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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM IN
A PERIODIC POROUS MEDIUM*

FLORIAN FEPPONT

Abstract. We derive high order homogenized models for the incompressible Stokes system in
a cubic domain filled with periodic obstacles. These models have the potential to unify the three
classical limit problems (namely the “unchanged” Stokes system, the Brinkman model, and the
Darcy’s law) corresponding to various asymptotic regimes of the ratio n = a. /e between the radius
ae of the holes and the size € of the periodic cell. What is more, a novel, rather surprising feature
of our higher order effective equations is the occurrence of odd order differential operators when the
obstacles are not symmetric. Our derivation relies on the method of two-scale power series expansions
and on the existence of a “criminal” ansatz, which allows to reconstruct the oscillating velocity and
pressure (ue,pe) as a linear combination of the derivatives of their formal average (u¥, p}) weighted
by suitable corrector tensors. The formal average (uX,p¥) is itself the solution to a formal, infinite
order homogenized equation, whose truncation at any finite order is in general ill-posed. Inspired
by the variational truncation method of [53, 27|, we derive, for any K € N, a well-posed model of
order 2K + 2 which yields approximations of the original solutions with an error of order O(aK+3)
in the L? norm. Furthermore, the error improves up to the order O(£25+4) if a slight modification
of this model remains well-posed. Finally, we find asymptotics of all homogenized tensors in the low
volume fraction limit n — 0 and in dimension d > 3. This allows us to obtain that our effective
equations converge coefficient-wise to either of the Brinkman or Darcy regimes which arise when n
is respectively equivalent, or greater than the critical scaling 7criz ~ g2/(d=2),

Key words. Homogenization, higher order models, porous media, Stokes system, strange term.

AMS subject classifications. 35B27, 76M50, 35330

1. Introduction. This article is concerned with the high order homogenization
of the Stokes system in a periodic porous medium. Let D := (0, L)% be a d-dimensional
box filled with periodic obstacles w. := &(Z% + nT) N D (the setting is illustrated on
Figure 1). The parameter € denotes the size of the periodic cell, it is equal to e := L/N
where V € N is a large integer and L is the length of the box. The parameter 7 is the
scaling ratio between the radius a. := ne of the obstacles and the length ¢ of the cells.
The total fluid domain is denoted by D, := D\w; and it is assumed to be connected.
P = (0,1)% is the unit cell and Y = P\nT denotes its fluid component.

We consider (u.,p.) € H'(D.,R%) x L?(D.)/R the solution to the Stokes system

—Au.+ Vp. = fin D,
div(us) =0

u, = 0 on dw,

(1.1)

u. is D—periodic,

where f € C32,.(D,R?) (and all its derivatives) is a smooth, D—periodic right hand-
side. The goal of this paper is to derive high order effective models for (1.1); i.e. a
family of well-posed partial differential equations posed in the homogeneous domain
D (without the holes) and whose solutions approximate the macroscopic behavior of

(ue,pe) at any desired order of accuracy in € as € — 0.
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F1G. 1. The perforated domain D, = D\w. and the unit cell Y = P\(nT).

The literature [52, 47, 29, 5, 7, 4, 8] describes the occurrence of different asymp-
totic regimes depending on how the size a. = ne of the holes compares to the critical
size 0. = ¢¥(?=2) in dimension d > 3 (if d = 2, then these regimes depend on
how log(a.) compares to —c~2, see [7]). In loose mathematical terms, these can be
summarized as follows (see e.g. [5, 7] for the precise statements):

e if a. = o(0.), then the holes have no effect and (u.,p.) converges as € — 0
to the solution (u,p) of the Stokes equation in the homogeneous domain D:

—Au+Vp=finD
(1.2) div(u) =0

u is D—periodic.

e if a. = co. for a constant ¢ > 0, then (u.,p.) converges as ¢ — 0 to the
solution (u,p) of the Brinkman equation

—Au+cFu+Vp=fin D
(1.3) div(u) =0
u is D—periodic,
where the so-called strange term cFwu involves a symmetric positive definite
d x d matrix F which can be computed by means of an exterior problem in
RAT (see [4] and section 5).
e if 0. = o(a.) and a. = ne with n — 0 as ¢ — 0, then the holes are “large”

and (a?=2¢7%u,_,p.) converges to the solution (u,p) of the Darcy problem

Fu+Vp=finD
(1.4) div(w) = 0in D
u is D—periodic,
where F' is the same symmetric positive definite d x d matrix as in (1.3).

e if a. = ne with the ratio 7 fized, then (¢ 2u.,p.) converges to the solution
(u,p) of the Darcy problem

M°u+Vp=finD
(1.5) div(u) =0in D

u is D—periodic,

This manuscript is for review purposes only.
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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 3

where MY is another positive symmetric d x d matrix (which depends on 7).

Furthermore M°/|log(n)| — F if d = 2, and M°/n?~2? — F (if d > 3) when

n — 0, so that there is a continuous transition from (1.5) to (1.4), see [6].
One of the long-term motivations driving this work is the need to lay down theo-
retical material that would allow to optimize the design of fluid systems by homog-
enization methods similar to those available in the context of mechanical structures
[21, 20, 10, 50, 14]. To date, the Brinkman [24, 25, 30] and the Darcy models [56, 51]
are commonly used by topology optimization algorithms in order to conveniently in-
terpolate the physics of the fluid at intermediate “gray” regions featuring locally a
mixture of fluid and solid. However, the above conclusions imply that these models
are consistent only in specific ranges of obstacle sizes a.: the Brinkman model (1.3)
is relevant when there are none or tiny obstacles, while the Darcy models (1.4) and
(1.5) should be used at locations where the obstacles are large enough. The arising
of these different regimes (1.2)—(1.5) is consequently a major obstacle towards the de-
velopment of ‘de-homogenization” methods [14, 37, 50, 39, 40] for the optimal design
of fluid systems, which would enable to interpret “gray” designs as locally periodic
“black and white” microstructures (featuring for instance many small tubes or thin
plates).

It turns out that there is a continuous transition between these regimes which
can be captured by higher order homogenized equations, which is the object of the
present article. These higher order models are obtained by adding corrective terms
scaled by increasing powers of € to the Darcy equation (1.5); they yield more accurate
approximations of (u.,p.) when ¢ is “not so small”. For a desired order K € N, the
homogenized model of order 2K + 2 reads

2K +2

Z DY - VR + Ve g = f,

(1.6) k=0
dlv(v;’K) S 0,

v; i is D-periodic,

where (v} i, qZ ) is a high order homogenized approximation of (uc, p). The coeffi-

cient ]D)’;{ is a k-th order matriz valued tensor which can be computed by a procedure
involving the resolution of cell problems; it makes D% - V¥ a differential operator of
order k (the notation is defined in section 2 below). Finally, the high order equation
(1.6) encompasses at least the Brinkman and the Darcy regimes in the sense that it
converges coefficient-wise to either of (1.3) and (1.4) for the corresponding asymptotic
regime of the scaling 7 (see Remarks 5.6 and 5.7) (the analysis of the subcritical case
leading to the Stokes regime (1.2) requires more sophisticated arguments which are
to be investigated in future works).

A rather striking feature of (1.6) is the arising of odd order differential operators
(these vanish, however, in case the obstacle nT is symmetric with respect to the cell
axes; see Corollary 3.16). This fact is closely related to the vectorial nature of the
Stokes system (1.1): the tensors D¥. are symmetric and antisymmetric valued matrices
for respectively even and odd values of k. This property ensures that eventually,
]D)’;( - V* is a symmetric operator for any 0 < k < 2K + 2 (see Remark 3.12). To our
knowledge, such terms have so far not been proposed in the literature seeking similar
higher order corrections for the Stokes system, although these have been observed
in other vectorial contexts [27, 28, 53]. Most of the available works have focused on
situations with low regularity for f, T and D (see [52, 5]), where the homogenization
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4 F. FEPPON

process can be justified only for the approximation at the leading order in . Error
bounds for higher order approximations of (u.,p.) (namely for the truncation of the
ansatz (1.7) below) have been obtained in [46, 26], without relating these to effective
models. A few additional works have sought corrector terms from physical modelling
considerations [35, 18, 17], without considering odd order operators.

Our derivation is inspired from the works [19, 53, 15]; it is based on (non stan-
dard) two-scale asymptotic expansions and formal operations on related power series
which give rise to several families of tensors and homogenized equations at any order.
We extend our previous works [34, 33] where we investigated the cases of the perfo-
rated Poisson problem and of the perforated elasticity system. Expectedly, the major
difficulty in extending the analysis to (1.6) is the treatment of the pressure variable
pe and of the incompressibility constraint div(u.) = 0. Note that the D—periodicity
assumption on f and wu. is made in order to eliminate additional difficulties related
to the arising of boundary layers (see [43, 22, 23, 11]).

The starting point of the method of two-scale expansions is to postulate an ansatz
for the velocity and pressure solution (u., pe):

(1.7) wu.(z Z&“’Zuz z,x/e), peolx Zs pi(x) +epi(z,x/e)), x € De,

where the functions u;(x,y) and p;(x,y) are P—periodic with respect to y € P, and
D-periodic with respect to € D. In (1.7), the oscillating function p;(z, y) is required
to be of zero average with respect to y:

/ pi(x,y)dy =0, Vi>0.
Y

The aim of the homogenization process is to obtain effective equations for the formal
“infinite order” homogenized averages u} and p} defined by

(1.8) Zs’”/ u;(z,y)dy, pi(z Zs x € D.

In Proposition 3.7 below, we obtain that (u?, p¥) solves the following formal “infinite-
order” homogenized equation,

—+oo
>t MN - Vhul 4V = f,

(1.9) k=0
div(u*) =0,

*
€

is D—periodic,

which involves a family of constant matrix-valued tensors (M*)zen. Classically, trun-
cating directly (1.9) yields, in general, an ill-posed model [12]. Several methods have
been proposed to address this issue in order to obtain nonetheless well-posed higher
order equations [16, 13, 1, 2, 15]. In our case, we adapt an idea from [53], whereby
the coefficients D% are obtained thanks to a minimization principle (described in sec-
tion 4) which makes indeed (1.6) well-posed. It is based on the existence of remarkable
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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 5

identities which relate the oscillating solution (u.,pc) to its formal average (u}, p¥):

“+o0
uc(x) =Y e'N'(x/e)  Viul(z)
(1.10) = vz € D.,
p=(w) = pi(x)+ D &' B (x/e) - Viui(x),

=0

where (N(y))ien and (8%(y))ien are different families of respectively matrix valued
and vector valued P—periodic tensors (of order ¢). The ansatz (1.10) is substantially
different from (1.7); following [15], we call it “criminal” because the expansions of
(1.10) depend on u? which is itself a formal power series in £ (eqn. (1.8)).

