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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM IN1

A PERIODIC POROUS MEDIUM∗2

FLORIAN FEPPON†3

Abstract. We derive high order homogenized models for the incompressible Stokes system in4
a cubic domain filled with periodic obstacles. These models have the potential to unify the three5
classical limit problems (namely the “unchanged” Stokes system, the Brinkman model, and the6
Darcy’s law) corresponding to various asymptotic regimes of the ratio η ≡ aε/ε between the radius7
aε of the holes and the size ε of the periodic cell. What is more, a novel, rather surprising feature8
of our higher order effective equations is the occurrence of odd order differential operators when the9
obstacles are not symmetric. Our derivation relies on the method of two-scale power series expansions10
and on the existence of a “criminal” ansatz, which allows to reconstruct the oscillating velocity and11
pressure (uε, pε) as a linear combination of the derivatives of their formal average (u∗ε , p

∗
ε) weighted12

by suitable corrector tensors. The formal average (u∗ε , p
∗
ε) is itself the solution to a formal, infinite13

order homogenized equation, whose truncation at any finite order is in general ill-posed. Inspired14
by the variational truncation method of [53, 27], we derive, for any K ∈ N, a well-posed model of15
order 2K + 2 which yields approximations of the original solutions with an error of order O(εK+3)16
in the L2 norm. Furthermore, the error improves up to the order O(ε2K+4) if a slight modification17
of this model remains well-posed. Finally, we find asymptotics of all homogenized tensors in the low18
volume fraction limit η → 0 and in dimension d ≥ 3. This allows us to obtain that our effective19
equations converge coefficient-wise to either of the Brinkman or Darcy regimes which arise when η20
is respectively equivalent, or greater than the critical scaling ηcrit ∼ ε2/(d−2).21

Key words. Homogenization, higher order models, porous media, Stokes system, strange term.22
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1. Introduction. This article is concerned with the high order homogenization24

of the Stokes system in a periodic porous medium. LetD := (0, L)d be a d-dimensional25

box filled with periodic obstacles ωε := ε(Zd + ηT ) ∩D (the setting is illustrated on26

Figure 1). The parameter ε denotes the size of the periodic cell, it is equal to ε := L/N27

where N ∈ N is a large integer and L is the length of the box. The parameter η is the28

scaling ratio between the radius aε := ηε of the obstacles and the length ε of the cells.29

The total fluid domain is denoted by Dε := D\ωε and it is assumed to be connected.30

P = (0, 1)d is the unit cell and Y = P\ηT denotes its fluid component.31

We consider (uε, pε) ∈ H1(Dε,Rd)×L2(Dε)/R the solution to the Stokes system32

(1.1)


−∆uε +∇pε = f in Dε

div(uε) = 0

uε = 0 on ∂ωε

uε is D–periodic,

33

where f ∈ C∞per(D,Rd) (and all its derivatives) is a smooth, D–periodic right hand-34

side. The goal of this paper is to derive high order effective models for (1.1); i.e. a35

family of well-posed partial differential equations posed in the homogeneous domain36

D (without the holes) and whose solutions approximate the macroscopic behavior of37

(uε, pε) at any desired order of accuracy in ε as ε→ 0.38
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Fig. 1. The perforated domain Dε = D\ωε and the unit cell Y = P\(ηT ).

The literature [52, 47, 29, 5, 7, 4, 8] describes the occurrence of different asymp-39

totic regimes depending on how the size aε = ηε of the holes compares to the critical40

size σε := εd/(d−2) in dimension d ≥ 3 (if d = 2, then these regimes depend on41

how log(aε) compares to −ε−2, see [7]). In loose mathematical terms, these can be42

summarized as follows (see e.g. [5, 7] for the precise statements):43

• if aε = o(σε), then the holes have no effect and (uε, pε) converges as ε → 044

to the solution (u, p) of the Stokes equation in the homogeneous domain D:45

(1.2)


−∆u+∇p = f in D

div(u) = 0

u is D–periodic.

46

• if aε = cσε for a constant c > 0, then (uε, pε) converges as ε → 0 to the47

solution (u, p) of the Brinkman equation48

(1.3)


−∆u+ cFu+∇p = f in D

div(u) = 0

u is D–periodic,

49

where the so-called strange term cFu involves a symmetric positive definite50

d × d matrix F which can be computed by means of an exterior problem in51

Rd\T (see [4] and section 5).52

• if σε = o(aε) and aε = ηε with η → 0 as ε → 0, then the holes are “large”53

and (ad−2ε ε−duε, pε) converges to the solution (u, p) of the Darcy problem54

(1.4)


Fu+∇p = f in D

div(u) = 0 in D

u is D–periodic,

55

where F is the same symmetric positive definite d× d matrix as in (1.3).56

• if aε = ηε with the ratio η fixed, then (ε−2uε, pε) converges to the solution57

(u, p) of the Darcy problem58

(1.5)


M0u+∇p = f in D

div(u) = 0 in D

u is D–periodic,

59
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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 3

where M0 is another positive symmetric d× d matrix (which depends on η).60

Furthermore M0/| log(η)| → F if d = 2, and M0/ηd−2 → F (if d ≥ 3) when61

η → 0, so that there is a continuous transition from (1.5) to (1.4), see [6].62

One of the long-term motivations driving this work is the need to lay down theo-63

retical material that would allow to optimize the design of fluid systems by homog-64

enization methods similar to those available in the context of mechanical structures65

[21, 20, 10, 50, 14]. To date, the Brinkman [24, 25, 30] and the Darcy models [56, 51]66

are commonly used by topology optimization algorithms in order to conveniently in-67

terpolate the physics of the fluid at intermediate “gray” regions featuring locally a68

mixture of fluid and solid. However, the above conclusions imply that these models69

are consistent only in specific ranges of obstacle sizes aε: the Brinkman model (1.3)70

is relevant when there are none or tiny obstacles, while the Darcy models (1.4) and71

(1.5) should be used at locations where the obstacles are large enough. The arising72

of these different regimes (1.2)–(1.5) is consequently a major obstacle towards the de-73

velopment of ‘de-homogenization’ methods [14, 37, 50, 39, 40] for the optimal design74

of fluid systems, which would enable to interpret “gray” designs as locally periodic75

“black and white” microstructures (featuring for instance many small tubes or thin76

plates).77

It turns out that there is a continuous transition between these regimes which78

can be captured by higher order homogenized equations, which is the object of the79

present article. These higher order models are obtained by adding corrective terms80

scaled by increasing powers of ε to the Darcy equation (1.5); they yield more accurate81

approximations of (uε, pε) when ε is “not so small”. For a desired order K ∈ N, the82

homogenized model of order 2K + 2 reads83

(1.6)



2K+2∑
k=0

εk−2DkK · ∇kv∗ε,K +∇q∗ε,K = f ,

div(v∗ε,K) = 0,

v∗ε,K is D–periodic,

84

where (v∗ε,K , q
∗
ε,K) is a high order homogenized approximation of (uε, pε). The coeffi-85

cient DkK is a k-th order matrix valued tensor which can be computed by a procedure86

involving the resolution of cell problems; it makes DkK · ∇k a differential operator of87

order k (the notation is defined in section 2 below). Finally, the high order equation88

(1.6) encompasses at least the Brinkman and the Darcy regimes in the sense that it89

converges coefficient-wise to either of (1.3) and (1.4) for the corresponding asymptotic90

regime of the scaling η (see Remarks 5.6 and 5.7) (the analysis of the subcritical case91

leading to the Stokes regime (1.2) requires more sophisticated arguments which are92

to be investigated in future works).93

A rather striking feature of (1.6) is the arising of odd order differential operators94

(these vanish, however, in case the obstacle ηT is symmetric with respect to the cell95

axes; see Corollary 3.16). This fact is closely related to the vectorial nature of the96

Stokes system (1.1): the tensors DkK are symmetric and antisymmetric valued matrices97

for respectively even and odd values of k. This property ensures that eventually,98

DkK · ∇k is a symmetric operator for any 0 ≤ k ≤ 2K + 2 (see Remark 3.12). To our99

knowledge, such terms have so far not been proposed in the literature seeking similar100

higher order corrections for the Stokes system, although these have been observed101

in other vectorial contexts [27, 28, 53]. Most of the available works have focused on102

situations with low regularity for f , T and D (see [52, 5]), where the homogenization103
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4 F. FEPPON

process can be justified only for the approximation at the leading order in ε. Error104

bounds for higher order approximations of (uε, pε) (namely for the truncation of the105

ansatz (1.7) below) have been obtained in [46, 26], without relating these to effective106

models. A few additional works have sought corrector terms from physical modelling107

considerations [35, 18, 17], without considering odd order operators.108

Our derivation is inspired from the works [19, 53, 15]; it is based on (non stan-109

dard) two-scale asymptotic expansions and formal operations on related power series110

which give rise to several families of tensors and homogenized equations at any order.111

We extend our previous works [34, 33] where we investigated the cases of the perfo-112

rated Poisson problem and of the perforated elasticity system. Expectedly, the major113

difficulty in extending the analysis to (1.6) is the treatment of the pressure variable114

pε and of the incompressibility constraint div(uε) = 0. Note that the D–periodicity115

assumption on f and uε is made in order to eliminate additional difficulties related116

to the arising of boundary layers (see [43, 22, 23, 11]).117

The starting point of the method of two-scale expansions is to postulate an ansatz118

for the velocity and pressure solution (uε, pε):119

(1.7) uε(x) =

+∞∑
i=0

εi+2ui(x, x/ε), pε(x) =

+∞∑
i=0

εi(p∗i (x) + εpi(x, x/ε)), x ∈ Dε,120

where the functions ui(x, y) and pi(x, y) are P–periodic with respect to y ∈ P , and
D–periodic with respect to x ∈ D. In (1.7), the oscillating function pi(x, y) is required
to be of zero average with respect to y:∫

Y

pi(x, y)dy = 0, ∀i ≥ 0.

The aim of the homogenization process is to obtain effective equations for the formal121

“infinite order” homogenized averages u∗ε and p∗ε defined by122

(1.8) u∗ε(x) :=

+∞∑
i=0

εi+2

∫
Y

ui(x, y)dy, p∗ε(x) :=

+∞∑
i=0

εip∗i (x), x ∈ D.123

In Proposition 3.7 below, we obtain that (u∗ε, p
∗
ε) solves the following formal “infinite-124

order” homogenized equation,125

(1.9)


+∞∑
k=0

εk−2Mk · ∇ku∗ε +∇p∗ε = f ,

div(u∗) = 0,

u∗ε is D–periodic,

126

which involves a family of constant matrix-valued tensors (Mk)k∈N. Classically, trun-127

cating directly (1.9) yields, in general, an ill-posed model [12]. Several methods have128

been proposed to address this issue in order to obtain nonetheless well-posed higher129

order equations [16, 13, 1, 2, 15]. In our case, we adapt an idea from [53], whereby130

the coefficients DkK are obtained thanks to a minimization principle (described in sec-131

tion 4) which makes indeed (1.6) well-posed. It is based on the existence of remarkable132
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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 5

identities which relate the oscillating solution (uε, pε) to its formal average (u∗ε, p
∗
ε):133

(1.10)


uε(x) =

+∞∑
i=0

εiN i(x/ε) · ∇iu∗ε(x)

pε(x) = p∗ε(x) +

+∞∑
i=0

εi−1βi(x/ε) · ∇iu∗ε(x),

∀x ∈ Dε,134

where (N i(y))i∈N and (βi(y))i∈N are different families of respectively matrix valued135

and vector valued P–periodic tensors (of order i). The ansatz (1.10) is substantially136

different from (1.7); following [15], we call it “criminal” because the expansions of137

(1.10) depend on u∗ε which is itself a formal power series in ε (eqn. (1.8)).138

The order of accuracy at which the solution (v∗ε,K , p
∗
ε,K) yields an approximation139

of the original solution (uε, pε) is determined by how many leading coefficients of (1.6)140

and (1.9) coincide (Proposition 4.5). In Proposition 4.10, we show that DkK = Mk for141

0 ≤ k ≤ K, which allows to infer error estimates of order O(εK+3) in the L2(D) norm.142

It may seem disappointing that one needs to solve an equation of order 2K+2 in order143

to obtain approximations of order O(εK+3) “only”. This shortcoming is related to the144

zero-divergence constraint: in the scalar and elasticity cases considered in [34, 33], it145

turns out that K+1 extra coefficients coincide, namely DkK = Mk for 0 ≤ k ≤ 2K+1,146

which yields error estimates of order O(ε2K+4). In the present context devoted to the147

Stokes system (1.1), the equation obtained by substituting DkK with Mk in (1.6) for148

K + 1 ≤ k ≤ 2K + 1,149

(1.11)


ε2KD2K+2

K · ∇2K+2v̂∗ε,K +

2K+1∑
k=0

εk−2Mk · ∇kv∗ε,K +∇q̂∗ε,K = f

div(v̂∗ε,K) = 0

v̂∗ε,K is D–periodic,

150

corresponds to applying the truncation method of [53] to the mixed variational for-151

mulation rather than to the minimization problem associated with (1.1) (see Re-152

mark 4.11). While the minimization principle ensures that (1.6) is well-posed, we do153

not know whether this is the case for (1.11). However if it is, then Proposition 4.5154

implies that (1.11) improves the approximation accuracy up to the order O(ε2K+4).155

The article outlines as follows. Notation conventions related to tensors and tech-156

nical assumptions are exposed in section 2.157

In section 3, we introduce cell problems and their solution tensors (X k,αk) which158

allow to identify the functions ui, p
∗
i and pi in the ansatz (1.7). We show that the159

formal average (u∗ε, p
∗
ε) solves the infinite order homogenized equation (1.9) involving160

the tensors Mk. After defining the tensors Nk(y) and βk(y), we derive the “criminal”161

ansatz (1.10) expressing (uε, pε) in terms of p∗ε and of the derivatives of u∗ε. Through-162

out this section, a number of algebraic properties are stated for the various tensors163

coming at play, such as the symmetry and the antisymmetry of the matrix valued164

tensors Mk for respectively even and odd values of k, and the simplifications taking165

place in case the obstacle ηT is symmetric with respect to the cell axes.166

Section 4 details the truncation process of the infinite order equation (1.9) leading167

to the well-posed model (1.6). We then provide an error analysis of the homogenized168

approximations of (uε, pε) generated by our procedure: our main result is stated in169

This manuscript is for review purposes only.



