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Abstract. At CRYPTO 2017, Roşca et al. introduce a new variant of
the Learning With Errors (LWE) problem, called the Middle-Product
LWE (MP-LWE). The hardness of this new assumption is based on the
hardness of the Polynomial LWE (P-LWE) problem parameterized by a
set of polynomials, making it more secure against the possible weakness
of a single defining polynomial. As a cryptographic application, they also
provide an encryption scheme based on the MP-LWE problem. In this
paper, we propose a deterministic variant of their encryption scheme,
which does not need Gaussian sampling and is thus simpler than the
original one. Still, it has the same quasi-optimal asymptotic key and
ciphertext sizes. The main ingredient for this purpose is the Learning
With Rounding (LWR) problem which has already been used to deran-
domize LWE type encryption. The hardness of our scheme is based on
a new assumption called Middle-Product Computational Learning With
Rounding, an adaption of the computational LWR problem over rings,
introduced by Chen et al. at ASIACRYPT 2018. We prove that this new
assumption is as hard as the decisional version of MP-LWE and thus
benefits from worst-case to average-case hardness guarantees.

Keywords. LWE, LWR, Middle-Product, Public Key Encryption.

1 Introduction

Lattice-based cryptosystems attracted considerable research interest in recent
years due to their versatility, assumed quantum-resilience and efficiency. The
Learning With Errors problem, introduced by Regev [Reg05] in his pioneering
work, serves as a fundamental computational problem in lattice-based cryptog-
raphy. Informally, the LWE problem asks for the solution of a system of noisy
linear modular equations: Given positive integers n and q, an LWE sample con-
sists of (a, b = 〈a, s〉 + e mod q) for a fixed vector s ∈ Zn, where a is sampled
from the uniform distribution over Znq and e is sampled from a probability dis-
tribution χ over R. The LWE problem exists in two versions: The search version
asks to recover the secret s given arbitrarily many LWE samples; The decision
version asks to distinguish between LWE samples and samples drawn from the
uniform distribution over Znq × R.



As a very attractive property for cryptography, LWE enjoys worst-case to
average-case reductions [Reg05,Reg09,Pei09,BLP+13] from well-studied prob-
lems such as finding a set of short independent vectors (SIVP) or the decisional
variant of finding short vectors (GapSVP) in Euclidean lattices. A standard con-
jecture is to assume that there is no polynomial-time algorithm that solves these
problems (and their mildly approximated versions), even on quantum computers.
Thus, any solver of the average-case problems can be transformed into a solver
for any instance of the worst-case problem, which is presumed to be difficult.

The protocols relying on the hardness of LWE are inherently inefficient due
to the size of the public keys which usually contain m elements of Znq , where m is
the number of samples which is usually larger than n log(n). To improve the effi-
ciency, structured variants of LWE have been proposed [SSTX09,LPR10,LS15].
One promising variant is the Polynomial Learning With Errors (P-LWE) prob-
lem, introduced by Stehlé et al. [SSTX09]. Given a monic irreducible polyno-
mial f ∈ Z[x] and an integer q ≥ 2, a P-LWE sample is given by (a, b =
a · s+ e mod q) for a fixed polynomial s ∈ Zq[x]/f , where a is sampled from the
uniform distribution over Zq[x]/f and e is sampled from a probability distribu-
tion χ over R[x]/f . The P-LWE problem also admits worst-case to average-case
connections from well-studied lattice problems. Whereas the hardness reductions
for LWE start from the lattice problem in the class of general Euclidean lattices,
the class has to be restricted to ideal lattices in the case of P-LWE. These ideal
lattices correspond to the ideals in the polynomial ring Z[x]/f . Lyubashevsky
et al. [LPR10] propose another promising variant, namely the Ring Learning
With Errors (R-LWE) problem, where polynomial rings are replaced by the ring
of integers of some number fields. In the case of cyclotomic fields, the P-LWE
and R-LWE problems coincide up to some parameter losses. As a recent result,
Roşca et al. [RSW18] show that P-LWE and R-LWE are equivalent for a larger
class of polynomials. In addition, they also investigate other relations between
these structured variants.

Hedging against possible weak instances. Gaining in efficiency on the
positive side comes with a potential decrease in the security level guarantees
on the negative side. There are concrete examples of polynomials f for which
the P-LWE becomes computationally easy: for instance when f has a linear fac-
tor over Z [CIV16]. Note that this case is excluded by restricting to irreducible
polynomials. A review on the known weak instances of P-LWE and R-LWE is
given by Peikert [Pei16]. To the best of our knowledge, it is still not fully under-
stood how to choose a good polynomial for instantiating P-LWE.

Motivated by the question of how to choose a good polynomial, Lyubashevsky
introduces the so-called R<n-SIS problem [Lyu16], a variant of the Short Integer
Solution (SIS) problem, whose hardness does not depend only on a single poly-
nomial, but on a set of polynomials. Inspired by this, Roşca et al. [RSSS17] pro-
pose its LWE counterpart: theMiddle-Product Learning With Errors (MP-LWE)
problem. The MP-LWE problem is defined as follows: Taking two polynomials a
and s over Zq of degrees less than n and n + d − 1, respectively, the middle-
product a �d s is the polynomial of degree less than d given by the middle d

2



coefficients of a · s. In other words, a �d s = b(a · s mod xn+d−1)/xn−1c, where
the floor rounding b·c denotes deleting all those terms with negative exponents
on x. Instead of choosing a and s from the ring Zq[x]/f as in the P-LWE setting,
they are now elements of Z<nq [x] and Z<n+d−1q [x]. Here, Z<nq [x] denotes the set
of all polynomials with coefficients in Zq of degree less than n for n ≥ 1. For
integers d, n and q with q ≥ 2 and 0 < d ≤ n as parameters, an MP-LWE sample
is given by (a, b = a�d s+ e mod q), where s is a fixed element of Z<n+d−1q [x], a
is sampled from the uniform distribution over Z<nq [x] and e is sampled from a
probability distribution χ over R<d[x]. As for the hardness of MP-LWE, Roşca
et al. [RSSS17] establish a reduction from the P-LWE problem parametrized by
a polynomial f to the MP-LWE problem defined independently of any such f .
Thus, as long as the P-LWE problem defined over some f (belonging to a huge
family of polynomials) is hard, the MP-LWE problem is also guaranteed to be
hard. As a cryptographic application, Roşca et al. [RSSS17] propose a public-key
encryption (PKE) scheme that is IND-CPA secure under the MP-LWE hardness
assumption, with keys of size Õ(λ) and running time Õ(λ), where λ is the secu-
rity parameter.

Learning With Rounding (LWR). In the worst-to-average case reduction of
LWE [Reg05] and P-LWE [SSTX09] the error e is sampled from discrete Gaus-
sian distributions. Such sampling procedure is in general costly, difficult to imple-
ment and vulnerable to side-channel attacks, e.g. [DB15,BHLY16,Pes16,Saa18].
In 2012, Banerjee et al. [BPR12] introduce a deterministic variant of LWE,
namely the Learning With Rounding (LWR) problem. It is used to construct
efficient pseudorandom functions [BPR12], lossy trapdoor functions and deter-
ministic encryption schemes [AKPW13].

An LWR sample is given by (a, b = b〈a, s〉ep), where s ∈ Znq is fixed and a
is sampled from the uniform distribution over Znq . The rounding operator bxep
denotes multiplying x by p/q and then rounding the result to the nearest integer
modulo p. Informally, this rounding operator corresponds to dividing the set of
elements of Zq into p chunks, each containing approximately q/p elements. The
definition can be adapted to a ring setting, denoted by R-LWR.

In the full version of their paper, published on the IACR Cryptology ePrint
Archive, Banerjee et al. [BPR11] show a reduction from LWE to LWR with arbi-
trarily many samples, which also works for the ring counterpart. Unfortunately,
the reduction requires q/p to be larger than the error size B (where B bounds
the magnitude of the LWE error with high probability) by a super-polynomial
factor, thus leading to a large modulus paired with a small error bound. This in
turn implies that the underlying worst-case lattice-problems are assumed to be
hard with super-polynomial approximation factors, which stands for a stronger
assumption. In practice, this also leads to inefficient protocols.

Subsequent studies propose new reductions that work for a larger range of
parameters. Alwen et al. [AKPW13] give a reduction that allows a polynomial
modulus and modulus-to-error ratio. However, the modulus q in the reduction
depends on the number of LWR samples, thus the number of samples needs to be
fixed in prior by some polynomials. Further, the reduction imposes certain num-
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ber theoretical restrictions on the modulus q. For example, power-of-two moduli
are not covered. In a recent work, Bogdanov et al. [BGM+16] use the Rényi di-
vergence to show a sample preserving reduction. The reduction is also dimension
preserving for the special case that the modulus is prime. They also provide a
reduction from the search variant of R-LWE to the search variant of R-LWR. In
another work, Alperin-Sheriff and Apon [AA16] further improve the parameter
sets for the reduction. In particular, the reduction is dimension-preserving with a
polynomial-sized modulus. However, the ring setting analogue, a reduction from
decisional R-LWE to decisional R-LWR with a polynomial-sized modulus, is still
an open problem. Nevertheless, due to the simplicity and efficiency of R-LWR,
several schemes as SABER [DKRV18] and Round5 [BBF+19] basing their hardness
on R-LWR are currently participating in the NIST standardization process [NIS].

