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Abstract 

Because of the effects of gravity and/or residual stress, some manufactured mechanical parts, such 

as sheet metals and skins, often have a significantly different shape in a free-state position as compared 

to their state-of-use position. These parts are described as compliant, flexible or nonrigid. Expensive 

specialized fixtures are currently used prior to performing geometrical inspection operations in order to 

maintain compliant parts in the state-of-use position. This paper introduces an automatic bi-criterion 

flexible registration method for the dimensional and geometric inspection of such parts. The proposed 

method deforms the data acquired via a non-contact scanner of a compliant part in a free-state position 

until it reaches the nominal CAD shape for inspection with conventional Computer-Aided Inspection 

(CAI) tools. In other words, the method neutralizes the deviations induced in a compliant part by the 

effects of gravity and residual stress, allowing the acquired data to be treated as if it were obtained from 

a rigid part, using already available conventional (rigid) CAI tools. A proposed algorithm based on the 

BOFR-2 (the 2nd version of a Bi-Objective Flexible Registration algorithm) method is validated against 

both virtual simulated and experimental real industrial case studies from the aerospace sector. The 

resulting cost reduction and agility increasing make this fixtureless method well adapted to the 

requirements of unit-batch production in the context of Industry 4.0. 
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1  Introduction 

In manufacturing, quality control (QC) is an essential phase as it guarantees that customers will 

receive parts within a permissible tolerance. Given that all manufactured parts often have geometrical 

differences versus their nominal Computer-Aided Design (CAD) models, performing an inspection 

becomes critical during the QC phase. For rigid parts, this inspection is typically performed in two 

steps. First, there is preliminary geometric data acquisition in the state-of-use (~ assembly) position 

(contact-based or non-contact acquisition). Acquired data are usually exported in a standard PointCloud 

file format or in a triangular surface mesh file format (e.g., *.STL). Second, processing is performed to 

acquire data using 3D optical scanner and Computer-Aided Inspection (CAI) tools to identify the 

location and amplitude of manufacturing defects (depending on predefined tolerance types and 

tolerance ranges). This two-fold inspection routine is currently limited to only parts that are reasonably 

rigid. This focus on rigidity is due to conventional CAI software requirements, in which it is assumed 

by default that any data imported into the software is from a rigid part, and thus, any deviation (outside 

typical measurement equipment noise amplitudes) between the imported data and the nominal CAD 

model should be treated as a potential manufacturing defect. Some mechanical parts, such as parts with 

thin walls (skins), have a considerably different shape in a free-state condition as compared to their 

nominal CAD model due to the effects of gravity and residual stress remaining from manufacturing 

processes. This geometric deviation results mostly from such elastic deformations, rather than from 

actual manufacturing defects. The notion of flexibility of compliant parts was first quantified in [3] 

(they are also sometimes called nonrigid, flexible parts or deformable bodies). The geometrical 

inspection of compliant parts requires an extra step because of the aforementioned geometric deviation 

they entail, over and above the standard quality control of rigid parts. Traditionally, standard or 

specialized conformation fixtures must first be set up to maintain the part in its state-of-use position as 

defined in a CAD model. 

There are multiple downsides to using fixtures, including the time-consuming set-up process, 

considerable purchase and operating expenses, and errors in CAI analysis if the setup on the fixture has 

not been performed adequately. These disadvantages have recently led researchers to attempt to 

circumvent the use of fixtures with flexible registration with complementary defect identification 

[1]–[18]. A flexible registration is a deformation of the acquired point set that respects intrinsic 

(dimensional and shape) properties of the compliant part in order to avoid the misidentification of any 

existing defects or create new artificial ones. The flexible point set registration could be based on a 

Finite Element Analysis (FEA) [4], [14] or on a probability density estimation [15], [16]. FEA-based 

flexible registration methods have major disadvantages, such as being difficult to set up (e.g., properly 

defining boundary conditions) and require significant computational resources. Probabilistic flexible 

registration methods have managed to increase automation and reduce runtimes. However, these 

methods have not been extensively explored in previous research, and are still in their early-to-

intermediate stages of maturity. In 2011, the Iterative Displacement Inspection (IDI) algorithm [19] was 

introduced. This essentially initiates the Nonrigid-ICP [20] registration algorithm iteratively to register 

CAD meshes onto SCAN meshes, while minimizing two objective functions: the point-to-point distance 

between SCAN and CAD and a scalar representation of the change in the smoothness of the CAD mesh 

per (registration) iteration. Minimizing the change in smoothness was meant to ensure (by association) 

the integrity of the intrinsic (dimensional and shape) properties of the part during registration. In 2015, 

a method and an algorithm based on it, named Inspection of Deformable Bodies by Adapting the 

Coherent Point Drift (IDB-ACPD), was introduced [15]. The Coherent Point Drift (CPD) [21] nonrigid 

registration is initiated iteratively to register CAD meshes onto SCAN meshes, while minimizing two 

objective functions: the point-to-point distance between CAD and SCAN and a scalar representation of 

the change in mesh size parameter (or stretch) of the CAD mesh per iteration. The minimization of the 

change in mesh size parameter was meant to ensure the integrity of the intrinsic properties of the part 

during registration. In summary, both IDI and IDB-ACPD propose a CAD-to-SCAN registration 
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direction (similar to the finite-element-based methods that followed after [5], [6], constraining the 

registration in one way or another to ensure integrity of the part during registration, a pointwise distance 

calculation between CAD and SCAN, and a single-objective formulation for finding the ideal 

registration parameters. Haj Ibrahim et al. in [22] extended ACPD registration method to sheet-metal 

parts featuring rigidity variations located in high-curvature regions. They incorporated a weight matrix 

to adjust the stretch conservation criterion at each measurement point, and therefore simulate the part 

rigidity locally during the ACPD registration operation. A surface segmentation classifies zones 

featuring similar curvature and rigidity. The local weight affected to each zones is a new parameter of 

the registration loop. 

