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a b s t r a c t 

Purge air is injected in cavities at hub of axial turbines to prevent hot mainstream gas ingestion into in- 

terstage gaps. This process induces additional losses for the turbine due to an interaction between purge 

and mainstream flow. To deal with this issue, this paper is devoted to the study of a low speed linear cas- 

cade with an upstream cavity at a Reynolds number representative of a low-pressure turbine using RANS 

and LES with inlet turbulence injection. Different rim seal geometries and purge flow rates are studied. 

Details about numerical methods and comparison with experiments can be found in a companion paper. 

The analysis here focuses on the loss generation based on the description of the flow and influence of 

the turbulence introduced in the companion paper. The measure of loss is based on an exergy analy- 

sis (i.e. energy in the purpose to generate work) that extends a more common measure of loss in gas 

turbines, entropy. The loss analysis is led for a baseline case by splitting the simulation domain in the 

contributions related to the boundary layers over the wetted surfaces and the remaining domain (i.e. the 

complementary of boundary layers domains) where secondary flows and related loss are likely to occur. 

The analysis shows the strong contribution of the blade suction side boundary layer, secondary vortices 

in the passage and wake at the trailing edge on the loss generation. The study of different pur ge flow 

rates shows increased secondary vortices energy and subsequent loss for higher purge flow rates. The 

rim seal geometry with axial overlapping promotes a delayed development of secondary vortices in the 

passage compared to simple axial gap promoting lower levels of loss. 
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. Introduction 

Rotor-stator wheel space in low-pressure turbines implies gaps

ften referred to cavities under the main flow passage in which

ot turbine gas could be ingested. This hot flow could impinge

otor disks leading to potential overheating and damages for the

urbine [3] . Some relative cold air is blown from the compressor

o feed and seal turbine cavities and prevent partially hot-gas in-

estion from the main annulus [25] . Part of this air called purge

ow blows into the mainstream through the rim seal. The litera-

ure gives some insight on the influence of cavity and purge flow

n the loss in turbines with generally a detrimental effect [22] . The

urge flow reinforces the horse shoe vortex process at the blade

eading edge as stated by Kost and Nicklas [17] and more gener-
∗ Corresponding author. 
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lly of secondary flows in the passage. In a rotor-stator configu-

ation with cavity in-between, Reid et al. [33] reported the influ-

nce of mixing process at the rim seal interface and perturbed ro-

or secondary flows by purge flow as mechanisms inducing addi-

ional losses in the turbine. However, the direct link between the

urge flow and losses generated in the main annulus remains gen-

rally difficult to draw and quantify especially when using loss in

otal pressure. The entropy/exergy approach can provide additional

nsight in the mechanisms of loss. The notion of loss in gas tur-

ines has been widely studied from a general and theoretical sight

y Horlock [15] comparing a wide range of gas turbine architec-

ure and introducing the notion of availability function or equiv-

lently exergy. This quantity makes possible to account for both

he energy contained in the flow with total enthalpy and the level

f irreversibility in the flow with entropy that will reduce the en-

rgy available to generate work. This analysis is compliant with

he use of entropy to account for the loss generated in a gas tur-

ine that is currently widely used to assess the loss generation

https://doi.org/10.1016/j.compfluid.2019.104360
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104360&domain=pdf
mailto:fiore@cerfacs.fr
mailto:maxime.fiore@cerfacs.fr
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Fig. 1. View of the experimental set up. Adapted from Schuler [36] . 
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Table 1 

Characteristics of the cascade rig. 

cascade details nominal conditions 

Inlet blade angle 37.9 ◦ Re 5.6 x 10 5 

Outlet blade angle 66.3 ◦ Ma 0.22 

Axial chord C x 75 mm ˙ m m 1.13 kg.s 
−1 

H NGV / C x 1.3 p tot,in / p out 1.035 

Pitch/ C x 0.884 ˙ m c / ˙ m m 0, 0.5, 1% 
Nomenclature 

Latin letters 

( s, c, r ) local stream coordinates [m] 

( x, y, z ) Cartesian coordinates [m] 

˙ m mass flow rate [ kg.s 
−1 

] 
˙ Q internal heat source [ kg.m 

2 
.s −2 ] 

C x axial chord-length [m] 

h enthalpy [ kg.m 

2 
.s −2 ] 

k turbulent kinetic energy [ kg.m 

2 
. s −2 ] 

P k turbulent kinetic energy production [ kg.m 

2 
. s −3 ] 

Tu turbulence intensity [ −] 

u velocity[ m.s −1 ] 

E energy [ kg.m 

2 
. s −2 ] 

H NGV blade height [m] 

