. V ≥ φp). Finally,
since the electron current is nothing but Ie = eΓzS (where S is the collection surface), we
have:

Ie(V ) =


1

4
enpS

√
8kBTe
πme

· exp

[
e
V − φp
kBTe

]
, V ≤ φp

1

4
enpS

√
8kBTe
πme

, V ≥ φp

(28)

The quantity eΓsat.S is also called the "electron saturation current". For ions it is more easier:
in our very simple case, we supposed that ions are cold, so that Ti → 0. Thus, when they
are attracted, they have a Bohm flux towards the probe, and when they are repealed we
approximate the ion current to 0:

Ii(V ) =

 0, 61× enpS
√
kBTe
mi

, V ≤ φp

0 , V ≥ φp

(29)

The collected current on the probe is the sum of both contributions (ion plus electron).
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1.2.4 In practice and discussions

In what follows, we consider a cylindrical Langmuir probe of length Lp = 1 cm and of radius
rp = 75 µm. The measurement takes a few seconds, and the probe makes several curves and
then outputs the average characteristics. For an He plasma at 1.2 Pa the IV characteristics
is plotted in figure 3. As we can see there are 3 distinct regions: the ion collection region,
the electron collection one, and the transition region. I recommend the lecture of Merlino’s
paper [3] which is very clear and comprehensible by M1 students.

Graphically it is straight forward to spot the floating potential: it is the point where the
curve cross the I = 0 line. To find the plasma potential, one must remember that at the
plasma potential, the electron current switches from an exponential behaviour to a satura-
tion behaviour. The plasma potential is defined as the potential at which:

dI
dV

∣∣∣∣
V=φp

= max

(
dI
dV

)
(30)

This criterion is quite simple, but experimentally there is a lot of incertitude in the determi-
nation of the plasma potential, as we can see in the figure 3–left.

Moreover, we notice that the electron- and ion- saturation currents do not saturate. This
is due to the fact that the surface of collection S is not the probe surface: we need to take
into account the sheath extension given by eq.(20)3! This adds a lot of problem to determine
np and Te, and there is no method that works every time. One method consist of using a
self-consistent code that uses the transition region. First we assume that Te equals a certain
temperature. Second we calculate np using the current at plasma potential (which uses the
input temperature). Then we calculate the effective collection area using the formula (20)
and fit the ion current. Finally we compute the first derivative of I(V )− Ii(V ) (because this
quantity is the exponential electronic current) to get a new Te. We start again until the values
of np and Te converges.

But in the experimental work you will use a software that calculates all plasma parame-
ters by its own. So do not worry about computational problems, just keep in mind that it is
not straight forward at all!

1.2.5 A bit further

Energy distribution function. Starting from the third line of calculation (26), we can intro-
duce the electron kinetic energy expressed in volts as E = mv2/2e. Remembering that the
energy distribution function for electrons is given by,

ge(E) = 2π

(
2e

me

)3/2√
Efe(v(E)) (31)

3Note that you have to change V from equation (20) to V −φp. The potential at which the collection surface
is the probe surface is the plasma potential.

M1 Physique – Nancy page – 10 Experimental Plasma
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and using this integration rule,

Ψ =

∫ b

a

ψ(a, x) dx⇔ ∂Ψ

∂a
=

∫ b

0

∂ψ

∂a
dx− ψ(a, x) (32)

we get something interesting, since

ge(E = V ) =
2me

Se2

√
me

2eV
· d2I

dV 2
(33)

But again, even with a clean IV curve, the derivative and the second derivative are noisy,
and it can be problematic to extract some physics from the second derivative (in our case as
plotted in figure 3–right it is even impossible).

Figure 3: Left: Typical IV characteristics obtained on the ALINE experimental divice (at
null magnetic field). On blue the IV characteristics, and in green its first derivative – Right:
Second derivative of the characteristic plotted left.

In the presence of a strong magnetic field. As you know, in the presence of a B field
electrons have a so-called cyclotron motion around magnetic field lines. This causes the
plasma to become an anisotropic medium. The consequences are that we do not know how
to calculate the effective collection area, and the IV curve has a bump just after the plasma
potential that we do not understand entirely. This bump may comes from a plasma depletion
[4] because the probe flush a lot of electrons in the magnetic flux tube.

M1 Physique – Nancy page – 11 Experimental Plasma
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2 Laser Induced fluorescence on the magnetron device

2.1 Experimental device

2.1.1 Introduction

I recommend you to have a look on the first chapter of my Master’s Thesis [5] and on the
Thesis of M. Desecures [6] for large explanation on the subject. And anyway, during the
manipulation day you will have the presentation with the device in front of you.

However, the reactor was designed to study the physical vapour deposition (PVD) by
magnetron sputtering. To be simple: we turn on a plasma around a piece of metal called
"target". By biasing the target to hight negative voltage, ions from the plasma will be accel-
erated toward its surface. Incoming ions have a high kinetic energy, and through a complex
mechanism, they eject some metal atoms: it’s the sputtering of the target. The sputtered
atoms transport themselves through the "sputtering cone". So if we want to achieve deposi-
tion, one can place a substrate is the front of the target so that sputtered atoms can deposit:
it’s the PVD. PVD has a lot of industrial applications4.

2.1.2 The magnetron

Figure 4: The same Tungstene (W) target
before and after 10hours of magnetron
sputerring. The recetrack is pointed by
the big fat and black arrow.