The order of accuracy at which the solution (v} -, pf ) yields an approximation
of the original solution (u., p.) is determined by how many leading coefficients of (1.6)
and (1.9) coincide (Proposition 4.5). In Proposition 4.10, we show that D% = M* for
0 < k < K, which allows to infer error estimates of order O(¢%X*3) in the L?(D) norm.
It may seem disappointing that one needs to solve an equation of order 2K +2 in order
to obtain approximations of order O(e%+3) “only”. This shortcoming is related to the
zero-divergence constraint: in the scalar and elasticity cases considered in [34, 33], it
turns out that K +1 extra coefficients coincide, namely ]D)’;( =MFfor0<k<2K+ 1,
which yields error estimates of order O(£25+4). In the present context devoted to the
Stokes system (1.1), the equation obtained by substituting D% with M* in (1.6) for
K+1<kE<2K+1,

2K+1
€2K]D)§(K+2 . V2K+2'8:7K 4 Z €k72Mk . vkv:,K 4 vé‘;K — f
(1.11) k=0 R

PO ..
v_ i is D-periodic,

corresponds to applying the truncation method of [53] to the mixed variational for-
mulation rather than to the minimization problem associated with (1.1) (see Re-
mark 4.11). While the minimization principle ensures that (1.6) is well-posed, we do
not know whether this is the case for (1.11). However if it is, then Proposition 4.5
implies that (1.11) improves the approximation accuracy up to the order O(e25+4).

The article outlines as follows. Notation conventions related to tensors and tech-
nical assumptions are exposed in section 2.

In section 3, we introduce cell problems and their solution tensors (X*, a*) which
allow to identify the functions w;, p} and p; in the ansatz (1.7). We show that the
formal average (u},p}) solves the infinite order homogenized equation (1.9) involving
the tensors M*. After defining the tensors N*(y) and 3*(y), we derive the “criminal”
ansatz (1.10) expressing (u., p.) in terms of p¥ and of the derivatives of u*. Through-
out this section, a number of algebraic properties are stated for the various tensors
coming at play, such as the symmetry and the antisymmetry of the matrix valued
tensors MF* for respectively even and odd values of k, and the simplifications taking
place in case the obstacle nT' is symmetric with respect to the cell axes.

Section 4 details the truncation process of the infinite order equation (1.9) leading
to the well-posed model (1.6). We then provide an error analysis of the homogenized
approximations of (u.,p.) generated by our procedure: our main result is stated in

This manuscript is for review purposes only.
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6 F. FEPPON

Corollary 4.15 where we show that the solution (v} -, qf i) of (1.6) yield approxima-
tions of (ue,p.) in the L?(D.) norm of order K + 3 and K + 1 for the velocity and
the pressure respectively. We establish explicit formulas relating the coefficients D%
to the coefficients M* and we briefly discuss the improvement provided by (1.11) in
case it is well-posed.

The last section 5 investigates asymptotics of the tensors MF* in the low volume
fraction limit where the scaling of the obstacle 1 converges to zero. Our main result is
Corollary 5.5 where we obtain the “coefficient-wise” convergence of the infinite order
homogenized equation as well as the one of (1.6) towards either of the Brinkman or
Darcy regimes (1.4) and (1.5) when 7 is respectively equivalent or greater than the
critical size Nepip ~ 52/(d_2), and towards the Stokes regime (1.3) for n = 0(62/(d_2))
in the case K = 0. Although our error estimates for (1.6), are a priori not uniform
in 7, this suggests that our higher order model (1.6) has the potential to yield valid
approximations in any regime of size of holes (at least for K = 0 or above the critical
scale). Note that our analysis is unfortunately unsufficient to establish the convergence
of the high order coefficients ¢*~2M* with k& > 2 towards 0 as n — 0. Future works
will investigate higher order asymptotics of the tensors M* in the subcritical regime
n = 0(2/(@=2)) which are required to establish or invalidate such a claim.

2. Setting and notation conventions related to tensors. In the sequel, we
consider the following two classical assumptions for the distributions of the holes w,
(we recall the schematic of Figure 1), following [5]:

(H1) Y = P\(nT) C P, as a subset of the unit torus (opposite matching faces
of (0,1)? are identified) is a smooth connected set with non-empty interior.

(H2) The fluid component D, = D\w, is a smooth connected set.

Remark 2.1. Assumption (H1) does not necessarily imply (H2), see [3] for a coun-
terexample. Assumption (H1) is not very restrictive and can easily be generalized to
the case where the subset Y has m connected components with m € N (see Appendix
7.5.6 in [33]). Assumption (H2) is stronger, but is also more connected to physical
applications. It forbids the existence of isolated fluid inclusions. Most of our deri-
vations only assume (H1). However, we rely on both assumptions (H1) and (H2) in
order to obtain error bounds section 4, because we use some technical results of [5].

Below and further on, we consider scalar and vectorial functions such as

v : DxP — R u : DxP — R?

(2.1) (@,y) — u(zy)’ (z,y) — u(z,y)

which are both D and P—periodic with respect to respectively the first and the second
variable, and which vanish on the hole D x (nT"). The arguments x and y of u(x,y) are
respectively called the “slow” and the “fast” or “oscillating” variable. With a small
abuse of notation, the partial derivative with respect to the variable y; (respectively
x;) is simply written J; instead of J,, (respectively d,,) when the context is clear.

The star—“x”"— symbol is used to indicate that a quantity is “macroscopic” in the
sense that it does not depend on the fast variable x/e; e.g. (v} x, ¢} x) or (uf,pf) in
(1.6) and (1.9). In the particular case where a two-variable quantity u(z,y) is given
such as (2.1), u*(x) always denotes the average of y — u(x,y) with respect to the y
variable:

u*(z) = /Pu(x,y)dy = /Yu(x,y)dy, z €D,

This manuscript is for review purposes only.
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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 7

where the last equality is a consequence of u vanishing on P\Y = nT. When a function
X : P — R depends only on the y variable, we find occasionally more convenient to
write its cell average with the usual angle bracket symbols:

«w:LX@w

In all what follows, unless otherwise specified, the Einstein summation convention
over repeated subscript indices is assumed (but never on superscript indices). Vectors
b € R? are written in bold face notation.

The notation conventions used for tensor related operations are summarized in the
nomenclature below. Some of them are not standard; they allow to avoid to system-
atically write partial derivative indices (e.g. 1 < i;...4; < d) and to distinguish them
from spatial indices (e.g. 1 <1,m < d) associated with vector or matrix components.

Scalar, vector, and matrix valued tensors and their coordinates
b Vector of R?

(bj)1<j<d Coordinates of the vector b

bk Scalar valued tensor of order k (bflmik eRfor 1 <iy,... ik <d)

b* Vector valued tensor of order k (bﬁzk eRY for 1 <iy,... i, <d)

Bk Matrix valued tensor of order k (Bfllk € R4 for 1 <iy,...,ip <d)

(bf)lg j<d Coordinates of the vector valued tensor b* (b;C is a scalar tensor of order
k).

(BE Vi<im<a (%oefﬁcients of the matrix valued tensor B¥ (BF is a scalar tensors of
order k).

bfl...ik,j Coefficient of the vector valued tensor b (1 <y, ...ix,5 < d)

i lm Coefficients of the matrix valued tensor B* (1 <iy,...ix,1,m < d)

Tensor products

bP @ kP Tensor product of scalar tensors b and ¢*P:
(22) (0P © Py iy =B 0

aP ® bFP Tensor product of a scalar tensors a? and a vector valued tensor b*—P:
(2.3) (@ @b ), iy i=al b L

BP @ C*=P  Tensor product of matrix valued tensors BP and C*—P:

(2.4) (B @ C* P, iy am = BY ch»

1eip i g ik, gme

Hence a matrix product is implicitly assumed in the notation BP@C*~P.
Br . Ck-p Tensor product and Frobenius product of matrix tensors BP and C*~P:

. k= ._ np k—p
(2.5) (BP - C* )iy iy =Bl i CEP
br . ckr Tensor product and inner product of vector valued tensors b? and c*~7:
k— ,7 k—
(2.6) O - " )iy =05 iy i

This manuscript is for review purposes only.
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8 F. FEPPON

Br.ck-r Tensor product of a matrix tensor BP and a vector tensors c*~P:
P.ck—pPy. . ._ P k—p
(2.7) (BP - " )iy g = Bil.“z'p,zmcz'p“...ik,m'

Hence a matrix-vector product is implicitly assumed in B? - ¢F~P.
Contraction with partial derivatives

bk . vk Differential operator of order k associated with a scalar tensor b*:
(2.8) bR =0 ok

bk . vk Differential operator of order k associated with a vector tensor b¥: for
any smooth vector field v € Cpe,.(D, R9),
(2.9) b Vi = bfl.“ik,z zkl..iz'k”l-

BF . VF Differential operator of order k associated with a matrix valued tensor
BF: for any smooth vector field v € C22,.(D,R?),
(2.10) (B V™), = B i imOF i vm.

Special tensors

(ej)i<j<d Vectors of the canonical basis of RZ.

e; Scalar valued tensor of order 1 given by e;;, = d;,; (with 1 < j < d).

0ij Kronecker symbol: §;; =1 if i = j and d;; = 0 if 7 # j.

I Identity tensor of order 2:

Liyiy = 03y

The identity tensor is another notation for the Kronecker tensor and it
holds I = e; ® e; with summation on the index 1 < 5 <d.
J2k Tensor of order 2k defined by:

k times

—
JR=Tele ---o1.

With a small abuse of notation, we consider zeroth order tensors b° to be constants
(i.e. b € R if b is scalar) and we still denote by b ® c¥ := b%¢* the tensor product
with a k-th order tensor ¢*. The same convention also applies to vector valued and
matrix valued tensors.

In all what follows, a k-th order tensor b* (scalar, vector or matrix valued) truly makes
sense when contracted with k partial derivatives, as in (2.8)—(2.10). Therefore all the
tensors considered throughout this work are identified to their symmetrization:

k _ 1
bil‘..ik = E E bia(1)~~~io(k>7
T oEG,

where &y, is the permutation group of order k. Consequently, the order in which the
(derivative) indices i1, ... i) are written in b¥ , does not matter.