Ma Mach number[ −] 

q heat transfer [ kg.s −3 ] 

Re Reynolds number [ −] 

s entropy [ kg.m 

2 
. s −2 . K 

−1 ] 

Greek letters 

χ exergy [ kg.m 

2 
. s −2 ] 

δ boundary layer thickness [m] 

γ sealing flow angle, tan −1 (u z /u x ) [deg] 

κ artificial viscosity coefficient [ −] 

λ thermal conductivity [ kg.m.s 
−3 

. K 

−1 ] 

μ dynamic viscosity [ kg.m 

−1 
. s −1 ] 

� anergy [ kg.m 

2 
. s −2 ] 

τ viscous stress tensor [ kg.m 

−1 
.s −2 ] 

Subscripts and superscripts 
•. production term 

.̄ Reynolds/temporally averaged quantity 

0 reference state 

c cavity 

eff effective contribution 

in/out inlet/outlet condition 

m main annulus 

sgs sub-grid scale contribution 

tot total quantity/contribution 

turb turbulent contribution 

visc viscous contribution 

in gas turbines [20,21,24] as popularized by Denton [7] . In addi-

tion, this approach makes possible to account for potential heat

and work transfers between the flow and the gas turbine. The en-

tropy/exergy approach made possible to give additional insight in

the mechanisms of loss associated to purge flow as studied by

Reid et al. [33] and Zlatinov et al. [42] showing that a reduction

losses could be achieved by promoting a swirled purge flow be-

fore to interact with the main annulus flow. This approach can

be coupled with the Computational Fluid Dynamics (CFD) tool to

study the influence of purge flow on the loss generated in the

turbine. The current design of turbines is mainly performed us-

ing Reynolds Averaged Navier Stokes (RANS) approach where all

scales of turbulence are modelled. However, the interaction pro-

cesses between cavity and main annulus flow are inherently un-

steady [32] . The relatively low Reynolds number considered in low-

pressure turbines (Re ~ 10 5 ) makes more and more feasible wall-

resolved Large Eddy Smulations (LES) [34] that resolve the turbu-

lent unsteady flow field. Lower levels of turbulence modelling are

obtained for LES approach compared to RANS [38,39] that may ex-

pect a better resolution of the flow field at the interface between

cavity and main annulus flow. From a loss perspective, recent stud-

ies have shown that the assessment of loss in a gas turbine can be
btained more accurately by LES compared to RANS [18,20] , this

eing due to a better resolution of turbulent field that drives the

ixing process of momentum and enthalpy which in turns con-

rols the level of losses generated in the flow field [35] . 

This paper uses the exergy formalism to draw the loss gener-

ted in a low-speed linear cascade with an upstream cavity in-

luding a parametric study of the purge flow rate supplied to the

avity and the rim seal geometry. The companion paper showed

he good behavior of RANS approach to describe the flow field in

he linear cascade with the finer agreement obtained for the LES

ith inlet turbulence injection (LES turb.inj. ). The two simulations are

ompared based on the exergy analysis to provide the differences

etween the two approaches from a loss perspective. The LES turb.inj. 

s then used to draw the exergy analysis for a baseline case. Fol-

owing that, the influence of the purge flow rate and rim seal ge-

metry on the loss generation is studied in this paper before to

raw conclusions. 

. Configuration and numerical methods 

A summary of the test case and numerical methods is provided

elow. More informations can be found in the companion paper.

he test case considered for this study is a low-Mach linear cas-

ade composed of five nozzle guide vane reprensentative of a mod-

rn low-pressure turbine design installed at Karlsruhe University,

ermany (see Fig. 1 ). The mean Reynolds number based on ax-

al chord and vane exit velocity is 50 0,0 0 0 typical of a medium-

ized low-pressure turbine at take-off [16] . The free-stream turbu-

ence is produced by a turbulence grid positioned at seven axial

hord length upstream of the blade leading edge and was mea-

ured at midspan giving a turbulent intensity of Tu = 6% at the

lade leading edge. Upstream of the blade leading edge, the rim

eal is included in a cavity module linked to the test section al-

owing to easily set different rim seal designs. The purge flow is

upplied to the cavity as a fraction of the mainstream flow, re-

pectively ˙ m c / ˙ m m 

= 0, 0.5 or 1%. Main rig characteristics are gath-

red in Tab. 1 . Three different rim seal geometries are studied dur-

ng the experiments with a first geometry composed of an axial

learance (A) and two geometry using axial overlapping geome-

ries: simple (S) and double (D) (see Fig. 2 ). The different cases

tudied with the different geometries and purge flow rates are de-
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Fig. 2. Simulation domain. 
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Fig. 3. Main secondary vortices observed in the linear cascade: suction side (A) and 

pressure side leg of the horse shoe vortex (B), corner vortex(C) and passage vortex 