6 F. FEPPON

Corollary 4.15 where we show that the solution (v∗ε,K , q
∗
ε,K) of (1.6) yield approxima-170

tions of (uε, pε) in the L2(Dε) norm of order K + 3 and K + 1 for the velocity and171

the pressure respectively. We establish explicit formulas relating the coefficients DkK172

to the coefficients Mk and we briefly discuss the improvement provided by (1.11) in173

case it is well-posed.174

The last section 5 investigates asymptotics of the tensors Mk in the low volume175

fraction limit where the scaling of the obstacle η converges to zero. Our main result is176

Corollary 5.5 where we obtain the “coefficient-wise” convergence of the infinite order177

homogenized equation as well as the one of (1.6) towards either of the Brinkman or178

Darcy regimes (1.4) and (1.5) when η is respectively equivalent or greater than the179

critical size ηcrit ∼ ε2/(d−2), and towards the Stokes regime (1.3) for η = o(ε2/(d−2))180

in the case K = 0. Although our error estimates for (1.6), are a priori not uniform181

in η, this suggests that our higher order model (1.6) has the potential to yield valid182

approximations in any regime of size of holes (at least for K = 0 or above the critical183

scale). Note that our analysis is unfortunately unsufficient to establish the convergence184

of the high order coefficients εk−2Mk with k > 2 towards 0 as η → 0. Future works185

will investigate higher order asymptotics of the tensors Mk in the subcritical regime186

η = o(ε2/(d−2)) which are required to establish or invalidate such a claim.187

2. Setting and notation conventions related to tensors. In the sequel, we188

consider the following two classical assumptions for the distributions of the holes ωε189

(we recall the schematic of Figure 1), following [5]:190

(H1) Y = P\(ηT ) ⊂ P , as a subset of the unit torus (opposite matching faces191

of (0, 1)d are identified) is a smooth connected set with non-empty interior.192

(H2) The fluid component Dε = D\ωε is a smooth connected set.193

Remark 2.1. Assumption (H1) does not necessarily imply (H2), see [3] for a coun-194

terexample. Assumption (H1) is not very restrictive and can easily be generalized to195

the case where the subset Y has m connected components with m ∈ N (see Appendix196

7.5.6 in [33]). Assumption (H2) is stronger, but is also more connected to physical197

applications. It forbids the existence of isolated fluid inclusions. Most of our deri-198

vations only assume (H1). However, we rely on both assumptions (H1) and (H2) in199

order to obtain error bounds section 4, because we use some technical results of [5].200

Below and further on, we consider scalar and vectorial functions such as201

(2.1)
u : D × P → R

(x, y) 7→ u(x, y)
,

u : D × P → Rd
(x, y) 7→ u(x, y)

202

which are both D and P–periodic with respect to respectively the first and the second203

variable, and which vanish on the hole D×(ηT ). The arguments x and y of u(x, y) are204

respectively called the “slow” and the “fast” or “oscillating” variable. With a small205

abuse of notation, the partial derivative with respect to the variable yj (respectively206

xj) is simply written ∂j instead of ∂yj (respectively ∂xj ) when the context is clear.207

The star–“∗”– symbol is used to indicate that a quantity is “macroscopic” in the
sense that it does not depend on the fast variable x/ε; e.g. (v∗ε,K , q

∗
ε,K) or (u∗ε, p

∗
ε) in

(1.6) and (1.9). In the particular case where a two-variable quantity u(x, y) is given
such as (2.1), u∗(x) always denotes the average of y 7→ u(x, y) with respect to the y
variable:

u∗(x) :=

∫
P

u(x, y)dy =

∫
Y

u(x, y)dy, x ∈ D,

This manuscript is for review purposes only.



HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 7

where the last equality is a consequence of u vanishing on P\Y = ηT . When a function
X : P → R depends only on the y variable, we find occasionally more convenient to
write its cell average with the usual angle bracket symbols:

〈X 〉 :=

∫
P

X (y)dy.

In all what follows, unless otherwise specified, the Einstein summation convention208

over repeated subscript indices is assumed (but never on superscript indices). Vectors209

b ∈ Rd are written in bold face notation.210

The notation conventions used for tensor related operations are summarized in the211

nomenclature below. Some of them are not standard; they allow to avoid to system-212

atically write partial derivative indices (e.g. 1 ≤ i1 . . . ik ≤ d) and to distinguish them213

from spatial indices (e.g. 1 ≤ l,m ≤ d) associated with vector or matrix components.214

Scalar, vector, and matrix valued tensors and their coordinates215

b Vector of Rd216

(bj)1≤j≤d Coordinates of the vector b217

bk Scalar valued tensor of order k (bki1...ik ∈ R for 1 ≤ i1, . . . , ik ≤ d)218

bk Vector valued tensor of order k (bki1...ik ∈ Rd for 1 ≤ i1, . . . , ik ≤ d)219

Bk Matrix valued tensor of order k (Bki1...ik ∈ Rd×d for 1 ≤ i1, . . . , ik ≤ d)220

(bkj )1≤j≤d Coordinates of the vector valued tensor bk (bkj is a scalar tensor of order221

k).222

(Bklm)1≤l,m≤d Coefficients of the matrix valued tensor Bk (Bklm is a scalar tensors of223

order k).224

bki1...ik,j Coefficient of the vector valued tensor bk (1 ≤ i1, . . . ik, j ≤ d)225

Bki1...ik,lm Coefficients of the matrix valued tensor Bk (1 ≤ i1, . . . ik, l,m ≤ d)226

Tensor products227

bp ⊗ ck−p Tensor product of scalar tensors bp and ck−p:228

(2.2) (bp ⊗ ck−p)i1...ik := bpi1...ipc
k−p
ip+1...ik

.229

ap ⊗ bk−p Tensor product of a scalar tensors ap and a vector valued tensor bk−p:230

(2.3) (ap ⊗ bk−p)i1...ik := api1...ipb
k−p
ip+1...ik

.231

Bp ⊗ Ck−p Tensor product of matrix valued tensors Bp and Ck−p:232

(2.4) (Bp ⊗ Ck−p)i1...ik,lm := Bpi1...ip,ljC
k−p
ip+1...ik,jm

.233

Hence a matrix product is implicitly assumed in the notation Bp⊗Ck−p.234

Bp : Ck−p Tensor product and Frobenius product of matrix tensors Bp and Ck−p:235

(2.5) (Bp : Ck−p)i1...ik := Bpi1...ip,lmC
k−p
ip+1...ik,lm

.236

bp · ck−p Tensor product and inner product of vector valued tensors bp and ck−p:237

(2.6) (bp · ck−p)i1...ik := bpi1...ip,mc
k−p
ip+1...ik,m

.238
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8 F. FEPPON

Bp · ck−p Tensor product of a matrix tensor Bp and a vector tensors ck−p:239

(2.7) (Bp · ck−p)i1...ik,l := Bpi1...ip,lmc
k−p
ip+1...ik,m

.240

Hence a matrix-vector product is implicitly assumed in Bp · ck−p.241

Contraction with partial derivatives242

bk · ∇k Differential operator of order k associated with a scalar tensor bk:243

(2.8) bk · ∇k := bki1...ik∂
k
i1...ik

.244

bk · ∇k Differential operator of order k associated with a vector tensor bk: for245

any smooth vector field v ∈ C∞per(D,Rd),246

(2.9) bk · ∇kv = bki1...ik,l∂
k
i1...ik

vl.247

Bk · ∇k Differential operator of order k associated with a matrix valued tensor248

Bk: for any smooth vector field v ∈ C∞per(D,Rd),249

(2.10) (Bk · ∇kv)l = Bki1...ik,lm∂
k
i1...ik

vm.250

Special tensors251

(ej)1≤j≤d Vectors of the canonical basis of Rd.252

ej Scalar valued tensor of order 1 given by ej,i1 := δi1j (with 1 ≤ j ≤ d).253

δij Kronecker symbol: δij = 1 if i = j and δij = 0 if i 6= j.254

I Identity tensor of order 2:

Ii1i2 = δi1i2 .

The identity tensor is another notation for the Kronecker tensor and it255

holds I = ej ⊗ ej with summation on the index 1 ≤ j ≤ d.256

J2k Tensor of order 2k defined by:

J2k :=

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I .

257

With a small abuse of notation, we consider zeroth order tensors b0 to be constants258

(i.e. b0 ∈ R if b0 is scalar) and we still denote by b0 ⊗ ck := b0ck the tensor product259

with a k-th order tensor ck. The same convention also applies to vector valued and260

matrix valued tensors.261

In all what follows, a k-th order tensor bk (scalar, vector or matrix valued) truly makes
sense when contracted with k partial derivatives, as in (2.8)–(2.10). Therefore all the
tensors considered throughout this work are identified to their symmetrization:

bki1...ik ≡
1

k!

∑
σ∈Sk

biσ(1)...iσ(k) ,

where Sk is the permutation group of order k. Consequently, the order in which the262

(derivative) indices i1, . . . , ik are written in bki1...ik does not matter.263

Finally, in the whole work, we write C, CK or CK(f) to denote universal constants264

that do not depend on ε but whose values may change from lines to lines (and which265

may depend on η or on the obstacle T ).266

Remark 2.2. In a limited number of places, the superscript or subscript indices267

p, q ∈ N are used. Naturally, these are not to be confused with the pressure variables268

pε or qε introduced in (1.1).269
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3. Infinite order homogenized equation and criminal ansatz. We start270

by identifying the two-scale structure of (uε, pε) which arise in the form of the ansatz271

(1.7). Because it helps emphasizing the arising of Cauchy products, we assume, in272

this section only, that the right-hand side f can be formally decomposed into a power273

series in ε:274

(3.1) ∀x ∈ D, f(x) =

+∞∑
i=0

εif i(x).275

3.1. Identification of the “classical” ansatz: tensors (X k,αk). Inserting276

(1.7) into the Stokes system (1.1) yields the following cascade of equations:277

(3.2)



−∆yyui+2 +∇ypi+2 = fi+2 −∇xp∗i+2 −∇xpi+1 + ∆xyui+1 + ∆xxui,

divy(ui+2) = −divx(ui+1),

u−2 = u−1 = 0, p−1 = 0,

ui(x, ·) = 0 on ∂(ηT )

ui(x, ·) is P–periodic for any x ∈ D,

ui(·, y) is D–periodic for any y ∈ P ,

278

for any i ≥ −2, where the operators −∆yy, −∆xy, −∆yy are defined by

−∆xx = −divx(∇x·), −∆xy = −divx(∇y·)− divy(∇x·), −∆yy := −divy(∇y·).

