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ABSTRACT

Reinforcement Learning (RL) agents are commonly thought of as

adaptive decision procedures. They work on input/output data

streams called łstatesž, łactionsž and łrewardsž. Most current re-

search about RL adaptiveness to changes works under the assump-

tion that the streams signatures (i.e. arity and types of inputs and

outputs) remain the same throughout the agent lifetime. As a conse-

quence, natural situations where the signatures vary (e.g.when new

data streams become available, or when others become obsolete)

are not studied. In this paper, we relax this assumption and con-

sider that signature changes define a new learning situation called

Protean Learning (PL). When they occur, traditional RL agents

become undefined, so they need to restart learning. Can better

methods be developed under the PL view? To investigate this, we

first construct a stream-oriented formalism to properly define PL

and signature changes. Then, we run experiments in an idealized

PL situation where input addition and deletion occur during the

learning process. Results show that a simple PL-oriented method

enables graceful adaptation of these arity changes, and is more

efficient than restarting the process.
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1 INTRODUCTION

1.1 Protean Learning

In heuristic AI and weak AI, Artificial Agents (AAs) are mostly used

as search tools. The AA is assigned a task that its user may not know

how to tackle, and its goal is to search a wide space of possible

behaviours until it finds one that makes it solve the task, at least

approximately. In Unsupervised Learning (UL), the AA discovers

structure in the data it feeds on. In Supervised Learning (SL) the AA

feeds on examples realisations of target behaviour: i.e. a sequence

of correct mappings input ↦→ output, called a training set, which
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guides it towards acceptable approximations. In Reinforcement

Learning (RL), no such mapping is available. Instead, the AA suc-

cessively tries various behaviours, only guided by a continuously

fed reward signal designed by user, suggesting whether or not it is

currently doing well [12, 28]. In this context, the agent’s behaviour

is a streaming process continuously computing the next łactionž to

undergo (or agent’s outputs) based on currently perceived łstatež

of the system (or agent’s inputs). The simplicity of this abstract

design is the reason RL broadly adapts a variety of situations like

playing human games [21, 26], controlling 3D creatures [11, 19] or

trading at high frequency [27]. Another reason is that UL or SL are

typically used as methodological elements of RL, so any progress

in either is also beneficial to RL. Recent loud success of function

approximation tools like neural networks is a good example of such

progress. For instance, Recurrent Neural Networks (RNNs) are par-

ticularly beneficial to RL because of their streaming nature [8, 25].

Ideal RL agents adapt changing conditions while still solving the

task at hand. Succeeding in this adaptation is a well-known chal-

lenge tackled by various communities depending on the meaning of

the word "changing". For instance, the domain of Concept Drift (CD)

is concerned with changing environmental functions, resulting in

that environmental responses to the same agent actions cannot be

assumed to remain the same all along the learning process [10, 36].

In this paper, we consider that not only the environment changes,

but also the interface between the agent and the environment. For

instance, consider a RL agent embedded into a sticky roverbot

whose task is to follow a user anywhere. Starting from an initial,

trivial behaviour where it does not move at all, and feeding from

sensory inputs only, RL makes this agent progressively learn how

to coordinate its actions until it is able to follow its target. However,

reaching a successful state where it is able to solve this task on a

wooden floor means not that it will be able to follow the user later

on a rocky ground (environmental change), when its rear camera

will break (input deletion -𝑖), when its left caterpillar will eventu-

ally get jammed (output deletion -𝑜), when a new engine will be

added to compensate (output addition +𝑜), or when a new infrared

sensor will be plugged in (input addition +𝑖), even though the task

remains the same. Non-hardware RL agents also face this challenge.

For instance, consider a long-term high-frequency trading learner

feeding from streaming statistical indicators gathered online [27].

Should this agent be erased and restart the learning from scratch

whenever a new indicator is created (+𝑖) or when an old indicator

is disregarded because it is not considered relevant anymore by the

trading community (-𝑖), then precious resources like time, power,

data, developers, would regularly be wasted. Instead, it must keep

on trading and improving with the new available information.
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We refer to the list of available inputs and outputs streams as

the agent signature. The question is: If a RL agent has been trained

to optimize reward feedbacks under signature Δ0, can it adapt

later different signatures Δ1, Δ2, etc.? The problem is that an agent

defined by signature Δ0 is undefined under Δ1, so it cannot exist

anymore and has to be redefined. But the intuition dictates that it

should benefit from previous experience and bemore efficient under

Δ1, Δ2, etc. than a naive learner resuming from scratch. By explicitly

considering these changes, we extend RL to a broader learning

situation referred to as Protean Learning (PL). We expect PL agents

to be able to keep learning no matter changes in their signature.

We trial this problem with two contributions in this work. After

a succinct overview of related works (section 1.2), we first construct

a formalization of RL that focuses on the PL viewwith non-constant

input/output/feedback signatures (section 2.1). Second, we design

and run an experiment addressing two first kinds of signature

changes: input addition (+𝑖) and input deletion (-𝑖), in an idealized

PL situation that can be solved with SL (section 2.2). We show that

a surprisingly simple adaptation of traditional learning procedures

makes the agent gracefully adapt the signature changes in this case,

while still capitalizing on past experience (section 3).