(D) including the ingestion process face to the blade due to potential effect (E) and 

blowing of cavity flow into the annulus at the center of the passage (F). 
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oted by a letter for the rim seal geometry considered (A: axial,

: simple overlapping, D: double overlapping) and a figure for the

urge flow rate imposed (0: 0%, 05: 0.5%, 1: 1%). For example,

he configuration A05 stands for the axial rim seal geometry with

.5% of the mainstream flow supplied in the cavity. RANS simu-

ations are performed using the CFD code elsA [2] . This software

ses a cell centered approach on structured multiblock meshes. An

pwind Roe scheme with third-order limiter is used for the con-

ective terms [28] . Diffusive fluxes are computed with a second-

rder centred scheme. The Wilcox k- ω two-equations model with

heng’s limiter [41] is used. The LES turb.inj. is performed using the

n-house unstructured AVBP solver [10] . The convective operator is

iscretized by the two-step Taylor–Galerkin scheme [5] (3rd order

ccurate). The Sub-Grid Scale model (SGS) is the Wall-Adapting Lo-

al Eddy-viscosity (WALE) [27] . A layer of 20 prisms in near-wall

egions is applied with an expansion ratio of 1.03 and tetraedra

ll the remaining domain. The meshes for RANS and LES turb.inj. 

re designed to fulfil wall-resolved requirements [12,29,30] includ-

ng a grid refinement from the inlet to the blade leading edge to

ransport turbulent structures generated at the inlet. This lead to a

esh of 7 × 10 6 cells for the RANS and 80 × 10 6 cells for the

ES turb.inj. . 

The comparison against experiments and the analysis of the

ow field is provided in the companion paper. A summary of the

ain mechanisms described in the companion paper is here pro-

osed based on the sketch in Fig. 3 to give a clearer view of the

orresponding mechanisms of loss. Due to the relatively high free-

tream turbulence (6%) and for the considered Reynolds number,

he boundary layer over the hub, shroud and blade is turbulent

ithout separation on the aft portion of the blade suction side. On

he pressure side, an enclosed separation bubble between 10 and

0% chord occurs. Close to the rim seal interface upstream of the

lade, a shear layer is induced due to the high velocity of main an-

ulus flow compared to the cavity flow. The main annulus flow is

eviated downwards into the cavity when facing the blade due to

otential effect. A mass conservation balance for the cavity shows

hat some cavity flow blows into mainstream at the center of the

assage where pressure is lower (F). The cavity flow feeds the ini-

iating secondary vortices in the blade passage. Secondary vortices

re initiated face to the blade by the separation of the hub bound-

ry layer that rolls up in vortices known as the horse shoe vortices.

he horse shoe vortices are chopped by the blade leading edge in

wo main vortices: the suction side leg (A) that remain close to

lade suction side and a pressure side vortex (B) that travels in the

assage due to the cross pressure gradient between two adjacent
lades and entrains the flow close to the hub and the cavity flow.

hese two vortices gather close to the blade suction side and initi-

te two main vortices: a corner vortex close to the hub and blade

uction side (C) and a migrating vortex known as passage vortex

D). The same process of secondary flow development can be ob-

erved at the shroud of the configuration representing a stator row

xcept that no feeding process of secondary vortices by cavity flow

s induced. 

. Exergy analysis in the simulation domain 

The exergy formulation is applied to the linear cascade config-

ration. This general assessment is first led using the RANS sim-

lation. The RANS and LES turb.inj. are then compared with a split-

ing between mean and turbulent contribution in the emphasis to

escribe the differences between the two approaches from a loss

eneration perspective. Once compared, the LES turb.inj. is used to

escribe the contributions to losses of the boundary layers over the

etted surfaces (hub, shroud and blade) and in the remaining do-

ain (the full domain where the subdomains related to boundary

ayers have been removed) where secondary flows are known to

evelop and contribute to losses in the turbine. All these elements

ill be used to obtain the regions and mechanisms inducing loss

n the turbine. The general transport equation for exergy χ in dif-

erential form proposed in Eq. (11) of Appendix A can be written in

ntegral form considering the whole simulation domain and steady

ow conditions. 