Here we see that the sputter atom have to move
from the target to the substrate. To have a good
deposition rate, the pressure must be reduced
to minimize the loss due to collisions between
metallic atoms and the gas. But according to
Paschen’s law, reducing the pressure oblige us
to increase the discharge voltage. At our pres-
sure (about 10 mTorr) the ignition voltage would
be at the order of several kilovolts! To counter
that problem, we place a circular magnet, called
magnetron, behind the target. Its magnetic field
confines the electrons by increasing their mean
free path and allows us to decrease the voltage
around 100 volts. The plasma is denser at the
positions where the drift velocity is higher, i.e. when E ⊥ B since,

vdrift =
E×B

B2
(34)

This inhomogeneity is visible on the target with the apparition of a racetrack as seen in figure
4. Ions from dense plasma are accelerated to the target, due to the electric field, and achieve
its sputtering.

4This phrase doesn’t sound convincing...
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2.1.3 Experimental apparatus

We place a tunable diode (with spectral resolution of less than 0.005 pm) in the front of the
probe and aim the center of the racetrack. About 20 percent of the laser intensity is redirected
to a Fabry-Perot to measure the wavelength. The laser’s trajectory goes along with the z axis
(with ez perpendicular to the target). Photons interact with the neutral metallic vapour. An
optical fibre is placed perpendicular to the laser beam and is relied to an photomultiplier to
convert the collected light intensity into voltage, and that voltage is plot on an oscilloscope.

2.2 The theory of Laser Induced Fluorescence

2.2.1 Using Doppler effect

t [s]O

λ [pm]

∼ few ms
•λ0

•
λ0 + few 10 pm

•
λ0

Figure 5: Laser wavelength over time.

LIF measurements are very complex to achieve,
but the theory is quite intuitive. The tunable
diode (TD) makes a periodic swipe of wave-
length of few pm between λ0 and λ0 + δλ (see
fig.5). The range of wavelength is chosen so that
it contains λtr., the wavelength of transition from
fundamental to a metastable state of the metal-
lic atom specie. After absorption of the photon,
the metastable atom releases almost instantly the
photon and go back to it’s fundamental. This
photon is caught by the optical fibre. The con-
clusion of that, is that the oscilloscope displays the number of desexcitation over time.

Fundamental

E [eV]

O

λlaser = λabs.

λLIF

Metastable state

Figure 6: Scheme of the transition of a
metallic atom.

But why shall we swipe a range of wave-
length? A sputtered atom has a velocity v, with
vz the velocity perpendicular to the target (it
is also the projection of v on the laser beam).
When the atom catches a photon of wavelength
λlaser it actually "sees" another wavelength due to
Doppler shift (because the atom is not at rest). So
the absorption of the photon is actually done at
a wavelength λabs. = λtr. + ∆λ, where ∆λ is the
Doppler shift:

∆λ = λlaser ·
vz
c

(35)

On the oscilloscope, we have the voltage V (t) that is proportional to the number of de-
sexcitation for each time t. But thanks to Fraby-Perot, we know the relationship between
time and wavelength, t ⇔ λ. Finally, the Doppler formula gives the velocity vz for each λ.
Thus, the oscilloscope displays V (vz): the number of metallic atom of velocity vz. The LIF
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signal is actually proportional5 to the velocity distribution function of the metallic sputtered
vapour!

2.2.2 Understanding and exploitation of a LIF curve

Figure 7: Example of the result of one LIF
measurement and its fit curves.

Now we know that the LIF measurements give
us access to the velocity distribution function of
the sputtered metallic atoms. But we do not now
at which time t the probed velocity is vz = 0 (i.e.
λabs. = λtr.). In other terms we have the scale but
not the origin. To solve that problem, let’s take
a look on a LIF curve, see fig. 7. The LIF profile
is the convolution between 2 curves: a Gaussian
and something else. In terms of distributions, a
Gaussian corresponds to a "thermalized popula-
tion", that means that those atoms are at equi-
librium with the neutral gas because they had a
lot of collisions (about 10). The mean velocity of
those sputtered atoms is then 0: the maximum of the Gaussian defines the origin of our vz
axis. Hence, at Gaussian maximum vz = 0 = ∆λ.

The other distribution describes those atoms which did not had much collisions. The
shape of the curve is called a modified-Thompson or a Stepanova; it is the distribution of
energetic sputered atoms at z = 0. For other distances z > 0, the Stepanova decreases in am-
plitude because energetic atoms do some collisions with the neutral gas, so they thermalize
themselves and feed the thermalized population.

Mathematically, the distributions are given by:

fTH(vz) = N

√
m

2πkBT
· exp

[
− mv2z

2kBT

]
(36)

for the thermalized population and by

fEN(vz) ∝

1

2
mv2z[

Us +
1

2
mv2z

]−3+2b

1−
Us +

1

2
mv2z

Us +
1

2
mv2z,max

 (37)

for the energetic population. Where m, T and N are the mass, temperature and density
of the sputtered vapour – and Us is the metallic surface potential, b the binary interaction
coefficient and finally vz,max the maximum speed of the distribution.

Thanks to some numerical integrations, we are able to calculate the densities, mean ve-
locity, mean energy, flux,... of each populations; which is very important if we want to

5The proportionality coefficient is obtained thanks to absorption spectroscopy.
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characterize properly our PVD process (e.g. we can know exactly at which z the deposition
will be optimal). Please, see appendix A (p.41) of ref. [5] for formulas. Again, during the
experimental work, you will have access to a software that will provide you the numeri-
cal results. But you have to understand the meaning of the curve to give the good input
parameters, and to discuss the results.
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