In order to solve (3.2), we introduce a family of respectively vector valued tensors279

(X k
j (y))1≤j≤d and scalar valued tensors (αkj (y))1≤j≤d defined by induction as the280

unique solutions in H1
per(Y,Rd)× L2(Y )/R to the following cell problems:281 {

−∆yyX 0
j +∇yα0

j = ej in Y,

divy(X 0
j ) = 0 in Y

(3.3)282

{
−∆yyX 1

j +∇yα1
j = (2∂lX 0

j − α0
jel)⊗ el in Y

divy(X 1
j ) = −(X 0

j − 〈X
0
j 〉) · el ⊗ el in Y,

(3.4)283

{
−∆yyX k+2

j +∇yαk+2
j = (2∂lX k+1

j − αk+1
j el)⊗ el + X k

j ⊗ I in Y

divy(X k+2
j ) = −(X k+1

j − 〈X k+1
j 〉) · el ⊗ el in Y

∀k ≥ 0.(3.5)284

285

Equations (3.3)–(3.5) are supplemented with the following boundary conditions:286

(3.6)


∫
Y

αkjdy = 0

X k
j = 0 on ∂(ηT )

(X k
j , α

k
j ) is P–periodic

∀k ≥ 0.287

288

Remark 3.1. In view of the notation conventions of section 2, the non bold sym-
bols ⊗el and ⊗I indicate the arising of extra partial derivatives indices. For instance,
the first line of (3.5) must be understood as

−∆yyX k+2
j,i1,...ik+2

+∇αk+2
j,i1...ik+2

= 2∂ik+2
X k+1
j,i1...ik+1

−αk+1
j,i1...ik+1

eik+2
+X k

j,i1...ik
δik+1ik+2

.
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We introduce the k-th order matrix valued tensors X k whose columns are the
vector valued tensors (X k

j ):

(X kij(y))1≤i,j≤d :=
[
X k

1(y) . . . X k
d(y)

]
, ∀y ∈ Y, ∀k ≥ 0.

We also denote by αk the k-th order vector valued tensor whose coordinates are the
scalar tensors αkj :

αk(y) := (αkj (y))1≤j≤d, ∀y ∈ Y, ∀k ≥ 0.

Following the conventions of section 2, we use a star notation to denote the average289

of respectively the tensor X k and of the vector fields ui:290

(3.7) X k∗ :=

∫
Y

X k(y)dy, ∀k ≥ 0, u∗i (x) :=

∫
Y

ui(x, y)dy, ∀x ∈ D, ∀i ≥ 0.291

The tensors X k and αk enable to solve the cascade of equations (3.2):292

Proposition 3.2. Assume (H1). The solutions ui(x, y), pi(x, y) of the cascade293

of equations (3.2) are given by294

(3.8)

ui(x, y) =

i∑
k=0

X k(y) · ∇k(fi−k(x)−∇p∗i−k(x))

pi(x, y) =

i∑
k=0

αk(y) · ∇k(fi−k(x)−∇p∗i−k(x)),

295

where the functions p∗i are uniquely determined recursively as the solutions to the296

following elliptic system: for any i ≥ 0,297

(3.9)



−divx(X 0∗∇xp∗i ) = −divx(X 0∗fi)

−
i∑

k=1

div(X k∗ · ∇k(fi−k −∇xp∗i−k)) in Dε,∫
D

p∗i dx = 0

p∗i is D–periodic.

298

Recognizing Cauchy products, the identities (3.8) and (3.9) rewrite formally in terms299

of equality of formal power series:300

uε(x) =

+∞∑
i=0

εi+2X i(x/ε) · ∇i(f(x)−∇p∗ε(x)),(3.10)301

pε(x) = p∗ε(x) +

+∞∑
i=0

εi+1αi(x/ε) · ∇i(f(x)−∇p∗ε(x)),(3.11)302

div(u∗ε(x)) = 0 where u∗ε(x) =

+∞∑
i=0

εi+2X i∗ · ∇i(f(x)−∇p∗ε(x)).(3.12)303

304

Proof. The result is proved by induction. The case i = −1 is straightforward305

thanks to the convention u−1 = p−1 = 0. In this proof we use the short-hand306
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notation hi(x) = fi(x)−∇p∗i (x). Assuming (3.8) and (3.9) hold till rank i+ 1 with307

i ≥ −2, we compute, substituting (3.8) into (3.2):308

(3.13)



(−∆yyui+2 +∇ypi+2)(x, y)

= hi+2,j(x)ej + (2∂lX 0
j (y)− α0

j (y)el)⊗ el) · ∇hi+1,j(x)

+

i∑
k=0

((2∂lX k+1
j (y)− αk+1

j (y)el)⊗ el + X k
j (y)⊗ I) · ∇k+2hi−k,j(x)

divy(ui+2)(x, y) = −
i+1∑
k=0

(X k
j (y) · el ⊗ el) · ∇k+1hi+1−k,j(x).

309

The system (3.13) admits a unique solution (ui+2, pi+2) with
∫
Y
pi+2(x, y)dy = 0 if

and only if the following compatibility condition (the so-called “Fredholm alterna-
tive”) holds (for any i ≥ −1):∫

Y

divy(ui+2)(x, y)dy = −
i+1∑
k=0

[〈X k
j 〉 · el ⊗ el] · ∇k+1hi+1−k,j(x) = 0.

The above equation determines p∗i+1 given the values of p∗k for 0 ≤ k ≤ i:

(〈X 0
j 〉 · el)∂l(fi+1,j − ∂jp∗i+1) = −

i+1∑
k=1

[〈X k
j 〉 · el ⊗ el] · ∇k+1(fi+1−k,j − ∂jp∗i+1−k),

which is (3.9) at order i+ 1. This identity allows to rewrite divy(ui+2) as310

(3.14) divy(ui+2)(x, y) = −
i+1∑
k=0

[(X k
j (y)− 〈X k

j 〉) · el ⊗ el] · ∇k+1hi+1−k,j(x).311

By linearity, (3.13) and (3.14) and the definitions of (X k
j , α

k
j ) through the cell problems312

(3.3)–(3.5) imply the result at rank i+ 2.313

Remark 3.3. The truncation of the series (3.12) at first order yields the well-314

known Darcy’s law [52]. The next terms of the series have been obtained in [46, 26],315

at least up to the order i = 1.316

Remark 3.4. The ansatz (3.10) is already non standard (when compared to (1.7))317

because it features p∗ε which is a formal power series in ε (recall (1.8)).318

The next proposition establishes the symmetry and antisymmetry of the matrices319

X k∗ (eqn. (3.7)) for respectively odd and even values of k. We note that similar320

identities have been found for the Poisson [34] or the wave equation [1].321

Proposition 3.5. For any k ≥ 0 and 0 ≤ p ≤ k, 1 ≤ i, j ≤ d, the following322

identity holds for the matrix valued tensor X k∗:323

(3.15) X k∗ij = (−1)p
∫
Y

((−∆yyX p
i +∇αpi )·X

k−p
j +∇αk−pj ·X p

i−X
k−p−1
j ·X p−1

i ⊗I)dy324

with X−1i = 0 by convention. In particular, for any k ≥ 0, X 2k∗ and X 2k+1∗ take325

values respectively in the set of d× d symmetric and antisymmetric matrices:326

(3.16) X 2k∗
ij = (−1)k

∫
Y

(∇X k
i : ∇X k

j +∇αki ·X
k
j +∇αkj ·X

k
i −X k−1

i ·X k−1
j ⊗ I)dy327
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328

(3.17)

X 2k+1∗
ij = (−1)k

∫
Y

(X k
i · ∇X

k
j −X k

j · ∇X
k
i + αkiX

k
j − αkjX

k
i ) · el ⊗ eldy

+ (−1)k
∫
Y

(X k−1
j ·X k

j −X k−1
i ·X k

j )dy.

329

Proof. The result holds for p = 0 because

X k∗ij =

∫
Y

X k
j · eidy =

∫
Y

X k
j · (−∆yyX 0

i +∇α0
i )dy.

Assuming now that (3.15) holds till rank p with k > p ≥ 0, we prove the result at330

rank p+ 1. We write, after an integration by parts and by using (3.3)–(3.5):331

X k∗ij = (−1)p
∫
Y

[−X p
i ·∆X k−p

j − αpi div(X k−p
j )− αk−pj div(X p

i )332

−X k−p−1 ·X p−1
i ⊗ I]dy

= (−1)p
∫
Y

[
(X p

i · (2∂lX
k−p−1
j − αk−p−1j el)⊗ el + X k−p−2

j ⊗ I −∇αk−pj ) ·X p
i333

+ αpiX
k−p−1
j · el ⊗ el + αk−pj X p−1

i · el ⊗ el −X k−p−1
j ·X p−1

i ⊗ I
]
dy334

= (−1)p
∫
Y

[
−X k−p−1

j · ((2∂lX p
i − α

p
i el)⊗ el + X p−1

i ⊗ I) + αk−p−1j div(X p+1
i )335

−∇αk−pj ·X p
i − α

k−p
j div(X p

i ) + X k−p−2
j ·X p

i ⊗ I
]
dy336

= (−1)p
∫
Y

[−X k−p−1
j · (−∆yyX p+1

i +∇αp+1
i )337

−∇αk−p−1j ·X p+1
i + X k−p−2

j ·X p
i ⊗ I]dy,338

339

whence (3.15) at rank p + 1. Finally, the expression (3.16) for X 2k∗
ij is obtained by340

setting k ← 2k and p← k in (3.15). The expression for X 2k+1∗
ij is obtained by setting341

k ← 2k + 1 and p← k and performing an integration by parts.342

3.2. Derivation of the infinite order homogenized equation and of the343

criminal ansatz. We now proceed on the derivation of the infinite order homogenized344

equation (1.9). Let us recall the classical positive definiteness of the Darcy tensor X 0∗.345

Corollary 3.6. Assume (H1). The matrix X 0∗ = (X 0∗
ij )1≤i,j≤d (defined in346

(3.7)) is positive symmetric definite.347

Proof. See [52] or Corollary 7.8 in [33].348

Hence, the following definition of the tensors (Mk)k∈N makes sense.349

Proposition 3.7. Let Mk be the tensor of order k defined by induction as fol-350

lows:351

(3.18)


M0 = (X 0∗)−1

Mk = −(X 0∗)−1
k−1∑
p=0

X k−p∗ ⊗Mp, ∀k ≥ 1.
352
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Then the source terms fi (eqn. (3.1)) can be expressed in terms of the averaged353

summands u∗i (x) and p∗i (x) ( (1.8) and (3.7)) through the following identity:354

(3.19) ∀i ≥ 0, fi(x)−∇p∗i (x) =

i∑
k=0

Mk · ∇ku∗i−k(x).355

Recognizing a Cauchy product, (3.19) and (3.12) rewrite formally as the “infinite356

order” homogenized system (1.9) for the formal average (u∗ε, p
∗
ε) defined in (1.8).357

Proof. The proof is identical to the one of Proposition 5 in [33], it amounts to358

average the first line of (3.8) with respect to y and to solve the resulting triangular359

system determining fi−k −∇p∗i−k in terms of u∗i .360

The definition (3.18) essentially states that
∑+∞
k=0 ε

k−2Mk · ∇k is the inverse of the361

formal power series
∑+∞
k=0 ε

k+2X k∗ · ∇k. In this spirit, it is even possible to write a362

fully explicit formula (see [34], Proposition 6 and Remark 2 for the proof):363

Proposition 3.8. For any k ≥ 1, the tensor Mk is explicitly given by364

(3.20) Mk =

k∑
p=1

(−1)p
∑

i1+···+ip=k
1≤i1,...,ip≤k

(X 0∗)−1⊗X i1∗⊗ · · · ⊗ (X 0∗)−1⊗X ip∗⊗ (X 0∗)−1.365

We now introduce matrix valued tensors Nk and vector valued tensors βk which allow366

to obtain the “criminal ansatz” (1.10) expressing the velocity and pressure (uε, pε) in367

terms of their formal average (u∗ε, p
∗
ε).368

Proposition 3.9. Let Nk and βk be respectively the k−th order matrix valued
and vector valued tensors defined for any k ∈ N by

Nk(y) :=

k∑
p=0

X k−p(y)⊗Mp, βk(y) :=

k∑
p=0

(−1)pMp ·αk−p(y), ∀y ∈ Y.

Then the summands ui(x, y) and pi(x, y) of (3.10) and (3.11) are given for any i ≥ 0369

in terms of the averages u∗i (eqn. (3.7)) and p∗i as follows:370

(3.21) ui(x, y) =

i∑
k=0

Nk(y) · ∇ku∗i−k(x), pi(x, y) =

i∑
k=0

βk(y) · ∇ku∗i−k(x).371

Recognizing Cauchy products, the identities (3.21) can be rewritten formally as the372

“criminal ansatz” (1.10).373

Proof. The result is obtained by substituting (3.19) into (3.8) which yields

ui(x, y) =

i∑
p=0

i−p∑
q=0

X p(y)⊗Mq · ∇p+qu∗i−p−q(x)

=

i∑
k=0

k∑
p=0

(X p(y)⊗Mp−k) · ∇ku∗i−k(x) (change of indices k = p+ q)

from where the identity (3.21) for ui(x, y) follows by inverting the summation. Simi-
larly, we obtain

pi(x, y) =

i∑
k=0

k∑
p=0

((Mp−k)T ·αp(y)) · ∇ku∗i−k(x),
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hence (3.21) by using (Mp−k)T = (−1)p−kMp−k (see Corollary 3.11 below).374

In what follows, we denote by (Nk
j )1≤j≤d and by (βkj )1≤j≤d respectively the column

vectors and the coefficients of Nk(y) and βk(y):

∀1 ≤ i, j ≤ d, Nk
j := Nkej and βkj := βk · ej .