This provides the following balance equation [1,37] : 
 

� 

∫ 
(ρχ ) u j n j dA IO = P shaft + χq + �∇u + �∇T (1)

here A IO refers to the inlet / outlet plane of the simulation do-

ain. This equation for exergy χ = (h tot − h 0 ) − T 0 (s − s 0 ) gives a

ower balance for both total enthalpy h tot and entropy quantities

 between the inlet and outlet of the domain (left-hand side of

he equation). Exergy can vary due to the work transferred with

he shaft ( P shaft ), power associated to the heat flux ( χ q ), and the

rreversibility generated in the domain induced by velocity gradi-

nts ( �∇u ) and temperature gradients ( �∇T ). Since the configura-

ion is static, no work is transferred with the fluid similarly to a

tator row leading to P = 0. No heat is transferred at the bor-
shaft 
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Fig. 4. Evolution of the flow exergy from the inlet to outlet of the domain (RANS), 

configuration A05. 

Fig. 5. Example of a simulation domain discretized in axial subvolumes V i (green). 

For a simple configuration where only the hub boundary layer is considered, V i can 

be split in a subvolume associated to the hub boundary layer (red) and a remaining 

domain that is simply the subvolume V i minus the subvolume associated to the hub 

boundary layer (blue). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Evolution of the flow anergy from the inlet to outlet of the domain (RANS). 

Right-hand legend refers to thermal contribution and left-hand to viscous contribu- 

tion, configuration A05. 

Fig. 7. Evolution of the flow anergy production from the inlet to outlet of the do- 

main (RANS). Right-hand legend refers to thermal contribution and left-hand to vis- 

cous contribution, configuration A05. 
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9  
der of the domain (since adiabatic wall) leading to χ q = 0. There-

fore, the exergy variation between inlet and outlet of the domain

can only decrease due to viscous �∇u and thermal irreversibilities

�∇T in the flow field. In current static configuration without heat

transfer, the entropy equation is therefore sufficient to draw the

exergy analysis since the total enthalpy is conserved. The viscous

and thermal contributions in the RANS formalism are obtained by

performing a volume integration of the velocity and temperature

gradients from the inlet to the considered position x [26] : 

�∇u (x ) = 

∫ ∫ ∫ 
V, 0 → x 

τi j, eff 

T 0 

T 

∂ u i 

∂x j 
d V (2)

�∇T (x ) = 

∫ ∫ ∫ 
V, 0 → x 

(λ + λturb ) 
T 0 

T 
2 

(
∂ T 

∂x j 

)2 

d V (3)

where τi j, eff = (μ + μturb )(∂ u i /∂x j + ∂ u j /∂x i ) is the effective vis-

cous stress tensor and .̄ the Reynolds averaged quantities as a

direct output of the simulation. Fig. 4 shows the exergy decrease

of the flow along the simulation domain where the environment

(reference state) has been taken at conditions ( p 0 = 101,325 Pa,

T 0 = 300 K). The inlet to rim seal left corner extends from x / C x = -

1 to -0.26, rim seal region from x / C x = -0.26 to -0.04, blade do-

main from x / C x = 0 to 1 and blade trailing edge to two axial chord

downstream of the blade (outlet) from x / C x = 1 to 3 (see Fig. 5 ).

This figure is obtained by subtracting the total exergy at the in-

let of the domain (here normalized to one) to the contributions
elated to velocity �∇u and temperature gradients �∇T . The de-

rease of exergy due to these two contributions is generally said

o produce anergy, i.e. useless energy in the purpose to generate

ork. The viscous and thermal anergy evolutions along the simu-

ation domain are given in Fig. 6 where the left-hand side abscissa

orresponds to viscous term and right-hand side to the thermal

ne. In addition, the derivative according to the axial coordinate

f the anergy that is here referred to anergy production at a sta-

ion x of the domain and denoted 

•
� is provided in Fig. 7 . This

uantity can be obtained by splitting the whole domain in axial

ubdomains of characteristic length dx and integrating the velocity

nd temperature gradient terms over these subvolumes for which

he characteristic length tends towards zero. For the thermal con-

ribution, the main regions of anergy production correspond to the

im seal extent where the cold cavity flow starts to interact with

ot main annulus flow and downstream along the blade. The vis-

ous anergy production is relatively low from the inlet to the rim

eal, increases sharply along the rim seal and blade extent before

o return towards intermediate levels of anergy production down-

tream of the blade. The viscous anergy production keeps non-zero

ontribution downstream of the blade while the thermal contribu-

ion is almost zero as soon as one axial chord downstream of the

ozzle guide vane ( x/C x = 2 ). The thermal contribution is in the

rder of magnitude of ten times lower than the viscous contribu-

ion. At the outlet of the domain, the remaining exergy is around

8.2 % of the exergy available at inlet of the domain (compared
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Fig. 8. Evolution of the viscous anergy production d �∇u /dx along the simulation 

including the mean and turbulent contributions for the RANS (a) and TKE produc- 

tion P k for LES turb.inj. simulation (b), configuration A05. 
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o the reference state), i.e. the linear cascade deteriorates 1.8% by

iscous and temperature dissipation process to accelerate the flow.