Finally, in the whole work, we write C, Ck or Ck (f) to denote universal constants
that do not depend on & but whose values may change from lines to lines (and which
may depend on 7 or on the obstacle T').

Remark 2.2. In a limited number of places, the superscript or subscript indices
p,q € N are used. Naturally, these are not to be confused with the pressure variables
Pe Or ¢ introduced in (1.1).

This manuscript is for review purposes only.
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3. Infinite order homogenized equation and criminal ansatz. We start
by identifying the two-scale structure of (u., p:) which arise in the form of the ansatz
(1.7). Because it helps emphasizing the arising of Cauchy products, we assume, in
this section only, that the right-hand side f can be formally decomposed into a power
series in €:

+oo
(3.1) Vz €D, f(x) =) & fi(x).
=0

3.1. Identification of the “classical” ansatz: tensors (X% o). Inserting
(1.7) into the Stokes system (1.1) yields the following cascade of equations:

—Ayyuiro + Vypiro = firo — Vabiro — Vabit1 + Apytivr + Az,
divy (wiye) = —divy (wit1),
uo=u_1=0,p 1=0,
u;(x,-) =0 on d(nT)
u;(x,-) is P—periodic for any x € D,

u;(+,y) is D—periodic for any y € P,

for any ¢ > —2, where the operators —A,,, —A.,, —A,, are defined by

yy»s Ty

—Agp = —divy(Vg), —Agy = —divy(Vy) —divy(Vg), —Ay, = —divy(V,).
In order to solve (3.2), we introduce a family of respectively vector valued tensors

(X?(y))lgjgd and scalar valued tensors (o (y))1<j<a defined by induction as the
unique solutions in H',,.(Y,R%) x L2(Y)/R to the following cell problems:

per

(3.3) —AyyX? + Vya? =e;inY,
div, (X9) =0in Y

5.0 —Ayy X+ Vya = (20X — ale) ®e in Y
' divy (X)) = — (&2 = (X9) e @e in Y,

J

(3.5) —Ayyxg?ﬂ + vya;%z = (2alxé?+1 —o"tle) @e + Xf ®InY vk >0
' divy (X5T2) = —(XE — (M) e @ e in Y -

Equations (3.3)—(3.5) are supplemented with the following boundary conditions:

/ a?dy:O
Y

X? =0on d(nT)
(X?, a?) is P—periodic

(3.6) Vk > 0.

Remark 3.1. In view of the notation conventions of section 2, the non bold sym-
bols ®e; and ®I indicate the arising of extra partial derivatives indices. For instance,
the first line of (3.5) must be understood as
—Ay XN L AV =20, AN ] +&Y

PRI I Gyi1eeinan U2 §iq g Ygiiy iy Cikre G

L0

Tht1tk42"
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We introduce the k-th order matrix valued tensors X* whose columns are the
vector valued tensors (X ;“)

(XEWhi<ijea = [Xi@) ... Xi)],YweY, Vk>o0.

We also denote by o the k-th order vector valued tensor whose coordinates are the

scalar tensors af:

af(y) = (Ol?(y))lgjgd, YyeY, Vk>O0.

Following the conventions of section 2, we use a star notation to denote the average
of respectively the tensor X* and of the vector fields wu;:

(3.7) XM ::/ X*(y)dy, Yk > 0, ul () ::/ wi(z,y)dy, Vo € D, Vi > 0.
Y Y

The tensors X'* and a* enable to solve the cascade of equations (3.2):

PROPOSITION 3.2. Assume (H1). The solutions w;(x,y), p;(x,y) of the cascade
of equations (3.2) are given by

ZX’“ ) VH(fion(@) = Vii4(@)
(3.8)

Za E(Fil@) — Vpi (@),
where the functions p} are uniquely determined recursively as the solutions to the
following elliptic system: for any i > 0,
—div, (X% V,p}) = —div, (X% f;)

= D div(X" - VE(fio — Vapi ) in D,
(3.9) k=1

/p;‘dx:()
D

p; is D—periodic.

Recognizing Cauchy products, the identities (3.8) and (3.9) rewrite formally in terms
of equality of formal power series:

+oo
(3.10) uc(x) = ZE’“Xl(x/E) -V f(z) — Vpi(x)),
i=0
(3.11) pe(x) = pi(z) + ng (z/€) - V'(f(2) = VpL(@)),
+oo
(3.12) div(ul(z)) = 0 where u* 25”22(” Vi(f(z) — Vpi(x)).
=0
Proof. The result is proved by induction. The case ¢ = —1 is straightforward

thanks to the convention w_; = p_; = 0. In this proof we use the short-hand

This manuscript is for review purposes only.
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notation h;(x) = f;(x) — Vpi(z). Assuming (3.8) and (3.9) hold till rank ¢ + 1 with
i > —2, we compute, substituting (3.8) into (3.2):

(—Ayytito + Vypito)(z,y)
= hiyaj(2)e; + (20X (y) — o (y)er) ® e)) - Vhitq j(x)
(3.13) +) (20X (y) — o (y)e) @ e+ X (y) @ 1) - VE2hiy ()
k=0
i+1
divy (wiro)(@,y) = — D (XF(y) - er@er) Vi iy g (x).
k=0

The system (3.13) admits a unique solution (w2, pi4+2) with [i, piyo(z,y)dy = 0 if

and only if the following compatibility condition (the so-called “Fredholm alterna-

tive”) holds (for any ¢ > —1):
i1

/ divy (wit2) (2, y)dy = — Z[<X§> cer@e] - Vi g (x) = 0.
v k=0

The above equation determines pj,; given the values of pj for 0 < k <i:

i+1
(X - e)au(firry —Owi) = = Y_[(X5) - ev@e] -V (fipang — 0iplya ),

k=1

which is (3.9) at order ¢ 4+ 1. This identity allows to rewrite div, (u;+2) as

i+1
(314)  divy(uis2)(@,y) = = D (X5 (y) — (X)) - et ®@ea] - V' hipr ().
k=0

By linearity, (3.13) and (3.14) and the definitions of (X?, oz?) through the cell problems
(3.3)—(3.5) imply the result at rank i + 2. d

Remark 3.3. The truncation of the series (3.12) at first order yields the well-
known Darcy’s law [52]. The next terms of the series have been obtained in [46, 26],
at least up to the order ¢ = 1.

Remark 3.4. The ansatz (3.10) is already non standard (when compared to (1.7))
because it features p} which is a formal power series in & (recall (1.8)).

The next proposition establishes the symmetry and antisymmetry of the matrices
X** (eqn. (3.7)) for respectively odd and even values of k. We note that similar
identities have been found for the Poisson [34] or the wave equation [1].

PROPOSITION 3.5. For any k > 0 and 0 < p < k, 1 < 4,5 < d, the following
identity holds for the matriz valued tensor X**:

(3.15) Al = (—1)?/ (A, XP+Val)- XY P4val P 27— xh =t a e l)dy
Y

with X;l = 0 by convention. In particular, for any k > 0, X2** and X*+1* take
values respectively in the set of d x d symmetric and antisymmetric matrices:

(3.16) X2 = (fl)k/(vxf:vx§+w§-x§+w§~xﬁx54-x§*1®f)dy
Y
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AL (_1)’f/ (X vxh—xbh . vxl+ofxl —ohxl) e @edy
(3.17) Y
+(—1)’f/y(xf—1-Xf—xf—l-xf)dy.

Proof. The result holds for p = 0 because
* k k
X = /Y X - eidy = /Y X% (=D, X) + Val)dy.

Assuming now that (3.15) holds till rank p with ¥ > p > 0, we prove the result at
rank p + 1. We write, after an integration by parts and by using (3.3)—(3.5):

Xk = (—1)P /Y (X7 AXYTP — aldiv(X)TP) — of TPdiv(A?)
— xRl X g [dy
= (—1)P /Y (A7 o —ai P e @e + XV PP @1 — Vol TP AT
—&—afé\f?_p_l e Qe + a;-e_pr_l e Qe — Xf_p_l . Xf_l ®I]dy
= (=1 /Y [— X577 (200&7 — ofe)) @ e+ XV @ 1)+ of P div(xPH)
— Va7 &P — o Pdiv(al) + XV AP @ I]dy
= (1) [ AT (A AT 4 Vart)
= Vai TP Pt X X @ Tdy,
whence (3.15) at rank p + 1. Finally, the expression (3.16) for X%k* is obtained by

setting k < 2k and p < k in (3.15). The expression for Xékﬂ* is obtained by setting
k < 2k + 1 and p < k and performing an integration by parts. a

3.2. Derivation of the infinite order homogenized equation and of the
criminal ansatz. We now proceed on the derivation of the infinite order homogenized
equation (1.9). Let us recall the classical positive definiteness of the Darcy tensor X%,

COROLLARY 3.6. Assume (H1). The matric X°* = (X} )1<ij<a (defined in
(3.7)) is positive symmetric definite.

Proof. See [52] or Corollary 7.8 in [33]. 0
Hence, the following definition of the tensors (M*);cn makes sense.

PROPOSITION 3.7. Let M* be the tensor of order k defined by induction as fol-
lows:

MO _ (XO*)—I
(3.18) . =
MF = (X071 y At M, VE > 1

p=0

This manuscript is for review purposes only.



HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 13

353 Then the source terms f; (eqn. (3.1)) can be expressed in terms of the averaged
354 summands uf(x) and pf(x) ((1.8) and (3.7)) through the following identity:
355 (3.19) Vi >0, fi(z) — Vpj(z) = Y _ M* VFu;_, (x).

k=0

356 Recognizing a Cauchy product, (3.19) and (3.12) rewrite formally as the “infinite
357 order” homogenized system (1.9) for the formal average (u?,p?) defined in (1.8).

358 Proof. The proof is identical to the one of Proposition 5 in [33], it amounts to
359 average the first line of (3.8) with respect to y and to solve the resulting triangular
360 system determining f;_ — Vp;_, in terms of u;. 0

361 The definition (3.18) essentially states that Y25 e*~2M* - V* is the inverse of the
362 formal power series Zz:é ght2xk* . vk, In this spirit, it is even possible to write a
363 fully explicit formula (see [34], Proposition 6 and Remark 2 for the proof):

364 PROPOSITION 3.8. For any k > 1, the tensor M* is explicitly given by
k
365 (320) ME :Z(fl)p Z (XO*)fl®Xi1*®.”®(X0*)71®Xip*®()(0*)71.
p=1 i1+ Fip=k
1< enyip <k

366 We now introduce matrix valued tensors N* and vector valued tensors B* which allow
367 to obtain the “criminal ansatz” (1.10) expressing the velocity and pressure (u.,pc) in
368 terms of their formal average (u?,p}).