In addition, the convention N−1j = 0 is assumed. We shall in the sequel use several375

times the following properties of (Nk
j , β

k
j ) which are dual to those of (X k

j , α
k
j ).376

Proposition 3.10. The k-th order tensors Nk, (Nk
j )1≤j≤d, βk and (βkj )1≤j≤d377

satisfy:378

(i)
∫
Y
N0(y)dy = I and

∫
Y
Nk(y)dy = 0 for any k ≥ 1;379

(ii)
∫
Y
βk(y)dy = 0 for any k ≥ 0;380

(iii) For any k ≥ −2 and 1 ≤ j ≤ d,381

(3.22)

{
−∆yyN

k+2
j +∇βk+2

j = (2∂lN
k+1
j − βk+1

j el)⊗ el +Nk
j ⊗ I +Mk+2ej ,

div(Nk+2
j ) = −(Nk+1

j − 〈Nk+1
j 〉) · el ⊗ el;

382

Proof. (i) and (ii) are straightforward consequences of (3.18).383

(iii) is obtained by writing, for k ≥ 0 (implicit summation on the repeated index384

j assumed):385

−∆yyN
k+2
j +∇βk+2

j = −∆yy

(
k+2∑
p=0

X k+2−p
i (y)⊗Mp

ij

)
+∇

(
k+2∑
p=0

αk+2−p
i (y)⊗Mp

ij

)

=

k∑
p=0

[
(2∂lX k+1−p

i − αk+1−p
i el)⊗ el + X k−p

i ⊗ I
]
Mp
ij

+ (2∂lX 0
i − α0

i el)M
k+1
ij +Mk+2

ij ei

= (2∂lN
k+1
j − βk+1

i el)⊗ el +Nk
j ⊗ I +Mk+2ej .

div(Nk+2
j ) =

k+2∑
p=0

div(X k+2−p
i )Mp

ij = −
k+1∑
p=0

Mp
ij(X

k+1−p
i − < X k+1−p

i >) · el ⊗ el.

The proof is identical for k = −1 and k = −2.386

The identity (3.22) allows to infer important properties characterizing the tensors Mk387

which are similar to those of Proposition 3.5.388

Corollary 3.11. For any 1 ≤ p ≤ k − 1, it holds

Mk
ij = (−1)p+1

∫
Y

((−∆yyN
p
i +∇βpi ) ·Nk−p

j +∇βk−pj ·Np
i −N

p−1
i ·Nk−p−1

j ⊗ I)dy.

Consequently, for any k ≥ 0,389

• M2k is a symmetric matrix valued tensor, and the following identities hold:

M0
ij =

∫
Y

∇N0
i : ∇N0

j dy,

∀k ≥ 1, M2k
ij = (−1)k+1

∫
Y

(∇Nk
i : ∇Nk

j +∇βki ·Nk
j +∇βkj ·Nk

i −Nk−1
i ·Nk−1

j ⊗I)dy.
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• M2k+1 is an antisymmetric matrix valued tensor and it holds:390

391

M2k+1
ij = (−1)k+1

∫
Y

(Nk
i · ∇Nk

j −Nk
j · ∇Nk

i + βkiN
k
j − βkjNk

i ) · el⊗ eldy392

+ (−1)k+1

∫
Y

(Nk−1
j ·Nk

i −Nk−1
i ·Nk

j )⊗ Idy.393
394

Proof. The proof is very similar to the one of Proposition 3.5 and is omitted, see395

also Proposition 7.34 in [33].396

Remark 3.12. The antisymmetry of odd order tensors M2k+1 ensures that the397

associated differential operators ε2k−1M2k+1 · ∇2k+1 arising in the “infinite order”398

homogenized equation (1.9) are symmetric. Indeed, the antisymmetry ofM2k+1 “com-399

pensates” the one induced by odd order derivatives which makes M2k+1 · ∇2k+1 be a400

symmetric operator: for two vector fields u := (ui)1≤i≤d,v = (vi)1≤i≤d, it holds401

402 ∫
Y

v ·M2k+1 ·∇2k+1udy =

∫
Y

(M2k+1
ij ·∇2k+1uj)vidy = −

∫
Y

(M2k+1
ij ·∇2k+1vi)ujdy403

=

∫
Y

(M2k+1
ji · ∇2k+1vi)ujdy =

∫
Y

u ·M2k+1 · ∇2k+1vdy.404
405

Remark 3.13. It is not completely straightforward to exhibit an instance of hole406

∂T and k ∈ N for which we can actually prove that M2k+1 is not zero. However407

simple numerical evidences tend to confirm this conjecture, see section 7.4.5 in [33]408

for an example featuring M1 6= 0 in the case of the elasticity system .409

3.3. Simplifications for the tensors X k∗ and Mk in case of symmetries.410

In the final part of this section, we examine how the symmetries of the obstacle ηT411

with respect to the cell axes reflect into the coefficients of the matrix valued tensors412

X k∗ and Mk. Our final result is stated in Corollary 3.16, which implies that odd413

order tensors X 2k+1 and M2k+1 vanish in case ηT is symmetric with respect to the414

cell axes. It is based on the following elementary lemma:415

Lemma 3.14. Let S ∈ Rd×d an orthogonal symmetry, i.e. S = ST and SS = I.416

The following identities hold for any smooth vector field X and scalar field α:417

−∆(SX ◦ S) +∇(α ◦ S) = S(−∆X +∇α) ◦ S,(3.23)418

div(SX ◦ S) = div(X ) ◦ S,(3.24)419

∂i(SX ◦ S) = SijS(∂jX ) ◦ S.(3.25)420421

Proof. The first two identities are obtained by writing

−∆(SX ◦ S) +∇(α ◦ S) = −S∂ijX ◦ SSilSjl + S(∇α) ◦ S
= −S(∆X +∇α) ◦ S,

div(SX ◦ S) = Tr(∇(SX ◦ S)) = Tr(S(∇X ) ◦ SS) = Tr((∇X ) ◦ S) = div(X ) ◦ S.

Identity (3.25) is an elementary consequence of the chain rule.422

Proposition 3.15. If the cell Y = P\(ηT ) is invariant with respect to a sym-423

metry S, i.e. S(Y ) = Y , then the following identity holds for the tensors (X k
l , α

k
l )424

(defined in (3.3)–(3.5)):425

SX k
i1...ik,l

◦ S = Si1j1 . . . SikjkSlmX k
j1...jk,m

,(3.26)426
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αki1...ik,l ◦ S = Si1j1 . . . SikjkSlmα
k
j1...jk,m

,(3.27)427428

with implicit summation over the repeated indices j1, . . . , jk and m. As a consequence,429

the following identities hold for the constant matrix valued tensors X k∗ and Mk:430

X k∗i1...ik,lm = Si1j1 . . . SikjkSlpSmqX k∗j1...jk,pq(3.28)431

Mk
i1...ik,lm

= Si1j1 . . . SikjkSlpSmqM
k
j1...jk,pq

.(3.29)432433

Proof. We prove (3.26) and (3.27) by induction. Applying Proposition 3.15 yields{
−∆yy(SX 0

l ◦ S) +∇y(α0
l ◦ S) = Sel ◦ S = Sel = Smjem,

div(SX 0
l ◦ S) = 0.

Since the cell is symmetric with respect to S, (SX 0
l ◦ S, α0

l ◦ S) satisfies the same
boundary conditions (3.6) than Smj(X 0

m, α
0
m). Therefore these vector fields are equal

and we infer (3.26) and (3.27) at rank k = 0. We then write, for a given 1 ≤ i1 ≤ d:
−∆yy(SX 1

i1,l ◦ S) +∇y(α1
i1,l ◦ S) = S(2∂i1X

0
l − α0

l ei1) ◦ S
= Si1j1(2∂j1(SX 0

l ◦ S)− α0
l ◦ Sej1) = Si1j1Slm(2∂j1X

0
m − α0

mej1),

divy(SX 1
i1,l ◦ S) = −(X 0

l ◦ S − 〈X
0
l 〉) · ei1

= −SlmS(X 0
m − 〈X

0
m〉) · ei1 = −Si1j1Slm(X 0

m − 〈X
0
m〉) · ej1 ,

where we have used 〈X 0
l 〉 = 〈X 0

l ◦S〉. This implies similarly (3.26) and (3.27) at rank
k = 1. Assuming now the result holds till rank k + 1 with k ≥ 0, it holds:

−∆yy(SX k+2
i1...ik+2,l

◦ S) +∇y(αk+2
i1...ik+2,l

◦ S)

= S(2∂ik+2
X k+1
i1...ik+1,l

− αk+1
i1...ik+1,l

eik+2
) ◦ S + SX k

i1...ik,l
◦ Sδik+1ik+2

= Sik+2jk+2
(2∂jk+2

(SX k+1
i1...ik+1,l

◦ S)− αk+1
i1...ik+1,l

◦ Sejk+2
)

+ Sik+1jk+1
Sik+2jk+2

δjk+1jk+2
SX k

i1...ik,l
◦ S

= Si1j1 . . . Sik+2ik+2
Slm[(2∂jk+2

X k+1
j1...jk+1,m

− αk+1
j1...jk+1,m

ejk+2
)

+ δjk+1jk+2
X k
j1...jk,m

]

divy(SX k+2 ◦ S) = −(X k+1
i1...ik+1,l

◦ S− < X k+1
i1...ik+1,l

>) . . . eik+2

= −Si1j1 . . . Sik+1jk+1
SlmS(X k+1

j1...jk+1,m
− < X k+1

j1...jk+1,m
>) · eik+2

= −Si1j1 . . . Sik+2jk+2
Slm(X k+1

j1...jk+1,m
− < X k+1

j1...jk+1,m
>) · ejk+2

,

hence (3.26) and (3.27) at rank k + 2. A change of variable then yields:

X k∗i1...ik,lm =

∫
Y

el ·X k
i1...ik,m

dy =

∫
Y

(Sel) · (SX k
i1...ik,m

◦ S)dy.

This implies (3.28), and then (3.29) by using (3.20).434

We apply the above result to two possible families of symmetries:435

• for 1 ≤ l ≤ d, the symmetry Sl with respect to the cell axis el:

Sl = 1− 2ele
T
l ;
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HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 17

• for 1 ≤ m, l ≤ d with m 6= l, the symmetry Slm with respect to the diagonal
axis el − em:

Slm = I − eleTl − emeTm + ele
T
m + ele

T
m + eme

T
l .

Corollary 3.16. 1. If the cell Y is symmetric with respect to all cell axes
(el)1≤l≤d, i.e. Sl(Y ) = Y for any 1 ≤ l ≤ d, then

X k∗i1...ik,pq = 0 and Mk
i1...ik,pq

= 0

whenever any given integer 1 ≤ l ≤ d occurs an odd number of times in the436

indices i1 . . . ik, p, q. In particular, this implies X 2k+1∗ = 0 and M2k+1 = 0.437

2. If the cell Y is symmetric with respect to all diagonal axes el − em, i.e.
Sl,m(Y ) = Y for any 1 ≤ l < m ≤ d, then for any permutation σ ∈ Sd,

X k∗σ(i1)...σ(ik),σ(p)σ(q) = X k∗i1...ik,pq and Mk
σ(i1)...σ(ik),σ(p)σ(q)

= Mk
i1...ik,pq

.

Proof. The result is obtained by applying (3.28) and (3.29) to the particular438

symmetries Sl and Slm. See also Corollary 3 in [34].439

Let us illustrate how the previous properties translate for the tensors M0, M2 and440

M4:441

• if the cell Y is symmetric with respect to all cell axes (el)1≤l≤d, only the
coefficients of the form M0

i,i are non zero. For M2, only

M2
ii,jj ,M

2
ij,ij ,M

2
ii,ii

with i 6= j are non zero. For M4, only the coefficients of the form

M4
iijj,kk,M

4
iijk,jk,M

4
iiii,jj ,M

4
iijj,ii,M

4
iiij,ij ,M

4
iiii,ii

are non zero with distinct integers i, j, k.442

• If in addition the obstacle is symmetric with respect to all diagonal axes, then
the values of the above coefficients do not depend on the choice of the distinct
integers i, j, k. As a result, M0 is proportional to the identity tensor, M2

reduces to at most three coefficients (the material is said to be orthotropic),
and M4 reduces to at most 6 coefficients for d ≥ 3, and to 4 coefficients for
d = 2. For instance there are three constants α, β, γ such that M2 · ∇ is the
operator

M2 · ∇v = α∆v + β∇div(v) + γ

d∑
i=1

∂iiviei.