he exergy analysis accounts for both the contributions induced by

iscous and thermal mixing processes. In the remaining of this pa-

er, the focus will be given to the viscous contribution. In the com-

anion paper, the comparison against experiments showed that the

ANS simulation is well able to recover the flow physics due to

he strong influence of free-stream turbulence. However, several

ecent papers have shown that a detailed discussion of losses (en-

ropy generation) can be better performed by LES [18,20,21,24] . In

ddition, the SLES turb.inj. showed a fine agreement with the exper-

ments. Therefore, the splitting between mean (laminar and tur-

ulent contributions) will be led for both RANS and LES turb.inj. in

rder to show the differences between the two approaches from

he loss generation sight while the detailed analysis of the losses

enerated in the linear cascade will be led using the LES turb.inj. . 

. RANS/LES comparison: viscous losses 

Section 3 provided the total production of viscous an-

rgy/entropy along the simulation domain. In a turbulent flow, it

orresponds to a mean contribution sometimes called laminar con-

ribution and a turbulent one [20] . This former contribution is only

ue to the mean flow distortion. The second contribution is pro-

ided by turbulence that under transfer of energy from large to

mall scales is dissipated in internal energy (heat) that induce the

on locality between mean energy flow lost and equivalent heat

enerated at small scales. The RANS approach provides a direct

plitting between the mean contribution through the natural vis-

osity of the fluid ( μ) and the turbulent contribution with the

quivalent turbulent viscosity ( μturb ) [26] . The total contribution is

btained by summing the two contributions as provided in Eq. (2) :

�∇u, mean 

�∇u, turb 

]
= 

∫ ∫ ∫ 
V 

[
μ

μturb 

](
∂ u i 

∂x j 
+ 

∂ u j 

∂x i 

)
T 0 

T 

∂ u i 

∂x j 
d V . (4) 

n LES simulation, the splitting can be obtained by taking advan-

age of the unsteady nature of the method. The total viscous irre-

ersibilities produced �∇u can be written as [19–21,23,40] : 

∇u = �∇u , mean + P k (5) 

here �∇u,mean is the mean viscous dissipation and P k is the Tur-

ulent Kinetic Energy (TKE) production term. These different con-

ributions can be expressed as: 

∇u , mean = 

∫ ∫ ∫ 
V 
( μ + μSGS ) 

(
∂ u i 

∂x j 
+ 

∂ u j 

∂x i 

)
T 0 

T 

∂ u i 

∂x j 
dV (6) 

 k = 

∫ ∫ ∫ 
V 

−u 

′ 
i 
u 

′ 
j 

∂ u i 

∂x j 
dV (7) 

here μSGS is the equivalent sub-grid scale viscosity and .̄ rep-

esents here the temporal averaging operator. For the RANS and

ES turb.inj. simulations, the turbulent contribution is larger com-

ared to the mean one and the two approaches exhibit similar

rends of loss generation along the simulation domain (see Fig. 8 ).

ome differences can be exhibited between the two approaches: a

ecay of turbulent contribution can be observed for the LES turb.inj. 

rom the inlet to the blade leading edge (between x / C x = -1 and

 / C x = 0) that can be associated to the decay of turbulent struc-

ures injected at the inlet of the domain while not observed in

ANS. At the rim seal interface, the production of loss is stronger

or the RANS with a steep increase that may be induced by an

verestimate of turbulent contribution compared to the LES turb.inj. .