Alternative standalone defect identification methods do not necessarily rely on a prior flexible 

registration operation (although it could possibly benefit from one as a bonus). Despite recent 

developments and its theoretical superiority to complementary methods, standalone defect 

identification is still very new, and lacks the accuracy of a complementary defect identification 

performed after a flexible registration [3], [13].  

Another research trend is assembly Assessment methods to predict the behavior of compliant parts 

in an assembly, such as the optimal assembly sequence and its effects on the final shape [17], the post-

assembly shape of a compliant part under normal lighting conditions [18], and the required assembly 

boundary conditions to ensure a post-assembly shape that closely resembles the nominal CAD [23], 

[24]. They are typically performed after the conclusion of complementary defect identification (they 

thus rely on a prior near-perfect flexible registration performed outside, or as part of their own proposed 

method). [25] proposed an extension of the Statistical Variation Analysis and FEA (SVA-FEA) 

methodology. Two consecutive FEA are run: first, a linear model of flexible assembly analysis is used 

to calculate the forces needed to fixture and fasten parts in all points of interest. Second, opposite forces 

are applied to simulate the elastic spring-back effect occurring during the releasing phase of fixture and 

fasten tools. In order to avoid part-to-part penetration in the fastening and during spring-backphase, 

multi-point contact constraints are introduced. Franciosa et al. proposed in [26] a systematic 

methodology to optimize the fixture layout design, by efficiently determining the manufacturing 

variability in function of the location and number of clamps and locators, in presence of stochastic 

manufacturing errors both at product and process levels.  Gouyou et al. [27] used the polytope form 

tolerance simulation and local contact finite element analysis to identify compliant part's deformations 

induced by the assembly. The pressure resulting from contact zones is used to evaluate the difficulty 

level of the assembly. 

In this paper, an additional installment to the probabilistic flexible registration category is proposed, 

which minimizes non-flexible deformations, and validates the deformation locally with a rigorous 

metric. The method is named BOFR-2 (2nd version of a Bi-Objective Flexible Registration algorithm), 

with the first version having been briefly presented in [1]. The proposed methodology is validated by 

tests against multiple virtual (simulated) and experimental (real) industrial case studies. The 

contributions of the proposed method to the state of the art include improvements in terms of accuracy, 

automation, runtime, robustness and precision (repeatability), and interoperability. 

The paper is organized as follows: The proposed method is presented in Section 2. The validation 

approach is explained in Section 3.1, while the results obtained are presented in Sections 3.2 and 3.3. 

A discussion of the interpretation of the results is carried out in Section 4, and concluding remarks and 

future works are presented in Section 5.  

2  Methodology 

In this work, defects were analyzed in accordance with ISO-1101:2017 Geometrical Product 

Specifications (GPS) standards [28]. The underlying concept behind the method can be simplified as 

follows: a bi-objective optimization is performed to minimize two key criteria that are the output of a 
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black box containing a nonrigid registration algorithm. The input is a selection of parameters of the 

nonrigid registration algorithm chosen to be inside the black box. The nonrigid registration algorithm 

will register a previously defined source point cloud onto a target point cloud (each time the black box 

is initiated). The first output of the black box is a Hausdorff distance criterion between the registered 

source point cloud and the target point cloud. The second output is a criterion quantifying the change 

in dimensional and shape properties of the source point cloud. The main steps of the method developed 

are presented in Algorithm 1. All computational operations in this study were performed on a dual-core 

Intel Core® i5-4300U machine clocked at 1.9 GHz and equipped with 4.0 GB of RAM and the 64-bit 

MS Windows® operating system. BOFR-1/2 were developed in MATLAB® (R2016a) as single-

threaded applications. 

Algorithm 1 – Main steps of the proposed (BOFR-2) method 

Inputs: CAD mesh, SCAN mesh, mesh size T, CPD smoothness regularization parameters 
lambda=lambda_init and beta=beta_init; noise/outliers handling parameter ω 
Outputs: OPTREG optimally registered mesh, and defects. 
Repeat: 

1. Register SCAN mesh to CAD mesh using the flexible registration algorithm (CPD), save it as REG 
mesh 

2. Compute the Hausdorff Distance between REG and CAD meshes defined as the largest 
distance between REG vertices and CAD triangles 

3. Compute the strain criterion defined as the norm of 𝛿𝑆𝑇𝑖: the largest deformation from SCAN 
to REG of j edges E i,j adjacent to vertex Vi. 

4. Optimize lambda and beta parameters with both strain and distance objectives, 
Until a stopping criterion is reached, i.e., maximum number of overall (black box) function evaluations, and 
maximum number of iterations. 

5. Compute the distance/strain Pareto front with optimal candidates (lambda_opt, beta_opt), and save 
OPTREG, the optimal solution using the optimality heuristic "quality of the superposition" 

6. Manual defects identification on OPTREG 

7. Automatic defects identification on OPTREG 

 

2.1  Step #1 and Step #4 (Optimizer and Registrar) 

Theoretically, any branch of nonrigid registration algorithms capable of performing a free-form alike 

deformation can be used. Various nonrigid registration methods are surveyed in[29], with the CPD 

algorithm chosen to be used [21]. This choice was thanks to its good ability to register large point 

clouds, an internal noise handling ability, its proven usability in the context of flexible registration, and 

its proven superiority over other nonrigid registration methods such as [30]–[33]. 