To overcome the lack of provable hardness for decisional R-LWR with prac-
tical parameters, Chen et al. [CZZ18] propose a new assumption, called the
Computational Learning With Rounding Over Rings (R-CLWR) assumption.
They show a reduction from decisional R-LWE to R-CLWR, where the secret in
the R-LWE sample is drawn uniformly at random from the set of all invertible
ring elements whose coefficients are small. They also show that one can construct
an efficient PKE scheme based on the hardness of R-CLWR in the random oracle
model.

Our contributions. Our first main contribution is a new hardness assumption
which we refer to as the Middle Product Computational Learning With Rounding
(MP-CLWR) problem. On the one hand, the MP-CLWR problem uses rounding
in a similar way to R-LWR and hence avoids the error sampling. On the other
hand, the MP-CLWR problem is analogue to the MP-LWE problem whose hard-
ness does not depend on a specific polynomial. Thus, the MP-CLWR assumption
enjoys the desired properties from both, the security advantage of MP-LWE and
the simplicity advantage of LWR. We show that the MP-CLWR problem is at
least as hard as the decisional MP-LWE problem parametrized over a set of poly-
nomials (Section 4). To complete the reduction, we also bring in some new results
on random Hankel matrices which might be of independent interest (Section 3).
As a typical application, we propose a PKE scheme based on this MP-CLWR
assumption which is IND-CPA secure in the random oracle model (Section 5).
The attractiveness of our encryption scheme stems from the fact that we only
have to round the middle-product of two polynomials instead of sampling Gaus-
sian error during public key generation while guaranteeing the same security and
having the same asymptotic key and ciphertext sizes as [RSSS17] (Section 6).
Furthermore, we provide at the end of Section 6 a study of the concrete security
of our scheme by looking at the currently best known attacks against it.

In the following, we give a brief overview of the MP-CLWR problem and
our proof for its hardness. An MP-CLWR sample is given by (a, b = ba�d sep),
where a is sampled from the uniform distribution over Z<nq [x] and s is a fixed el-
ement in Z<n+d−1q [x]. We define the MP-CLWR problem as the following game,
where we embed the MP-CLWR samples into two experiments. In both exper-
iments, three different parties appear: A challenger C, an adversary A and a
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source S. The source S1 of the first experiment provides t different MP-CLWR
samples (ai, bai �d sep)i∈[t] and the source S2 of the second experiment provides t
rounded uniform samples (ai, bbiep)i∈[t], where all ai and bi are independently
sampled from the corresponding uniform distribution. The challenger C now uses
these samples to compute an Input and a Target. It sends the Input to the ad-
versary A which itself computes an Output. The adversary wins the experiment
if Target = Output. The important point in this setting is that the challenger C
and the adversary A are in both experiments the same. The MP-CLWR assump-
tion captures that an adversary has no more advantage to compute the correct
output if it receives rounded middle-product samples than if it gets rounded
uniform samples. A formal definition of MP-CLWR is given in Section 4.1.

Our reduction from MP-LWE to MP-CLWR, shown in Theorem 2, is dim-
ension-preserving and works for polynomial-sized modulus q. In more details,
let d, n, p, q and t be positive integers with 0 < d ≤ n and q ≥ p ≥ 2. The
parameters d and n describe the order of the middle-product, t denotes the
number of samples and p defines the rounding. Let χ be an error distribution
over R<d[x]. We show the following sequence of reductions:

MP-LWEq,n,d,χ MP-LWE×q,n,d,χ

MP-CLWRp,q,n,d,t MP-CRLWEp,q,n,d,t,χ

Lemma 11

Lemma 12

Lemma 13

The first part of this sequence, Lemma 11, gives a reduction from decisional
MP-LWE to decisional MP-LWE×, where the latter one denotes the MP-LWE
problem where the secret is sampled uniformly at random from the set of ele-
ments having full rank Hankel matrix. The Hankel matrix plays an important
role during the reductions as one can use it to represent the middle-product. In
Section 3 we prove new results on random Hankel matrices, which might be of
independent interest. We give a lower bound of the probability that the Hankel
matrix of a random element has full rank and prove a uniformity property of the
middle-product. This property is used in Lemma 13, where we show a reduction
from the rounded middle-product LWE problem to the middle-product LWR
problem, for their computational versions. Note that using the Rényi divergence
asks for fixing the requested number of samples t a priori. This is a necessary
requirement which is also imposed in [BGM+16] and [CZZ18].

Similarly to the encryption scheme of Chen et. al [CZZ18], we make use of
the reconciliation mechanism of Peikert [Pei14]. In order to show the correctness
of our scheme, we have to guarantee that the reconciliation method succeeds. We
also use a probabilistic lifting function to lift elements from Zp[x] to elements
in Zq[x]. To prove the IND-CPA security of our scheme, we use the general leftover
hash lemma from [RSSS17]. We show that a lifted version of their family of hash
functions is still universal (Lemma 8).
Open Problems. As mentioned above, a reduction from decisional R-LWE to
decisional R-LWR with a polynomial-sized modulus is still an open problem.
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This carries over to the middle-product setting, where it would also be of in-
terest to show a reduction from decisional MP-LWE to decisional MP-LWR.
Such a hardness result would help to build a secure encryption scheme based on
the decisional MP-LWR in the standard model. A search-to-decision reduction
for R-LWR or MP-LWR would be an alternative way to promise the security of
such protocols.

2 Preliminaries

Let q be a positive integer, then Zq denotes the ring of integers modulo q. For
any natural number n, we represent the set {1, . . . , n} by [n]. In order to ease
readability, a vector a will be denoted in a bold small letter and a matrix A in a
bold capital letter. By at and At we denote the transpose of the vector a and the
matrix A, respectively. For a positive integer n, we write Z<n[x] to describe the
set of all polynomials in Z[x] with degree less than n. We identify each polyno-
mial a in Z<n[x] with its coefficient column vector a = (a0, . . . , an−1)t. Further,
we denote by a its coefficient vector in reverse order, hence a = (an−1, . . . , a0)t.
For any n-dimensional vector a, we set the infinity norm ‖a‖∞ = maxi∈[n] |ai|
and the Euclidean norm ‖a‖2 =

√∑
i∈[n] a

2
i . If the index range is clear from the

context, we will write (ai)i instead of (ai)i∈[n].

2.1 Rounding

Let p and q be integers both larger than 1. We define the modular rounding
function b·ep : Zq → Zp as bxep =

⌊(
p
q

)
· x
⌉

mod p. The rounding function
extends component-wise to vectors over Zq and coefficient-wise to polynomials
in Zq[x]. Note that we use the same notation as Banerjee et al. [BPR12] for the
purpose of coherence. It is also possible to use the floor rounding function b·c,
where each element is rounded down to the next smaller integer, as for instance
done by Chen et al. [CZZ18].

2.2 Reconciliation

Reconciliation is a method used by two parties to agree on a secret bit, where they
only share a common value up to an approximation factor. A first reconciliation
mechanism was presented by Ding et al. [DXL12] followed by other proposals
(e.g., [Pei14,ADPS16]). We use the notation of Peikert and exert the nearest
integer rounding. For this purpose, we need the rounding function b·e2 : Zq → Z2

for p = 2 and define the reconciliation cross-rounding function 〈·〉2 : Zq → Z2 as

〈x〉2 =

⌊(
4

q

)
· x
⌉

mod 2.

For q even, the reconciliation algorithm REC takes as input two values y ∈ Zq
and b ∈ {0, 1} and outputs bxe2, where x is the closest element to y such
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that 〈x〉2 = b. A concrete definition of REC is given as follows. Define two dis-
joint intervals I0 =

{
0, . . . ,

⌊
q
4

⌉
− 1
}
and I1 =

{
−
⌊
q
4

⌋
, . . . ,−1

}
. Let E be the

set given by
[
− q8 ,

q
8

)
∩Z. Further, let y be an element of Zq and b be a bit. Then,

REC(y, b) =

{
0 , y ∈ Ib + E mod q,

1 , else.

We recall the following results about the cross-rounding function and the recon-
ciliation mechanism from Peikert [Pei14].

Lemma 1. For q even, if x ∈ Zq is uniformly random, then is bxe2 uniformly
random given 〈x〉2.

Lemma 2. For q even and x, y ∈ Zq such that |x− y| < q
8 , then

REC(y, 〈x〉2) = bxe2 .

In the case of q odd, thus 2 - q, the output bit of the reconciliation method is
biased. That is why Peikert [Pei14] introduced a randomized doubling function

DBL : Zq → Z2q, DBL(x) = 2x− e,

where e← {−1, 0, 1} with probabilities p−1 = p1 = 1
4 and p0 = 1

2 .