1.2 Related work

Learning situations related to PL are known in the domain of Trans-

fer Learning (TL). In TL, the agent has already found acceptable

solutions to tasks called łsourcež tasks, and the challenge is to ben-

efit from this previous łknowledgež while tackling a new łtargetž

task. In other words, the TL agent is expected to generalize not only

within tasks, but also across tasks [30]. This domain is transversal

to Machine Learning as it applies both to SL [4, 32] and RL [18, 30].

In fact, we find that TL is commonly invoked in various different

situations, although it is not always acknowledged which of these

situations is currently being instantiated. Considering the literature,

here are the various TL situations we distinguish:

(1) posterior transfer: The source training process is already

done, it has been successful but costly. One wishes to benefit

from TL to tackle a new target task more efficiently [29, 30].

(2) subtasking: The target task is challenging. One wishes to

split it up into several easier source tasks, expecting that TL

occurs from the smaller tasks to the big one, and that this

process is better than direct tackling of the target [6, 9, 30].

(3) joint learning: Several different tasks have to be learned

at once. One wishes that TL occurs from ones to the others,

and speeds up the overall parallel process [13, 31].

(4) prior transfer:The task at handwill undergo future changes,

but these changes are yet unknown. One wishes, prior to

learning, to design an agent able to adapt these changes and

benefit from TL from any task to the next. [24, 32]

PL, described in section 1.1, is an instance of situation (4).

PL is also related to Concept Drift (CD), a situation where the en-

vironment is assumed to undergo changeswhile the agent learns [10,

14, 33, 34, 36]. It is also related to Continual Learning (CL) or "life-

long learning", an AI design where the agent keeps learning as it

regularly faces new challenges like in situation (4) [24, 32, 35].

However, even though the environment function is expected to

change in TL, CD, CL, the signature of the agent is widely assumed

to be fixed in these related works. The field of Domain Adaptation

(DA) tackles input changes (heterogeneous DA [7, 13]) or output

changes (open-set DA [3]) in SL and in the transfer situation (1). But

PL focuses on signature changes in RL instead, and in the transfer

situation (4). As such, PL is not a direct instance of these domains,

although it benefits from methods in these previous works.

As an instance of TL, PL is also transversal to SL and RL. In

particular, the experiment presented in section 2.2 is an instance of

online SL (oSL) so it benefits from PL.

2 MATERIAL AND METHODS

Signature changes cannot always be predicted in advance, but they

fall into only a few categories like adding, removing or changing

inputs, outputs or feedbacks. We expect a PL agent to be ready to

face them. As a first step, we study the effect of adding or removing

an input to the agent-environment interface during learning. Does it

dramatically alter the process? If the PL agent adapts without being

redefined, does it perform better than a naive learner resuming from

scratch on a signature change? First, we provide a formal definition

of the generic PL situation (section 2.1). Second, we design and

conduct an experiment demonstrating the sine qua non relevance of

PL approach at least in an idealized oSL case (section 2.2). In future

works, PL will be investigated in abstract RL situation before we

confront it to other kinds of changes and to real-world applications.

2.1 Formalization of PL

2.1.1 Background. RL is traditionally formalized using Markov

Decision Processes (MDP) [28]. On each step, the RL agent perceives

a łstatež 𝑠𝑡 : a random variable in 𝑆 ; and a random scalar łrewardž

𝑟𝑡 in R. The agent is then responsible to pick an łactionž 𝑎𝑡 in 𝐴

according to the distribution given by its internal łpolicyž 𝜋 :

𝑎𝑡 ↩→ 𝜋 (𝑠𝑡 , 𝑟𝑡 ) (1)

The environment 𝐸 reacts to the agent action by determining the

distribution of the next step state and reward:

(𝑠𝑡+1, 𝑟𝑡+1) ↩→ 𝐸 (𝑎𝑡 ) (2)

The discounted return 𝐺𝑡 is defined as the sum of future rewards

starting from 𝑡 :

𝐺𝑡 =

∞
∑

𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖 (3)

The discount factor𝛾 ∈ [0, 1[ represents a recency principle, result-

ing in that rewards in the near future are worth more than distant

ones so the sum always converges.

With this setting, the goal for a RL agent is expressed as an

optimization problem over the space of all possible policies: Find

the optimal policy 𝜋∗ so as to maximize the expected return value:

𝜋∗ = argmax
𝜋

E(𝐺𝑡 |𝜋) (4)

2.1.2 Overview of RL and PL as Case of Stream Processing. In

the context of PL, we need to extend the above model to take

into account changes in the signature of the agent-environment

interface, i.e. changes in 𝑆 and 𝐴. We construct a formalization that

focuses on viewing RL as a stream processing situation.

A data stream is a value that changes in time. Inputs 𝑖 (loosely

mapped to the concept of łstatesž), outputs 𝑜 (loosely mapped to
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łactionsž) and feedbacks𝜑 (looselymapped to łrewardsž) of a control

agent are considered data streams. The agent itself is considered

a stream processing unit that continuously transforms inputs into

outputs via an internal process 𝑃 called its łbehaviourž (and loosely

mapped to łpolicyž). The objective of RL is that values of the 𝜑

stream become and remain high.

On the other hand, the environment 𝐸 is another stream process-

ing unit working the other way round. It continuously transforms

the output streams 𝑜 into input streams 𝑖 and feedbacks 𝜑 , by strict

application of the universe rules.

The signature describes the interface between the agent and

the environment, with the arity and the types of the data streams

they are expected to receive and produce. In other words, it is the

collection of domains the various streams take their values in. The

core idea of this formalization is to consider that the signature is a

stream itself, so that it also changes in time and extends RL to PL.