The CPD smoothness regularization registration parameters are 𝜆 and 𝛽, and the noise/outliers 

handling parameter is 𝜔 (enabling implicit noise handling in BOFR). It is worth mentioning that in 

CPD, input parameter 𝛽 defines the model of the smoothness regulator (i.e., it controls the rigidity and 

locality of the spatial smoothness), and parameter 𝜆 defines the tradeoff between the goodness of the 

maximum likelihood fit and regularization (i.e., it sets the strength of 𝛽). The overall approach of CPD 

in the nonrigid registration of point clouds can be simplified as follows. The superposition of two 

(source and target) point clouds is considered as a probability density estimation, where the source point 

cloud represents a set of Gaussian Mixture Model (GMM) centroids and the target point cloud 

represents a set of data points onto which the GMM centroids would be fitted. The fitting of GMM 

centroids is then performed iteratively via an Expectation Maximization (EM) optimization [34], [35] 

by calculating the posterior probabilities of the centroids’ fit. This maximization intends to find the best 

correspondence probability between the points of the two point clouds. A constraint is also considered 

during the maximization: forcing the GMM centroids to move coherently as a group (as defined by the 
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Motion Coherence Theory (MCT) in [36] in order to minimize the deformation of the source point 

cloud. The BOFR performs the registration in the SCAN-to-CAD direction. This increases the 

interoperability of the BOFR results since the free-state SCAN meshes registered by the BOFR can then 

be directly used to perform not only a complementary defect identification, but also an assembly 

assessment.   

As for the optimization of objectives (Step #4 in Algorithm 1), in the BOFR, a bi-objective 

optimization approach was adopted. This optimization is often used where the optimal solution to a 

problem needs to be reached in the presence of two conflicting objectives. Such problems often lack a 

solution that simultaneously optimizes both objectives, and a possible infinite number of solutions can 

be found. In engineering terminology, a solution is called non-dominated (or Pareto optimal) if none of 

the objective functions can be improved in value without degrading other objective function values. 

The Pareto front is then defined as the set of choices that are Pareto optimal, and in the case of two 

objectives, depicted as a two-dimensional (tradeoff) curve. By restricting attention to the Pareto front 

members, a decision maker could make tradeoffs within a small non-dominated set, rather than consider 

the full range of every parameter. In the BOFR, we are minimizing a distance criterion and a criterion 

quantifying the change in the intrinsic dimensional and shape properties of the source point cloud. The 

conflict can be summarized as follows: we want the distance between the source and target point clouds 

after registration to be as close as possible to zero, but that is only achievable with high values for the 

second criterion (yet we also do not want to let that happen and obtain near-zero values for the second 

criterion as well). Thus, the task at hand becomes a black box optimization problem with two objectives 

as outputs. Typical characteristics of black box optimization include the lack of any prior knowledge of 

the problem and the need for the black box to have a nonlinear behavior. These characteristics fit our 

context as the CPD registration cannot be estimated a priori because it lacks derivative information and 

prior Pareto front shape. Figure 1 shows the behavior of the CPD procedure (the objective Black-Box 

function). As a result, a particular branch of black box optimization methods needs to be used. Such 

methods have been extensively surveyed in [37], and include the Mesh Adaptive Direct Search (MADS) 

algorithm  [38], [39] in its bi-objective format. The BiMADS algorithm [38] has been chosen for two 

reasons. Firstly, the behavior of BiMADS is deterministic, as it approximates the same Pareto front 

regardless of how many times it has been initiated from the same initial guess. Secondly, its 

convergence and its optimality are mathematically proven.  
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Figure 1 –Behavior of BOFR-1/2 Black-Box function 

 

2.2  Step #2 (Distance Criterion) 

The first of the two outputs of the black box to be minimized, referred to as the distance criterion, 

calculates the Hausdorff distance between the source and the target triangular meshes (named REG and 

CAD) after each registration process in the optimization loop. Let 𝑅𝑉 = {𝑣𝑟1, 𝑣𝑟2, … , 𝑣𝑟𝑛|𝑣𝑟𝑖 ∈ ℝ3} be 

the set of 𝑛 vertices extracted from the source mesh file (REG); 𝐶𝑉 = {𝑣𝑐1, 𝑣𝑐2, … , 𝑣𝑐𝑛′|𝑣𝑐𝑖 ∈ ℝ3} the 

set of 𝑛′ vertices extracted from the target mesh file (CAD); 𝑅𝑇 = {𝑡𝑟1, 𝑡𝑟2, … , 𝑡𝑟𝑚|𝑡𝑟𝑗 ∈ ℝ3𝑥3} the set 

of 𝑚 triangles belonging to the source mesh file (REG), where each 𝑡𝑟𝑖contains vertices’ coordinates 

of the i-th triangle, and similarly let 𝐶𝑇 = {𝑡𝑐1, 𝑡𝑐2, … , 𝑡𝑐𝑚′|𝑡𝑐𝑗 ∈ ℝ3𝑥3} be the set of 𝑚′ triangles 

belonging to the target mesh file (CAD). A directed source-to-target mesh Hausdorff distance 

(ℎ(𝑅𝑉, 𝐶𝑇)) could then be described as the “maximum vertex-to-triangle distance of the set RV to the 

nearest triangle in the set CT”. In mathematical form, it can be written as in Eq.1: 

 ℎ(𝑅𝑉, 𝐶𝑇) =  max
𝑣𝑟𝑖∈𝑅𝑉

 { min
𝑡𝑐𝑗∈𝐶𝑇

 𝑑𝑖𝑠𝑡(𝑣𝑟𝑖 , 𝑡𝑐𝑗)} Eq. 1 

where 𝑑𝑖𝑠𝑡 is a function programmed to calculate the distance between a vertex and a triangle. 