Lemma 3. For q odd, if x ∈ Zq is uniformly random, x← DBL(x), then is bxe2
uniformly random given 〈x〉2.

Lemma 4. For q odd and x, y ∈ Zq such that |x− y| < q
8 , let x← DBL(x), then

REC(y, 〈x〉2) = bxe2 .

We extend all functions 〈·〉2, b·e2 and DBL(·) component-wise to vectors over Zq
and coefficient-wise to polynomials in Zq[x], as well as the mechanism REC to
vectors over Zq × {0, 1} and to polynomials in Zq[x]× {0, 1}[x].

Let p and q be integers such that 2 ≤ p ≤ q. We define a probabilistic lifting
function INV(·) : Zp → Zq that takes x ∈ Zp as input and chooses uniformly
at random an element u from the set {u ∈ Zq : buep = x}. As usual, INV(·)
can be extended coefficient-wise to Z<nq [x]. This lifting function becomes im-
portant in the encryption scheme in Section 5. There, we use INV(·) to lift
rounded polynomials in Zp[x] to Zq[x] such that

⌊
INV(baep)

⌉
p

= baep. Note
that INV(baep) = a+ e with ‖e‖∞ ≤ q

p .

2.3 Probabilities

For a set S and a distribution χ over S, we denote by x ← χ the process of
sampling x ∈ S according to χ. With x← U(S) we denote sampling x according
to the uniform distribution over S. In this work, the support S is sometimes
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a subset of R. In such a case, we say a distribution χ is B-bounded with prob-
ability at least δ for a real number B ≥ 0, if Prx←χ[|x| ≤ B] ≥ δ. We say
a B-bounded distribution χ is balanced if Prx←χ[|x| ≤ 0] ≥ 1

2 and at the same
time Prx←χ[|x| ≥ 0] ≥ 1

2 . For the parameter s > 0, we define the Gaussian
function ρs : Rn → (0, 1] as ρs(x) = exp(−π〈x, x〉/s2). Normalizing this func-
tion yields the density function of the continuous Gaussian distribution Ds of
standard deviation s. A (finite) family H of hash functions h : X → Y is called
universal if

Prh←U(H) [h(x1) = h(x2)] =
1

|Y |
,

for all x1 6= x2 ∈ X. Roşca et al. [RSSS17] introduced the following variant of
the leftover hash lemma.

Lemma 5 (Generalized Leftover Hash Lemma). Let X,Y and Z be finite
sets, H be a universal family of hash functions h : X → Y and f : X → Z be an
arbitrary function. Then, for any random variable T taking values in X we have

∆ ((h, h(T ), f(T )), (h, U(Y ), f(T ))) ≤ 1

2
·
√
γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr [T = t].

Definition 1 (Statistical distance) Let P and Q be two discrete probability
distributions on a discrete domain E. Their statistical distance is defined as

∆(P ;Q) =
1

2

∑
x∈E
|P (x)−Q(X)|.

The Rényi divergence [R6́1,vEH14] defines another measure of distribution close-
ness and was first used in cryptography as a powerful alternative for the statis-
tical distance measure by Bai et al. [BLL+15]. In this paper, it suffices to use
the Rényi divergence of order 2.

Definition 2 (Rényi divergence of order 2) Let P and Q be two discrete
probability distributions such that Supp(P ) ⊂ Supp(Q). The Rényi divergence
of order 2 is defined as

RD2(P‖Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
.

The Rényi divergence admits the following properties, proved in [vEH14].

Lemma 6. Let P,Q be two discrete probability distributions with Supp(P ) ⊂
Supp(Q). Further, let (Pi)i, (Qi)i be two families of independent discrete prob-
ability distributions with Supp(Pi ) ⊂ Supp(Qi ) for all i. Then, the following
properties are fulfilled:
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1. (Data Processing Inequality) RD2(P f‖Qf ) ≤ RD2(P‖Q) for any func-
tion f , where P f (resp. Qf ) denotes the distribution of f(y) induced by
sampling y ← P (resp. y ← Q),

2. (Multiplicativity) RD2 (
∏
i Pi‖

∏
iQi) =

∏
i RD2(Pi‖Qi),

3. (Probability Preservation) Let E ⊂ Supp(Q) be an arbitrary event, then

Q(E) · RD2(P‖Q) ≥ P (E)2.

2.4 Middle-Product Learning With Errors

The use of the middle-product in lattice-based cryptography was introduced by
Roşca et al. [RSSS17] in the form of the so-called Middle-Product Learning With
Errors (MP-LWE) problem.

Definition 3 (Middle-Product) Let da, db, d, k be integers fulfilling the equa-
tion da + db− 1 = d+ 2k. The middle-product of a ∈ Z<da [x] and b ∈ Z<db [x] is
defined as

a�d b =

⌊
a · b mod xk+d

xk

⌋
,

where the floor rounding in this case means removing all terms with negative
exponents on x.

The middle-product fulfills additivity if one of its inputs is fixed. Associativity is
generally not achieved, instead only the following weaker associativity property
is guaranteed.

Lemma 7. Let d, k and n be positive integers. For all r ∈ Z<k+1[x], a ∈ Z<n[x]
and s ∈ Z<n+d+k−1[x], we have

r �d (a�d+k s) = (r · a)�d s.

In order to prove the security of the encryption scheme in Section 5, we need
the following hash function family to be universal. Recall that INV(·) denotes
the probabilistic lifting function from Zp[x] to Zq[x] for two integers p and q
with 2 ≤ p ≤ q.

Lemma 8. Let q, k, d, p and t be integers such that k, d ≥ 2 and 2 ≤ p ≤ q.
For (bi)i∈[t] ∈ (Z<d+kp [x])t, we define

h(bi)i :
(
{0, 1}<k+1[x]

)t → Z<dq [x]

to be the map that sends

(ri)i 7→
∑
i∈[t]

INV(bi)�d ri.

The hash function family (h(bi)i)(bi)i is universal.

9



Proof. The proof is very similar to the one of [RSSS17, Lemma 4.2]. We simply
replace bi by INV(bi), using the same argument to show that

Pr(bi)i←U((Z<d+kp [x])t)

∑
i∈[t]

INV(bi)�d ri =
∑
i∈[t]

INV(bi)�d r′i

 =
1

qd
,

with (ri)i 6= (r′i)i. ut

We now recall the Learning With Errors (LWE) problem in the polynomial and
middle-product setting, together with the hardness result of the latter one. The
reader is referred to the original paper by Roşca et al. [RSSS17] for more details.

Definition 4 (Decisional P-LWE) Let q and m be integers fulfilling q ≥ 2
and m > 0. Let f be a polynomial in Z[x] of degree m and χ be a distribu-
tion over R[x]/f . The decisional P-LWEfq,χ problem asks to distinguish arbi-
trary many samples of the form (ai, bi = ai · s + ei mod q), where ei ← χ
and ai ← U(Zq[x]/f), from the same number of samples chosen uniformly
from Zq[x]/f × Rq[x]/f with non-negligible success probability over the choices
of s← U(Zq[x]/f).

Definition 5 (Decisional MP-LWE) Let q, d and n be integers with q ≥
2 and 0 < d ≤ n. Further, let χ be a distribution over R<d[x]. The deci-
sional MP-LWEq,n,d,χ problem asks to distinguish arbitrary many samples of
the form (ai, bi = ai �d s + ei mod q) where ei ← χ and ai ← U(Z<nq [x]),
from the same number of samples chosen uniformly from Z<nq [x]× R<dq [x] with
non-negligible success probability over the choices of s← U(Z<n+d−1q [x]).

If instead the secret s is chosen uniformly at random from the set of all ele-
ments in Z<n+d−1q [x] having a Hankel matrix (see Section 3) of order d+ n− 1

of full rank d, denoted by s ← U
(
(Z<n+d−1q [x])×

)
, we call the corresponding

problem MP-LWE×q,n,d,χ. Note that the main difference is the imposed full-rank
condition, which plays an important role in Section 4.

Theorem 1 (Hardness of MP-LWE [RSSS17, Thm. 3.6]). Let q, d and n
be integers with 0 < d ≤ n and q ≥ 2. Further, let α ∈ (0, 1). For S > 0,
let F(S, d, n) denote the set of all monic polynomials f in Z[x] whose constant
coefficient is coprime to q, having degree m ∈ [d, n] and EF(f) < S. Then,
there exists a probabilistic polynomial-time reduction from P-LWEfq,Dαq for any
polynomial f ∈ F(S, d, n) to MP-LWEq,n,d,Dα′q with α′ = αdS.

Recall that Dαq (resp. Dα′q) denotes the Gaussian distribution of width αq
(resp. α′q). Further, EF(f) is the expansion factor of f , introduced by Lyuba-
shevsky and Micciancio [LM06] and defined as

EF(f) = max

(
‖g mod f‖∞
‖g‖∞

: g ∈ Z2m−1[x] \ {0}
)
.
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3 Random Hankel Matrices

In this section, we show new results on the distribution of random Hankel ma-
trices. First, we recall the definition of Hankel and Toeplitz matrices for a given
polynomial, which we interpret as usual as a vector. We prove a lower bound for
the probability that the Hankel matrix of a polynomial which is chosen uniformly
at random has full rank. Finally, this result leads to a uniformity property of the
middle-product which plays a crucial part in the hardness reduction of the new
middle-product learning with rounding assumption in Section 4.2.