PROPOSITION 3.9. Let N* and B* be respectively the k—th order matriz valued
and vector valued tensors defined for any k € N by

k k

NEy) =Y xFPyeM?,  BFy) =) (-1)PMP-a*P(y),  VyeY.
p=0 p=0

369  Then the summands u;(z,y) and p;(z,y) of (3.10) and (3.11) are given for any i > 0
370 in terms of the averages u} (eqn. (3.7)) and p} as follows:

a7l (321)  wi(a,y) =Y NP(y)- Vi, (2),  pilzy) = B (y) VFu_,(x).
k=0 k=0

372 Recognizing Cauchy products, the identities (3.21) can be rewritten formally as the
373 “criminal ansatz” (1.10).
Proof. The result is obtained by substituting (3.19) into (3.8) which yields
i i—p

wi(z,y) =3 > XP(y) @ MT- VPl (x)

p=0 q=0
ik
= Z Z(Xp(y) ® MP~%) . V*u;_, () (change of indices k = p + q)
k=0 p=0

from where the identity (3.21) for u;(z,y) follows by inverting the summation. Simi-
larly, we obtain

ik
pilz,y) =D Y (MPH)T - af(y)) - Viui_y(2),

k=0 p=0

This manuscript is for review purposes only.
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14 F. FEPPON

hence (3.21) by using (MP~F)T = (—1)P=kMP~F (see Corollary 3.11 below). O

In what follows, we denote by (N]k)1<]<d and by (,8 )i<j<d respectively the column
vectors and the coefficients of N*(y) and 8% (y):

V1<i,j<d, NJ:=N"e; and 8} := 8" - ¢;

In addition, the convention N j_l = 0 is assumed. We shall in the sequel use several
times the following properties of (NJ’?, ﬁf) which are dual to those of (X K 04’?).
PROPOSITION 3.10. The k-th order tensors N¥, (Nk)1<j<d, 8% and (5 Ji<j<d
satisfy:
(i) [y N°(y)dy =TI and [, N*(y)dy =0 for any k > 1;

(ii) [y B*(y)dy =0 for any k > 0;
(i4i) For any k> —2 and 1 < j < d,

(32 —Ayy NFP2 4 VB2 = (20, NIt — gitle) @ ey + Nf @ 1+ M"He;
le(NJI'C+2) = _(Njk+1 - <NJI'€+1>) e ey;

Proof. (i) and (ii) are straightforward consequences of (3.18).
(iii) is obtained by writing, for £ > 0 (implicit summation on the repeated index

j assumed):
k+2 k+2
A Nk+2 v k+2 __ A Xk+2*17 MP v k+2—p MP
wIN; T VBT = Ay Z i (y) ® M;; | + Zai (y) ® M
p=0 p=0
k

= Z {(28[.)(;“&7;0 . aerlipel) X e+ Xfip Y I] Mf;
=0

p
+ (20, X7 — 04?3;)M£+1 + M;;HQ
= (20Nt — pitle) @ ey + Nf @ I+ M e,

k+2 k+1
div(NF*?) Zdw (X2 ME = ZMP (XFHP_ < XTI ) e @

The proof is identical for k = —1 and k = —2. ]

The identity (3.22) allows to infer important properties characterizing the tensors M*
which are similar to those of Proposition 3.5.
COROLLARY 3.11. Forany 1 <p <k —1, it holds
k— k— -1 k—p—1
M = (=1)P* /Y((—Anyf’JrVﬂf) NP4+ VB P NP = NPT NP @1)dy.

Consequently, for any k > 0,
o M?* is a symmetric matriz valued tensor, and the following identities hold:

My = /Y VN : VN}dy,

Vk>1, MY = Gl)’““/y(VNf : VNJ+VBI-Ny+VB;-NF-NF N 'aI)dy.
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o M1 s an antisymmetric matriz valued tensor and it holds:

M = () / (N}-VNf — NF-VNF+BENS - BFNF) - e @ erdy
Y
k+1 k—1 k k—1 k
+(=1) /Y(Nj "N = N;7" - Nj) @ Idy.

Proof. The proof is very similar to the one of Proposition 3.5 and is omitted, see
also Proposition 7.34 in [33]. |

Remark 3.12. The antisymmetry of odd order tensors M?**1 ensures that the
associated differential operators e2*~1M2F+1 . v2k+1 arising in the “infinite order”
homogenized equation (1.9) are symmetric. Indeed, the antisymmetry of M2¥+1 “com-
pensates” the one induced by odd order derivatives which makes M?2k+1.v2k+1 he o
symmetric operator: for two vector fields w := (u;)1<i<d, v = (vi)1<i<d, it holds

2k+1 o2k+1 2k+1 2k+1 241 2k+1
/Y’U-M R VAuns udy:‘/y(Mij+ VT vy = —/Y(MijJr VP udy
— / (MjQik+1 . v2k+lvi)Ujdy — / u - M2k+1 . v2k‘+1,vdy'
Y Y

Remark 3.13. Tt is not completely straightforward to exhibit an instance of hole
OT and k € N for which we can actually prove that M?2?*+1 is not zero. However
simple numerical evidences tend to confirm this conjecture, see section 7.4.5 in [33]

for an example featuring M?! # 0 in the case of the elasticity system .

3.3. Simplifications for the tensors X** and M* in case of symmetries.
In the final part of this section, we examine how the symmetries of the obstacle nT'
with respect to the cell axes reflect into the coefficients of the matrix valued tensors
XF* and M*. Our final result is stated in Corollary 3.16, which implies that odd
order tensors X2#*1 and M?#*! vanish in case T is symmetric with respect to the
cell axes. It is based on the following elementary lemma:

LEMMA 3.14. Let S € R an orthogonal symmetry, i.e. S = ST and SS = 1I.
The following identities hold for any smooth vector field X and scalar field o:

(3.23) —A(SX08)+V(ao8)=S5(—AX + Va)o S,
(3.24) div(SX 0 §) = div(X) o S,

Proof. The first two identities are obtained by writing
—A(SX o) S) + V(Oé o S) = —S@ijé\:' o SSilSjl + S(VO[) oS
=-—S(AX +Va)oS,
div(SX 0 S) =Tr(V(SX 0 5)) =Tr(S(VX) 0 SS) =Tr((VX) 0 S) = div(X) o S.
Identity (3.25) is an elementary consequence of the chain rule. d

PROPOSITION 3.15. If the cell Y = P\(nT) is invariant with respect to a sym-
metry S, i.e. S(Y) =Y, then the following identity holds for the tensors (X}, al)
(defined in (3.3)—(3.5)):

(3.26) SXE i 108="Si4 . SijuSim XY

J1---Jk,mo

This manuscript is for review purposes only.
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122 (3.27) O‘fl...ik,l 08 = Sij, - Sipji Sima

J1---Jk,m>

129 with implicit summation over the repeated indices ji,. .., jr and m. As a consequence,
130 the following identities hold for the constant matriz valued tensors X** and MF:

131 (3.28) X = Si1j1 cee Sikjk SlPquXk*

i1...0%,lMm J1---Jk,Pq
433 (3.29) le Jdg,dm T Sijr -+ SijxStpSm MJl JksPq”

Proof. We prove (3.26) and (3.27) by induction. Applying Proposition 3.15 yields

_Ayy(SX? o S) + v?/(Oélo ° S) = Se; 0S5 = Se = Smje'rru
div(S&Y o S) = 0.

Since the cell is symmetric with respect to S, (SX] o S,a) o S) satisfies the same
boundary conditions (3.6) than S,,;(X 9 aY ). Therefore these vector fields are equal
and we infer (3.26) and (3.27) at rank k = 0. We then write, for a given 1 <4y < d:

Ayy(SX] 108)+V,(a] 08)=5(20,X) —aje;,) oS

= Si1j1 (281'1 (SXl © S) - al © Sejl) Sll]l Slm(Qajlxo a e]l)
divy, (SX} ;0 8) = —(X] oS — (X)) e

= —SlmS(Xgn - <X9n>) “€iy, = =S8, Sim(X <XO )) - €5

where we have used (X7) = (X?0S). This implies similarly (3.26) and (3.27) at rank
k = 1. Assuming now the result holds till rank k + 1 with & > 0, it holds:

k+2 k+2
—Ay, (SXT 108) +Vy(ai™

k42, gga,l © S)

= 5(20;, Xk —altt )oS+SXL . 086

(R R ST PN 1. 0k41, lezk+2 Tht10k+2
_ Q. . k+1 k+1
- Sik+2]k+2 (23 (sz g1, o S) - az Agg1,l

Jk+2
+ Sik+1jk+15‘ 205 j SX? sl © S

1k+2Jk+2YJk+1Jk+2
_ k+1 k+1
= Siljl . Sik+2ik+2 Slm[(28 X — O )

Jk+2°% j1.Jrt1,m J1-- ]k+17m63k+2
k
+ 6]1«+1jk+2‘)(g1 Jk M ]
k+1
o
k41, l S < X Z}c+1 l >)

k1 k1 ‘
SlmS(XJl Jkr1m < le Jk+1,m >) Ciftr

. . . k+1 _ k+1 .e.
_Sml...SWZJHQSlm(X]1 grrrm— < X ]k+1m>) € ias

o Sejk+2)

divy (SX*2 0 9) = —(xFT,
= _Si1j1 .. S

Tk1Jk+1

~Cipyg

hence (3.26) and (3.27) at rank k + 2. A change of variable then yields:

A= /Y e X . dy= /Y (Ser)- (SXE . 0 8)dy.