Similarly, a directed target-to-source Hausdorff distance can be calculated and denoted by ℎ(𝐶𝑉, 𝑅𝑇). 

The two-way or cumulative Hausdorff distance would be defined in Eq.2: 

 𝐻𝑑(𝑅𝑉, 𝐶𝑇) = max  { ℎ(𝑅𝑉, 𝐶𝑇), ℎ(𝐶𝑉, 𝑅𝑇) }  Eq. 2 

where 𝐻𝑑 is the distance criterion used as one of the cost functions in the optimization loop. For an 

absolutely perfect superimposition, this value would be equal to zero.  

2.3  Step #3 (Stretch / Strain Criterion) 

The second output of the black box to be minimized can be set to either calculate the same stretch 

criterion of [15] or to use an alternative referred to in this chapter as the strain criterion. In the BOFR, 

the stretch criterion provides a cumulative measure of the change in the average of geodesic distances 
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(equal to mesh sizes) between each vertex and its neighbors on the same mesh after the mesh has been 

registered to a new shape during the optimization process. Let 𝑅𝑉 and 𝑅𝑇 be the same sets defined in 

the description of the distance criterion (step #2). The stretch differences 𝛿𝑆𝐶  and stretch criterion ∆𝑆𝐶 

are then respectively defined in Eq.3 and in Eq.4: 

 𝛿𝑆𝐶 = 𝑁−1|∑ 𝐷𝑅,𝑖
𝑁
𝑖=1 − ∑ 𝐷𝑆,𝑖

𝑁
𝑖=1 | Eq. 3 

 ∆𝑆𝐶= √
∑‖𝛿𝑆𝐶‖2

𝑛−1
 Eq. 4 

where 𝑁 is the number of neighbors around vertex 𝑣𝑟𝑖; 𝐷𝑅,𝑖 is the average distance between 𝑣𝑟𝑖 and its 

neighbors, and ∆𝑆 is the Euclidean norm of differences in 𝛿𝑆 between the initial (SCAN) and the 

registered (REG) mesh. A low value of the stretch means that the registration conserves the distances 

between nodes and their neighbors. In this paper, the new strain criterion provides a cumulative measure 

of the biggest rate of change in the edge mesh sizes linking each vertex to its neighbors after the mesh 

has been registered to a new shape during the optimization process. Let 𝑅𝑉 and 𝑅𝑇 be the same sets 

defined in the description of the distance criterion (step #2). The strain differences 𝛿𝑆𝑇 (column vector 

of size 𝑛 × 1) and the strain criterion ∆𝑆𝑇 (scalar value) are then respectively defined in Eq.5 and Eq.6: 

 𝛿𝑆𝑇𝑖 = max ( 
| 𝐷𝑅,𝑖 − 𝐷𝑆,𝑖 |

𝐷𝑆,𝑖
 )  Eq. 5 

 ∆𝑆𝑇= √
∑‖𝛿𝑆𝑇‖2

𝑛−1
  Eq. 6 

where 𝑛 is the number of vertices in 𝑅𝑉; 𝐷𝑅,𝑖 is a matrix whose i-th row contains all the distances 

between 𝑣𝑟𝑖 and its immediate neighbors, and ∆𝑆𝑇 is the Euclidean norm of differences in 𝛿𝑆𝑇 between 

the initial (SCAN) and the registered (REG) mesh. In other words, the column vector 𝛿𝑆𝑇 represents the 

per-vertex maximum engineering strain for all vertices of the registered (REG) mesh, and ∆𝑆𝑇 is the 

Euclidean norm of differences in the set of per-vertex maximum strains. Furthermore, a correlation can 

be assumed between the per-vertex maximum strain (𝛿𝑆𝑇) and an overall strain (typically denoted by 𝜀) 

that respects the Von Mises yield criterion. Under that assumption, because the material properties of a 

part, such as the tensile yield strength and the Young’s modulus, are known, a hard limit on the overall 

strain (𝜀), and by association 𝛿𝑆𝑇, could be calculated to ensure that the registration respects the Von 

Mises yield criterion [24]. Such a registration is guaranteed to not create new defects in the acquisition 

data while registering it. The aforementioned hard limit can be programmed either as a constraint for 

the optimization problem to be solved by BiMADS, or as an additional cost function to be minimized. 

Finally, Figure 2 illustrates the superiority of the new strain criterion of BOFR-2 over the stretch 

criterion used in the BOFR-1.  
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(1)  SCAN and CAD in Free-state Position (2)  Top-View of Optimally Registered and Free-state SCAN  

 

 

(3)  Zoom at Superimposed Intersecting Section to Compare Preservation of Dimensional and Shape Properties: 

SCAN mesh registered via BOFR-1 (Stretch Criterion) versus SCAN mesh registered via BOFR-2 (Strain Criterion) 

 

   

~ 133.1 μm vs.  ~ 5.9 μm ~ 19.7 μm vs.  ~ 1.5 μm ~ 7 μm vs.  ~ 0.8 μm 

SCAN, CAD, and OPTREG meshes in this demonstration belong to case study A1. OPTREG meshes (in Sub-figure #2) 

colored blue and green were registered by BOFR-1 and BOFR-2. 