Hankel and Toeplitz matrices are not only used in the context of the middle-
product of two polynomials. More generally, as pointed out by Kaltofen and
Lobo [KL96], Toeplitz matrices are used as pre-conditioners in the process of
solving linear systems of equations having unstructered coefficient matrices. The
attractiveness of these structured matrices is twofold: First, it suffices to store
the first column and first row, in order to rebuild the whole matrix. Second, the
product of a Toeplitz matrix and a vector is in fact a convolution and can be
computed in superlinear time using the fast Fourier transformation.

Other than that, large-dimensional random matrices with additional alge-
braic structure, as Hankel and Toeplitz matrices, play an important role in
statistics, in particular in multivariate analysis. More concretely, Hankel ma-
trices arise in polynmoial regressions and Toeplitz matrices appear as covariance
of stationary processes. In particular, the spectral distribution for their eigen-
values is important and was studied by Bryc et al. [BDJ06].

Let q be any positive integer and a ∈ Z<n+d−1q [x] be a polynomial over Zq
with coefficient vector a = (a0, . . . , an+d−2)t. We define the Hankel matrix of a
of order d+ n− 1 as

Hank(a) =


a0 a1 . . . ad−1 . . . an−1
a1 a2 . . . ad . . . an

...
...

ad−1 ad . . . a2d−2 . . . an+d−2

 ∈ Zd×nq .

The Hankel matrix is fully determined by its first row and its last column. Its
rank is at most d. If it has full rank d we write rank(Hank(a)) = d. Further, we
recall the definition of Toeplitz matrices. Let a ∈ Z<n+d−1q [x] be a polynomial
over Zq with coefficient vector a = (a0, . . . , an+d−2)t. The Toeplitz matrix of a
of order d+ n− 1 is given by

Toep(a) =



a0 a1 a2 . . . . . . an−1

an a0 a1
. . .

...

an+1 an
. . . . . . . . .

...
...

. . . . . . . . . a1 a2
...

. . . an a0 a1
an+d−2 . . . . . . an+1 an a0


∈ Zd×nq .
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The Toeplitz matrix is fully determined by its first row and its first column. There
exists a special relation between the Toeplitz matrix and the Hankel matrix.
Let Jn be the reflection matrix of order n defined as

Jn =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
...

...
...
...
...

1 · · · 0 0 0

 ∈ Zn×nq .

Then, for any polynomial a ∈ Z<n+d−1q [x] with coefficient vector a = (a′,a′′)
in Znq ×Zd−1q it yields Toep(a) ·Jn = Hank(ã), where ã is the polynomial given
by the coefficient vector ã = (a′,a′′) with a′ denoting the vector a′ in reverse
order. Thus, we can use the result of Kaltofen and Lobo [KL96] about random
Toeplitz matrices to calculate the probability of a random Hankel matrix to have
full rank.

Lemma 9. Let q be a positive integer with unique prime power factorization
given by q =

∏
i∈[l] p

αi
i , where pi are primes and αi > 0. Let d and n be integers

with 0 < d ≤ n and choose b← U(Z<n+d−1q [x]). Then,

Pr [rank(Hank(b)) = d] ≥
∏
i∈[l]

(
1− 1

pi

)
.

Proof. Case 1 (q is prime). Any Hankel matrix of order d + n − 1 can be rep-
resented as the matrix product of the corresponding Toeplitz matrix of or-
der d + n − 1 times the non-singular reflection matrix Jn of order n whose
anti-diagonal elements are 1’s and all other entries are 0’s. Thus, the rank of a
given Hankel matrix will be the same as the one of the corresponding Toeplitz
matrix. For the case d = n, it follows from Theorem 4 of [KL96] that the
total number of Hankel matrices of full rank d is exactly (q − 1)q2d−2. If we
choose b← U(Z<n+d−1q [x]), then

Pr [rank(Hank(b)) = d] =
(q − 1)q2d−2

q2d−1
= 1− 1

q
.

For d < n, the d × n Hankel matrix has full rank d if at least the left d × d
submatrix, which is naturally a d × d Hankel matrix as well, has rank d. This
happens with probability at least 1− 1

q .

Case 2 (q = pα). Initially, consider the case d = n. Any Hankel matrix A can
be represented as A = pQ + R, where both R and Q are Hankel matrices
with coefficients in Zp and Zpα−1 , respectively. This formula follows from integer
division by p with remainder, i.e., Euclidean division. Any element from Zpα ,
when divided by p, has a reminder in Zp and quotient in Zpα−1 . This repre-
sentation is unique, thus preserves the structure of the matrix A. Since A is a

12



Hankel matrix, so are Q and R. The matrix A has full rank in Zpα if and only
if R has full rank in Zp. Hence, we can deduce from the previous case that the
number of Hankel matrices of full rank equals (p − 1)p(α−1)(2d−1)+(2d−2). If we
choose b← U(Z<n+d−1q [x]), then

Pr [rank(Hank(b)) = d] =
(p− 1)p(α−1)(2d−1)+(2d−2)

pα(2d−1)
= 1− 1

p
.

For d < n, using the same argument as before, the probability is at least 1− 1
p .

Case 3 (q =
∏
i∈[l] p

αi
i ). For the case d = n, it follows from the Chinese remain-

der theorem that the number of Hankel matrices of full rank d modulo q equals
the product of the number of Hankel matrices of full rank d modulo pαii which
is given by ∏

i∈[l]

(pi − 1)p
(αi−1)(2d−1)+(2d−2)
i .

Thus, if we choose b← U(Z<n+d−1q [x]), then

Pr [rank(Hank(b)) = d] =
∏
i∈[l]

(
1− 1

pi

)
.

Similarly as before, for d < n and b← U(Z<n+d−1q [x]), then

Pr [rank(Hank(b)) = d] ≥
∏
i∈[l]

(
1− 1

pi

)
.

ut

We denote by (Z<n+d−1q [x])× the set of polynomials of Z<n+d−1q [x] with Hankel
matrix of full rank d. Note that for a ∈ Z<nq [x] and b ∈ Z<n+d−1q [x], the middle-
product can be represented as a matrix-vector product

a�d b = Hank(b) · a.

Lemma 10. Let d and n be two integers with 0 < d ≤ n and b a fixed element
of
(
Z<n+d−1q [x]

)×. If we choose a← U(Z<nq [x]), then a�d b is uniformly random
in Z<dq [x].

Proof. We can write a�db = Hank(b)·a. For any d ≤ n and full rank matrixA ∈
Zd×nq , the mapping from Znq to Zdq given by multiplication with A is surjective.
As a is chosen uniformly at random and the Hankel matrix of b has full rank d,
the middle-product is also uniformly distributed. ut

4 Middle-Product Learning With Rounding

In this section, we define in the first subsection the new assumption and then
show in the second subsection its hardness by reducing the MP-LWE problem
to it.
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4.1 Definition of the MP-CLWR assumption

In the following, we define the Middle-Product Computational Learning With
Rounding (MP-CLWR) assumption which is an adaption of the Ring Computa-
tional Learning With Rounding (R-CLWR) assumption from Chen et al. [CZZ18]
to the middle-product setting. For a detailed introduction and motivation of this
computational notion, see [CZZ18, Section 3].

In order to define this computational assumption, we need to introduce our
experiment setting. Within the experiment, three different parties in form of
algorithms appear: A challenger C interacting with an adversary A who is re-
ceiving its samples from a source S. All three algorithms are restricted to be
probabilistic and polynomial-time (PPT). As a first step, the source S gener-
ates a sample (X, aux) using two sets called var and con. It then sends this
sample to the challenger C, which computes, with the help of this sample, a
tuple (Input,Target). The adversary only receives the Input part of the tuple to
compute Output. The adversary wins the experiment if Output equals Target.

Exp(C,A,S)

1 : (X, aux)← S(var, con)
2 : (Input,Target)← C(X, aux)
3 : (Output)← A(Input)
4 : return Output = Target

Fig. 1. The experiment Exp(C,A,S).

The idea of the computational assumption is to consider two different exper-
iments with the same challenger C and adversary A but with different sources S1
and S2, which differ in the distribution var but have the same distribution con,
motivating the notation var for variable and con for constant. The new notion
guarantees that if A cannot compute Target from X1 generated by S1, then it is
not able to compute Target from X2 generated by S2 either.

We illustrate the new notion in Figure 2 below. Let C be an arbitrary chal-
lenger. If the success probability of any adversary A outputting the correct
answer in Exp1(C,A,S1) is negligible, then it is in Exp2(C,A,S2) as well.