4. Homogenized equations of order 2K + 2: tensors DkK . In this section,443

we derive the well-posed high order homogenized system (1.6) and we justify the444

homogenization process by means of quantitative error estimates.445

The formal identities (1.10) lead us to introduce, for any order K ∈ N, the446

truncated ansatz Wε,K(v) and Qε,K(v, φ) for the reconstructed velocity and pressure:447

Wε,K(v)(x, y) :=

K∑
k=0

εkNk(y) · ∇kv(x), x ∈ D, y ∈ Y(4.1)448

Qε,K(v, φ)(x, y) := φ(x) +

K∑
k=0

εk−1βk(y) · ∇kv(x), x ∈ D, y ∈ Y(4.2)449
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450

for any v ∈ HK+1(D,Rd) and φ ∈ L2(D) which are sought to approximate the451

homogenized averages u∗ε and p∗ε respectively. Similarly we denote by W̃ε,K(v) and452

Q̃ε,K(v, φ) the reconstructed oscillating functions defined for any x ∈ Dε by453

(4.3) W̃ε,K(v)(x) := Wε,K(v)(x, x/ε), Q̃ε,K(v, φ)(x) := Qε,K(v, φ)(x, x/ε).454

Most of the results of this section are consequences of the following observation:455

Lemma 4.1. For any K ′ ∈ N, (v, φ) ∈ H1(D,Rd) × L2(D), the reconstructed456

velocity and pressure (W̃ε,K′(v), Q̃ε,K′(v, φ)) of (4.3) satisfy457

(4.4)

−∆W̃ε,K′(v) +∇Q̃ε,K′(v, φ)

=

K′∑
k=0

εk−2Mk∇kv − εK
′−1((2∂lN

K′

j − βK
′

j el)⊗ el)(·/ε) · ∇K
′+1vj

+ (NK′−1
j ⊗ I)(·/ε) · ∇K

′+1vj − εK
′
NK′

j (·/ε)⊗ I · ∇K
′+2vj ,

.458

459

(4.5) div(W̃ε,K′(v)) = div(v) + εK
′
NK′

j (·/ε) · el ⊗ el · ∇K
′+1vj .460

Proof. (4.4) and (4.5) are obtained by applying the Laplace and gradient opera-461

tors on (4.1) and (4.2) and by using the identity (3.22).462

4.1. Sufficient conditions leading to error estimates. The purpose of this463

part is to demonstrate that a sequence of functions (v∗ε , q
∗
ε )ε>0 yields an approxima-464

tion of (uε, pε) at the order O(εK
′
) provided it solves the infinite order homogenized465

equation (1.9) up to a remainder of order O(εK
′+1). The derivation of a finite-order466

homogenized equation such as (1.6) reduces then to determine 2K + 2 −K ′ tensors467

DkK for K ′ + 1 ≤ k ≤ 2K + 2 such that the equation468

(4.6)

2K+2∑
k=K′+1

εk−2DkK · ∇kv∗ε +

K′∑
k=0

εk−2Mk · ∇kv∗ε +∇q∗ε = f469

is well-posed. The proof is based on the next three technical results.470

Lemma 4.2. There exists a constant C independent of ε > 0 such that for any
v ∈ H1(Dε,Rd) with v = 0 on ∂ωε, the following Poincaré inequality holds:

||v||L2(Dε,Rd) ≤ Cε||∇v||L2(D,Rd×d).

Proof. See e.g. [44] or the appendix of [49].471

The next lemma states the existence of a continuous right inverse for the divergence472

Bε—so-called a Bogovskii’s operator—with a bound explicit in ε on the uniform con-473

tinuity constant.474

Lemma 4.3. Assume (H1) and (H2). Then there exists a linear operator Bε :475

L2(Dε)→ H1(Dε,Rd) satisfying, for any φ ∈ L2(Dε) with
∫
Dε
φdx = 0:476

(i) div(Bεφ) = φ in Dε,477

(ii) Bεφ = 0 on ∂ωε and Bεφ is D–periodic,478

(iii) ||∇(Bεφ)||L2(Dε,Rd×d) ≤ Cε−1||φ||L2(Dε), for a constant C > 0 independent of φ479

and ε.480

This manuscript is for review purposes only.



HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 19

Proof. See [32], Lemma 2.1, or [33], Lemma 7.9.481

Corollary 4.4. Assume (H1) and (H2). For any h ∈ L2(Dε,Rd) and g ∈482

L2(Dε) satisfying
∫
Dε
gdx = 0, let (v, φ) ∈ H1(Dε,Rd)×L2(Dε) be the unique solution483

to the Stokes problem484

(4.7)



−∆v +∇φ = h in Dε

div(v) = g in Dε∫
Dε

φdx = 0

v = 0 on ∂ωε

v is D–periodic.

485

There exists a constant C independent of ε, h and g such that486

(4.8) ||∇v||L2(Dε,Rd×d) + ε||φ||L2(Dε) ≤ C(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε)),487

Proof. We use the operator Bε of Lemma 4.3 to lift the divergence of v. Let us
define the vector field w := v −Bεg ∈ H1

per(Dε,Rd) which satisfies{
div(w) = 0 in Dε,

w = 0 on ∂ωε.

After an integration by part, we obtain:

||∇w||2L2(Dε,Rd×d) =

∫
Dε

h ·wdx−
∫
Dε

∇(Bεg) : ∇wdx

≤ ||h||L2(Dε,Rd)||w||L2(Dε,Rd) + ||∇(Bεg)||L2(Dε,Rd×d)||∇w||L2(Dε,Rd×d)

≤ C(ε||h||L2(Dε,Rd) + ||∇(Bεg)||L2(Dε,Rd×d))||∇w||L2(Dε,Rd×d),

where the last inequality is a consequence of Lemma 4.2. Therefore, simplifying by
||∇w||L2(Dε,Rd×d) and using the point (iii) of Lemma 4.3 yields

||∇v||L2(D,Rd×d) ≤ ||∇w||L2(Dε,Rd×d) + ||∇(Bεg)||L2(Dε,Rd×d)

≤ C(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε)),

which proves the first part of the bound (4.8) on ∇v. The bound on the pressure is488

then obtained by using Bεφ as a test function: we write489

||φ||2L2(Dε)
=

∫
Dε

φdiv(Bεφ)dx = −
∫
Dε

∇φ ·Bεφdx490

=

∫
Dε

(−∆v − h) ·Bεφdx =

∫
Dε

(∇v · ∇(Bεφ)− h ·Bεφ)dx491

≤ ||∇v||L2(Dε,Rd×d)||∇(Bεφ)||L2(Dε,Rd×d) + ||h||L2(Dε,Rd)||Bεφ||L2(Dε,Rd)492

≤ C(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε))||∇(Bεφ)||L2(Dε,Rd×d)493

≤ Cε−1(ε||h||L2(Dε,Rd) + ε−1||g||L2(Dε))||φ||L2(Dε),494495

which concludes the proof.496

We are now in position to state the main result of this section.497
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Proposition 4.5. Let (v∗ε , q
∗
ε )ε>0 be a sequence of functions of H1(Dε,Rd) ×498

L2(Dε), D–periodic, depending on ε (and possibly on K ′ and f) satisfying the follow-499

ing conditions:500

1. (vε, qε) solves the infinite order homogenized equation (1.9) up to an error of501

order O(εK
′+1):502

(4.9)

∣∣∣∣∣∣
∣∣∣∣∣∣
K′∑
k=0

εk−2Mk · ∇kv∗ε +∇q∗ε − f

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(D,Rd)

≤ CK′(f)εK
′+1

503

504

(4.10) div(v∗ε ) = 0 in D505
506

(4.11) (v∗ε , p
∗
ε) is D–periodic.507

2. For any m ∈ N, there exists a constant Cm independent of ε such that508

(4.12) ||v∗ε ||Hm(D,Rd) ≤ Cmε2.509

Then the reconstructed functions (W̃ε,K′(v
∗
ε ), Q̃ε,K′−1(q∗ε ,v

∗
ε )) (eqn. (4.1) and (4.2))

yield approximations of (uε, pε) of order O(K ′ + 2) in the H1(Dε,Rd) norm and
O(εK

′+3) in the L2(Dε,Rd) norm:∣∣∣∣∣∣∇(uε − W̃ε,K′(v
∗
ε ))
∣∣∣∣∣∣
L2(Dε,Rd×d)

+ε
∣∣∣∣∣∣pε − Q̃ε,K′−1(q∗ε ,v

∗
ε )
∣∣∣∣∣∣
L2(Dε,Rd)

≤ CK′(f)εK
′+2,∣∣∣∣∣∣uε − W̃ε,K′(v

∗
ε )
∣∣∣∣∣∣
L2(Dε,Rd)

≤ CK′(f)εK
′+3.

Proof. According to Lemma 4.1 and (4.10), it holds

−∆W̃ε,K′+1(v∗ε ) +∇Q̃ε,K′+1(q∗ε ,v
∗
ε ) =

K′∑
k=0

εk−2Mk ·∇kv∗ε +∇q∗ε +OL2(Dε,Rd)(ε
K′+1)

div(W̃ε,K′+1) = OL2(Dε)(ε
K′+3),

where we have used (4.12) to estimate the right-hand side terms. Applying now Corol-

lary 4.4 to (v, φ) ≡ (uε − W̃ε,K′+1(v∗ε ), pε − Q̃ε,K′(q∗ε ,v∗ε )) yields the error estimate∣∣∣∣∣∣∇(uε − W̃ε,K′+1(v∗ε ))
∣∣∣∣∣∣
L2(Dε,Rd×d)

+ ε
∣∣∣∣∣∣pε − Q̃ε,K′+1(q∗ε ,v

∗
ε )
∣∣∣∣∣∣
L2(Dε)

≤ CK′(f)εK
′+2.

Finally, remarking that the highest order terms are already of order O(εK
′+2), i.e.

||∇(W̃ε,K′+1(v∗ε )− W̃ε,K′(v
∗
ε ))||L2(Dε,Rd) ≤ CK′ε

K′+2,

ε||Q̃ε,K′+1(q∗ε ,v
∗
ε )− Q̃ε,K′−1(q∗ε ,v

∗
ε )||L2(Dε) ≤ CK′ε

K′+2,

we obtain the result by using the triangle’s inequality.510

Remark 4.6. We need only K − 1 derivatives in the truncated criminal ansatz511

Qε,K−1(v∗ε , q
∗
ε ) for the pressure (eqn. (4.2)), because the term of highest order has a512

norm of order εK while v∗ε is of order ε2 by the assumption (4.12).513

Remark 4.7. As a result of the scaling ε−1 in Corollary 4.4, we pay a factor ε−1514

in the error induced by the non zero divergence constraint. However we are able to515

obtain the right order of ε in the error estimates of Proposition 4.5 thanks to the use516

of higher order terms of the ansatz (3.21) which are removed at the end of the proof.517

This strategy is quite classical in the truncation analysis of two-scale expansions, see518

e.g. [26, 11].519
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4.2. Construction of a well-posed higher order effective models by a520

minimization principle. We now derive the well-posed homogenized equation (1.6)521

of (finite) order 2K+2 by following the variational method introduced by Smyshlyaev522

and Cherednychenko in [53] and used in the further works [28, 27, 34]. In the present523

context, of the Stokes system (1.1), we shall see that (1.6) can be obtained as (4.6)524

with K ′ = K, which yields error estimates of order O(εK+3) in the L2(Dε) norm.525

Recall that the velocity uε solution to the Stokes system (1.1) is the unique526

minimizer of the constrained minimization problem527

(4.13)

uε = arg min
w∈H1(Dε,Rd)

J(w,f) :=

∫
D

(
1

2
∇w : ∇w − f ·w

)
dy

s.t.


div(w) = 0 in Dε

w = 0 on ∂ωε

w is D–periodic.

528

In the context of the homogenization of linearized elasticity, the main idea of the529

method of [53] is to restrict (4.13) to functions of the form w = W̃ε,K(v) given by530

(4.1), where v ∈ HK+1(D,Rd) is an unknown function sought to approximate u∗ε. In531

the present setting, we consider the following approximation of (4.13):532

(4.14)

min
v∈HK+1(D,Rd)

J(W̃ε,K(v),f)

s.t.

{
div(v) = 0 in D,

v is D–periodic.

533

Note that (4.14) is not exactly the restriction of (4.13) to such functions W̃ε,K(v)534

because div(W̃ε,K(v)) 6= 0 (it is of order εK , see (4.5)). The next step of the process is535

to eliminate the oscillating variable x/ε in J(W̃ε,K(v),f) so as to obtain an effective536

energy J∗K(v,f , ε) ' J(W̃ε,K(v),f) which does not involve oscillating functions. Such537

is achieved thanks to the classical lemma of two-scale convergence [9].538

Lemma 4.8. Let φ be a P = (0, 1)d–periodic function and f ∈ C∞per(D) be a
smooth D–periodic function. Then for any p ∈ N, there exists a constant Cp(f, φ)
independent of ε such that:∣∣∣∣∫

D

f(x)φ(x/ε)dx−
∫
D

∫
P

f(x)φ(y)dydx

∣∣∣∣ ≤ Cp(f, φ)εp.