Figure 2 – Comparison of the effects of stretch and strain criteria in preserving dimensional and shape properties  

2.4  Step #5 (Optimality Heuristics) 

The role of the optimality heuristics is to help determine the member of the resulting two-

dimensional Pareto front that is the best pick, which removes the need for end-user involvement. In the 

BOFR-2, the two elements of the cost function are the scalar distance and the strain values. To improve 

the decision-making process, a third dimension is subsequently inserted into this set. Here, each third 

dimension describes the quality of the superposition obtainable by that front member. For an obtained 

2D Pareto front with 𝑘 members, this quality of superposition, which is termed 𝑄𝑜𝑆, is defined in Eq.7: 

 𝑄𝑜𝑆 = { 𝑞1, … , 𝑞𝑘|𝑞𝑙 = 100 − %( min
𝑡𝑐𝑗∈𝐶𝑇

 𝑑𝑖𝑠𝑡(𝑣𝑟𝑖 , 𝑡𝑐𝑗) < 0.025 𝑚𝑚)} Eq. 7 

where 𝑣𝑟𝑖, 𝑡𝑐𝑗 and 𝑑𝑖𝑠𝑡 are the same as described in sub-sections 3.2 and 3.3. Each 𝑅𝑉𝑙 is a set composed 

of registered vertices that resulted in the l-th-obtained 2D Pareto front member. A small 𝑄𝑜𝑆 value for 

a 2D Pareto front member indicates that the registration associated with that member resulted in a good 

superposition between the source (SCAN) and target (CAD). The 25 m distance in Eq. represents the 

value of the measurement equipment noise : a handheld optical 3D scanner "MetraScan" from 

Creaform. The 𝑄𝑜𝑆 is calculated for each member of the initial 2D Pareto front and extends the N 2D-
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points of the Pareto front to a vector of N 3D-points:  𝑃𝑙
⃗⃗  ⃗=(𝐻𝑑(𝑅𝑉𝑙, 𝐶𝑇), ∆𝑆𝑇(𝑅𝑉𝑙), 𝑄𝑜𝑆(𝑅𝑉𝑙)), where 

𝑙 ∈ [1;𝑁]. The point 𝑃𝑙
⃗⃗  ⃗ having the shortest distance to the origin is chosen as the best solution. 

2.5  Steps #6 and #7 (Defect Identification) 

As mentioned earlier, given a satisfactory flexible registration (i.e., the majority of the source mesh 

vertices are correctly superimposed on the target mesh vertices), the registered scan (OPTREG in 

Algorithm 1) can then be treated as a rigid part’s scan inside conventional CAI software (e.g., 

Polyworks®). In this study, two types of defects are considered: contour profile defects and hole center 

localization defects, between OPTREG and CAD.  

2.6  Steps #8 and #9 (Mesh Generation and Mesh Simplification) 

As presented in Algorithm 1, a surface mesh is generated on the nominal CAD. In this study, the 

Delaunay triangulation provided via the mesh generator within SolidWorks® Simulation Standard was 

used to create a surface mesh on the nominal CAD [40]. The created mesh is dubbed ‘standard’ in the 

software (as opposed to a curvature-based mesh). Mesh edge lengths automatically proposed by the 

software (which typically amount to an efficient number of vertices to accurately represent the part’s 

geometry) were used in the mesh generation operation.  

It is proposed that the acquisition data (SCAN) undergo a mesh simplification operation. This is applied 

only to the experimental case studies in order to avoid using over-sampled raw acquisition data, since 

it would severely affect algorithm runtimes without providing any positive gain in the accuracy of the 

final results. The mesh was simplified using the quadratic edge collapse decimation from MeshLab 

[41]. In terms of the adopted configuration, a threshold on the maximum number of triangles was 

manually set for each experimental case study (E1 and E2). Information regarding the chosen thresholds 

and the resulting SCAN meshes (E1 and E2) are gathered in Table 1. Furthermore, the CAD meshes in 

the experimental case studies were also simplified since they were created differently from the virtual 

case studies. A lower threshold for the mesh simplification of the CAD meshes was chosen in order to 

adhere to the initial assumptions of the study. The compliant virtual case studies parts were simulated 

by SolidWorks Simulation® (finite element analysis) to identify gravity deformations. Starting with the 

CAD model, the scanned manufactured part (with defects) was simulated in accordance. Predefined 

profile deviation (defect) was added to all virtual case studies (See section 3.1.1, Table 2 to Table 4). 

Table 1 – Mesh Information of Case Studies 

Case Study # of Vertices # of Edges # of Triangles 
Density 

[vertices per 𝑐𝑚2] 

A1 
SCAN 4010 10976 6952 2.40 

CAD 1131 2886 1741 0.67 

A2 
SCAN 4010 10976 6952 2.40 

CAD 1131 2886 1741 0.67 

A3 
SCAN 4010 10976 6952 2.40 

CAD 1131 2886 1741 0.67 

B 
SCAN 4019 10989 6956 2.46 

CAD 1130 2877 1733 0.69 

C 
SCAN 3858 10673 6796 0.55 

CAD 1069 2785 1697 0.15 

D 
SCAN 11053 32219 21156 1.19 

CAD 2882 8187 5295 0.31 

E1 
SCAN 6613 16620 9999 5.34 

CAD 4112 9120 5000 3.32 

E2 
SCAN 6468 16474 9999 4.92 

CAD 3932 8939 5000 2.98 

* A1 to D are virtual (simulated) case studies; E1 and E2 are experimental (real) case studies 
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2.7  Step #10 (Display of Identified Defects) 

This step involves the mechanism required to display and clarify the location of any existing 

manufacturing defects. The amplitude for any potential manufacturing defect has already been 

calculated in step #7 via a set of distance-based tools programmed to mimic the behavior of the 

previously described manual tools of step #6. In step #10, using the assigned amplitudes, the intent is 

to clarify which of the vertices are in a defect region. This can be done either via an interaction with the 

end-user, or automatically. Traditionally, a color map displays the calculated amplitude for each vertex 

of the acquisition data. Such an amplitude could be the distance difference between each vertex of the 

registered SCAN mesh and its corresponding vertex on the nominal CAD mesh. Alternatively, outlier 

detection methods such as the maximum normed residual test (also known as the Grubbs’ test) could 

be applied to a set composed of the amplitudes for all vertices. 