Exp1(C,A,S1)

1 : (X1, aux)← S1(var1, con)
2 : (Input1,Target1)← C(X1, aux)

3 : Output1 ← A(Input1)
4 : return Output1 = Target1

Exp2(C,A,S2)

1 : (X2, aux)← S2(var2, con)
2 : (Input2,Target2)← C(X2, aux)

3 : Output2 ← A(Input2)
4 : return Output2 = Target2

Fig. 2. Experiment setting of the computational assumption.
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Now, we define our new MP-CLWR assumption which is an adaption of the
R-CLWR assumption from [CZZ18] to the middle-product setting. As an analog
of the notion of units in the original paper, we define (Z<n+d−1q [x])× as the set
of all polynomials over Zq having degree less than n+d−1 and a Hankel matrix
of order d× n of full rank d. The integers d and n define the parameters of the
middle-product, q defines the general and p the rounding modulus. The number
of samples has to be fixed beforehand and is given by t.

Definition 6 (MP-CLWR assumption) Let d, n, p, q and t be positive in-
tegers fulfilling 0 < d ≤ n and q ≥ p ≥ 2. Choose s uniformly at random
over (Z<n+d−1q [x])×. Denote by Xs the distribution of (a, ba�d sep), where a←
U(Z<nq [x]), and denote by U the distribution of (a, bbep), where a ← U(Z<nq [x])

and b← U(Z<dq [x]). For i ∈ {1, 2} define the input for Si as (vari, con), where var1
denotes the distribution X ts , and var2 the distribution U t, and con is an arbitrary
distribution over {0, 1}∗ which is independent from var1 and var2. For a fixed
challenger C let PC,A be the probability for an adversary A to win Exp1(C,A,S1),
while QC,A be that for A to win Exp2(C,A,S2).

The MP-CLWRp,q,n,d,t assumption states that for any challenger C if QC,A is
negligible for any adversary A, so is PC,A. We call the difference |PC,A −QC,A|
the advantage of the adversary A.

Correspondingly, we also define the Middle-Product Computational Rounded
Learning With Errors (MP-CRLWE) assumption which is important in the hard-
ness reduction in Section 4.2 below.

Definition 7 (MP-CRLWE assumption) Let d, n, p, q and t be positive in-
tegers fulfilling 0 < d ≤ n and q ≥ p ≥ 2. Choose s uniformly at random
over (Z<n+d−1q [x])×. Let χe be the error distribution over R<d[x]. Denote by Ys,χe
the distribution of (a, ba�d s+ eep), where a← U(Z<nq [x]) and e← χe and de-
note by U the distribution of (a, bbep) where a← U(Z<nq [x]) and b← U(Z<dq [x]).
For i ∈ {1, 2} define the input for Si as (vari, con), where var1 denotes the
distribution Yts,χe , and var2 the distribution U t, and con is an arbitrary distri-
bution over {0, 1}∗ which is independent from var1 and var2. For a fixed chal-
lenger C let P ′C,A(χe) be the probability for an adversary A to win Exp1(C,A,S1),
while QC,A be that for A to win Exp2(C,A,S2).

The MP-CRLWEp,q,n,d,t,χe assumption related to the error distribution χe
states that for any challenger C if QC,A is negligible for any adversary A, so
is P ′C,A(χe). We call the difference

∣∣P ′C,A(χe)−QC,A
∣∣ the advantage of the ad-

versary A.

4.2 Hardness of MP-CLWR

We now prove the hardness of MP-CLWR with the help of a reduction from
the decisional MP-LWE problem to the MP-CLWR problem. The decisional
version of MP-LWE itself can be reduced from the decisional P-LWE problem
for a large class of defining polynomials, see Theorem 1. As P-LWE benefits from
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worst-case to average-case reductions from lattice problems, our new MP-CLWR
assumption also enjoys the worst-case hardness.

Theorem 2 (Hardness of MP-CLWR). Let d, n, p, q and t be positive inte-
gers with 0 < d ≤ n and q ≥ p ≥ 2. Further, let q =

∏
i∈[l] p

αi
i be the prime power

factorization of q with some l > 0, where pi is prime and αi > 0 for all i ∈ [l].
Let χ be an error distribution over R<d[x] which is balanced and B-bounded with
probability at least δ, fulfilling q > 2pBdt and δ ≥ 1 − 1

td . There is a reduction
from the decisional MP-LWEq,n,d,χ problem to the MP-CLWRp,q,n,d,t problem,
with t the number of samples fixed beforehand.

Assume that the advantage of an MP-CLWR solver is ε. Then, there is
an MP-LWE solver with advantage at least(

1

e2
(ε+QC,A)

2

)
·
∏
i∈[l]

(
1− 1

pi

)
.

In order to prove the theorem, we show the following sequence of reductions:

MP-LWEq,n,d,χ MP-LWE×q,n,d,χ

MP-CLWRp,q,n,d,t MP-CRLWEp,q,n,d,t,χ

Lemma 11

Lemma 12

Lemma 13

The first reduction is achieved by a standard technique.

Lemma 11. Let d, n, p, q and t be positive integers, such that it yields 0 < d ≤ n
and q ≥ p ≥ 2. Let χe be the error distribution over R<d[x]. Further, let the
unique prime power factorization of q be given by q =

∏
i∈[l] p

αi
i with some l >

0, where pi is prime and αi > 0 for all i ∈ [l]. If there is a PPT algorithm
solving MP-LWE×q,n,d,χ with non-negligible advantage ε, then there is a PPT
algorithm solving MP-LWEq,n,d,χ with non-negligible advantage at least

ε ·
∏
i∈[l]

(
1− 1

pi

)
.

Proof. Let (ai, bi)i∈[t] be the given input tuple of samples of MP-LWEq,n,d,χ,
where s ← U(Zn+d−1q [x]). An adversary can take this tuple of samples (ai, bi)i
and query an oracle of MP-LWE×q,n,d,χ on it. As showed in Lemma 9, the prob-

ability that the Hankel matrix of s has full rank d is at least
∏
i∈[l]

(
1− 1

pi

)
.

Assuming that the oracle succeeds with non-negligible probability ε in general,
it will now succeed with probability at least ε ·

∏
i∈[l]

(
1− 1

pi

)
, which completes

the proof. ut

The following lemma is an adaption of Lemma 12 in [CZZ18] into our context.
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Lemma 12 (MP-LWE to MP-CRLWE). Assume that the advantage of any
PPT algorithm to solve the decisional MP-LWE×q,n,d,χ problem is less than ε, then
we have ∣∣P ′C,A(χ)−QC,A

∣∣ < ε,

for any PPT adversary A and PPT challenger C. Thus, there is a reduction
from MP-LWE×q,n,d,χ to MP-CRLWEp,q,n,d,t,χ, with t the number of samples
fixed beforehand.

Proof. In order to show this reduction, we will construct an adversary B to
solve the decisional MP-LWEq,n,d,χ problem. This adversary B will at the same
time play the role of the challenger C in the MP-CRLWE experiment. At the
beginning, B receives a tuple of samples (xi, yi)i∈[t]. It sets ai = xi and bi = byiep
for all i ∈ [t] and X = (ai, bi)i∈[t]. As a challenger of the experiment, B can
compute the corresponding Input and Target. B also verifies if the Output of A
equals the Target. If this is the case, B outputs 1, otherwise 0.

If (xi, yi)i are MP-LWE samples, then are (ai, bi)i samples from Ys,χ, used
in the MP-CRLWE assumption. Thus, Pr(B((xi, yi)i) = 1) = P ′C,A(χ). On the
other hand, if (xi, yi)i is a tuple of uniform samples, then is (ai, bi)i also uni-
formly distributed. Hence, Pr(B((xi, yi)i) = 1) = QC,A. Assuming the hardness
of decisional MP-LWE, we have

∣∣P ′C,A(χ)−QC,A
∣∣ < ε, for negligible ε and for

any adversary A. In particular, the MP-CRLWE assumption holds: If QC,A is
negligible, so is P ′C,A for the same challenger C and adversary A using the equa-
tion above. ut

The following reduction is an adaption of Lemma 8 and Lemma 9 in [CZZ18],
based on the results of [BGM+16], together with our results about random Han-
kel matrices of Section 3.

Lemma 13 (MP-CRLWE to MP-CLWR). Let s ∈ (Z<n+d−1q [x])×. Let Xs
and Ys denote the random variables of a single MP-CLWR sample (a, ba�d sep)
and a single MP-CRLWE (a, ba�d s+ eep) sample, respectively. Further, let χ
be an error distribution which is balanced and B-bounded with probability at
least δ over Z<dq [x], where q > 2pBdt and δ ≥ 1− 1

td . Then we have

(PC,A)2 ≤ P ′C,A(χ) · e2,

where e is the Euler’s number.
Hence, there is a reduction from MP-CRLWEp,q,n,d,t,χ to MP-CLWRp,q,n,d,t.

Proof. Using Lemma 6 about the multiplicativity and the probability preserva-
tion property from the Rényi divergence, we have

(PC,A)2 ≤ P ′C,A(χ) · RD2(Xs‖Ys)t.