2.1.3 Data Streams and Causality. Streams are represented by

functions of continuous time, like 𝑔 : R+ → 𝐷 . They take their

value in arbitrary domains D. Streams are discretized in time with

arbitrary precision 𝜖 ∈ R+∗ by sequences 𝜖𝑔 : N→ 𝐷 such that:

∀𝑡 ∈ N, 𝜖𝑔(𝑡) = 𝑔(𝜖 𝑡) (5)

As they are processed by the agent or the environment, streams

transform into each other. Viewed another way, streams are de-

termined by other streams. We call a determination function 𝑓 a

function able to determine an outgoing stream ℎ from an incoming

stream 𝑔 no matter the precision 𝜖 considered: ∀𝜖 ∈ R+∗, ∀𝑡 ∈ N,

𝜖ℎ(𝑡) = 𝑓𝜖
(𝜖𝑔(0), . . . , 𝜖𝑔(𝑡 − 1), 𝜖𝑔(𝑡)

)

(6)

Note that stream determination has a memory in that current value

of ℎ may depend on past values of 𝑔, so it is only called łMarkovianž

if it allows hidden states. It is also causal in that future values of ℎ

cannot be determined given current and past values of 𝑔. We use the

following graphical alias to represent determination relation (6):

𝑔 (𝑓 ) ℎ (7)

The symbol in parentheses represents the determination function,

the symbol pointed by the arrow head is the consequence stream,

and the symbol pointed by the line with no head is the cause stream.

For instance, 𝑖 (𝑃) 𝑜 means that the inner agent process 𝑃

feeds from input stream 𝑖 to produce the output stream 𝑜 in a causal,

maybe non-Markovian way, i.e. it may exhibit memory. Conversely,

𝑜 (𝐸) 𝑖 means the environment works the other way round.

2.1.4 Multiple Streams and Signatures. A multiple stream 𝑔 car-

ries both a stream of domains noted 𝑔Δ, whose values are called

signatures, and a stream of values noted 𝑔𝜈 (see example Fig. 1 left).

A signature is a tuple of domains (𝐷1, 𝐷2, . . .) and values are ele-

ments from these domains (𝑣1 ∈ 𝐷1, 𝑣2 ∈ 𝐷2, . . .). For instance, at

𝑡 = 0.9, the sticky roverbot (see section 1.1) that is sensitive to both

łuser direction and ground speedž receives, as signature and values:

𝑔Δ (0.9) =
(

[0, 2𝜋 [, R+
)

& 𝑔𝜈 (0.9) =
(

0.2 rad, 15 cm.s−1
)

The particularity of PL, in contrast with RL, is that the signature

stream is not constant. We call signature change of the PL agent any

variation of 𝑔Δ resulting in that the agent later receives values with

different domain signatures, thus the term protean. For instance,

after its front camera has been broken, and a new battery sensor

has been plugged in, the sticky agent later receives łground speed

and battery levelž as

𝑔Δ (1.1) =
(

R
+, J1, 5K

)

& 𝑔𝜈 (1.1) =
(

31 cm.s−1, 4
)

.

2.1.5 Dynamical System. At the highest level, a PL learning situ-

ation is represented by 3 multiple streams (𝑖, 𝑜, 𝜑) and 1 stream of

determining functions 𝑃 with the following determination diagram:

(𝐸∗)

𝑜Δ

𝜑

(𝐴)

𝑜𝜈(𝑃)𝑖

𝑜

(8)

According to (7), (6) and to boilerplate graphical aliases not

developed in this paper, the diagram (8) is equivalent to the set of

formal equations (9-12). They form a Dynamical System for any

time precision 𝜖 ∈ R+. For the sake of readability, all 𝜖 symbols

have been dropped in the following equations:

(𝑖 (0), 𝜑 (0), 𝑜Δ (0)) = 𝐸 (∅) (9)

∀𝑡 ∈ N, 𝑃 (𝑡) = 𝐴
(

(𝑖 (0), 𝜑 (0), 𝑜Δ (0)), . . . , (𝑖 (𝑡), 𝜑 (𝑡), 𝑜Δ (𝑡))
)

(10)

∀𝑡 ∈ N, 𝑜𝜈 (𝑡) = 𝑃 (𝑡)
(

𝑖 (0), . . . , 𝑖 (𝑡)
)

(11)

∀𝑡 ∈ N∗, (𝑖 (𝑡), 𝜑 (𝑡), 𝑜Δ (𝑡)) = 𝐸
(

𝑜 (0), . . . , 𝑜 (𝑡 − 1)
)

(12)

Note that 𝑃 (𝑡) is a determination function. Each colored equal sign

or arrow corresponds to one determination triplet (7) where:

• 𝐸 represents the environment inwhich the agent is immersed.

The * means that initial values of 𝑖, 𝜑, 𝑜Δ are determined by 𝐸.
For the sticky roverbot, 𝐸 represent physics, the target user
behavior, hardware and software environment all together,
i.e. everything that is out of the decisional agent reach 𝐴.

• 𝑖 represents the agent’s inputs or sensors. For the sticky bot,
𝑖 informs the agent of user direction and distance. Their
nature changes in time as the signature 𝑖Δ evolves (e.g. on a
sensor upgrade, a sensor plug (+𝑖) or a sensor break (-𝑖)).