3  Results 

3.1  Validation Approach and Assumptions 

In order to investigate the claims of the proposed methodology, the BOFR-2 (alongside its initial 

version, BOFR-1) was tested against both virtually created case studies (mostly from the aerospace 

industry) and experimental (real) ones. The following assumptions were initially made in this study:  

(1) The part material is known (Aluminum 7050), and the CAD model is available. Moreover, the 

triangulated point cloud (mesh) of the scanned part available is not a partial scan, and has reasonably 

clean boundaries (imperfections at worst below 10% of the part’s overall profile tolerance range). The 

geometric deviation at the free-state position must also be above the overall profile tolerance range.  

(2) The mesh density of the scanned part is higher than the mesh that will be generated on its 

corresponding CAD (at least two to three times higher). A low density (coarse) mesh of a part in the 

free-state position might not represent all the actual details (potential defects) due to the considerable 

gravity-induced deformation that exists in the free-state position. The same resolution is not needed on 

the nominal CAD mesh, given that flat regions are known (there is no defect on the CAD) and can be 

represented accurately even with a lower density mesh.  

(3) Data acquisition equipment noise is much smaller than defect amplitudes. Defect areas do not 

cover the majority of the part. Inspection is in accordance with the standard definition (e.g., ISO-GPS 

standards). In this paper, inspection is limited to localization defects and contour profile errors. 

3.1.1.  Case Studies 

A virtual (simulated) case study was comprised of the  CAD model of an industrial part, which was 

then modified to contain a number of artificial defects (contour profile errors and hole center 

localization), and was subsequently deformed under simulated gravity in a finite element software 

application, resulting in a virtual SCAN in the free-state position. The deformed finite element surface 

mesh was exported (OFF file format), acting as a virtual SCAN of the part in its free-state condition. In 

terms of software resources, SolidWorks® was used for the finite element operations. This was 

followed by a meshing operation on the CAD, and the resulting surface mesh being exported in OFF 

file format. Finally, a simulated Gaussian measurement equipment noise was added to the OFF mesh 

of the virtual SCAN. An experimental (real) case study is comprised of a CAD model of a real part, and 

real SCAN data captured from it via a non-contact acquisition hardware.  

3.1.2.  Evaluation Metrics 

The overall performance is evaluated by comparing the estimated defect amplitudes at specific 

regions with the predefined known defect amplitudes of the (virtual and experimental) case studies. 
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Two metrics can be considered in describing the error in estimating the defect amplitudes via an 

algorithm. The first, a relative Metrological Algorithmic Error (𝑀𝐴𝐸), is defined in Eq.8: 

 𝑀𝐴𝐸 =  
𝑣𝑎𝑏𝑠(𝐾𝐷𝐴−𝐸𝐷𝐴)

𝑇𝑜𝑙
   Eq. 8 

where 𝑣𝑎𝑏𝑠(𝑥) is the function returning the vector of absolute values of a vector 𝑥, 𝐾𝐷𝐴 is a vector 

representing known vertex defect amplitudes, 𝐸𝐷𝐴 is a vector representing the estimated vertex defect 

amplitudes, and 𝑇𝑜𝑙 is the overall tolerance range for the part. The following categorization for the 

𝑀𝐴𝐸 values could be used: 

𝑀𝐴𝐸 < 10% highly desirable 

10% < 𝑀𝐴𝐸 < 30% acceptable 

𝑀𝐴𝐸 > 30% unusable 

In other words, as long as the 𝑀𝐴𝐸 associated with an algorithm is < 30%, its obtained results (estimated 

defect amplitudes) can replace the traditional fixture-based inspection results. The second error metric, 

a Statistical Algorithmic Error (𝑆𝐴𝐸) is defined in Eq.9: 

 𝑆𝐴𝐸 = 𝑞95% ( | 𝐾𝐷𝐴 −  𝐸𝐷𝐴 | ) Eq. 9 

where 𝑞95% is the 95th percentile of the vector of absolute differences between known defect amplitudes 

and estimated defect amplitudes. 𝑆𝐴𝐸 is a scalar (e.g., in m or mm) describing a type of worst-case 

scenario in which in 95% of cases, the error is below or at the aforementioned scalar value. In other 

words, the 𝑆𝐴𝐸 is a kind of worst limit statistical metric that is not linked to the tolerance ranges of the 

part, and any algorithm that has a lower 𝑆𝐴𝐸 value (compared to others) is performing better. 

A final evaluation was also conducted by applying the BOFR-1/2 on two experimental case studies. 

Validations against experimental case studies demonstrate the algorithm’s ability to work with real 

acquisition data. 

3.2  Virtual Case Studies 

The majority of the mechanical parts used in virtual case studies come from the aerospace industry, 

where profile tolerance ranges are typically between 0.8 to 1.6 mm (in our case, 1 mm was considered). 

The measurement equipment noise added to the virtual scan was chosen to 25 m (at 95% confidence 

level). A top view of each of the virtual case studies (known defect regions in red) is depicted in Figure 

3. Some of the defects have an amplitude of zero microns, and were defined as such in the virtual scans 

to quantify possible over-estimations of defect amplitudes, and whether there is a correlation between 

estimated and actual defect amplitudes. The actual known amplitudes of these induced defects are 

available in tables positioned to the right of Figure 3. 

An example of results processed via the semi-automated procedure when validating the BOFR against 

the virtual case studies is presented in Figure 4. Figure 4.1 depicts the SCAN in its free-state position. 