In the following we show that the Rényi divergence of Xs and Ys fulfills

RD2(Xs‖Ys) ≤
(1 + 2pB/q)d

δd
.
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Following the definition of the Rényi divergence it yields

RD2(Xs‖Ys) = Ea←U(Z<nq [x])

Pr
[
Xs = (a, ba�d sep)

]
Pr
[
Ys = (a, ba�d sep)

]
= Ea←U(Z<nq [x])

1

Pre←χ

[
ba�d s+ eep = ba�d sep

] .
First, we define the border elements in Zq with regard to B and p by

Borp,q(B) =
{
x ∈ Zq : bx+Bep 6= bxep

}
.

These are the elements in Zq which are close to the rounding boundary. It
yields |Borp,q(B)| ≤ 2Bp. For 0 ≤ t ≤ d, let us also define

Bads,t =
{
a ∈ Z<nq [x] : |{i ∈ [d] : (a�d s)i ∈ Borp,q(B)}| = t

}
.

In other words, Bads,t defines, for a given polynomial s and number of coeffi-
cients t, the set of polynomials a in Z<nq [x] such that the middle-product a�d s
has exactly t coefficients close to the rounding boundary. Now we fix t and as-
sume a ∈ Bads,t. For any i ∈ [d] with (a�d s)i /∈ Borp,q(B), it yields

Prei

[
b(a�d s)i + eiep = b(a�d s)iep

]
≥ δ,

as ei is sampled from the distribution χ which is B-bounded with probability at
least δ. If (a�d s)i ∈ Borp,q(B), then

Prei

[
b(a�d s)i + eiep = b(a�d s)iep

]
≥ 1

2
,

because ei is sampled from a balanced distribution. Thus, the probabilities of ei ∈
[−B, 0] or in [0, B] are each greater or equal to 1

2 and b(a�d s)i + eiep 6=
b(a�d s)iep happens in exactly one of the two cases. Since each coefficient of e
is independently distributed and a �d s has exactly t coefficients in Borp,q(B),
it yields

Pre←χ

[
ba�d s+ eep = ba�d sep

]
≥ 1

2t
· δd−t ≥ 1

2t
· δd.

By Lemma 10, we know that if a is uniform in Z<nq [x], so is a �d s ∈ Z<dq [x].
Thus, it yields

Pr [a ∈ Bads,t] ≤
(
d

t

)(
1− |Borp,q(B)|

q

)d−t( |Borp,q(B)|
q

)t
.
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Hence,

RD2(Xs‖Ys) ≤ δ−d
∑
t∈[d]

2t · Pr [a ∈ Bads,t]

= δ−d
∑
t∈[d]

(
d

t

)(
1− |Borp,q(B)|

q

)d−t(
2 · |Borp,q(B)|

q

)t

= δ−d
(

1 +
|Borp,q(B)|

q

)d
≤ δ−d

(
1 +

2pB

q

)d
.

From the results above, we can derive

RD2(Xs‖Ys)t ≤
(1 + 2pB/q)td

δtd
≤ (1 + 1/td)td

(1− 1/td)td
≈ e2,

where δ ≥ 1− 1
td and q > 2pBdt. ut

5 A Public Key Encryption Scheme Based on MP-CLWR

In this section, we present a Public Key Encryption (PKE) scheme whose secu-
rity is based on the hardness of the middle-product computational learning with
rounding problem (MP-CLWR, see Section 4.1). Its design is inspired by the
PKE scheme from Roşca et al. [RSSS17] based on the hardness of the middle-
product learning with errors (MP-LWE, see Section 2.4) problem and by the
PKE scheme from Chen et al. [CZZ18] based on the hardness of the ring com-
putational learning with rounding problem. As a first step, we define the scheme
and show its correctness in Section 5.1. Subsequently, we prove its security based
on the hardness of MP-CLWR in Section 5.2.

5.1 Definition and Correctness

In this section, we define the PKE scheme and show its correctness under a proper
choice of parameters. We use the reconciliation rounding function b·e2 : Zq →
Z2, the reconciliation cross-rounding function 〈·〉2 : Zq → Z2, the randomized
doubling function DBL : Zq → Z2q and the reconciliation algorithm REC from
Section 2.2. As we only need the randomized doubling function DBL for q odd,
we set it to be the identity function for q even.

Recall that INV(·) denotes the probabilistic lifting function from Zp[x] to Zq[x]
for two integers p and q with 2 ≤ p ≤ q. We need INV(·) to lift rounded polynomi-
als in Zp[x] to Zq[x] such that

⌊
INV(baep)

⌉
p

= baep. Note that INV(baep) = a+e

with ‖e‖∞ ≤ q
p .

Let H denote a random oracle H : {0, 1}d → {0, 1}k. Further, let k, d, n, p, q
and t be positive integers with d + k ≤ n and q ≥ p ≥ 2. The plaintext space
is {0, 1}<k[x].
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1. KGen(1λ). Sample s ← U
(
(Z<n+d+k−1q [x])×

)
such that Hank(s) has full

rank5. For i ∈ [t], choose ai ← U(Z<nq [x]) and compute bi = bai �d+k sep.
Return pk = (ai, bi)i∈[t] and sk = s.

2. Enc(pk, µ). For i ∈ [t], sample ri ← U({0, 1}<k+1[x]) and set the first part
of the ciphertext as

c1 =
∑
i∈[t]

riai mod q.

Compute v =
∑
i∈[t] ri �d INV(bi) mod q. Set the second and third part of

the ciphertext as

c2 = 〈DBL(v)〉2 and c3 = H(bDBL(v)e2)⊕ µ.

Return c = (c1, c2, c3).
3. Dec(sk, c). Compute w = c1 �d s and return µ′ = c3 ⊕H(REC(w, c2)).

Lemma 14 (Correctness). Assume that p > 8t(k + 1). For every plaintext µ
and key pair (pk, sk)← KGen(1λ), we have

Pr(Dec(sk,Enc(pk, µ)) = µ) = 1.

Proof. In order to prove the correctness of the scheme, we need to guarantee
that the reconciliation mechanism succeeds. Following Lemma 4 we have to show
that ‖w − v‖∞ < q/8. Notice that we have

v =
∑
i∈[t]

ri �d INV(bi) =
∑
i∈[t]

ri �d (ai �d+k s+ ei) =
∑
i∈[t]

(riai)�d s+
∑
i∈[t]

ri �d ei

= c1 �d s+
∑
i∈[t]

ri �d ei = w +
∑
i∈[t]

ri �d ei,

where ‖ei‖∞ < q/p for i ∈ [t] is determined by the lifting function INV(·). Thus
it suffices to have ∥∥∥∥∥∥

∑
i∈[t]

ri �d ei

∥∥∥∥∥∥
∞

< q/8.

For i ∈ [t] each coefficient of ri�d ei can be seen as the inner product 〈u, v〉 of a
binary vector u of dimension k+ 1 and a vector v also of dimension k+ 1, where
each coefficient has magnitude ≤ q/p. Notice that we have

|〈u, v〉| ≤ ‖u‖2 · ‖v‖2 ≤
√
k + 1 ·

√
(k + 1) · q2/p2 = (k + 1)q/p.

Hence, it yields∥∥∥∥∥∥
∑
i∈[t]

ri �d ei

∥∥∥∥∥∥
∞

≤
∑
i∈[t]

‖ri �d ei‖∞ ≤ t(k + 1)q/p.

As p > 8t(k+ 1), we have t(k+ 1)q/p < q/8 which guarantees that the reconcil-
iation mechanism succeeds. ut
5 This can be done by sampling s ← U

(
Z<n+d+k−1
q [x]

)
uniformly at random and

rejecting it if its Hankel matrix is not full rank.
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5.2 Provable Security

In this section, we prove the security of the PKE scheme defined above based on
the hardness of MP-CLWR.

Lemma 15 (Security). Let λ be the security parameter. Further, let k, d, n, p, q
and t be positive integers such that it yields d + k ≤ n and q ≥ p ≥ 2. Assume
that t ≥ (2 · λ+ (k+ d+ n) · log q)/(k+ 1). The PKE scheme above is IND-CPA
secure in the Random Oracle Model under the MP-CLWRp,q,n,d+k,t hardness
assumption.

Proof. The IND-CPA security game is the following: A challenger C generates
a key pair (pk, sk), samples a random bit b and sends the public key pk to the
adversary A. The adversary chooses two messages m0,m1 and sends them to the
challenger C, which in turn encryptsmb and sends the corresponding ciphertext c
back to A. The adversary outputs a bit b′ as a guess of b and wins the game
if b = b′. The game is illustrated in Figure 3.

IND-CPAAEnc

1 : b
$← {0, 1}

2 : (pk, sk)← KGen(1λ)

3 : (m0,m1)← A(1λ, pk)
4 : c← Enc(pk,mb)

5 : b′ ← A(1λ, pk, c)
6 : return b = b′

Fig. 3. The IND-CPA security game.