Proof. See Appendix C. of [53] or Lemma 7.3 in [33].539

Applying Lemma 4.8 to (4.14) in order to pass to the limit in the terms of

J(W̃ε,K(v),f) which depends on the oscillating variable x/ε, we obtain the existence
of a functional J∗K such that for any v ∈ C∞per(D,Rd), it holds

J(W̃ε,K(v),f) = J∗K(v,f , ε) + o(εp)

with p ∈ N arbitrarily large. The functional J∗K is given explicitly by540

(4.15) J∗K(v,f , ε) :=

∫
D

∫
P

1

2

∣∣∣∣∣∣(∇x + ε−1∇y)
(
Wε,K(v)(x, y)

)∣∣∣∣∣∣2 dydx−
∫
D

f ·vdx,541

where we have used the point 1 of Proposition 3.10 to simplify the linear part of542

the energy. Replacing J(W̃ε,K(v),f) by J∗K(v,f , ε) in (4.14) allows to obtain the543

homogenized equation (1.6) of order 2K + 2:544
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Definition 4.9. For any K ∈ N, we call homogenized equation of order 2K + 2545

associated with the Stokes system (1.1) the Euler-Lagrange equation of the minimiza-546

tion problem547

(4.16)

min J∗K(v,f , ε)

s.t.

 v ∈ HK+1(D,Rd),
div(v) = 0 in D,
v is D–periodic.

548

This Euler-Lagrange equation can be written as (1.6) where the constant (matrix val-549

ued) tensors DkK are inferred from (4.15) and where (v∗ε,K , q
∗
ε,K) ∈ HK+1(D,Rd) ×550

L2(D) defines the higher order homogenized solution.551

The next two propositions verify that (1.6) is indeed a “good” candidate effective552

model, by relating the coefficients DkK to the tensors Mk (in view of (4.6)), and by553

establishing the well-posedness of (1.6).554

Proposition 4.10. The coefficients of the matrix valued tensor DkK are explicitly555

given for any 1 ≤ i, j ≤ d by:556

(4.17) DkK,ij =


Mk if 0 ≤ k ≤ K

Mk + AkK if K + 1 ≤ k ≤ 2K + 1

(−1)K+1

∫
Y

NK
i ·NK

j ⊗ Idy if k = 2K + 2.

557

where the matrix valued tensor AkK is given for any K + 1 ≤ k ≤ 2K + 1 by558

(4.18) AkK,ij := (−1)K+1

∫
Y

(∇βk−K−1j ·NK+1
i + (−1)k∇βk−K−1i ·NK+1

j )dy.559

Proof. Let us denote by VK the space560

(4.19) VK := {v ∈ HK+1(D,Rd) |div(v) = 0 and v is D–periodic}.561

We identify the coefficients DkK by computing the Euler-Lagrange equation associated562

with (4.15). For any (v,w) ∈ VK , it holds, in a distributional sense:563 ∫
D

∫
P

(∇x + ε−1∇y)Wε,K(v) : (∇x + ε−1∇y)Wε,K(w)dxdy564

=

∫
D

∫
P

[(−∆xx − ε−1∆xy − ε−2∆yy)Wε,K(v)565

+ (∇x + ε−1∇y)Qε,K(v, 0)] ·Wε,K(w)dxdy566

+

∫
D

∫
Y

Qε,K(v, 0)[(divx + ε−1divy)Wε,K(w)]dxdy.567
568

By using (4.1) and the point (i) of Proposition 3.10, the above quantity is equal to569 ∫
D

∫
Y

[
K∑
k=0

εk−2Mk∇kv(x)

]
·
K∑
k=0

εkNk(y) · ∇kw(x)dxdy570

−
∫
D

∫
Y

εK−1
[
(2∂lN

K
j (y)− βKj (y)el)⊗ el) · ∇K+1vj(x)

]
·Wε,K(w)dxdy571
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−
∫
D

∫
Y

[εK−1(NK−1
j (y)⊗ I) · ∇K+1v(x)] ·Wε,K(w)dxdy572

−
∫
D

∫
Y

[εK(NK
j (y)⊗ I) · ∇K+2v(x)] ·Wε,K(w)dxdy573

+

∫
D

∫
Y

K∑
k=0

εk+K−1(βkj (y) · ∇kvj(x))(NK
i (y) · el ⊗ el · ∇K+1wi(x))dydx574

=

∫
D

(
K∑
k=0

εk−2Mk · ∇kv +

2K+2∑
k=K+1

εk−2DkK · ∇kv

)
·wdx575

576

where we identify (by integration by parts) D2K+2
K,ij := −(−1)K

∫
Y
NK
i ·NK

j ⊗ Idy as

claimed. The coefficients of the tensor DkK are given for K + 1 ≤ k ≤ 2K + 1 by

DkK,ij = −(−1)k−K−1
∫
Y

((2∂lN
K
j − βKj el)⊗ el +NK−1

j ⊗ I) ·Nk−K−1
i dy

− (−1)k−K−2
∫
Y

NK
j ·Nk−K−2

i ⊗ Idy + (−1)K+1

∫
Y

βk−K−1j NK
i · el ⊗ eldy

= −(−1)K+1

∫
Y

(−1)k(−∆yyN
K+1
j +∇βK+1

j −MK+1ej) ·Nk−K−1
i dy

+ (−1)K+1

∫
Y

[(−1)kNK
j ·Nk−K−2

i ⊗ I + βk−K−1j NK
i · el ⊗ el]dy,

where we have used extensively Proposition 3.10. We now distinguish two cases:577

1. if k = K + 1, then the above expression reads

DK+1
K,ij = (MK+1ej) · ei −

∫
Y

NK+1
j · (−∆yyN

0
i +∇β0

i )dy +

∫
Y

∇β0
i ·NK+1

j

+(−1)K+1

∫
Y

∇βk−K−1j ·NK+1
i dy = MK+1

ij + AK+1
ij ,

whence the result for k = K + 1;578

2. if K + 2 ≤ k ≤ 2K + 1, then we read instead

DkK,ij = (−1)k+K
∫
Y

((−∆yyN
K+1
j +∇βK+1

j ) ·Nk−K−1
i +∇βk−K−1i ·NK+1

j )dy

− (−1)k+K
∫
Y

NK
j ·Nk−K−2

i ⊗ Idy + Akij .

Applying finally Corollary 3.11 with p = K + 1, we obtain that the first two term of579

the above equation are equal to (−1)kMk
ji = Mk

ij , which yields the final result.580

Remark 4.11. In view of the proof of Proposition 4.10, it is possible to show that581

(1.11) (with the same definition for the leading coefficient D2K+2
K ) is the strong form582

of the following “mixed” variational formulation: find (v̂∗ε,K , q̂
∗
ε,K) ∈ VK×L2(D) such583

that for any (w, φ) ∈ VK × L2(D),584

585

(4.20)

∫
D

∫
Y

[
(ε−1∇y +∇x)Wε,K(v̂∗ε,K)

]
:
[
(ε−1∇y +∇x)Wε,K(w)

]
dydx586

−
∫
D

∫
Y

Qε,K(v̂∗ε,K , q̂
∗
ε,K)

[
(ε−1divy + divx)Wε,K(w)

]
dydx587
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−
∫
D

∫
Y

Qε,K(w, φ)
[
(ε−1divy + divx)Wε,K(v̂∗ε,K)

]
dydx =

∫
D

f ·wdx.588
589

This result is quite surprising. Indeed, (4.20) is built from the truncated ansatz590

(Wε,K(v̂∗ε,K), Qε,K(v̂∗ε,K , q̂
∗
ε,K)) which is expected to yield approximations of (uε, pε)591

at order O(εK+3) only (eqn. (4.1) and (4.2)). However, the strong form (1.11)592

turns out to exhibit 2K + 1 “correct” coefficients Mk. As a result, if (1.11) is well-593

posed, the reconstructed oscillating functions W̃ε,2K+1(v̂∗ε,K) and Q̃ε,2K(v̂∗ε,K , q̂
∗
ε,K)594

approximate uε and pε with an error rate as good as O(ε2K+4) in the L2(Dε) norm595

(Proposition 4.5). This improvement (which had not been noticed in the original596

paper [53]) actually holds in the context of the Poisson or elasticity equations for597

which there is no difference between (1.6) and (1.11) (see [34, 33]). Unfortunately in598

the case of the Stokes system, we do not know whether the mixed formulation (4.20)599

with the “velocity-dependent” pressure Qε,K(w, φ) yields a well-posed problem, hence600

our commitment to consider (1.6) instead of (1.11).601

The leading tensor D2K+2
K is nonnegative according to (4.17). Under a rather un-602

restrictive additional non-degeneracy assumption, we obtain that the minimization603

principle (4.16) makes (1.6) be a well posed problem.604

Proposition 4.12. Assume the dominant tensor D2K+2
K = (−1)K+1BK+1,K+1

K is605

non-degenerate, that is there exists a constant ν > 0 such that for any constant vector606

tensor ξK+1 = ξK+1
i1...iK+1,p

∈ RdK+1 × Rd of order K + 1, it holds607

(4.21)

∫
Y

[(NK ⊗ el) · ξK+1] · [(NK ⊗ el) · ξK+1]dy ≥ ν ξK+1
i1...iK+1

· ξK+1
i1...iK+1

.608

Then there exists a unique velocity and pressure couple (v∗ε,K , q
∗
ε,K) ∈ HK+1(D,Rd)×609

L2(D)/R solving the higher order homogenized equation (1.6).610

Proof. The proof relies on the positivity of the quadratic part of the energy611

J∗K(v,f , ε). By adapting the arguments of the proof of Proposition 12 in [34], we612

obtain indeed that the bilinear form associated with the energy (4.15) is coercive on613

the space VK defined in (4.19). This is enough to apply standard theory for sad-614

dle point problems involving the zero divergence constraint (see e.g. the textbooks615

[55, 54, 38, 31]) which ensures the existence and uniqueness of a solution for (1.6).616

Remark 4.13. The assumption (4.21) could fail for K ≥ 1 in case the obstacle ηT617

is invariant along some of the directions ei of the cell P , however it is not restrictive.618

Indeed, since the leading order tensor D2K+2
K has no influence on the error estimates619

of Proposition 4.5, it is always possible to add to D2K+2
K a small non-negative tensor620

making it non-degenerate.621

4.3. Error estimates: justification of the homogenization process. We622

conclude this section by stating error estimates holding for the solution (v∗ε,K , q
∗
ε,K)623

to the high order homogenized model (1.6). We know from Proposition 4.10 that624

DkK = Mk for 0 ≤ k ≤ K, therefore the assumptions of Proposition 4.5 are satisfied625

provided we verify the uniform regularity estimate (4.12).626

Lemma 4.14. The solution (v∗ε,K , q
∗
ε,K) of (1.6) is smooth and for any m ∈ N,

there exists a constant Cm(f) depending only on m and f such that

||v∗ε,K ||Hm(D,Rd) ≤ Cm(f)ε2.
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Proof. This result can be obtained by solving (1.6) explicitly with Fourier series627

in the periodic domain D and by adapting the proof of Lemma 5 in [34].628

Since we have verified that all the assumptions of Proposition 4.5 hold with K ′ = K,629

we are finally in position to state the following error bounds.630

Corollary 4.15. Let (v∗ε,K , q
∗
ε,K) be the unique solution to the high order homog-

enized equation (1.6). There exists a constant CK(f) independent of ε (but depending
on K, f , and a priori on the shape of the hole (ηT )) such that the following error
estimates hold:∣∣∣∣∣

∣∣∣∣∣uε −
K∑
k=0

εkNk(·/ε) · ∇kv∗ε,K

∣∣∣∣∣
∣∣∣∣∣
L2(Dε,Rd)

≤ CK(f)εK+3,

∣∣∣∣∣
∣∣∣∣∣∇
(
uε −

K∑
k=0

εkNk(·/ε) · ∇kv∗ε,K

)∣∣∣∣∣
∣∣∣∣∣
L2(Dε,Rd×d)

≤ CK(f)εK+2,

∣∣∣∣∣
∣∣∣∣∣pε −

(
q∗ε,K +

K−1∑
k=0

εk−1βk(·/ε) · ∇kv∗ε,K

)∣∣∣∣∣
∣∣∣∣∣
L2(Dε)

≤ CK(f)εK+1.

Remark 4.16. As the reader may expect, error bounds with the same order of631

convergence hold for the truncation at order K of the “classical” ansatz (1.7), see632

[26, 46] up to the order K = 1, and in Proposition 7.37 of [33] at all orders.633

5. Low volume fraction limits when the scaling η of the obstacle van-634

ishes. In this section, we provide evidences that (1.6) is “well-behaved” in the sense635

that it has the potential to capture the homogenized regimes (1.2)–(1.4) in the low636

volume fraction limit where the size of the obstacles vanish. Our results supporting637

this claim are obtained by analyzing the asymptotics of the tensors X k∗, Mk and638

D2K+2
K as the scaling ratio η converges to 0.639

In this whole subsection, we assume for simplicity, that the space dimension is
greater than 3:

d ≥ 3.