434 This implies (3.28), and then (3.29) by using (3.20). O

135  We apply the above result to two possible families of symmetries:
e for 1 <1< d, the symmetry S! with respect to the cell axis e;:

St=1—2ee];
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o for 1 < m,l < d with m # [, the symmetry S'™ with respect to the diagonal
axis e; — e,,:

Sm =T —ee] —enel +eel +eel +enel.
COROLLARY 3.16. 1. If the cell Y is symmetric with respect to all cell axes
(e1)1<i<d, i-e. SHY) =Y for any 1 <1< d, then
kx k
X i pg = 0 and My 4, g =0

whenever any given integer 1 < [ < d occurs an odd number of times in the
indices iy .. .1, p,q. In particular, this implies X2+1* =0 and M?*+1 = 0.
2. If the cell Y is symmetric with respect to all diagonal azes e; — e, i.e.
St(Y) =Y for any 1 <1< m <d, then for any permutation o € &g,
Wi

kx kx
X Ai 1.0g,pq”

o(i1)...o(ir),o(p)o(q) — “Vii...ik,pq

k _
and Mg,) o(in),0(p)o(a) =

Proof. The result is obtained by applying (3.28) and (3.29) to the particular
symmetries S! and S'™. See also Corollary 3 in [34]. d

Let us illustrate how the previous properties translate for the tensors M°, M? and
M*:
o if the cell Y is symmetric with respect to all cell axes (e;)1<i<q, only the
coefficients of the form Mp; are non zero. For M?, only
M2 .. M2 .. M2

i35 Migige Mii i
with ¢ # j are non zero. For M*, only the coefficients of the form

Mz%‘jj,kk,M?ijk,jka M;liii,jjv Mfijj,iia M?iij,ij’ Mi4iii,ii
are non zero with distinct integers 4, j, k.

e If in addition the obstacle is symmetric with respect to all diagonal axes, then
the values of the above coefficients do not depend on the choice of the distinct
integers i,7,k. As a result, M° is proportional to the identity tensor, M3
reduces to at most three coefficients (the material is said to be orthotropic),
and M* reduces to at most 6 coefficients for d > 3, and to 4 coefficients for
d = 2. For instance there are three constants a, 3, such that M? -V is the
operator

d
M? - Vv = aAv + Vdiv(v) + vz Osiv;€4.
i=1

4. Homogenized equations of order 2K + 2: tensors DI;(° In this section,
we derive the well-posed high order homogenized system (1.6) and we justify the
homogenization process by means of quantitative error estimates.

The formal identities (1.10) lead us to introduce, for any order K € N, the
truncated ansatz We i (v) and Q. k (v, ¢) for the reconstructed velocity and pressure:

K
(4.1) Wk (v)(z,y) =Y _e"N¥(y) - VFo(a), zreD yeY
k=0
K

(42)  Qex(v.9)(z,y) = d(z) + Y ¥ '8 () - Vio(), weD,yeY
k=0
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18 F. FEPPON

for any v € HE+1(D,R?) and ¢ € L?(D) which are sought to approximate the
homogenized averages u’ and p} respectively. Similarly we denote by W, i (v) and
Qe x (v, ¢) the reconstructed oscillating functions defined for any = € D, by

(43) W x(v)(@) = Wk (v)(@,2/c), Qex(v,6)() = Qe x(v,$)(x,x/e).
Most of the results of this section are consequences of the following observation:

LEMMA 4.1. For any K' € N, (v,¢) € H*(D,R?) x L?(D), the reconstructed
velocity and pressure (We g/ (v), Qe ik (v, 9)) of (4.3) satisfy

7AWE,K' (’U) + vés,K’ (’U, ¢)
K/
(4.4) = Zsk_2Mkav - gK/_l((ZaleK/ - Bf{/el) ®e)(-/e)- VK/-HUJ'.
k=0
+(NK T @I)(/e) Vo — X NE'(Je) @ - VK 2y,

(4.5) div(We, i (v)) = div(v) + % NE'(/e) - ey @ ¢y - VE Loy

Proof. (4.4) and (4.5) are obtained by applying the Laplace and gradient opera-
tors on (4.1) and (4.2) and by using the identity (3.22). O

4.1. Sufficient conditions leading to error estimates. The purpose of this
part is to demonstrate that a sequence of functions (v¥, ¢¥).>¢ yields an approxima-
tion of (ue,p.) at the order O(eX") provided it solves the infinite order homogenized
equation (1.9) up to a remainder of order O(e%'*1). The derivation of a finite-order
homogenized equation such as (1.6) reduces then to determine 2K + 2 — K’ tensors
]D)’}( for K’ +1 < k < 2K + 2 such that the equation

2K+2 K’
(4.6) Z b2k Vhor + Zsk_2Mk Vo 1V = f
k=K’+1 k=0

is well-posed. The proof is based on the next three technical results.

LEMMA 4.2. There ezists a constant C independent of € > 0 such that for any
v € H'(D.,R%) with v =0 on dw,, the following Poincaré inequality holds:

||vHL2(D5,Rd) S CEHV'UHL2(D7]R‘1><{1)-

Proof. See e.g. [44] or the appendix of [49]. 0

The next lemma states the existence of a continuous right inverse for the divergence
B.—so-called a Bogovskii’s operator—with a bound explicit in € on the uniform con-
tinuity constant.

LEMMA 4.3. Assume (H1) and (H2). Then there exists a linear operator B :
L*(D.) — HY(D.,R%) satisfying, for any ¢ € L?(D.) with fDE ¢dr = 0:
(i) div(B:¢) = ¢ in D,
(i) Beod =0 on Ow. and B:¢ is D-periodic,
(iii) ||V (Be@)||r2(p. gaxay < Ce |9l L2(p.y, for a constant C > 0 independent of ¢
and €.
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Proof. See [32], Lemma 2.1, or [33], Lemma 7.9. |

COROLLARY 4.4. Assume (H1) and (H2). For any h € L*(D.,R?) and g €
L*(D.) satisfying [}, gdz =0, let (v,¢) € H' (D, R?)x L*(D¢) be the unique solution
to the Stokes problem

—Av+Vo=hin D,
div(v) = g in D,
(4.7 / pdzr =0
D,

v =0 on Ow,

v is D—periodic.
There exists a constant C independent of €, h and g such that
(4.8) IVl 12(p. rixay + elldll2(p.) < Clellhllrz(p. ray + 7 lgllL20.)),

Proof. We use the operator B, of Lemma 4.3 to lift the divergence of v. Let us
define the vector field w := v — B.g € H}_.(D.,R%) which satisfies

per
{div(w) =0in D.,

w = 0 on Ows.

After an integration by part, we obtain:

||V'w\|%2(DE7]RdXd) :/ h~wdx—/ V(B.g) : Vwdz
D, D.

<|h|l2(p. rayl|wl| 22D, re) + [[V(Beg)lL2(D. maxa)| VW] 12D, maxa)

< C(el|b]|p2(p. ray + IV (Beg)l| L2 (p. meaxa) | IVW|[ 12D, gaxa),
where the last inequality is a consequence of Lemma 4.2. Therefore, simplifying by
|[Vw||p2(p, gaxay and using the point (iii) of Lemma 4.3 yields

[IVV||p2(praxay < |[Vw||p2(p, maxay + |[[V(B:g)l|12(p. raxay
< C(ellbllz2(p. ey + & Hl9llz2p.))s

which proves the first part of the bound (4.8) on Vv. The bound on the pressure is
then obtained by using B.¢ as a test function: we write

161225, = /D odiv(B.g)dr = — /D V- B.ods

:/ (—Av — h) - Béda :/ (Vo - V(B.6) — h - B.¢)da
D.

D.
< |IVollz2(p, raxay [V (Bed)l|2(p. raxay + |[BllL2(p. mey || Be@l| L2 (D, re)
< Cellhllzzp. mey + € lgll 20V (Bed)| 2. mixa)
< Ce™ellhll L2 (p. may + € lgllz2 o)l 22 (D)
which concludes the proof. 0

We are now in position to state the main result of this section.
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PROPOSITION 4.5. Let (v},q})e>0 be a sequence of functions of H'(D.,R?) x
L?(D.), D-periodic, depending on € (and possibly on K' and f) satisfying the follow-
ing conditions:

1. (ve,q:) solves the infinite order homogenized equation (1.9) up to an error of
order O(eK'+1):

K/

(4.9) D e EME VI + Vg - f < O (f)ek+1
k=0 L2(D,R4)

(4.10) div(v*) =0 in D

(4.11) (vZ,pl) is D—periodic.

2. For any m € N, there exists a constant Cy, independent of € such that
(4.12) 02| rm (p,ray < Cme?.
Then the reconstructed functions (WEJ@ (v), Qe.icr—1 (¢, 7)) (eqn. (4.1) and (4.2))

yield approzimations of (uc,p.) of order O(K' + 2) in the H*(D.,R?) norm and
O(eX'*3) in the L*(D.,R?) norm:

—W. i (v* — 0. * ok , K'+2
[V e = Wero W] ) e 2 e = @erematal oD, < Cro (),
— "% ’ * ’ K,+3
e = Were D), ) L < O
Proof. According to Lemma 4.1 and (4.10), it holds
—~ ~ K/
— AW, gr41(v2) +V Qe kr41(q2,v7) = Z e"PMY VFu + V¢ ""_OL?(DE,]Rd)(EK )
k=0

diV(WE,K/_i_l) = OLz(DE)(EK/+3),
where we have used (4.12) to estimate the right-hand side terms. Applying now Corol-
lary 4.4 to (v,¢) = (ue — We gr41(v2),pe — Qe k7 (¢, v})) yields the error estimate
V(e = Wescria(w2))] < Crr( )42,

L2(De)

De — QE,KUrl(q:a 'U:)

+¢ ’
LZ(DE ’RdX d)
Finally, remarking that the highest order terms are already of order O(e%'*+2), i.e.
IV (W g1 (07) = W (0l 2 ey < Crere 2,
el|Qe,xr+1(al,vE) — Qe xr—1(q,vI)||L2(py < Cref+2,
we obtain the result by using the triangle’s inequality. ]

Remark 4.6. We need only K — 1 derivatives in the truncated criminal ansatz
Qe xk—1(v}, ¢k) for the pressure (eqn. (4.2)), because the term of highest order has a
norm of order e while v} is of order £? by the assumption (4.12).

Remark 4.7. As a result of the scaling ¢! in Corollary 4.4, we pay a factor ¢!

in the error induced by the non zero divergence constraint. However we are able to
obtain the right order of € in the error estimates of Proposition 4.5 thanks to the use
of higher order terms of the ansatz (3.21) which are removed at the end of the proof.
This strategy is quite classical in the truncation analysis of two-scale expansions, see
e.g. [26, 11].

This manuscript is for review purposes only.



NI C I
[SIESGEICI R i

v Ot Ot Ot Ot Ot Ot Ot

NN N

~

529
530
531

532

538

539
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4.2. Construction of a well-posed higher order effective models by a
minimization principle. We now derive the well-posed homogenized equation (1.6)
of (finite) order 2K +2 by following the variational method introduced by Smyshlyaev
and Cherednychenko in [53] and used in the further works [28, 27, 34]. In the present
context, of the Stokes system (1.1), we shall see that (1.6) can be obtained as (4.6)
with K’ = K, which yields error estimates of order O(¢%+3) in the L?(D.) norm.