Figure 4.2 depicts the known defect regions and their amplitudes. Figure 4.3 shows the cumulative 

distribution function (CDF) of all per-vertex metrological algorithmic errors for known defects. Figure 

4.4 to Figure 4.7 present the color map for both algorithms (BOFR-1 and BOFR-2) of the estimated 

surface profile deviations and the estimated per-vertex defect amplitudes for known defect regions, 

respectively. Figure 4.8 and 4.9 present the per-vertex strains on the registered SCAN, as compared to 

its state before registration. Typically, with the strain criterion, the BOFR-2 tends to have lower per-

vertex strain values. 
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Case B 

Table 2 – Case B, Defect amplitude estimations (manual measurement) 
 

Defects (in m) Zone A Zone B Zone C 

Hole (h) 

Actual 300 800 0 

BOFR1 204 813 21 

BOFR2 221 803 18 

Contour 

(cx / cy) 

Actual 0 / 800 300 / 0 800 / 300 

BOFR1 23 / 778 213 / 8 776 / 277 

BOFR2 24 / 776 216 / 6 789 / 273 

 

 
Case C 

Table 3 – Case C, Defect amplitude estimations (manual measurement) 
 

Defects 

(in m) 

Zone 

AD 

Zone 

AE 

Zone 

BD 

Zone 

BE 

Zone 

CD 

Zone 

CE 

Hole (h) 

Actual 300 800 0 - 1500 1000 

BOFR1 164 848 9 - 1503 786 

BOFR2 160 844 9 - 1503 785 

Contour 

(cx / cy) 

Actual 800 / - - / 0 300 / - 0 / 800 
1500 / 

300 

300 / 

800 

BOFR1 726 / - - / 6 223 / - 19 / 15 
1454 / 

305 

263 / 

790 

BOFR2 719 / - - / 5 224 / - 17 / 13 
1452 / 

304 

262 / 

790 

 

 
Case D 

 

 

 

Table 4 – Case D, Defect amplitude estimations (manual measurement) 
 

Defects 

(in m) 
Zone A Zone B Zone C 

Zone 

ABC 

Hole 

(h) 

Actual 300 0 800 - 

BOFR1 303 34 651 - 

BOFR2 347 28 710 - 

Contour 

(cx / cy) 

Actual 800 / 300 300 / 800 0 / 300 - / 0 

BOFR1 746 / 309 202 / 677 29 / 242 - / 54 

BOFR2 695 / 335 204 / 751 28 / 297 - / 52 

Figure 3 – (a) Defects and analyzed dimensions, (b) Top-view of the B/C/D case studies (best estimations are 

underlined and in bold) 
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Figure 4 – Case A1 
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3.3  Experimental Case Study 

Data acquisition was performed from real parts using a laser scanner (Creaform® MetraScan). 

Conformation fixtures were not used, and parts were merely placed on a simple support to distinguish 

the surface of the part during scanning from the background scenery. The overall tolerance range for 

the experimental case studies was set to 2 mm. This choice is justified by the larger amplitude of known 

defects of this experimental case and by the handled scanner accuracy. The experimental case studies 

(E1 and E2) consisted of two quasi-planar aluminum parts containing multiple small structured grooves 

(originally manufactured for a former study [42], with differences in both their CAD definitions and 

their deformed shape in free-state position). Cases E1 and E2 are depicted in Figure 5 in their respective 

free-state shapes, with a top view of each one. Table 5 and Table 6 also contain the post-registration 

manually measured defect amplitudes. The results processed are shown in Figure 6 and Figure 7. 

 

 

Table 5 – Case E1, Defect amplitude (manual measurement) 

Defects 

(in m) 

Zone 

AC 

Zone 

AD 

Zone 

BC 

Zone 

BD 

Hole (h) 

actual 0 0 - 0 

BOFR1 106 107 - 116 

BOFR2 84 72 - 81 

Contour 

(cx / cy) 

actual 0 / 0 - / 0 - / 0 0 / - 

BOFR1 98 / 67 - / 33 - / 85 147 / - 

BOFR2 104 / 66 - / 34 - / 85 150 / - 
 

Table 6 – Case E2, Defect amplitude (manual measurement) 

Defects 

(in m) 

Zone 

AC 

Zone 

AD 

Zone 

BC 

Zone 

BD 

Hole 

(h) 

actual 0 0 - 0 

BOFR1 101 182 - 86 

BOFR2 93 23 - 40 

Contour 

(cx / cy) 

actual 0 / 0 - / 0 - / 0 0 / - 

BOFR1 58 / 49 - / 56 - / 53 49 / - 

BOFR2 48 / 44 - / 45 - / 44 50 / - 

  
Figure 5 – Defects and analyzed dimensions of the E1/E2 case studies (best estimations are underlined and 

emboldened) 
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Figure 6 – Case E1 
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Figure 7 – Case E2 
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4  Discussion 

The better results of BOFR-2 algorithm are explained firstly with the new formulation of the 2nd 

optimization objective (strain), and secondly with the new heuristic for picking the best member in the 

Pareto front (quality of superimposition): 

 BOFR-1 [1] BOFR-2 

Step #4: 2nd 

optimization objective 

(1st objective = 

Hausdorff distance) 

Stretch: Norm of local stretch values 

at mesh vertices, each of which being 

the mean of neighbor edges’ 

elongation values (See Eq. 3). 

Strain: Norm of local strain values at 

mesh vertices, each of which being 

the maximum of neighbor edges’ 

elongation values. (See Eq. 5). 

Step #5 “Optimality 

Heuristics” to pick the 

best member in the 

Pareto front 

The solution featuring the smallest 

stretch criterion. 