• 𝑜 represents the agent’s outputs or actuators. In our example,
𝑜 controls the caterpillar engines. Their nature also changes
in time as 𝑜Δ evolves. Note that output values 𝑜𝜈 are deter-
mined by the agent, but the output signature 𝑜Δ is deter-
mined by the environment.

• 𝜑 represents the agent’s feedback, rewards or objectives, a
continuously fed evaluation of the actions it undertakes. For
the sticky bot, 𝜑 measures closeness to the target or the
battery level. It also changes in nature as 𝜑Δ evolves.

The environment determines 𝑖 , 𝜑 and 𝑜Δ, so the agent cannot di-
rectly decide its input or feedback data, nor its output signature.
On the inner side:

• 𝑃 represents the agent current behavior, policy or program. It
is an inner computational procedure that determines current
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output values based on current inputs and all past inputs.
Concrete łdecisionsž of the agent, represented here as 𝑜𝜈 ,
are produced by 𝑃 . Note that 𝑃 is a stream itself, so that it
evolves in time, and decisions taken by behavior 𝑃 (𝑡) are
not taken later by behavior 𝑃 (𝑡 + Δ 𝑡 ).

• 𝐴 is the learning procedure of the agent. It continuously
adapts the behavior 𝑃 based on environmental information.
This is where the actual behaviour search is performed (see
section 1.1). Abstract łdecisionsž of the agent, i.e. strategic
choices represented here as 𝑃 , are produced by 𝐴.

Only two objects are not depending on time in this system: the
environment 𝐸 and the inner agent strategy 𝐴. In the sense of
Formal Grammars and Dynamical Systems, 𝐸 and 𝐴 embody the
rules of the system, while its initial state is represented as the first
production of 𝐸: (𝑖 (0), 𝜑 (0), 𝑜Δ (0)).

2.1.6 The Objective of PL. The classical RL problem of łmaxi-
mizing rewardsž [28] is reformulated in PL as:

Given environment 𝐸 and a corresponding stream of feedbacks 𝜑

with only scalar domains, find an agent procedure 𝐴 such that all

values taken by stream 𝜑𝜈 are Pareto-maximized.

𝐴 is considered a good learner if it optimizes the feedbacks for a
whole family of environments, i.e. if it adapts many environments,
no matter the variable nature of the signatures streams 𝑖Δ, 𝑜Δ or 𝜑Δ.

2.1.7 Discussion. This formalism is unconventional, and it does
not yet feature the traditional probabilistic view of RL [28]. Instead,
it focuses on the agent signature and how it changes in time, which
is essential to PL.

Under this view, PL can either be considered a special case of RL
where not only the inputs are given as states, but also their signature,
(e.g. 𝑠𝑡 ∈ 𝑆 with 𝑠𝑡 = (𝑖Δ (𝑡), 𝑖𝜈 (𝑡))); or it can be considered a
generalization of RL where the signature is no longer considered
constant, (e.g. 𝑠𝑡 ∈ 𝑆𝑡 with variable 𝑆𝑡 , for instance 𝑆𝑡 =

∏

𝑖Δ (𝑡)).
This formalism is also compatible with future extensions of PL

where a new cause for signature changes is that PL agents/diagrams
compose each other. For instance when 1 agent splits into 2 or when
2 agents merge together: 𝑖Δ (𝑡 + d𝑡) = 𝑖Δ1 (𝑡) 𝑖

Δ

2 (𝑡).
As an instance of TL, PL fits online learning in general, including

RL but also oSL. In oSL, 𝑖 and𝑜 carry the learning batches. 𝐸 contains
training sets (𝑖, 𝑜∗) and compares each 𝑜 (𝑡) to 𝑜∗ (𝑡) to compute
corresponding loss 𝜑 (𝑡). The difference with RL is that 𝑖 (𝑡) does
not depend on past values of 𝑜 . Also, 𝜑 (𝑡) is immediately available
so there is no credit assignment problem to solve for 𝐴 [28]. The
experiment presented next assesses basic viability of PL in oSL.

2.2 Experiment

Preliminary to the construction of full-fledged PL agents, we design
an experiment to assess their basic viability in simple cases where:
(1) the environment is abstract and controlled (2) only input addition
(+𝑖) and input deletion (-𝑖) occur, like in Fig. 1 left, and (3) the task
is a simple oSL instance of PL. To this end, we restrict ourselves to
an ideal situation where the optimal behavior 𝑃∗ is known from
the experimenter. The environment 𝐸 is able to access a training set
of example optimal realizations 𝑇 =

{(

𝑖𝑛, 𝑜
∗
𝑛

)}

𝑛∈(1, ..., 1000) with

every 𝑖𝑛 (𝑃∗) 𝑜∗𝑛 . Note that, for the purpose of the experiment,
the timeline of 𝑖𝑛 and 𝑜∗𝑛 sequences (horizontal in Fig. 1) does not
correspond to the learning timeline 𝑡 (horizontal in Fig. 2) as it
would in RL, so credit assignment does not come into play yet [28].
The agent only explores the space of behaviours to approximate 𝑃∗.
To simulate the signature change, we stop the SL procedure, change
the signature of inputs 𝑖𝑛 , change the signature of𝐴 and 𝑃 with a TL
technique, then resume SL. Comparison is made with a naive, non-
PL agent that directly learns from scratch with the new signature.