Recall that the velocity u. solution to the Stokes system (1.1) is the unique
minimizer of the constrained minimization problem

1
u. = arg min J(w, f) = / (V'w :Vw - f- w) dy
weH (D ,RY) D \2
(4.13) div(w) =0 in D,

s.t. w = 0 on Ow,
w is D—periodic.
In the context of the homogenization of linearized elasticity, the main idea of the
method of [53] is to restrict (4.13) to functions of the form w = W, g(v) given by

(4.1), where v € HE*T1(D,R?) is an unknown function sought to approximate u?. In
the present setting, we consider the following approximation of (4.13):

i J(W.
werrA e (We k(v), f)
(4.14) . [div(@)=0in D,
ot v is D—periodic.

Note that (4.14) is not exactly the restriction of (4.13) to such functions ‘/7[757 x(v)
because div(ﬁvfevK(v)) # 0 (it is of order e, see (4.5)). The next step of the process is
to eliminate the oscillating variable z/¢ in J(WE’K(U), f) so as to obtain an effective
energy Ji (v, f,€) ~ J(We i (v), f) which does not involve oscillating functions. Such
is achieved thanks to the classical lemma of two-scale convergence [9].

LEMMA 4.8. Let ¢ be a P = (0,1)%periodic function and f € CX.(D) be a

per

smooth D—periodic function. Then for any p € N, there exists a constant C,(f,®)
independent of € such that:

’/Df(x)ﬁb(ac/a)dx—/D/Pf(x)qs(y)dydx <O (f. 8)e

Proof. See Appendix C. of [53] or Lemma 7.3 in [33]. O
Applying Lemma 4.8 to (4.14) in order to pass to the limit in the terms of

J(W, k(v), f) which depends on the oscillating variable x/e, we obtain the existence
of a functional J} such that for any v € C9,(D,R%), it holds

per

J(We ke (v), ) = Tic (v, £.€) + ofe?)
with p € N arbitrarily large. The functional J is given explicitly by
1 2
(@15) Tictw £.)i= [ [ 3|90+ 210) (Wer @) dydo— [ £-vdz,
pJp 2 D

where we have used the point 1 of Proposition 3.10 to simplify the linear part of
the energy. Replacing J(W, g (v), f) by Ji(v, f,e) in (4.14) allows to obtain the
homogenized equation (1.6) of order 2K + 2:
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22 F. FEPPON

DEFINITION 4.9. For any K € N, we call homogenized equation of order 2K + 2
associated with the Stokes system (1.1) the Euler-Lagrange equation of the minimiza-
tion problem

min Ji (v, f,e)
v e HK+ (D, RY),
(4.16) s.t. div(v) =0 in D,

v is D—periodic.

This Euler-Lagrange equation can be written as (1.6) where the constant (matriz val-
ued) tensors Dk are inferred from (4.15) and where (Vix k) € HE+(D,R?%) x
L?(D) defines the higher order homogenized solution.

The next two propositions verify that (1.6) is indeed a “good” candidate effective
model, by relating the coefficients D% to the tensors M* (in view of (4.6)), and by
establishing the well-posedness of (1.6).

PROPOSITION 4.10. The coefficients of the matriz valued tensor D’;( are explicitly
given for any 1 <1,j <d by:

MFifO<k<K
k k
(4.17) D5 = MY+ Ak if K+1<k<2K+1

(—1)K+1 / NS NF®Idy if k =2K +2.
Y
where the matrix valued tensor A’I“{ 18 given for any K +1 <k <2K +1 by

(4.18) A, = (—1)K+1/Y(Vﬂ]’?’l{’1-NiKH—k(—l)kVBf’K’l-NJK“)dy.

Proof. Let us denote by Vi the space
(4.19) Vi = {v € H*™(D,R?%) |div(v) = 0 and v is D-periodic}.

We identify the coefficients ID)’}( by computing the Euler-Lagrange equation associated
with (4.15). For any (v, w) € Vi, it holds, in a distributional sense:

/ / (Vo4 e 'V ) We. k(v) 1 (V, + 71V, )W, k(w)dzdy
DJP

_ / / [(— D — e Ay — £ 20, )W i (v)
D JP
+ (Vi + 7'V, Qe k (v,0)] - W, x (w)dady

+/D/YQE,K('U7O)[(diVm+€_1diVy)W5,K(’w)]d:L‘dy.

By using (4.1) and the point (i) of Proposition 3.10, the above quantity is equal to

K K
// [ZEk_2Mkka($)] ~ZEkN’“(y)-ka(x)dxdy
DY k=0 k=0

- [ [ oK W) - e @ @) VK ()] - W (w)dady
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- /D /Y[eK*(Nf ) @1) - VE T o(2)] - W, g (w)dady

- / / EX(NK (y) @ 1) - V520 (2)] - W e (w)dardy
DJY

K
* /D DB () - VR (@) (N () - e @ e VI () )dyda

Y k=0
K 2K 12
:/ <Zsk2Mk~vkv+ > stD’;(-Vkv>«wdx
D \k=0 k=K+1

where we identify (by integration by parts) ]I))%{KJQ = —(=1)K Iy NE. NjK ® Idy as
claimed. The coefficients of the tensor ]D)]}( are given for K +1 <k <2K + 1 by

D, = —(=1)F K1 /Y((QGINJK —pRe)@e+ NS oI) NFKdy
- (*1)’“’K’2/YNJK'NZ-’“‘K‘2®Idy+ (—1)’(“/Yﬂf—’<—1NiK~el ® erdy
+ (=1 /Y[(—l)’“NjK NFE 2o I+ g KTINT ey @ e]dy,

where we have used extensively Proposition 3.10. We now distinguish two cases:
1. if k = K + 1, then the above expression reads

DETL = (MK +Hej) e /Y NEFL (22, N + VB0 dy + /Y VB0 NK+H
+(_1)K+1/ Vﬁf*[(*l 'NiK+1dy: M¢§+1 +A1'I§'+17
Y

whence the result for k = K + 1;
2. if K+2<k<2K +1, then we read instead

Df i = (-5 / (= N+ VB - NE R iR N dy
Y
k+ K K k—K—2 k
— (-1 /YNj - N, ® Idy + Ajj.
Applying finally Corollary 3.11 with p = K 4 1, we obtain that the first two term of

the above equation are equal to (—1)*M. ﬁ- = Mi’}, which yields the final result. d

Remark 4.11. In view of the proof of Proposition 4.10, it is possible to show that
(1.11) (with the same definition for the leading coefficient D3~ *2) is the strong form
of the following “mixed” variational formulation: find (% x,q; i) € Vi x L*(D) such
that for any (w, ¢) € Vi x L?(D),

(4.20) /D/Y [(e7'Vy + Vo)W k(0% k)] - [(e7'Vy + Vo)W, g (w)]dyda

7/ / Q&K(ﬁ:,K,c};':K)[(s*ldivy+divz)W€7K(w)]dydx
DJy
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24 F. FEPPON

—/ / Q&K(w,qﬁ)[(e*ldivy+divx)W57K(ﬁ:,K)}dydx:/ f - wdz.
DJy D

This result is quite surprising. Indeed, (4.20) is built from the truncated ansatz
(We k (V] i), Qe (V7 ¢ @% ) which is expected to yield approximations of (u., p.)
at order O(e®*3) only (eqn. (4.1) and (4.2)). However, the strong form (1.11)
turns out to exhibit 2K + 1 “correct” coefficients M*. As a result, if (1.11) is well-
posed, the reconstructed oscillating functions WEQKH(E;’K) and @572;((17:7[(,(’];1()
approximate u. and p. with an error rate as good as O(¢25%4) in the L?(D.) norm
(Proposition 4.5). This improvement (which had not been noticed in the original
paper [53]) actually holds in the context of the Poisson or elasticity equations for
which there is no difference between (1.6) and (1.11) (see [34, 33]). Unfortunately in
the case of the Stokes system, we do not know whether the mixed formulation (4.20)
with the “velocity-dependent” pressure Q. k (w, ¢) yields a well-posed problem, hence
our commitment to consider (1.6) instead of (1.11).

The leading tensor D%KH is nonnegative according to (4.17). Under a rather un-
restrictive additional non-degeneracy assumption, we obtain that the minimization
principle (4.16) makes (1.6) be a well posed problem.

PROPOSITION 4.12. Assume the dominant tensor D3+2 = (—1)K+H1BEFLEHL 4
non-degenerate, that is there exists a constant v > 0 such that for any constant vector
tensor K+ = ¢K+1 e R¥"™ x RY of order K + 1, it holds

110K +1,D

(4.21) /Y[(NK ®er) EFH(NF @e) -5 ay > vElTL, L €T T
Then there exists a unique velocity and pressure couple (V] ¢, qZ ic) € HE+Y(D,R?) x
L?(D)/R solving the higher order homogenized equation (1.6).

Proof. The proof relies on the positivity of the quadratic part of the energy
Ji (v, f,e). By adapting the arguments of the proof of Proposition 12 in [34], we
obtain indeed that the bilinear form associated with the energy (4.15) is coercive on
the space Vi defined in (4.19). This is enough to apply standard theory for sad-
dle point problems involving the zero divergence constraint (see e.g. the textbooks
[55, 54, 38, 31]) which ensures the existence and uniqueness of a solution for (1.6). O

Remark 4.13. The assumption (4.21) could fail for K > 1 in case the obstacle nT'
is invariant along some of the directions e; of the cell P, however it is not restrictive.
Indeed, since the leading order tensor ID)%(K *2 has no influence on the error estimates
of Proposition 4.5, it is always possible to add to DiK +2 a small non-negative tensor
making it non-degenerate.

4.3. Error estimates: justification of the homogenization process. We
conclude this section by stating error estimates holding for the solution (U: K42, %)
to the high order homogenized model (1.6). We know from Proposition 4.10 that
]D’% = MP* for 0 < k < K, therefore the assumptions of Proposition 4.5 are satisfied
provided we verify the uniform regularity estimate (4.12).