Similar results are expected to hold in dimension d = 2 but would require a different640

treatment, as e.g. in [6, 41]. The hole ηT is assumed to be an non-empty open subset641

strictly included in the unit cell for any η ≤ 1 (it does not touch the boundary):642

ηT ⊂⊂ P .643

Let us recall the definition of the Deny-Lions (or Beppo-Levi) space denoted by644

D1,2(Rd\T,Rd) (the reader is referred to [6, 4, 8] and also [48], p.59. for more details).645

Definition 5.1 (Deny-Lions space). The Deny-Lions space D1,2(Rd\T,Rd) is
the completion of the space of smooth vector fields by the L2 norm of their gradients:

D1,2(Rd\T,Rd) := D(Rd\T,Rd)
||∇·||

L2(Rd\T,Rd) ,

where D(Rd\T,Rd) is the space of compactly supported smooth vector fields. When646

d ≥ 3, it is admits the following characterization:647

648

D1,2(Rd\T,Rd)649

= {v measurable
∣∣ ||v||L2d/(d−2)(Rd\T,Rd) < +∞ and ||∇v||L2(Rd\T,Rd×d) < +∞}.650

651
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For any 1 ≤ j ≤ d, we consider the unique solution (Ψj , σj) to the exterior Stokes652

problem653

(5.1)



−∆Ψj +∇σj = 0 in Rd\T
div(Ψj) = 0 in Rd\T

Ψj = 0 on ∂T

Ψj → ej at ∞
σj ∈ L2(Rd\T ).

654

The convergence condition Ψj → ej at infinity must be understood in the sense that655

Ψj − ej belongs to D1,2(Rd\T,Rd). Similarly, the pressures (σj)1≤j≤d are uniquely656

determined by the condition σj ∈ L2(Rd\T ) (see e.g. Lemma 1.1, article V. of [36]).657

We denote by F := (Fij)1≤i,j≤d the matrix collecting the drag force components:658

(5.2) Fij :=

∫
Rd\T

∇Ψi : ∇Ψjdx = −
∫
∂T

ej · (∇Ψi − σiI) · nds,659

where the normal n is pointing inward T .660

5.1. Technical estimates in the growing periodic domain η−1P\T . In all661

this section, vector fields of the rescaled cell η−1P are indicated by a tilde ˜notation.662

For a given vector field ṽ ∈ L2(η−1P,Rd), we denote by 〈ṽ〉 the average 〈ṽ〉 :=663

ηd
∫
η−1P

ṽ(y)dy.664

Let us recall that for any v ∈ H1(P\(ηT ),Rd), if ṽ is the rescaled function defined665

by ṽ(y) := v(ηy) in the rescaled cell η−1P\T , then the L2 norms of v, ṽ and of their666

gradients are related by the following identities:667

||v||L2(P\(ηT ),Rd) = ηd/2||ṽ||L2(η−1P\T,Rd)668

||∇v||L2(P\(ηT ),Rd×d) = ηd/2−1||∇ṽ||L2(η−1P\T,Rd×d).669670

The asymptotic behaviors of the tensors X k∗,Mk are obtained by following the671

methodology of [6, 41, 34], which relies on several technical results stated in this part.672

Lemma 5.2. Assume d ≥ 3. There exists a constant C > 0 independent of η > 0673

such that for any ṽ ∈ H1(η−1P\T,Rd) which vanishes on the hole ∂T and which is674

η−1P periodic, the following inequalities hold:675

||ṽ||L2(η−1P\T,Rd) ≤ Cη−d/2||∇ṽ||L2(η−1P\T,Rd×d),(5.3)676

|〈ṽ〉| ≤ C||∇ṽ||L2(η−1P\T,Rd×d),(5.4)677

||ṽ − 〈ṽ〉||L2(η−1P\T,R”d) ≤ Cη−1||∇ṽ||L2(η−1P\T,Rd×d),(5.5)678

||ṽ − 〈ṽ〉||L2d/(d−2)(η−1P\T,Rd) ≤ C||∇ṽ||L2(η−1P\T,Rd×d).(5.6)679
680

Proof. See [41, 45, 6, 42].681

Lemma 5.3. Consider h ∈ L2(η−1P\T,Rd) and g ∈ L2(η−1P\T ) a function682

satisfying
∫
η−1P\T gdx = 0. Let (v, φ) ∈ H1(η−1P\T,Rd) × L2(η−1P\T ) be the683
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unique solution to the following Stokes system:684

(5.7)



−∆v +∇φ = h in η−1P\T
div(v) = g in η−1P\T∫

η−1P\T
φdx = 0

v = 0 on ∂T

v is η−1P–periodic.

685

There exists a constant C > 0 independent of η, h and g such that686

687

(5.8) ||∇v||L2(η−1P\T,Rd×d) + ||φ||L2(η−1P\T )688

≤ C(η−1||h− 〈h〉||L2(η−1P\T,Rd) + η−d|〈h〉|+ ||g||L2(η−1P\T )).689690

Proof. From Lemma 2.2.4 in [7], for any η > 0, there exists a linear “Bogovskii’s”691

operator Bη : L2(P\(ηT )) → H1(P\(ηT ),Rd) satisfying for any φ ∈ L2(P\(ηY ))692

such that
∫
P\(ηT )

φdy = 0:693

(i) div(Bηφ) = φ,694

(ii) Bηφ = 0 on ∂(ηT ),695

(iii) Bηφ is P–periodic,696

(iv) ||∇(Bηφ)||L2(P\(ηT ),Rd×d) ≤ C||φ||L2(P\(ηT )) for a constant C independent of η697

and φ.698

For any φ̃ ∈ L2(η−1P\T ) such that
∫
η−1P\T φ̃dy = 0, we define

B̃η(φ̃) := η−1
[
Bη(φ̃(η−1 ·))(η ·)

]
.

The operator B̃η : L2(η−1P\T )→ H1(η−1P\T,Rd) satisfies the following properties:699

for any φ̃ ∈ L2(η−1P\T ) such that
∫
η−1P\T φ̃dx = 0,700

(i) div(B̃ηφ̃) = φ̃ in η−1P\T ,701

(ii) B̃ηφ̃ = 0 on ∂T ,702

(iii) B̃ηφ̃ is η−1P–periodic,703

(iv) ||∇(B̃ηφ̃)||L2(η−1P\T,Rd×d) ≤ C||φ̃||L2(η−1P\T ) for a constant C independent of η704

and φ.705

The proof follows then classically along the lines of Corollary 4.4. Upon an integration706

by parts and by using Lemma 5.2, it is readily obtained with w := v − B̃ηg:707

||∇w||2L2(η−1P\T,Rd×d) =

∫
η−1P\T

h ·wdy708

=

∫
η−1P\T

(h− 〈h〉) · (w − 〈w〉)dy +

∫
η−1P\T

〈h〉 · 〈w〉dy709

≤ C
(
||h− 〈h〉||L2(η−1P\T,Rd)||w − 〈w〉||L2(η−1P\T,Rd) + η−d|〈h〉| |〈w〉|

)
710

≤ C
(
η−1||h− 〈h〉||L2(η−1P\T,Rd) + η−d|〈h〉|

)
||∇w||L2(η−1P\T,Rd×d)(5.9)711712

for a constant C > 0 independent of η and h. This implies

||∇v||L2(η−1P\T ) ≤ ||∇w||L2(η−1P\T,Rd×d) + ||∇(B̃ηg)||L2(η−1P\T,Rd×d)

≤ C
(
||∇w||L2(η−1P\T,Rd×d) + ||g||L2(η−1P\T )

)
,
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whence the bound on ||∇v||L2(η−1P\T,Rd×d) by using (5.9). The bound for the pressure713

is obtained by writing714

715 ∫
η−1P\T

φ2dx =

∫
η−1P\T

φdiv(Bηφ)dx716

= −
∫
η−1P\T

∇φ ·Bηφdx =

∫
η−1P\T

(∇v : ∇(Bηφ)− h · (Bηφ))dx,717

718

from where (5.8) follows analogously.719

5.2. Asymptotic convergences of homogenized tensors in the low vol-720

ume fraction limit η → 0. The asymptotics of the corrector tensors (X 0
j , α

0
j ) and721

of X 0∗ (defined in (3.3) and (3.7)) have been obtained in of Theorem 3.1 in [6]. The722

following proposition extends this result to the whole family of tensors (X k, αkj )k∈N723

and (X k∗)k∈N.724

Proposition 5.4. Assume d ≥ 3. For any k ≥ 0 and 1 ≤ j ≤ d, denote by

(X̃
2k

j , α̃
2k
j ) and (X̃

2k+1

j , α̃2k+1
j ) the rescaled tensors in η−1P\T defined by{

X̃
2k

j (x) := η(d−2)(k+1)X 2k
j (ηx)

α̃2k
j (x) := η(d−2)(k+1)−1α2k

j (ηx)

X̃
2k+1

j (x) := η(d−2)(k+1)X 2k+1
j (ηx)

α̃2k+1
j (x) := η(d−2)(k+1)−1α2k+1

j (ηx)

for any x ∈ η−1P\T . Then:725

1. there exists a constant C independent of η > 0 such that

∀η > 0, ||∇X̃
2k

j ||L2(η−1P\T,Rd×d) + ||α̃2k
j ||L2(η−1P\T ) ≤ C,

∀η > 0, ||∇X̃
2k+1

j ||L2(η−1P\T,Rd×d) + ||α̃2k+1
j ||L2(η−1P\T ) ≤ C;

2. the following convergences hold as η → 0:726

(X̃
2k

i , α̃
2k
i ) ⇀ (c2kij Ψj , c

2k
ij σj) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ),(5.10)727

(X̃
2k+1

i , α̃2k+1
i ) ⇀ (0, 0) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ),(5.11)728

X 2k∗ ∼ 1

η(d−2)(k+1)
c2k,(5.12)729

X 2k+1∗ = o

(
1

η(d−2)(k+1)

)
,(5.13)730

731

where c2kij denotes the coefficients of the matrix valued tensor c2k := (c2kij )1≤i,j≤d of
order 2k given by

c2k := F−(k+1)J2k with J2k =

k times︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ I .

Proof. The result is proved by induction on k.732

1. Case 2k with k = 0. The tensor (X̃
0

i , α̃
0
i ) satisfies733

(5.14)

−∆X̃
0

i +∇α̃0
i = ηdei in Rd\T

div(X̃
0

i ) = 0 in Rd\T,
734
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as well as the other boundary conditions of (5.7). Lemma 5.3 implies then

||∇X̃
0

i ||L2(η−1P\T,Rd×d) + ||α̃0
i ||L2(η−1P\T ) ≤ Cη−dηd|〈ei〉| ≤ C.

From (5.4), we also obtain that 〈X̃
0

i 〉 is bounded. Hence, up to extracting a sub-

sequence, there exists a constant matrix c0 := (c0ij)1≤i,j≤d, and fields (Ψ̂0
i , σ̂

0
i )1≤i≤d

such that
〈X̃

0

i 〉 · ej → c0ij ,

(X̃
0

i , α̃
0
i ) ⇀ (Ψ̂0

i , σ̂
0
i ) weakly in H1

loc(η
−1P\T,Rd)× L2

loc(η
−1P\T ).

Multiplying (5.14) by a compactly supported test function Φ ∈ C∞c (Rd\T ) and inte-
grating by parts yields∫

η−1P\T
(∇X̃

0

i : ∇Φ− α̃0
i div(Φ))dx =

∫
η−1P\T

ηdΦ · eidx.

Passing to the limit as η → 0 implies then
−∆Ψ̂0

i +∇σ̂0
i = 0 in Rd\T

div(Ψ0
i ) = 0 in Rd\T

Ψ0
i = 0 on ∂T.

By applying the point (5.6) of Lemma 5.2 and by using the lower semi-continuity

of the Lebesgue space norms, we infer (Φ̂0
i − c0ijej , σ̂

0
i ) ∈ D1,2(Rd\T ) × L2(Rd\T )

(see the proof of Theorem 3.1 in [6] for a detailed justification). By linearity, it is

then necessary that (Φ̂0
i , σ̂

0
i ) = (c0ijΨj , c

0
ijσj) where (Ψj , σj) are the solution to the

exterior problem (5.1). In order to identify the coefficient c0ij , we integrate (5.1) by
parts against the test function Φ = ej then yields

0 = ηd
∫
η−1P\T

δijdx+

∫
∂T

ej · (∇X̃
0

i − α̃0
i I) · ndx.

Passing to the limit as η → 0 by using the continuity of the drag force with respect
to the weak convergence and (5.2) yields then

0 = δij +

∫
∂T

ej · (∇Φ̂0
i − σ̂0

i ) · ndx = δij − c0ipFpj .