The following sections describe the successive steps of the ex-
periment and its controlled parameters:

• Generate synthetic inputs 𝑖𝑛 with controlled correlation (𝜅)
and autocorrelation (𝜌).

• Construct ideal behaviour 𝑃∗ with controlled complexity (𝑐).
• Compute ideal outputs 𝑜∗𝑛 with control of relevant input (𝛼).
• Construct learning agent 𝐴. Start learning 𝑃∗. Stop.
• Simulate signature change (+𝑖 or -𝑖). Resume learning.
• Measure the advantage of PL agent compared to naive agent.

2.2.1 Inputs Generation. Inputs carry information supposed to
help the agent in its task. This information is more or less pre-
dictable. For instance with the sticky bot, the position of the target
is expected not to differ much between time steps if the target is
moving smoothly, but it is hard to predict if the target is fast and
erratic. We expect this predictability to influence the agent reaction
to a change in input signature, and assess it by generating various
synthetic input data with a controlled level of autocorrelation 𝜌 .
When several information channels are available, they also are more
or less correlated together. For instance, when an infrared camera
is plugged into the sticky bot, it essentially carries information
similar to the classical camera; but a battery sensor will produce
original, decorrelated data instead. We expect this correlation level
to influence the agent reaction to an input addition or deletion,
and assess it by generating various synthetic data channels with a
controlled level of correlation 𝜅 . The procedure is described below.

Each synthetic input 𝑖𝑛 is generated as 2-channels (or ł2Dž)
data stream (𝑖1𝑛, 𝑖2𝑛). First, 3 reflected Gaussian random walks
𝑖𝑛𝑎 , 𝑖𝑛𝑏 , 𝑖𝑛𝑐 are independently generated in [−1, 1] [16], with
initial value uniformly chosen and standard deviation 𝜌 . Then (see
Fig. 1, top right), they are combined as:

𝑖𝑛 =

(

𝑖1𝑛

𝑖2𝑛

)

=

(

𝜅 𝑖𝑛𝑏 + (1 − 𝜅) 𝑖𝑛𝑎

𝜅 𝑖𝑛𝑏 + (1 − 𝜅) 𝑖𝑛𝑐

)

(13)

The lower 𝜌 , the more predictable 𝑖𝑛 . The higher 𝜅 , the more redun-
dant the two channels. Three values are tested for 𝜌 to assess the
effect of input predictability: 0.05 (smooth), 0.15 (noisier) and 10 (al-
most white noise). Jointly, three values are tested for 𝜅 to assess the
effect of channels redundancy: 0 (independent channels), 0.5 (the
channels carry correlated information) and 1 (same information).

2.2.2 Optimal Outputs Generation. The optimal behaviour used,
𝑃∗, is a two-steps process (see Fig. 1, bottom right):

𝑖𝑛 (𝑃∗′ ) 𝑖 ′𝑛 (𝑃∗′′ ) 𝑜∗𝑛 (14)

The first step 𝑃∗′ is to merge the two channels of 𝑖𝑛 into one:

𝑖 ′𝑛 = 𝛼 𝑖1𝑛 + (1 − 𝛼) 𝑖2𝑛 (15)
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2D input sequence 𝑖𝑛

1D optimal output 𝑜∗𝑛

Figure 1: Left: Example multiple stream 𝑔. Each curve corresponds to the temporary presence of one domain in the signature

stream𝑔Δ. If𝑔 represents an agent input stream, then this learner is initially sensitive to ameasure valued in Z. It later becomes

also sensitive to a measure valued in R, then in [0, 1]. All these sensitivities are eventually lost between 𝑡𝑏 and 𝑡𝑐 . However,

the learner ends up sensitive to a nominal parameter in {r, g, b}. All beginning and end of sensitivities are marked as input

addition (+𝑖) or input deletion (-𝑖) events. Right: Example synthetic streams for the preliminary experiment. Top: autocorre-

lated random input stream 𝑖𝑛 with 2 correlated channels. Bottom: 1-channel output stream 𝑜∗𝑛 computed with transformed

random Legendre polynomial combination. In this example, 𝜌 = .15 (intermediate autocorrelation level), 𝜅 = .5 (intermediate

correlation level), 𝛼 = .5 (balanced usefulness of input channels), and 𝑐 = (2, 3) (intermediate polynomial complexity).

with a parameter 𝛼 ∈ [0, 1] explained hereafter. The second step
is to transform 𝑖 ′𝑛 into 𝑜∗𝑛 with a parametrized determination func-
tion 𝑃∗′′ that permits fine control of the task complexity.

Not all tasks are equally complex. We consider two reasons for
this: First, some tasks require that the agent remembers past inputs
so as to take best decisions. The older the past inputs, the more
complex the task. Second, some expected outputs are not an easy,
say linear, combination of the inputs. The less linear the combina-
tion, the more complex the task. We expect the task complexity to
influence the way an agent reacts to changes in its input signature.
To assess this, we generate tasks of various complexity by choosing
that 𝑃∗′′ is constituted of a random multivariate polynomial P. The
measure of complexity 𝑐 : (𝑚,𝑑) is twofold. The first component𝑚
is the depth of 𝑃∗′′ memory, i.e. howmany past values of 𝑖 ′𝑛 are used
to compute one step P(𝑖 ′𝑛 (𝑡 −𝑚 + 1), . . . , 𝑖 ′𝑛 (𝑡)). So𝑚 corresponds
to the dimension of P. The higher𝑚, the more complex the task.
The second component 𝑑 is the degree of P. The higher 𝑑 , the less
linear P, and the more complex the task.