ownstream of the blade, the decrease of turbulent contribution

or LES turb.inj. is made over a lower axial extent compared to RANS

hat may be due to a transport of the turbulent wake over a longer

istance for the RANS. 
. Boundary layer and secondary flow losses 

Based on the boundary layer edge detection method [4,6] , the

oundary layer thickness can be obtained for the different wet-

ed surfaces of the domain (hub, shroud and blade) and the cor-

esponding volumes V hub , V shroud , V blade . The full simulation do-

ain less the boundary layer contributions provides the remain-

ng domain with an associated volume V rem . term 

. The exergy anal-

sis is applied to these restricted domains to obtain the contribu-

ions of the different boundary layers and the remaining domain

n a similar manner to previous studies of the losses in gas tur-

ines [7,8,14,21] . The different figures related to the contributions

f the boundary layers and remaining domain are given in con-

unction with the total contribution of the domain at a same ab-

cissa denoted 

•
�∇u, tot to give the reader the magnitude of the con-

ribution to the total one. In addition, since the viscous anergy pro-

uction is the sum of velocity gradients (see Eq. (6) ), the main gra-

ients directions contributing to the generation of losses can be

btained. These gradients can be expanded in any coordinate sys-

em and in current study the local streamline coordinate (i.e. the

artesian main axis is oriented with the stream direction in any

oints) is used. The wall-normal contributions to boundary layers

n curved surfaces (blade) can be directly obtained and the cross

ontributions can be used to provide the contribution associated

o secondary vortices [42] . Fig. 9 shows the viscous anergy pro-

uction related to the boundary layers on the different wetted sur-

aces (hub, shroud and blade) and the remaining term. The viscous
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Fig. 9. Viscous anergy production for the different subdomains based on the 

LES turb.inj. , configuration A05. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Anergy production at the rim seal interface in the remaining domain based 

on the LES turb.inj. , configuration A05. 
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anergy production restricted to particular velocity gradients that

includes both laminar and turbulent contributions is also provided

in same figures. The area under the different curves of Fig. 9 pro-

vides the different contributions to the total losses generated: the

hub/shroud boundary layers contribute to 25% of losses, 38% for

the blade boundary layer and 37% for the remaining domain. For

the hub and shroud, the contribution to losees is almost constant

along the simulation domain with an increase along the blade ex-

tent between x / C x = 0 and 1. This can be associated to the de-

velopment of a boundary layer over the hub and shroud that in-
uce velocity gradients close to the wall and as a consequence vis-

ous anergy. This contribution being induced by the hub/shroud

all-normal gradient ( ∂ u s / ∂ r, see Fig. 9 a). Along the blade extent,

he blade boundary layer is a strong contribution to losses. Simi-

arly to hub and shroud boundary layers, these losses are related to

he wall-normal velocity gradients associated to the blade bound-

ry layer ( ∂ u s / ∂ c, see Fig. 9 b). Wheeler et al. [40] reported simi-

ar loss profiles along the domain in the DNS of a high-pressure

urbine vane with a strong contribution of the mean strain rate

long the blade extent associated to the blade boundary layer. The

ncrease of the blade boundary layer losses on the aft portion of

he blade was also observed by Lengani et al. [21] in the LES of

 low-pressure turbine with passing wakes where the increase of

osses was attributed to small turbulent scales promoted by up-

tream wakes. Hammer et al. [14] also reported similar influence

f the rear part of the blade and the strong sensitivity of losses

o the boundary layer state and/or potential boundary layer sep-

ration on the blade suction side. In the remaining domain (see

ig. 9 c), several physical phenomena can be identified and con-

ribute to the generation of losses. From the inlet x / C x = -1 to the

im seal left corner x / C x = -0.26, the anergy production can be as-

ociated to the dissipation of turbulent structures injected at the

nlet of the domain. At the rim seal interface extending between

 / C x = -0.26 and x / C x = -0.12, the anergy production is related

o the axial and tangential velocity gradient in the radial direc-

ion ( ∂ u s / ∂ r and ∂ u c / ∂ r) between high-momentum main annulus

ow and low-momentum cavity flow (see Fig. 10 ). Close to rim seal

ight corner between x / C x = -0.12 and -0.04, the anergy production

trongly increases. This contribution is induced by the variations of

adial velocity in the tangential direction. This corresponds to the

ngestion process of main annulus flow face to the blade (negative

adial velocity) while the cavity flow emerges close to the center

f the passage (positive radial velocity). The losses associated to

he remaining domain in the inter-blade channel between x / C x = 0

nd x / C x = 1 can be attributed to secondary vortices: pressure and

uction side of the horse shoe vortex, passage and corner vortices

ownstream the merging point of pressure and suction side leg.

hese vortices are continuously fed by the cross flow component

nduced by the blade-to-blade pressure gradient. The energy pro-

ided by the cross pressure gradient is mainly stored into trans-

erse energy terms to the main direction of the vortices. The vor-

ices dissipate this secondary kinetic energy (energy contained in

he cross contributions to the stream one) under a mixing pro-

ess. In addition, a major contribution to losses of secondary vor-

ices in the passage is induced by strong variations of radial ve-

ocity according to the stream and cross component. The passage
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Fig. 11. Axial cuts in the passage colored by viscous anergy production related to 

∂ u r / ∂ c gradients, configuration A05. 

Fig. 12. Viscous anergy production along the blade extent in the remaining domain 

based on the LES turb.inj. , configuration A05. 
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Fig. 13. Viscous anergy production in the boundary layer at a constant distance 

from the wall ( y + = 30) for the hub (left) and blade (right) based on the LES turb.inj. , 

configuration A05. 