The solution featuring the best quality 

of superposition (QoS) (See Eq. 7). 

 

Metrological algorithmic error: Figure 8 depicts all the metrological algorithmic errors emanating 

from the results. Lower algorithmic errors in the BOFR-2 are largely due to a better superposition 

between the registered SCAN and CAD. Figure 8 shows that 10% worst vertices aligned in BOFR-2 

feature an error > 0.52%, compared to 2.9% for BOFR-1 in case A1 (BOFR-2 divides last decile the 

error by 5.6). The MAE of the 10% worst vertices’ is also divided by 3.9 in case A2, 2.3 in case A3, 

and 1.6 on case E2. The two methods give similar performances on other test cases. For comparison, 

with similar case studies (skins), using a virtual fixture and a FE-based transformation model embedded 

into a constrained optimization [23] and GNIF [11], the level of error was between 5% and up to 12.5%.  

Statistical algorithmic error: Across all cases, the statistical algorithmic errors in automatic defect 

identification results obtained by the BOFR-1/2 are shows in Figure 9. Lower algorithmic errors are 

largely due to an improved superposition between the registered SCAN and CAD.  

Runtime: Total actual algorithm runtimes from start to final convergence for the BOFR are listed in 

Table 7. Figure 10 shows that BOFR 1&2 and AFDA [15] runtimes are comparable . The table also 

presents the number of black box evaluations before convergence, as well as the total number of CPD 

nonrigid registrar iterations.  
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Figure 8 –Cumulative density function of per-vertex metrological algorithmic error [%] of BOFR-1 vs. BOFR-2, for 

KNOWN Defects (ALL Types) across all case studies (A1 to E2) 
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Figure 9 – Statistical quality comparison of BOFR-1 vs. BOFR-2 across all case studies (A1 to E2) 
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Table 7 – Runtimes of all case studies (A1 to E2) for BOFR-1 ; BOFR-2 ; AFDA methods 

Case Study 
# of 

Vertices 

# of 

Triangles 

Density 

[vertices 

per 𝑐𝑚2] 

Runtime [seconds] # of CPD Iterations 
# of Black box 

Evaluations 

ACPD BOFR-1 BOFR-2 ACPD BOFR-1 BOFR-2 ACPD 
BOFR-

1/2 

             

A1 
SCAN 4010 6952 2.40 

604 806 1026 3666 1606 1535 130 50 
CAD 1131 1741 0.67 

A2 
SCAN 4010 6952 2.40 

417 591 518 2559 1567 1405 98 50 
CAD 1131 1741 0.67 

A3 
SCAN 4010 6952 2.40 

651 598 550 4116 1751 1646 163 50 
CAD 1131 1741 0.67 

B 
SCAN 4019 6956 2.46 

779 949 736 4631 1322 1368 179 50 
CAD 1130 1733 0.69 

C 
SCAN 3858 6796 0.55 

349 642 644 3294 1184 1345 84 50 
CAD 1069 1697 0.15 

D 
SCAN 11053 21156 1.19 

2116 2509 2616 4674 1897 1938 133 50 
CAD 2882 5295 0.31 

             

E1 
SCAN 6613 9999 5.34 

2069 1734 1454 6533 3866 3000 109 50 
CAD 4112 5000 3.32 

E2 
SCAN 6468 9999 4.92 

1535 1045 1270 5411 2260 3000 54 50 
CAD 3932 5000 2.98 

* Lowest values are underlined and emboldened 

 

 

Figure 10 – Runtime comparison of BOFR-1 ; BOFR-2 ; AFDA across all case studies (A1 to E2). Labels are the 

percentage of supplementary BOFR-2 runtime of compared to ACPD runtime 

5  Conclusion 

A new methodology was proposed for the fixtureless inspection of compliant parts. The new 

approach, named BOFR-2, was developed to identify contour profile and hole center localization errors. 

This method consists of an optimization of the Coherent Point Drift (CPD) registration regularization 

parameters (lambda and beta) by using the Bi-Mads bi-objective method, which is independent of pre-

defined internal weight parameters.  
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The BOFR-2 method was tested and validated on both virtual (simulated) and experimental (real) 

industrial case studies. A comparison with existing methods such as ACPD and BOFR-1 demonstrated 

more accurate results in the identification of the profile and localization defects.  

The better quality of the registration with BOFR-2 algorithm compared to the first version BOFR-

1[1] was measured with two metrics: 

- Quality of superimposition (QoS): the registered mesh is closer to the target mesh (CAD), not 

only along the surface’s normal direction, but also along the surface’s tangent direction on the 

free edges located on the surface’s boundary, 

- Accuracy of error detection (MAE): the errors found on the registered mesh are closer to the real 

value of manually created defects. 

The superiority of the BOFR-2 algorithm is explained with: 

- the replacement of the stress criterion (norm of mean elongation values around each vertex) with 

BOFR-2’s strain criterion (norm of maximal elongation values around each vertex), representing 

better the structural strain.  

- the quality of superimposition (rate of vertices outside a tolerance envelope around the CAD 

mesh) that replaced the stretch heuristic to select the best solution in Pareto front. 

Future works will involve (1) using a multi-objective method based on the Bi-Mads method [40] to 

include other criteria such as the minimization of the remanufacturing surface, (2) an extension to more 

complex geometries with non-uniform stiffness, such as bent plates, stiffeners, ribs, variable 

thicknesses, and (3) improving the robustness when the measurement noise amplitude changes with 

temperature variations during the data acquisition process. 

Overall, the method in the present study could efficiently manage compliant parts at a lower cost, thus 

providing a competitive manufacturing advantage. 
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