Generating random polynomials with controlled degree 𝑑 is not
straightforward, and 3 methodological obstacles need be overcome:

1: A polynomial of degree 𝑑 with random parameters may not
behave as a full-degree polynomial. For instance, it can be almost
linear, and the task complexity becomes over-estimated. To avoid
this, P is defined as a random mixture of successive Legendre poly-
nomials (L𝑘 )𝑘∈J0, 𝑑K [1], as each L𝑘 makes full use of its degree 𝑘 :

P𝑙 =

𝑑
∑

𝑘=0

(−1)𝜎𝑘 𝑤𝑘 L𝑘 ,

𝑑
∑

𝑘=0

𝑤𝑘 = 1 (16)

P :

{

[−1, 1]𝑚 → [−1, 1]
(𝑥1, . . . , 𝑥𝑚) ↦→

∏𝑚
𝑙=1 P𝑙 (𝑥𝑙 )

(17)

The weights values𝑤𝑘 are drawn from a Dirichlet distribution, and
the random signs 𝜎𝑘 are drawn from a Bernoulli distribution.

2: P is almost degenerated when the dominant weight 𝑤𝑑 is
lower than the other weights, resulting in the task complexity
being over-estimated. To avoid this, the Dirichlet distribution con-
centration is set to (1, . . . , 1, 2) so𝑤𝑑 is on average twice higher.

3: When 𝑚 and 𝑑 increase, values of P(𝑥) become biased to-
wards 0, so P is easily approximated with the null function, and
the task complexity is over-estimated. To avoid this, an additional
transformation is applied to the values of P(𝑥) so as to stretch them
away from 0. The transformation aims to restore the biased distri-
bution toU([−1, 1]). To this end, we first evaluate the distribution
of P(𝑥): For each tested value of 𝑚 and 𝑑 , 200 random polyno-
mials P are drawn and evaluated in 2000 random points 𝑥 . The
distribution of all outputs P(𝑥) is estimated with a Gaussian Ker-
nel Density Estimation (KDE) (Scott bandwidth selection) [15]. We
restore the distribution by using approximation of corresponding
cumulative density function 𝐶𝐷𝐹 (256 linear interpolation points)
as the stretching transformation. The final formula used for 𝑃∗′′ is:

𝑜∗𝑛 (𝑡) = 2 ×𝐶𝐷𝐹 ◦ P
(

𝑖 ′𝑛 (𝑡), . . . , 𝑖
′
𝑛 (𝑡 −𝑚 + 1)

)

− 1 (18)

Three values of complexity 𝑐 are tested. They correspond to prop-
erties of P: (1, 1) (linear, Markovian), (2, 3) (cubic, remembers last
iteration) and (4, 3) (cubic, reaches 4 steps back in time).

Not all inputs are equally useful to solve the task at hand. For
instance, the battery level does not help the sticky bot when it has
to follow its target. We expect this relative usefulness to influence
the agent reaction to input addition or deletion. To assess it, we
tune the value of 𝛼 when mixing the 2 inputs channels of 𝑖𝑛 into 𝑖 ′𝑛
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(equation (15)). The higher 𝛼 , the more useful the first input channel
and not the other one. Three values are tested for 𝛼 : 0 (𝑖1𝑛 is useless
to solve the task), 0.5 (𝑖1𝑛 is useful but not sufficient to solve the
task) and 1 (𝑖1𝑛 contains all information needed to solve the task).

2.2.3 Agent Structure and Learning. The agent approximates
optimal behaviour 𝑃∗ with actual behaviour 𝑃 . As a fixed parameter
of the experiment, we choose a Recurrent Neural Network (RNN)
to implement 𝑃 . RNNs are known to adjust arbitrarily complex
recursive functions and infer arbitrarily numerous hidden states
provided they contain enough internal states [8, 25]. Therefore, they
model any internal representation of the agent so that it progresses
towards 𝑃∗. As suggested by [? ], having not enough internal states
results in the agent failing the task when the environment memory
reaches too far back in time. We therefore use 3 standard Gated
Recurrent Unit (GRU) cells as different network layers [5], with 6
internal states each, the last one being used as the network output.
𝑃 produces the actual agent outputs according to 𝑖𝑛 (𝑃) 𝑜𝑛 .

The learning procedure𝐴 processes training examples by batches
of 100, and updates the weights parameters of 𝑃 with a stochastic
gradient descent and Adam update rule [17] (learning rate = 0.01).
On each batch, Mean Squared Error 𝑀𝑆𝐸 (𝑜, 𝑜∗) is calculated as a
loss. Convergence is achieved using pytorch [22] for 1000 iterations.

2.2.4 Realization of Signature Change. Three convergences are
achieved on each run (see Fig. 2). In the case of input addition (+𝑖):

(1) One protean łfirst-formž agent 𝐴𝑓1 (blue, left trace) is con-
structed with a 1D input signature. Its parameters are ran-
domly initialized fromU([−.01, .01]).𝐴𝑓1 is trained against
𝑇 but only feeds from channel 𝑖1𝑛 of input stream, blind to 𝑖2𝑛 .
Note that in general, 𝑃∗ cannot be reached in this case, only
its projection to the closest 1D function can be approximated.