Fig. 14. Viscous anergy production downstream of the blade in the remaining do- 

main based on the LES turb.inj. , configuration A05. 
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c  
ortex migrating close to the blade suction side serves as a re-

ion of blockage. In a similar manner to a nozzle, this enforces

he flow in the inter-blade channel to migrate radially. This phe-

omenon induces strong variation of radial velocity components in

he stream and cross direction direction ( ∂ u r / ∂ s and ∂ u r / ∂ c gradi-

nts, see Fig. 11 ). The resulting interaction between this radial flow

nd the passage vortex is not purely a potential flow effect, and

hearing occurs between the two flow features that can be also

bserved in current configuration (see Fig. 12 between x / C x = 0.6

nd x / C x = 1). This phenomenon was originally observed by Zlati-

ov [42] . The third mechanism of loss associated to the secondary

ortices in the passage is the additional friction on the hub, shroud

nd blade suction surfaces where the secondary vortices travel

see Fig. 13 ). This phenomenon was initially observed by Denton

nd Pullan [8] studying the endwall sources of loss based on an

ntropy formulation. Downstream of the blade from x / C x = 1 to

 / C x = 3, the losses associated to the remaining domain progres-

ively decay. The main contributions to the decay downstream of

he trailing edge is twofold: a first contribution related to cross

elocity gradients ( ∂ u s / ∂ c and ∂ u c / ∂ s ). The cross velocity gradient

orresponds to the shear layer between the suction and pressure

ide flow promoting the formation of trailing shed vortices. The

ontribution is strong close to the trailing edge with a quick decay

ince becoming almost zero as soon as x / C x = 1.4. A second process

elated to the passage vortex decay that induces entropy produc-

ion due to a variation of radial velocity ( ∂ u r / ∂ c ) that is performed
ver a longer distance since becoming negligible downstream of

 / C x = 1.8-2 (see Fig. 14 ). 

. Influence of purge flow rate on viscous anergy production 

The influence of purge flow rate on the anergy production is

nalyzed by applying the exergy analysis developed in previous

ection 5 to the LES turb.inj. performed at the different purge flow

ates available (0, 0.5 and 1% of the main flow rate). The losses

ssociated to the shroud boundary layer have been checked to

e unmodified by the amount of purge flow. Indeed, for conven-

ional purge flow rates (typically 1% of the main annulus flow rate),

he influence of purge flow rate is limited to the first half height

f the main annulus [36] . The main influence of purge flow rate

s observed on the hub and remaining domain contribution (see

ig. 15 a and b). The purge flow rate increases anergy production

n the blade passage from x / C x = 0 to x / C x = 1 and downstream

f the blade. As stated, the anergy generated in the passage out

f the boundary layers and downstream of the blade in the re-

aining domain may be attributed to secondary flows developing

n the passage. The current observation supports a feeding process

f the secondary vortices in the passage by purge flow that as a

onsequence generates more anergy. Due to more energetic sec-
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Fig. 15. Influence of the purge flow rate on viscous anergy production for the hub 

(a) remaining domain (b) and total contributions (c) based on the LES turb.inj. , axial 

rim seal. 

 

 

 

 

 

Fig. 16. Influence of the rim seal geometry (axial, simple and double overlapping) 

on viscous anergy production for the hub (a) and remaining domain (b) contribu- 

tions based on the LES turb.inj. , intermediate purge flow rate. 
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e  

o  
ondary vortices, the friction process at the hub is also higher with

a higher purge flow amount. As a consequence, the total anergy

produced along the domain increases with an increased purge flow

rate (see Fig. 15 c) which is compliant with studies dealing with

the influence of purge flow rate on the losses generated in tur-

bines [11,31,33] . 
. Influence of rim seal geometry on anergy production 

At the rim seal interface, the anergy production associated to

zimuthal and axial velocity gap between the main and rim seal

ow is lower for the overlapping geometries. This is due to the lo-

al recirculation zone for overlapping geometries that reduces the

hear compared to the axial geometry (see Fig. 16 a). The overlap-

ing geometries promote an intense recirculation zone that ho-

ogenize the flow at the rim seal interface. A main consequence

s that the cavity purge flow blows earlier at the rim seal inter-

ace, i.e. at a lower axial coordinate for the axial rim seal com-

ared to the overlapping geometries (see positive radial velocity at

he rim seal interface for axial and simple overlapping geometry in

ig. 17 ). This induces an earlier development and strengthening of

he horse shoe vortex process, pressure side of the horse shoe vor-

ex process by purge flow for axial geometry compared to overlap-

ing ones (see Fig. 18 where the purge flow can be tracked since

njected at a lower temperature). The radial migration of secondary

ortices along blade suction are initiated early for the axial rim

eal geometry and promote secondary vortices with a larger detri-

ental impact on losses compared to axial overlapping geometries.