If the Random Oracle H was not queried on the value of bDBL(v)e2 ∈ {0, 1}d
during the game, the adversary A can only guess the (randomly chosen) bit b
with success probability 1/2. In particular, we can use a successful adversary A
of the IND-CPA security game to construct a successful adversary A′ which out-
puts bDBL(v)e2, given the first two parts (c1, c2) of any ciphertext c = (c1, c2, c3).
These first two parts are independent of the message to encrypt. We will call
this the COMP-DBL game.

During the IND-CPA game, A′ answers the random oracle queries of A by
maintaining an input-output table for H. For each query, A′ first checks if H was
already programmed on the queried input. If yes, it outputs the corresponding
hash value, otherwise it chooses a fresh random value and sets H accordingly.
Assuming A has non-negligible advantage to win the IND-CPA security game, it
must have queried H on bDBL(v)e2, hence A′ can look up the pair (bDBL(v)e2 , r)
with r = H(bDBL(v)e2) in the random oracle table. The procedure is illustrated
in Figure 4 below.

As a next step, we need to show that the probability of A′ to win is negligible
under the MP-CLWR assumption. We will consider the following sequence of
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Protocol for C, A and A′

C′COMP-DBL A′COMP-DBL/CIND-CPA AIND-CPA

(pk, sk)← KGen(1λ)

(c1, c2, ∗)← Enc(pk, ∗)
1λ,pk,c1,c2−−−−−−−→

1λ,pk−−−→

m0,m1 ← {0, 1}k
m0,m1←−−−−

b← {0, 1}

r ← {0, 1}k

c=(c1,c2,r⊕mb)−−−−−−−−−−→
b′←−

[DBL(v)]2←−−−−−−

Fig. 4. Using A of the IND-CPA security game to win the COMP-DBL game.

games, where in all games ai ← U(Z<nq [x]) for i ∈ [t] and the secret s is chosen
via s← U

(
(Z<n+d+k−1q [x])×

)
. Further, we sample ri ← U({0, 1}<k+1[x]) for i ∈

[t] and set the first part of the ciphertext as c1 =
∑
i∈[t] riai mod q.

The adversary A′ receives in each game the tuple (1λ, pk, c1, c2) and its target
is to compute bDBL(v)e2, where v is specified by each game separately. Game 1
corresponds to the COMP-DBL game above.

G1 : Set bi = bai �d+k sep, pk = (ai, bi)i, v =
∑
i INV(bi) �d ri mod q, and

c2 = 〈DBL(v)〉2,
G2 : Set bi ←

⌊
U(Z<d+kq [x])

⌉
p
, pk = (ai, bi)i, v =

∑
i INV(bi) �d ri mod q, and

c2 = 〈DBL(v)〉2,
G3 : Set bi ←

⌊
U(Z<d+kq [x])

⌉
p
, pk = (ai, bi)i, v ← U(Z<dq [x]), and c2 =

〈DBL(v)〉2.

Note that in the last game, c1 and c2 are independent and hence the probability
that A′ outputs bDBL(v)e2 ∈ {0, 1}d is exactly 1/2d, using Lemma 3.

Furthermore, the second and third game are within exponentially small sta-
tistical distance, using the generalized leftover hash lemma. In more detail, the
statistical distance of the two distributions of ((ai, bi)i, c1, v) in Game 2 and 3 is
given by

∆

(ai, bi)i,
∑
i∈[t]

riai,
∑
i∈[t]

ri �d INV(bi)

 ,

(ai, bi)i,
∑
i∈[t]

riai, v

 ≤ 2−λ,
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where for all i ∈ [t] the polynomials ai, bi, ri and v are chosen uniformly at
random in Z<nq [x],

⌊
Z<d+kq [x]

⌉
p
, {0, 1}<k+1[x] and Z<dq [x], respectively. Note

that the randomness of (h(bi)i)(bi)i comes from the randomness of (bi)i and
since Lemma 8 shows that (h(bi)i)(bi)i is universal we can use Lemma 5. Thus,
the statistical distance is bounded above by

1

2
·
√

2−(k+1)t · qk+n+d.

Recall the data processing inequality of the statistical distance

∆(P f , Qf ) ≤ ∆(P,Q)

for any function f , where P f (resp. Qf ) denotes the distribution of f(y) induced
by sampling y ← P (resp. y ← Q). Setting f = 〈DBL(·)〉, we get

∆ (((ai, bi)i, c1, c2), ((ai, bi)i, c1, u)) ≤ 2−λ.

The first and second game differ only in the way how the bi are computed.
In the first game, bi is a rounded middle-product sample and in the latter one,
it is a rounded uniform sample. We can interpret this situation as two different
experiments, see Figure 5.

Exp1(C,A,S1)

1 : ((ai, bai �d sep)i, aux)← (X ts , con)

2 : (Input1, bDBL(v)e2)← C((ai, bi)i, aux)
3 : Output1 ← A(Input1)
4 : return Output1 = bDBL(v)e2

Exp2(C,A,S2)

1 : ((ai, bi)i, aux)← (U t, con)
2 : (Input2, bDBL(v)e2)← C((ai, bi)i, aux)
3 : Output2 ← A(Input2)
4 : return Output2 = bDBL(v)e2

Fig. 5. Experiment setting of the security proof.

Recall from Definition 6 that X ts denotes the distribution of (ai, bai �d sep)i,
where we choose the ai ← U(Z<nq [x]) independently and sample a fixed secret
element s ← U

(
(Z<n+d+k−1q [x])×

)
. Further, we denote by U t the distribution

of (ai, bbiep)i, where we choose the ai ← U(Z<nq [x]) and the bi ← U(Z<d+kq [x])
independently. In addition, con is an arbitrary distribution over {0, 1}∗ which is
independent from X ts and U t. The Input1 of the first experiment Exp1(C,A,S1) is
given by (1λ, pk, c1, 〈DBL(v)〉2), where v =

∑
i INV(bi)�dri with bi = bai �d+k sep.

On the other hand, the Input2 of the second experiment Exp2(C,A,S2) is de-
fined by (1λ, pk, c1, 〈DBL(v)〉2), where we still have v =

∑
i INV(bi) �d ri but

this time with bi ←
⌊
U(Z<d+kq [x])

⌉
p
. The Target is in both cases the same,

namely bDBL(v)e2.
According to the MP-CLWR assumption, if the success probability for any A

to output the requested bDBL(v)e2 is negligible when bi ←
⌊
U(Z<d+kq [x])

⌉
p
, it is

also negligible when bi is an MP-LWR instance.
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Combining the arguments above shows that the success probability of A′ is
negligible under the MP-CLWR assumption, completing the security proof of
our PKE scheme. ut

6 Parameters and Comparison

6.1 Asymptotic Parameters

As example parameters we set the dimension n ≥ λ, k = d = n/2, t = Θ(log(n)),
q = Θ(n4+c log(n)2) and p = Θ(n log(n)), where c is an arbitrary positive con-
stant and λ the underlying security parameter. Using these parameters, the
scheme is correct (Lemma 14) and secure under the MP-CLWRp,q,n,d+k,t as-
sumption (Lemma 15). This allows us to rely on the MP-LWEq,n,d+k,χ problem
(Theorem 2), where the error distribution χ is B-bounded with B = O(n2+c).
Using the P-LWEfq,Dβq to MP-LWEq,n,d+k,Dαq reduction (Theorem 1), this in
turn prevents attack as [AG11], where β = Ω(

√
n/q) for any f monic of degree

n with constant coefficient coprime with q and expansion factor at least nc.
We now compare our encryption scheme with the one of [RSSS17]. Figure 6

shows the asymptotic parameters, key sizes and ciphertext sizes for both schemes.
The most important parameter is the value log(q) as it dominates the key and
ciphertext sizes of both schemes. Asymptotically, in both cases this value is
Θ(log(n)).

Parameter [RSSS17] Our work
n ≥ λ ≥ λ
c > 0 > 0
k n/2 n/2
d n/2 n/2
t Θ(log(n)) Θ(log(n))

q Θ(n2.5+c
√

log(n)) Θ(n4+c log(n)2)
log(q) Θ(log(n)) Θ(log(n))

α Θ

(
1

n
√

log(n)

)
-

p - Θ(n log(n))
B - O(n2+c)

Key size
sk (n+ d+ k − 1) · log(q) (n+ d+ k − 1) · log(q)
pk t · ((n+ d+ k) log(q)) t · (n log(q) + (d+ k) log(p))

Ciphertext size
c1 (n+ k) log(q) (n+ k) log(q)
c2 d log(q) d
c3 - k

Fig. 6. Comparison of asymptotic parameters, key sizes and ciphertext sizes

In general, the sampling cost is one of the intense operations of an encryption
scheme. In the encryption scheme of [RSSS17], we need 2 · t+1 sampling subrou-
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tines, including t from a rounded Gaussian distribution, during key generation
and t sampling subroutines during encryption. In contrast, in our case we only
need t+1 sampling subroutine during key generation and t sampling subroutines
during encryption. Additionally, in our case all sampling is performed over some
uniform distribution which is more efficient than Gaussian type sampling.