(2) One protean łsecond-formž agent 𝐴𝑓2 is constructed with
a 2D signature. Its initial parameters are copied from the
latest parameters in 𝐴𝑓1 , except for the necessary additional
parameters that are set to zero. This simple form of TL is
considered transfer of łlow-levelž knowledge in [30] with
obvious mapping from source to target task. 𝐴𝑓2 is then
trained against the whole training set 𝑇 (green, right light
trace), not ignoring channel 𝑖2𝑛 anymore: 𝑃∗ can be reached.

(3) One traditional łdirectž agent 𝐴𝑑 is constructed with a 2D
signature. Its parameters are randomly initialized, and it is
directly trained against the whole training set𝑇 (black trace).

In the case of input deletion (-𝑖), the protocol is reversed: 𝐴𝑓1 (2D)
is able to see the whole dataset (blue, left trace), and 𝐴𝑓2 , 𝐴𝑑 (1D)
(red, black, right traces) are both blind to the second channel. Note
that a few networks parameters are then lost during the transfer.

The couple (𝐴𝑓1 ,𝐴𝑓2 ) is our experimental oSLmodel of a PL agent.
It experiences 2 elementary signature changes: +𝑖 and -𝑖 . 1000 repli-
cates are run for each combination of experimental settings, with
inputs sequences 128 values long, and always with a new 𝑃∗.

2.2.5 Measure of the Advantage. Three measures are taken to
assess the advantage of PL compared to direct learning. They are
computed on the learning curves 𝑙 : 𝑡 ↦→ 𝑀𝑆𝐸 (𝑜 (𝑡), 𝑜∗ (𝑡)) (Fig. 2):

1: A short-term measure of transfer considers the loss jump oc-
curring right after the signature change. It is the difference between
the mean last 100 loss values of 𝐴𝑓1 and the mean first 100 of 𝐴𝑓2 :

IT =

1

100

(

−1
∑

𝑡=−100

log10

(

𝑙𝐴𝑓1
(𝑡)

)

−

99
∑

𝑡=0

log10

(

𝑙𝐴𝑓2
(𝑡)

)

)

(19)

(Note that time is counted negatively prior to the event.) This łIm-
mediate Transferž measure is 0 when the event has no effect on
learning (H), positive when it immediately improves learning (C, D),
and negative when learning is perturbed by the event (A,B,E,F,G).

2: A long-term measure of the advantage is the mean gain:

LT =

1

1000

999
∑

𝑡=0

log2

(

𝑙𝐴𝑑
(𝑡)

𝑙𝐴𝑓2
(𝑡)

)

(20)

LT = 1 means that second-form agent is twice better than direct
agent on average. LT = 0 means that they perform similarly.

3: A last performance measure is the mean last 100 loss values:

LP =

1

100

999
∑

𝑡=900

log10

(

𝑙𝐴𝑓2
(𝑡)

)

(21)

When LP is below -2 (MSE<10−2), we consider the task to be solved.

3 RESULTS AND DISCUSSION

The measures obtained on each run are summarized in Fig. 3. Vari-
ous effects discussed here are named A, B, etc. They are illustrated
in Fig. 2 with example runs drawn from key conditions in Fig. 3.

A generalized linear model was fitted on the data to address rele-
vance of observed variations. Predictions are represented as dots in
Fig. 3. All interactions were considered between experimental set-
tings 𝜌 , 𝜅 , 𝛼 and 𝑐 considered as factors (degrees of freedom: 80919,
residual stde: 0.7822). The effects discussed hereafter only rely on
high significance contrasts with 𝑝-𝑣𝑎𝑙𝑢𝑒 ⩽ .001. Convergence and
analysis of the model were achieved with R-Cran software [23].

As a general trend, even though transfer sometimes has a nega-
tive short-term influence IT, the long-term score LT is positive on
average. This reflects the advantage of the second-form agent 𝐴𝑓2
compared to the naive, direct agent 𝐴𝑑 . In other words: performing
the transfer with a PL approach is more beneficial than restarting
the learning from scratch when the signature change occurs. This
advantage needs be qualified depending on the situation:

A. PL benefits from input redundancy: In the +𝑖 situation, it
is expected that, when the new input carries information
similar to existing one, transfer makes𝐴𝑓2 benefit from prior
learning compared to𝐴𝑑 . This is confirmed by the data when
𝛼 < 1: the higher 𝜅, the higher LT.

B. Input loss implies failure: In -𝑖 , it is expected that both agents
fails when important input is removed. This is confirmed by
the data when𝛼 < 1,𝜅 < 1: the LP scores are always above -2
on average. In this situation, performing the transfer or not
does not make a big difference although LT scores are still
positive on average. B supports our abstract model of a task.

C. PL benefits from data structure: In +𝑖 , it is expected that trans-
fer is useless if the initial input carries no relevant infor-
mation. But surprisingly, LT scores are positive even when
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Figure 2: Learning curves 𝑙 : evolution of MSE (section 2.2.4) for key example individual runs in the experiment. Filled areas

illustrate the LT measure (20). Dotted bars illustrate the IT measure (19) and the LP measure (21). Eyes represent 1D/2D cases.

𝛼 = 0 and 𝜅 = 0, and higher if 𝜌 is low. Our interpretation is
that𝐴𝑓1 still learns a correct representation/preprocessing of
the data in this case, and that this knowledge benefits to 𝐴𝑓2 .