. Conclusion 

This paper has been devoted to the analysis of the losses gen-

rated in a linear cascade with an upstream cavity representative

f a low-pressure turbine based on an exergy analysis. RANS and
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Fig. 17. Radial cut close to the hub colored by the normalized radial velocity u r for 

axial A (a) and simple overlapping S geometry (b). 

Fig. 18. Radial cut close to the hub colored by temperature for axial A (a) and sim- 

ple overlapping geometry S (b). 
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ES with inlet turbulence injection have been compared based on

his approach: the losses related to the decay of turbulent struc-

ures at the inlet are not observed in the RANS. At the rim seal in-

erface, the losses related to the shear are triggered with a higher

agnitude in RANS compared to the LES with inlet turbulence in-

ection and the trailing edge losses are smoothed over a larger

xial extent for the RANS. The hub, shroud and blade boundary

ayer represent around 2/3 of the losses generated in the cascade

ue to wall-normal velocity gradients. In the remaining domain

hat represent around 1/3 of the loss generated, several mecha-

isms of loss have been identified: the decay of free-stream tur-

ulence from the inlet to blade leading edge. At the rim seal in-

erface, the shear layer between the cavity with low momentum

ow and the main annulus flow with high momentum (both axial

nd azimuthal) induces additional losses. Thermal anergy is also

roduced since the cavity flow with slightly lower temperature

ixes with higher temperature main annulus flow. In the blade

assage, secondary flows induce losses under various mechanisms:

 friction process on the wetted surfaces where secondary vor-

ices travel, a blockage effect due to the passage vortex promoting

trong cross radial velocity gradients, and a mixing process dissi-

ating secondary kinetic energy. Downstream of the blade leading

dge, mainly two contributions are added to the hub and shroud

oundary layer: the turbulent vortex shedding process that is sig-

ificant until half chord downstream of the blade trailing edge. A

econd contribution related to the decay of secondary vortices over

ne axial chord length. The study of the different purge flow rates

vailable showed that the cavity purge flow emerging in the main

nnulus is supplied to secondary vortices and more losses are in-

urred due to more energetic structures with an increased purge

ow rate. Regarding the rim seal geometries, the axial overlapping

eometries promote a delayed development and feeding process of

econdary vortices that induce less losses generated compared to

imple axial gaps. 
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ppendix A. Energy available in the purpose to generate work 

exergy) 

In gas turbine application, the common quantity to deal with

ariation of energy in the flow is the total enthalpy h tot that that

s the total energy ( E tot ) of the flow including the energy related

o pressure work h tot = E tot + p/ρ . A transport equation can be de-

ived for total enthalpy h tot and entropy s that can be written

s [13] : 

∂(ρh tot ) 

∂t 
+ 

∂(ρh tot ) 

∂x j 
= 

∂ 

∂x j 
(τi j u j − q j ) + 

∂ p 

∂t 
(8)

∂(ρs ) 

∂t 
+ 

∂(ρsu i ) 

∂x i 
+ 

∂(q i /T ) 

∂x i 
= 

1 

T 
τi j 

∂u i 

∂x j 
+ 

λ

T 2 

(
∂T 

∂x i 

)2 

+ 

˙ Q 

T 
(9) 

here ˙ Q is an internal heat source. Exergy is defined as a com-

osite quantity between the total enthalpy of the flow that mea-

ure the total energy in the flow less the entropy contribution that

easure the level of irreversibility in the flow, i.e. the amount of

nergy to be subtracted to the total enthalpy. Exergy is defined rel-

tively to a dead state noted 0 since the processes of energy trans-

er between the flow and a gas turbine occurs in a surrounding en-

ironment (generally the atmosphere) that contains energy (since

nder pressure p 0 ) and with non-zero temperature T 0 but with no

ccess to this energy in real processes. Exergy χ can be expressed

s: 

= (h tot − h 0 ) − T 0 (s − s 0 ) . (10)

ased on the transport equations for total enthalpy Eq. (8) and

ntropy Eq. (9) , a transport equation can be derived for ex-

rgy [9] without internal heat source that yields to: 

∂(ρχ ) 

∂t 
+ 

∂(ρχu j ) 

∂x j 
= 

∂ 

∂x j 
(τi j u j − (1 − T 0 

T 
) q j ) −

T 0 
T 

τi j 

∂u i 

∂x j 

− λT 0 
T 2 

(
∂T 

∂x i 

)2 

+ 

∂ p 

∂t 
. (11) 
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