Further, in our encryption scheme we don’t need to restrict the modulus q to
be prime. Unlike [RSSS17], it works for all integer moduli which are sufficiently
large. This gives an advantage on the choice of parameters.

6.2 Concrete Security

Unfortunately, Theorem 2 gives no guidance on the choice of parameters nor on
their concrete security. Parameter derivation is indeed an active research topic
for lattice based cryptography, for both the construction of cryptographic pro-
tocols and cryptanalysis, e.g., [CN11,Pei16,ACD+18]. In practice, it is common
to derive the parameters by looking at the cost of the best known attacks, such
as BKZ with quantum sieving, e.g., [ADPS16,AKS01]. Below, we present the
best known attacks against our scheme. This analysis follows the literature by
treating rounded polynomials by p as polynomials mod q with small noises, see
for instance [APS15].

6.2.1 Attack on public keys Two common approaches to analyze LWE
problems are primal attacks (also known as decoding attacks) and dual attacks
(also known as distinguish attacks), e.g. [APS15].

Primal attack. The middle-product of two polynomials can be expressed as the
product of some (slightly differently defined) Toeplitz matrix associated to one
of the polynomials by the reversed coefficient vector of the second polynomial
[RSSS17, Lemma 3.2]. In order to avoid confusion with the Toeplitz matrix Toep
we defined in Section 3, we will denote the matrix simply by T. For any positive
integers d and k, and a polynomial a ∈ Z<kq [x], we let Td,k(a) denote the matrix
in Zd×(k+d−1)q whose i-th row is given by the coefficients of xi−1 · a, for i ∈ [d].
Thus, given a public key pk = (ai, bi)i∈[t] with ai ∈ Z<nq [x] and bi = bai �d+k sep,
where s ∈ Z<n+d+k−1q [x], it yields

b̄i =
⌊
Td+k,n(ai) · s̄

⌉
p
.

Transposing and multiplying it by q/p gives

q/p · b̄Ti = s̄T ·
(
Td+k,n(ai)

)T
+ eTi ,

for some ei with ‖ei‖∞ < q/2p. Note that in Section 2.2, we point out hat the
coefficients of the noise ei lie between 0 and q/p. So it is best for the attacker to
treat them as elements from −q/2p to q/2p. This gives a smaller bound and is
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hence easier to attack. Therefore, one is able to build a lattice spanned by the
row vector of the following matrix A1 defined by

A1 =



qId+k . . . 0 0 0
...

. . .
...

...
...

0 . . . qId+k 0 0(
Td+k,n(a1)

)T
. . .
(
Td+k,n(at0)

)T
Id+k+n−1 0

q/p · b̄T1 . . . q/p · b̄Tt0 0 1


,

for some t0 ≤ t (the attacker can choose arbitrary, up to t, number of ai’s to
attack). Here, In denotes the identity matrix of order n×n. For appropriate pa-
rameters, the attacker may be able to recover a vector v = (e1, . . . , et0 ,−s̄, 1)T

for some ‖e1, . . . , et0‖∞ < q/2p, if this vector is sufficiently shorter than Gaus-
sian Heuristic. This lattice has a dimension of dim = (d+ k)t0 + n+ d+ k, and
a determinant q(d+k)t0 . On the other hand,

‖v‖2 ≤
√

(d+ k)t0(q/2p)2 + (n+ d+ k − 1)(q/2)2 + 1.

As per [GN08], the hardness of recovering such a vector is determined by the
dim-th root of the quantity

γ1 =

√
dim

2πe

det(A1)
1

dim

‖v‖2

=

√
(d+ k)t0 + n+ d+ k

2πe

q
(d+k)t0

(d+k)t0+n+d+k√
(d+ k)t0(q/2p)2 + (n+ d+ k − 1)(q/2)2 + 1

.

We need γ
1

dim
1 ≤ 1.0045 for all t0 ∈ [t] to achieve 128 bits of security against

BKZ attacks [CN11] under the quantum-Core-sieve model [ADPS16].
Dual attack. An attacker can use the dual attack to distinguish the middle-
product LWR samples from uniform. Given the public keys (ai, bi)i∈[t], the at-
tacker first converts the polynomial bi from a polynomial in Z<d+kp [x] to Z<d+kq [x]
like before. So each bi can be represented as q/p · bi = ai �d+k s + ei with
‖ei‖∞ ≤ q/2p. Now consider the (scaled) dual lattice

Λq (a1, a2, . . . , at) =

{
(x1, x2, . . . , xt) ∈

(
Z<d+k

)t
:
∑
i

xi · ai = 0 mod q

}
.

If the adversary is able to find a short lattice vector in Λq (a1, a2, . . . , at), then∑
i xi �d bi is small if bi-s are MP-LWR samples; it is large and uniform if bi-

s are uniform. This is because when bi = ai �d+k s + ei, then
∑
i xi �d bi =∑

i xi �d (ai �d+k s+ ei) =
∑
i (xi · ai) �d s + xi �d ei =

∑
i xi �d ei. And for

proper parameters,
∑
i xi �d ei will be small. Thus, this dual attack allows one

to solve decisional MP-LWR problems.
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The attack works when the ratio between the error and the modulus is not
much bigger that 1/‖x1, x2, . . . , xn‖∞ [MR09]. For our concrete parameters, we
will be aiming for the error to be 1.5 times bigger than 1/‖x1, x2, . . . , xn‖∞.
Thus from the results of [MR09], we have

q/2p

q
/ 1.5 · 1

‖x1, x2, . . . , xn‖∞
,

that is, if one can find a short vector in Λq (a1, a2, . . . , at) with infinity norm less
than 3p, then one will be able to build such a distinguisher.

To recover a short vector from lattice Λq (a1, a2, . . . , at) in practice, one may
run lattice reduction algorithms over a lattice spanned by the row vector of the
following matrix A2 defined by

A2 =


qIn+k 0 0 . . . 0

Tk+1,n(a1) Ik+1 0 . . . 0

Tk+1,n(a2) 0 Ik+1 . . . 0
...

...
...

. . .
...

Tk+1,n(at) 0 0 . . . Ik+1

 ,

where dim = (n + k) + t(k + 1) and the determinant is qn+k. The vector x =
(0, x1, x2, . . . , xn) will be a (short) vector in the lattice. The l2 norm is bounded
by
√
t(k + 1) 3p

2 , since each xi is bounded by 3p. Applying same analysis we had
in the previous section, we have a Hermite factor

γ2 =

√
dim

2πe

‖x‖2
det(A2)

1
dim

=

√
n+ (t+ 1)k + t

2πe

√
t(k + 1) 3p

2

q
n+k

n+(t+1)k+t

.

The attacker may recover x (and solve the decisional problem) if γ2 > 1.0045dim.

6.2.2 Attack on the ciphertext Given a ciphertext c = (c1, c2, c3), enci-
phered under the polynomials ai of the public key, we have

c1 =
∑
i∈[t]

riai mod q,

where the polynomials (ri)i∈[t] are sampled uniformly from {0, 1}<k+1[x]. Recall,
that the matrix T also helps to formulate the product of two polynomials as a
matrix-vector-product. More concretely, ri · ai can be written as rTi ·T

k+1,n(ai).
It is crucial that the polynomials (ri)i∈[t] are hidden from the attacker. The
attacker may therefore be able to build a lattice spanned by the row vectors of
the following basis:

A3 =

(
A2 0
c1 1

)
,
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that contains the vector v = (0, r1, . . . , rt,−1)T . The dimension of the lattice is
n+ k+ t(k+ 1) + 1 = n+ (t+ 1)(k+ 1). The determinant of the lattice is qn+k
since the degree of c1 is n + k. The norm of the target vector is

√
(k + 1)t/2,

since all ri’s are binary polynomials. Therefore, we require that

γ3 =

√
n+ (t+ 1)(k + 1)

2πe

q
n+k

n+(t+1)(k+1)√
(k + 1)t/2

≤ 1.0045n+(t+1)(k+1).

6.2.3 Concrete parameters We summarize our parameters in Fig. 7. Those
parameters are robust against the three attacks that we have shown in the pre-
vious section. We note that the proposed parameter set may not be optimal. As
the middle product problems are relative new, and we do not currently know
any attacks that outperform attacks against classical LWE problems, we take
a conservative route by deriving parameters from an adaption of the parame-
ters proposed by [RSSS17]. This leaves adequate security margins even if middle
product problems turn out to be a lot easier. We leave optimal and more efficient
instantiations, and dedicated cryptanalysis to future work.

Parameter [RSSS17] Our work
n 512 512
c 0.01 0.01
k 256 256
d 256 256
t 9 9
q 18.941.623 18.941.623
log(q) 25 25
α 0.000651 -
p - 18.504
B - 279.019
Key size
sk 25.575 25.575
pk 230.400 184.320
Ciphertext size
c1 19.200 19.200
c2 6.400 256
c3 - 256
c = (c1, c2, c3) 25.600 19.712

Fig. 7. Comparison of example parameters, key sizes and ciphertext sizes for c = 0.01
and n = 512.
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