LEMMA 4.14. The solution (v} k., qZ i) of (1.6) is smooth and for any m € N,
there exists a constant Cp,(f) depending only on m and f such that

[V kllam(Drey < Crn(f)2.
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Proof. This result can be obtained by solving (1.6) explicitly with Fourier series
in the periodic domain D and by adapting the proof of Lemma 5 in [34]. O

Since we have verified that all the assumptions of Proposition 4.5 hold with K’ = K,
we are finally in position to state the following error bounds.

COROLLARY 4.15. Let (v} g, qZ ;¢ ) be the unique solution to the high order homog-
enized equation (1.6). There exists a constant Ck (f) independent of € (but depending
on K, f, and a priori on the shape of the hole (nT')) such that the following error
estimates hold:

< Ok (f)eR+,

L?(De,R%)

K
U, — Zeka(/a) . Vkv:,K
k=0

S CK(f)5K+2a

L?(D. Rexd)

K-1
pe — <q;f,K + Y B /e) v’“v:,K>
k=0

K
v (us - Zeka(/s) . Vkv:7K>
k=0

< Cg ()"t

L*(De)

Remark 4.16. As the reader may expect, error bounds with the same order of
convergence hold for the truncation at order K of the “classical” ansatz (1.7), see
[26, 46] up to the order K = 1, and in Proposition 7.37 of [33] at all orders.

5. Low volume fraction limits when the scaling n of the obstacle van-
ishes. In this section, we provide evidences that (1.6) is “well-behaved” in the sense
that it has the potential to capture the homogenized regimes (1.2)—(1.4) in the low
volume fraction limit where the size of the obstacles vanish. Our results supporting
this claim are obtained by analyzing the asymptotics of the tensors X**, MP* and
]D)%K *2 as the scaling ratio 7 converges to 0.

In this whole subsection, we assume for simplicity, that the space dimension is
greater than 3:

d>3.

Similar results are expected to hold in dimension d = 2 but would require a different
treatment, as e.g. in [6, 41]. The hole nT is assumed to be an non-empty open subset
strictly included in the unit cell for any n < 1 (it does not touch the boundary):
nl CC P.

Let us recall the definition of the Deny-Lions (or Beppo-Levi) space denoted by
DL2(RAT, RY) (the reader is referred to [6, 4, 8] and also [48], p.59. for more details).

DEFINITION 5.1 (Deny-Lions space). The Deny-Lions space DV2(RN\T,RY) is
the completion of the space of smooth vector fields by the L? norm of their gradients:

DY2(RAT,RY) := DRAT, R+ IHE7,

where D(RIT,R?) is the space of compactly supported smooth vector fields. When
d > 3, it is admits the following characterization:

DLERNT, RY)

= {v measurable | [V L2a/(a-2) (gavTRey < +00 and [[VV||p2ra\praxay < +00}.
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For any 1 < j < d, we consider the unique solution (¥;,0,) to the exterior Stokes
problem

—A¥; +Vo; =0 in RAT

div(®;) = 0 in R\T
(5.1) WU; =0ondT
¥, — e at 0o

o; € L*(RN\T).

The convergence condition ¥; — e; at infinity must be understood in the sense that
¥, — e; belongs to DV2(RY\T,R?). Similarly, the pressures (0;)1<;<q are uniquely
determined by the condition o; € L?(R\T) (see e.g. Lemma 1.1, article V. of [36]).
We denote by F := (Fj;)1<i,j<a the matrix collecting the drag force components:

(52) Fij = / V\I/Z : V\I/Jdl‘ = —/ €; - (V\I’l — O'iI) . ’I’LdS7
RINT or

where the normal n is pointing inward T.

5.1. Technical estimates in the growing periodic domain n~'P\T. In all
this section, vector fields of the rescaled cell =P are indicated by a tilde ~“notation.
For a given vector field v € L?(n~'P,R%), we denote by (v) the average (v) :=
1 [, po(y)dy.

Let us recall that for any v € H'(P\(nT),R%), if ¥ is the rescaled function defined
by v(y) := v(ny) in the rescaled cell =1 P\T, then the L? norms of v, ¥ and of their
gradients are related by the following identities:

||”||L2(P\(nT),Rd) = nd/2||'l~7||L2(n*1P\T,Rd)

V|| 22 (p\ () mixay = 1Y 27|V | L2 (-1 7 RAxa) -

The asymptotic behaviors of the tensors X** M* are obtained by following the
methodology of [6, 41, 34], which relies on several technical results stated in this part.

LEMMA 5.2. Assume d > 3. There exists a constant C > 0 independent of n > 0
such that for any v € H'(n~*P\T,R?) which vanishes on the hole T and which is
n~ 1P periodic, the following inequalities hold:

(5.3) [[9]| L2 (-1 P\T,RE) < Cn_d/2|‘VT’HL?(WIP\T,WM),
(5.4) |(v)| < ClIVO||L2(p-1 P\ REX),

(5.5) 1o — ()| L2\ rrra) < C7 VO |21 pr7rEx ),
(56) ||;l\)' - <17>|‘L2d/(d—2) (n—lP\T,Rd) S C| |V17||L2(7]_1P\T,Rdx d).

Proof. See [41, 45, 6, 42]. 0

LEMMA 5.3. Consider h € L?*(n *P\T,R%) and g € L*(n~'P\T) a function
satisfying fn_lp\ngx = 0. Let (v,9) € H' (n7'P\T,R%) x L?(n~'P\T) be the
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unique solution to the following Stokes system:

—~Av+Ve¢=nhinyg 'P\T
div(v) = g inn 'P\T

(5.7) / bz =0
n—1P\T
v=0 ondT

v is n~ ' P-periodic.

There exists a constant C' > 0 independent of n, h and g such that

(5.8) |IVV||L2(p-1 p\1,RExe) + @] L2 (-1 P\T)
< C Mk = (W) p2(p-1pvrray + 17 R+ gl L2 (-1 p\1)-

Proof. From Lemma 2.2.4 in [7], for any 7 > 0, there exists a linear “Bogovskii’s”
operator B, : L*(P\(nT)) — H'(P\(nT),R%) satisfying for any ¢ € L?(P\(nY))
such that fP\(nT) ¢pdy = 0:

(i) div(B,0) = 0.
(i) By = 0 on AT,
(iii) B¢ is P-periodic,
(iv) [IV(Byd)llL2(p\(y1),Rixd)y < Cl[@||L2(P\(y1)) for a constant C' independent of 7
and ¢.
For any ¢ € L?(n~tP\T) such that fnflP\T ¢dy = 0, we define

By() :==n~" [By(e(n™" ) (n-)].
The operator B, : L(n~'P\T) — H'(n~ ' P\T,R%) satisfies the following properties:
for any ¢ € L%(n~'P\T) such that I8 pdz = 0,
(i) div(B,¢) = ¢ in n~ ' P\T,
(i) B¢ =0 on OT,
(i) B,¢ is =t P-periodic,

-1p\T

(iv) ||V(By®)llL2(y-1 pr7gaxay < C||6]|12(-1p\1) for a constant C independent of 7
and ¢.

The proof follows then classically along the lines of Corollary 4.4. Upon an integration

by parts and by using Lemma 5.2, it is readily obtained with w := v — Byg:

2 p—
va”L?(n*lP\T,RdXd) == /n_lP\Thwwdy
= [ ) g [ n) - Gy
n=1P\T n=1P\T

< C(|lh = (Rl 21 p\7rey [[w = (W) L2 (-1 prray + 17 ()] [(w)])
(5.9) < 0(77_1||h — (M)l L2(y-1p\7RY) + n_d‘<h>|)vaHL?(n*lP\T,RWd)

for a constant C' > 0 independent of n and h. This implies

||VUHL2(77*1P\T) < vaHL?(n*lP\T,RdXd) + |‘V(EUQ)HL?(WIP\T,WM)
< C([|Vwl|p2(y-1 prrrixay + gl L2-1p\1))
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28 F. FEPPON

whence the bound on ||Vv|| 2 (-1 p\7,raxe) by using (5.9). The bound for the pressure
is obtained by writing

/ H*dx = / pdiv(B,¢)dz
n~'P\T n~'P\T

—— [ VoBgde= [ (T0iV(B,6) - (Bye)da
n~'P\T

n—1P\T
from where (5.8) follows analogously. O

5.2. Asymptotic convergences of homogenized tensors in the low vol-
ume fraction limit n — 0. The asymptotics of the corrector tensors (X 2, ag) and
of X% (defined in (3.3) and (3.7)) have been obtained in of Theorem 3.1 in [6]. The
following proposition extends this result to the whole family of tensors (X k af)keN
and (Xk*)keN.

PRrROPOSITION 5.4. Assume d > 3. For any k > 0 and 1 < j < d, denote by

~2k ~2k+1
(X5 ,&?k) and (X ; " 7&51”1) the rescaled tensors in n~'P\T defined by
~ 2k -~ ~2k+1 _
{xjmwzwdmmnx?mm X5 (@) = D 2 ()
a?k(x) — n(d_2)(k+1)_1a?k(m€) &?kJrl(x) — n(d—2)(k+1)—1aj2_k+1(77x)

for any x € n=LP\T. Then:
1. there exists a constant C' independent of n > 0 such that

~ 2k ~
VN >0, [[VX] ||p2()-1 prrgaxay + 635 | p2-1p\7) < C,

~2

~2k+1
V>0, |IVX; |21 pyrraxa)y + 165 L2 -1 ey < G

2. the following convergences hold as n — 0:

(5.10) (X a%) = (2w, ;) weakly in HE (RIT,RY) x L2, (RU\T),
(5.11) (&, a1 = (0,0) weakly in H}, (RAT,RY) x L2, (R\T),
(5.12) X2k Wc%,

(5.13) XA — (77“1‘21)(’”1)) ,

where C?jk denotes the coefficients of the matriz valued tensor ¢** = (c?j’?)lgingd of

order 2k given by
k times

—_—f—
= P ED 26 i PR Tl 1.

Proof. The result is proved by induction on k.
~0 _
1. Case 2k with k = 0. The tensor (X, ,aY) satisfies

~0
~AX; +Va? = nle; in R\T
(5.14) o \
div(X;) =0 in RN\T,
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as well as the other boundary conditions of (5.7). Lemma 5.3 implies then

~0 > _
Hvxi ||L2(77*1P\T,]Rd><d) + HOK?HL?(n*lP\T) <Cn dnd|<ez’>| <C

0
From (5.4), we also obtain that (X,) is bounded. Hence, up to extracting a sub-
sequence, there exists a constant matrix ¢ := (ng)lgi,jgd, and fields (‘I’?,aghgigd
such that
~0 0
(X;) - e — ¢,

~0 ~
(X;,a7) = (¥?,57) weakly in Hj,.(n~ ' P\T,R?) x Li,.(n~ ' P\T).