This implies c0 = F−1 as claimed and the convergence of the whole sequence by
uniqueness of the limit. The asymptotic for X 0∗ as η → 0 follows by the change of
variable y = ηx:

X 0∗
ij = ei ·

∫
P\(ηT )

X 0
jdy = η2−dηdei ·

∫
η−1P\T

X̃
0

jdy ∼ η2−d〈X̃
0

j 〉 · ei ∼ η2−dc0ji.

2. Case 2k + 1 with k = 0. The tensor (X̃
1

i , α̃
1
i ) satisfies735

(5.15)

−∆X̃
1

i +∇α̃1
i = η(2∂lX̃

0

i − α̃0
jel)⊗ el in η−1P\T

div(X̃
1

i ) = −η(X̃
0

j − 〈X̃
0

j 〉) · el ⊗ el in η−1P\T.
736
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Applying Lemma 5.3 and remarking that 〈2∂lX̃
0

i − α̃0
i el〉 = 0, we obtain

||∇X̃
1

i ||L2(η−1P\T,Rd×d) + ||α̃1
i ||L2(η−1P\T ) ≤ C.

Integrating (5.15) by parts against a compactly supported test function Φ ∈ Cc(Rd\T )
and passing to the limit as η → 0, we obtain similarly the existence of a matrix valued
tensor c1 := (c1ij))1≤i,j≤d (of order 1) such that, up to the extraction of a subsequence:

〈X̃
1

i 〉 · ej → c1ij ,

(X̃
1

i , α̃
1
i ) ⇀ (c1ijΨj , c

1
ijσj) weakly in H1

loc(η
−1P\T,Rd)× L2

loc(η
−1P\T ).

Integrating (5.15) by parts against the test function ej and passing to the limit as737

η → 0 yields in this situation 0 = c1ijFpj whence c1 = 0.738

3. General case. Assuming that the result holds till rank k, the differential equations739

satisfied by the rescaled tensors in η−1P\T read:740

(5.16)

−∆X̃
2k+2

i +∇α̃2k+2
i = ηd−1(∂lX̃

2k+1

i − α̃2k+1
i el)⊗ el + ηdX̃

2k

i ⊗ I

div(X̃
2k+2

i ) = −ηd−1(X̃
2k+1

i − 〈X̃
2k+1

i 〉) · el ⊗ el.
741

742

(5.17)

−∆X̃
2k+3

i +∇α̃2k+3
i = η(∂lX̃

2k+2

i − α̃2k+2
i el)⊗ el + ηdX̃

2k+1

i ⊗ I

div(X̃
2k+3

i ) = −η(X̃
2k+2

i − 〈X̃
2k+2

i 〉) · el ⊗ el.
743

Using Lemma 5.2, Lemma 5.3 and the point 1. of the proposition at rank k, we readily
obtain

||∇X̃
2k+2

i ||L2(η−1P\T,Rd×d) + ||α̃2k+2
i ||L2(η−1P\T ) ≤ C,

||∇X̃
2k+3

i ||L2(η−1P\T,Rd×d) + ||α̃2k+3
i ||L2(η−1P\T ) ≤ C.

Repeating the above arguments, we obtain, up to the extraction of a subsequence,
the existence of matrix valued tensors c2k+2 and c2k+3 such that

〈X̃
2k+2

i 〉 · ej ⇀ c2k+2
ij and 〈X̃

2k+3

i 〉 · ej ⇀ c2k+3
ij ,

(X̃
2k+2

i , α̃2k+2
i ) ⇀ (c2k+2

ij Ψj , c
2k+2
ij σj) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ),

(X̃
2k+3

i , α̃2k+3
i ) ⇀ (c2k+3

ij Ψj , c
2k+3
ij σj) weakly in H1

loc(Rd\T,Rd)× L2
loc(Rd\T ).

The last step consists in integrating (5.16) and (5.17) by part against the test function
ej and to pass to the limit as η → 0 in order to identify c2k+2

ij and c2k+3
ij . Performing

this computation as above yields

0 = c2kij ⊗ I − c2k+2
ip Fpj ,

0 = c2k+1
ij ⊗ I − c2k+3

ip Fpj

from where we infer c2k+2 = c2kF−1 ⊗ I, c2k+3 = c2k+1F−1 ⊗ I, whence the result744

(recall c1 = 0 from the point 2. of the proof).745
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Using the identity of (3.20), we obtain the asymptotics for the coefficients Mk of the746

infinite order homogenized equation (1.9).747

Corollary 5.5. Assume d ≥ 3. The following convergences hold for the matrix748

valued tensors Mk as η → 0:749

M0 ∼ ηd−2F,(5.18)750

M1 = o
(
ηd−2

)
,(5.19)751

M2 → −I,(5.20)752

∀k ≥ 1, M2k = o

(
1

η(d−2)(k−1)

)
,(5.21)753

∀k ≥ 1, M2k+1 = o

(
1

η(d−2)(k−1)

)
.(5.22)754

755

Proof. We replace the asymptotics of (5.4) in the explicit formula for the tensors
Mk given in (3.20). (5.18) is an immediate consequence of M0 = (X 0∗)−1. The
convergence (5.20) is obtained by writing, according to (3.20):

M2 = −(X 0∗)−1 ⊗X 2∗ ⊗ (X 0∗)−1 + (X 0∗)−1 ⊗X 1∗ ⊗ (X 0∗)−1 ⊗X 1∗ ⊗ (X 0∗)−1

= −η
2(d−2)

η2(d−2)
F ⊗ c2 ⊗ F + o

(
η3(d−2)

η2(d−2)

)
= −(FF−2F )⊗ I + o(ηd−2)

= −I + o(ηd−2).

For M2k+1 with k ≥ 0, we use (3.20) and we observe that, for any 0 ≤ p ≤ 2k + 1756

and indices 1 ≤ i1 . . . ip ≤ 2k+ 1 such that i1 + · · ·+ ip = 2k+ 1, there exists at least757

one odd index iq with 1 ≤ q ≤ p. Using (5.12) and (5.13), we arrive at758

759

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ (X 0∗)−1 ⊗X ip∗ ⊗ (X 0∗)−1760

= o

(
η(p+1)(d−2)

η(p+bi1/2c+···+bip/2c)(d−2)

)
= o

(
1

η(d−2)(k−1)

)
,761

762

which implies (5.19) and (5.22). For M2k with k > 1, we separate the summands763

of (3.20) into two categories. For a given p indices such that 1 ≤ p ≤ 2k and764

i1 + · · ·+ ip = 2k, there are only two possibilities:765

1. either there exists at least one odd index iq, in that case the above reasoning
implies as well

(X 0∗)−1 ⊗X i1∗ ⊗ · · · ⊗ (X 0∗)−1X ip∗ ⊗ (X 0∗)−1 = o

(
1

η(d−2)(k−1)

)
.

2. or all indices i1 + · · ·+ ip are even, in that case we may write, as η → 0:766

(X 0∗)−1 ⊗X i1∗(X 0∗)−1 ⊗ · · · ⊗ (X 0∗)−1X ip∗ ⊗ (X 0∗)−1767

∼ η(d−2)(p+1)

η(d−2)(p+k)
F ⊗ ci1 ⊗ · · · ⊗ F ⊗ cip ⊗ F768

∼ 1

η(d−2)(k−1)
(FF−(i1/2+1))× · · · × (FF−(ip/2+1))FJ2k

769

∼ 1

η(d−2)(k−1)
F−(k−1) ⊗ J2k.770
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771

Note that in the latter case, the asymptotic does not depend on the choice of indices
i1 + · · · + ip = 2k. Therefore, by isolating the terms featuring only even indices
i1 := 2j1, . . . , ip := 2jp in (3.20), we obtain finally

M2k =
1

η(d−2)(k−1)
F−(k−1) ⊗ J2k

 2k∑
p=1

(−1)p
∑

2j1+···+2jp=2k
1≤j1,...,jp≤k

1

+ o

(
1

η(d−2)(k−1)

)
.

The asymptotic (5.21) follows from the fact that the summation over p in the above772

expression is zero (see e.g. the end of the proof of Corollary 6 in [34]).773

Remark 5.6. We have therefore obtained the following asymptotic estimates for774

the coefficients εk−2Mk of the infinite order homogenized equation (1.9) as η → 0:775

ε−2M0 ∼ (ηd−2/ε2)F,776

ε−1M1 = o
(
ε(ηd−2/ε2)

)
,777

ε0M2 → −I,778

ε2k−2M2k = o
((
ε2/ηd−2

)k−1)
for k ≥ 1,779

ε2k−1M2k+1 = o
(
ε
(
ε2/ηd−2

)k−1)
for k ≥ 1.780

781

These asymptotics bring into play the ratio ε2/ηd−2 and so the critical scaling ηcrit ∼782

ε2/(d−2). They imply thus the“coefficient-wise” convergence of (1.9) to the Brinkman783

regime (1.3) at the critical rate η ∼ ε2/(d−2), in which case ε−2M0 → F and784

εk−2Mk → 0 for any k > 2. Note that ε0M2 → −I whatever the rate of conver-785

gence at which η → 0. The Darcy regimes (1.4) and (1.5) correspond to the situation786

where ηd−2/ε2 → +∞; in that case the zeroth order term ε−2M0 is dominant.787

Finally, the leading coefficients of the Stokes regime (1.2) are retrieved for η =788

o(ε2/(d−2)), since in this case, ε−2M0 → 0, ε−1M1 → 0 and ε0M0 → −I. However789

the present analysis is not sufficient to conclude that the coefficients εk−2Mk of order790

k > 2 converge to zero in the subcritical regime η = o(ε2/(d−2)). Indeed εk−2Mk is just791

bounded by (ε2/ηd−2)k, a quantity which can potentially blow up for too small values792

of η. This matter is to be adressed in a future work through a more accurate analysis793

of the rate of convergence of the coefficients X 2k∗ and X 2k+1∗ in the asymptotic (5.12)794

and (5.13). To date, let us note that Jing obtained recently X 0∗ = F/ηd−2 +O(1) in795

the scalar case (proof of the Lemma 5.1 in [41]) by using layer potential techniques.796

Remark 5.7. From the estimates of (5.4), we obtain that the coefficients (DkK) of
(1.6) satisfy the same asymptotic convergences of Corollary 5.5. Indeed, by using the
definition (3.21) we find that there exists a constant C > 0 independent of η such
that for any K ≥ 0, K + 1 ≤ k ≤ 2K + 1 and 1 ≤ j ≤ d:

||∇NK
j ||L2(Y,Rd×d) ≤ Cη−(d−2)bK/2cηd/2−1

||βk−K−1j ||L2(Y,Rd) ≤ Cη−(d−2)b
k−K−1

2 c+1ηd/2.

Applying the inequality bxc + byc ≤ bx + yc, we obtain that the coefficients Akij of
Proposition 4.10 satisfy for K + 1 ≤ k ≤ 2K + 1,

|Akij | ≤ Cηdη−b
k−1
2 c(d−2) ≤ Cη2Mk

ij .
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Hence the discrepancy induced by the coefficients Akij is small and DkK,ij also satisfies797

(5.21) and (5.22) for K + 1 ≤ k ≤ 2K + 1. Similarly (see Corollary 7 of [34]), we may798

show that D2
0 → −I. The remaining coefficients DkK are equal to Mk.799
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versité Paris 6, 1989.816

[5] G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic817
Analysis, 2 (1989), pp. 203–222.818

[6] G. Allaire, Continuity of the Darcy’s law in the low-volume fraction limit, Annali della Scuola819
Normale Superiore di Pisa. Classe di Scienze. Serie IV, 18 (1991), pp. 475–499.820

[7] G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny821
holes I. Abstract framework, a volume distribution of holes, Archive for Rational Mechanics822
and Analysis, 113 (1991), pp. 209–259.823

[8] G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition,824
Communications on pure and applied mathematics, 44 (1991), pp. 605–641.825

[9] G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical826
Analysis, 23 (1992), pp. 1482–1518.827

[10] G. Allaire, Shape optimization by the homogenization method, vol. 146, Springer Science &828
Business Media, 2012.829

[11] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM: Control,830
Optimisation and Calculus of Variations, 4 (1999), pp. 209–243.831

[12] G. Allaire, M. Briane, and M. Vanninathan, A comparison between two-scale asymp-832
totic expansions and Bloch wave expansions for the homogenization of periodic structures,833
SEMA journal, 73 (2016), pp. 237–259.834

[13] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis,835
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Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin-New York, 1973.910

[44] J.-L. Lions, Some methods in the mathematical analysis of systems and their control, Beijing,911
Science Press, (1981).912

[45] Y. Lu, Homogenization of stokes equations in perforated domains: a unified approach, arXiv913
preprint arXiv:1908.08259, (2019).914

[46] E. Maruvsic-Paloka, Asymptotic expansion for a flow in a periodic porous medium, Comptes915

This manuscript is for review purposes only.



HIGH ORDER HOMOGENIZATION OF THE STOKES SYSTEM 35

Rendus de l’Academie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy,916
325 (1997), pp. 369–374.917

[47] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Publication du Labo-918
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