D. PL benefits from immediate transfer : In +𝑖 , transfer is expected
to be immediately beneficial. This is confirmed by the data
when 𝛼 < 1, 𝜅 < 1: IT scores are positive.

E. There are negative transfer perturbation: Effect D does not
hold in -𝑖 when 𝛼 = 1 or 𝜅 = 1: IT scores are negative.
I.e. when the new input is not useful to improve, the agent
looses performance for a few iterations before figuring it out.
Note that the long-term LT scores are still positive.

F. PL recovers with redundancy: In -𝑖 , the removal perturbation
is expected to be less severe when the inputs are redundant.
This is confirmed by the data when 𝛼 < 1: the higher 𝜅, the
higher IT (note that IT < 0, still). 𝐴𝑓2 transfers knowledge
from the missing input to the remaining, similar input. LT
score is even positive when 𝜅 = 1 and the task is still solved.

G. PL suffers from redundancy: The effect F is reversed when
𝛼 = 1: the higher 𝜅, the lower IT. Our interpretation is that,
when only one of the two initial inputs is relevant, but the
other is a copy of it, it takes longer for 𝐴𝑓2 to figure out that
the information lost is still available in the remaining input.
Note that the long-term LT scores are still positive.

H. Complexity levels it off : It is expected and observed that,
the more complex the task (𝑐), the less intense all the effects
listed above. Indeed, when both𝐴𝑓2 and𝐴𝑑 struggle to lower

the error, their relative advantage becomes less clear. Still,
LT remains positive on average.

As a summary, we observe that PL is overall beneficial on the
long-term after a signature change. Most of these results were ex-
pected, but it is worth noting that a short negative transfer perturba-
tion (IT< 0) is observed in special cases (input removal, redundant
new input), and that there were no guarantees that this effect would
not overwhelm the whole learning process and take over the long-
term scores LT during the experiment. We have thus demonstrated
that transfer works as expected in PL for input addition/deletion
signature change events, at least in this idealized oSL situation, and
that the protean approach of online learning is still conceivable.

A few effects were unexpected. C shows that transfer is beneficial
even if the prior agent was completely unable to solve the task at
hand.We suppose it learns information about structure of the data it
is later fed from, and we suggest that this phenomenon be studied as
an alternative parameter initialization procedure. A parsimonious
hypothesis is that it only learns to ignore the useless input.

According to TL theory [30], there can be various reasons for the
advantage of the second-form agent 𝐴𝑓2 : First, 𝐴𝑓2 initial loss can
be lower than 𝐴𝑑 because 𝐴𝑓1 has already started converging; this
is known as the jumpstart benefit. Second, 𝐴𝑓2 loss can decrease
faster than 𝐴𝑑 : 𝐴𝑓2 is said to learn faster. Lastly, 𝐴𝑓2 final loss can
be lower than𝐴𝑑 :𝐴𝑓2 is said to learn better. The LT metric (20) is an
aggregated estimation of these 3 possible advantages, and IT (19)
only measures jumpstart. As such, we cannot distinguish all effects
from each other. However, considering that many runs exhibit
negative IT yet positive LT, we can assert that the jumpstart effect
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Figure 3: Violin plot: Comparison of metrics in the various experimental settings. Left panes: input addition. Right panes:

input deletion. Top panes: Long-Term advantage LT as defined in (20). Bottom panes: Immediate Transfer IT as defined in (19).

Violin border color indicates the mean value of the Last Performance LP as defined in (21). Violins are aggregated over 𝜌 to

ease readability, but statistical predictions of the metrics depending on 𝜌 are represented as dots within the violins. Solid lines

represent median values, dashed line represent mean values. Grey areas in the violins represent 50% and 90% percentiles.

is not the only benefit of PL in this experiment. This was an open
question in [2], and the effect C is another argument in this favor.

The experiment presented here is idealized and abstract. It as-
sesses the sine qua non condition that PL learners can be developed
at least in an easy situation like oSL. Extending these preliminary
results to RL is therefore a matter of confronting to Incremental
Learning [20] and the Credit Assignment problem [28], and is the
subject of current work in progress. I.e., the learning/optimization
timeline (Fig. 2) must line up with the data stream timeline (Fig. 1).

CONCLUSION

RL agents are expected to continuously adapt their environments.
Real-world situations challenge them with changes in their in-
put/output stream signature. In this paper, we have generalized
the idea of RL to a broader PL learning situation that explicitly
takes these signature changes into account. First, we have pre-
sented a novel formal vision of RL making it possible to extend

to PL. Then, with a controlled oSL experiment, we have started
exploring how PL learners can be developed. We have shown that
low-level transfer techniques correctly address input addition and
input deletion when learning non-Markovian and non-linear tasks,
at least with RNNs in the idealized case, and we have determined
various detailed effects in play during the process. These prelimi-
nary results are encouraging, as they suggest that control agents
can learn even if their agent-environment interface is changing.
In subsequent works, consistently with our general approach, PL
will be used again to address other types of signature changes like
output/feedback addition and removal (±𝑜,±𝜑) or agents compo-
sition/decomposition. Traditional RL benchmarks like mountain
car and cart pole balancing [28] or Atari Games [21, 26] and 3D
creatures [11, 19] cannot be directly used in evaluating PL as they
do not feature signature changes yet. We need adapting them in
order to compare PL to common RL approaches. In the future, the
above results will also need to confront full-fledged generic tasks,
real-world problems and software applications.
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