) loc

Multiplying (5.14) by a compactly supported test function ® € C°(R¥\T') and inte-
grating by parts yields

/ (V.;t’? VP — aldiv(®))dz = / n® - e;dz.
N P\T N P\T

Passing to the limit as  — 0 implies then

—AW? 4+ V5) =0 in R\T
div(®Y) = 0 in RI\T
WY =0 on IT.

By applying the point (5.6) of Lemma 5.2 and by using the lower semi-continuity
of the Lebesgue space norms, we infer (@? - c?jej,ﬁg) € DL2(RNT) x L2(RNT)
(see the proof of Theorem 3.1 in [6] for a detailed justification). By linearity, it is
then necessary that (@?,E?) = (¢};®;,c);05) where (¥;,0;) are the solution to the
exterior problem (5.1). In order to identify the coefficient c?j, we integrate (5.1) by
parts against the test function ® = e; then yields

~0
0=nd/ 5ijd17+/ e; - (VX, —all) ndax.
n=1P\T or

Passing to the limit as n — 0 by using the continuity of the drag force with respect
to the weak convergence and (5.2) yields then

F

pj*

0:61‘3'“‘/ ej-(V$?—8?)~ndx:6¢j—co
oT

ip

This implies ¢® = F~! as claimed and the convergence of the whole sequence by
uniqueness of the limit. The asymptotic for X%* as n — 0 follows by the change of
variable y = nz:

* _ ~0 _4.~0 _
X =6z"/ Xjdy = 1” dndei-/ Xjdy ~ 1P~ X ) e~
P\(nT) n~'P\T

2. Case 2k + 1 with k = 0. The tensor (i’j, al) satisfies

—Ai’; +Vva) = 77(231-5(? - agel) ® e inn 'P\T
(5.15) ~1 e 1
div(X;) = —n(Xj - (Xj>) cep®e inn P\T.
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Applying Lemma 5.3 and remarking that (20,X; — a%e;) = 0, we obtain

~1 _
VX || L2201 P\ RAxa) + ||a21||L2(n*1P\T) <C.

Integrating (5.15) by parts against a compactly supported test function ® € C¢(R\T)
and passing to the limit as  — 0, we obtain similarly the existence of a matrix valued
tensor ¢' := (c};))1<i j<d (of order 1) such that, up to the extraction of a subsequence:

~1
(X;) - e _>ng7

(X,,a1) = (e, U5, el 0;) weakly in HL (n~ P\T,RY) x L2, (n~ P\T).

Js z]

Integrating (5.15) by parts against the test function e; and passing to the limit as
1 — 0 yields in this situation 0 = ¢j; F,,; whence ¢' = 0.

3. General case. Assuming that the result holds till rank k, the differential equations
satisfied by the rescaled tensors in n~!P\T read:

~ 2k ~ 2k ~,2k
(5.16) AR vt i 0,2 — @t e e e +0'X, o1
: k k ~ 2k
div(x, ) = nd-1<X? @) awa.
k ~ 2k oy
AX2 +3 i V~gk+3 _ n(ale +2 B ~§k+2 ) Qe +1 X2 +1 oI
(5.17) ~ 2k+3 ~okt2  ~2k42
div(x; ) =-n(X;, —(X, ))-e®e.

Using Lemma 5.2, Lemma 5.3 and the point 1. of the proposition at rank k, we readily

obtain
2k+2

||VX ||L2(n-1 P\ T, REx4) +||a2k+ 220y

-ipv7) < C,

~,2k+3

VX, |l2(n—1 P\ REx ) + ||a?k+3||L2(n—1P\T) <C.

Repeating the above arguments, we obtain, up to the extraction of a subsequence,
the existence of matrix valued tensors ¢2**2 and ¢?**3 such that
~,2k+2 2k+2 3,2k +3 2k+3
(X, )-e—ci T and (X, ) e =T,

~2k+2

(X" @22) (2, 2 20,) weakly in Hp, (ROT,RY) x L2, (RI\T),

~ 2k
(X? +3,&2k+3) — (c5 2k+3‘1’ 2R H365) weakly in HL (RNT,R?) x L2 (RN\T).

4 7 Js 1)

The last step consists in integrating (5.16) and (5.17) by part against the test function
e; and to pass to the limit as 7 — 0 in order to identify 02k+2 and 02k+3 Performing
this computation as above yields

0=cfol-c R

pj>
_ 2k+1 2k+3 70
O0=c; " ®1—c, "Fy

from where we infer 22 = 2Pl @ I, 23 = ¢2*+1F~1 @ I, whence the result
(recall ¢! = 0 from the point 2. of the proof). d
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Using the identity of (3.20), we obtain the asymptotics for the coefficients M* of the
infinite order homogenized equation (1.9).

COROLLARY 5.5. Assume d > 3. The following convergences hold for the matriz
valued tensors M* asn — 0:

(5.18) MO ~ p42F,
(5.19) M' =0 (n*?),
(5.20) M?* — —1I,
1
2k __
(5.21) Vk>1, M** = o <n(d2)(k1)) :
1
2k+1 __
(5.22) V> 1, M?*1 = <n(d—2)<k—1)) :

Proof. We replace the asymptotics of (5.4) in the explicit formula for the tensors
MP¥ given in (3.20). (5.18) is an immediate consequence of M° = (X%*)~1. The
convergence (5.20) is obtained by writing, according to (3.20):

M2 — _(XO*)—l ®X2* ® (XO*)_l + (XO*)—l ®X1* ® (XO*)—I ®X1* ® (XO*)—l
2(d—2) 3(d—2)
_.n 2 n _ -2 d—2
= —I+o(n"?).
For M?*+1 with k > 0, we use (3.20) and we observe that, for any 0 < p < 2k + 1

and indices 1 <y ...4, < 2k + 1 such that 4; 4+ - - +14, = 2k + 1, there exists at least
one odd index 4, with 1 < ¢ < p. Using (5.12) and (5.13), we arrive at

(XO*)fl ® Xil* R ® (XO*)fl ® Xip* ® (XO*)fl

pP+1)(d=2) 1
=0 (n(p+Li1/2j+---+up/2j)(d2)) =0 (n(dz)(k1)> ’

which implies (5.19) and (5.22). For M2 with k > 1, we separate the summands
of (3.20) into two categories. For a given p indices such that 1 < p < 2k and
i1 + - +1ip = 2k, there are only two possibilities:

1. either there exists at least one odd index 44, in that case the above reasoning
implies as well

) ) 1
0x\—1 11 % Ox\—1 4rip,* Ox\—1 __
(X)X @@ (X0 T @ (X —0(,7<d2><k1>>~

2. or all indices i; + --- + i), are even, in that case we may write, as n — 0:

(X)L @ X (X)L g ... @ (X)) Ly @ (X0*) 1
P(d=2(p+1)
DR

1
Dt

1
T

Fod'® - -@F@c"@F
(FF—(i1/2+1)) ST (FF—(ip/2+1))FJ2k

F—(k—l) ® JQk.
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Note that in the latter case, the asymptotic does not depend on the choice of indices
i1 + -+ + 14, = 2k. Therefore, by isolating the terms featuring only even indices
i1 :=2j1,...,9p := 2j, in (3.20), we obtain finally

2k

1 1
2% _ —(k—1) 2%k 1\
M *n(d—z)(k—l)F ®J Z( 1) Z L] +o <n(d—2)(k—1)> :
p=1 2+ +25p=2k
1<j1,--Jp<k
The asymptotic (5.21) follows from the fact that the summation over p in the above
expression is zero (see e.g. the end of the proof of Corollary 6 in [34]). d

Remark 5.6. We have therefore obtained the following asymptotic estimates for
the coefficients e*~2M* of the infinite order homogenized equation (1.9) as 7 — 0:

MO (52,
e "M =o(e(n?%/e?),
OM? - —1,
2R = o ((sz/nd&)kil) for k > 1,

2RIl — (5 (52/nd_2)k_1> for k > 1.

These asymptotics bring into play the ratio €2/n9=2 and so the critical scaling 7,3, ~
£2/(4=2)  They imply thus the“coefficient-wise” convergence of (1.9) to the Brinkman
regime (1.3) at the critical rate  ~ 2/(?=2) in which case ¢ 2M° — F and
eF=2M* — 0 for any k > 2. Note that e°M? — —I whatever the rate of conver-
gence at which  — 0. The Darcy regimes (1.4) and (1.5) correspond to the situation
where 7972 /e2 — +00; in that case the zeroth order term e~ 2M? is dominant.
Finally, the leading coefficients of the Stokes regime (1.2) are retrieved for n =
0(£2/(4=2)) since in this case, e 2M° — 0, e 'M' — 0 and °M° — —I. However
the present analysis is not sufficient to conclude that the coefficients e*~2M* of order
k > 2 converge to zero in the subcritical regime n = 0(52/(d_2)). Indeed e*¥~2M* is just
bounded by (¢2/n92)¥ a quantity which can potentially blow up for too small values
of 1. This matter is to be adressed in a future work through a more accurate analysis
of the rate of convergence of the coefficients X2%* and X2¥T1* in the asymptotic (5.12)
and (5.13). To date, let us note that Jing obtained recently X%* = F/n?=2 + O(1) in
the scalar case (proof of the Lemma 5.1 in [41]) by using layer potential techniques.

Remark 5.7. From the estimates of (5.4), we obtain that the coefficients (D¥,) of
(1.6) satisfy the same asymptotic convergences of Corollary 5.5. Indeed, by using the
definition (3.21) we find that there exists a constant C' > 0 independent of 7 such
that forany K >0, K+1<k<2K+1land1<j<d:

||VNjKHL2(Y,RdXd) < Oy~ ALK 2] pd/21
—K— (deg)| k=K1
Hﬁf K1) 2y ey < Oy @D I 1yd/2,

Applying the inequality || 4+ |y] < |z + y|, we obtain that the coefficients Afj of
Proposition 4.10 satisfy for K +1 < k < 2K +1,

| k=1 _
|AK| < Oyt~ L2 < oM.
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Hence the discrepancy induced by the coefficients Afj is small and D’f{,i ; also satisfies
(5.21) and (5.22) for K +1 < k < 2K + 1. Similarly (see Corollary 7 of [34]), we may
show that DZ — —I. The remaining coefficients D% are equal to M*.
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