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Abstract A plane-probing algorithm computes the normal vector of a digital
plane from a starting point and a predicate “Is a point x in the digital plane?”.
This predicate is used to probe the digital plane as locally as possible and
decide on-the-fly the next points to consider. However, several existing plane-
probing algorithms return the correct normal vector only for some specific
starting points and an approximation otherwise, e.g. the H- and R-algorithm
proposed in Lachaud et al. (J. Math. Imaging Vis., 59, 1, 23–39, 2017). In
this paper, we present a general framework for these plane-probing algorithms
that provides a way of retrieving the correct normal vector from any starting
point, while keeping their main features. There are O(ω logω) calls to the
predicate in the worst-case scenario, where ω is the thickness of the underlying
digital plane, but far fewer calls are experimentally observed on average. In
the context of digital surface analysis, the resulting algorithm is expected to
be of great interest for normal estimation and shape reconstruction.
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E-mail: jacques-olivier.lachaud@univ-smb.fr

Jocelyn Meyron
Univ. Lyon, INSA Lyon, LIRIS, UMR CNRS 5205, F-69622, France
E-mail: jocelyn.meyron@insa-lyon.fr

Tristan Roussillon
Univ. Lyon, INSA Lyon, LIRIS, UMR CNRS 5205, F-69622, France
E-mail: tristan.roussillon@liris.cnrs.fr



2 Jacques-Olivier Lachaud et al.

1 Introduction

In numerous fields, e.g., material sciences, medical imaging, non-invasive ac-
quisition devices such as magnetic resonance, X-ray tomography or micro-
tomography are required for observation, measurements or diagnostic aids.
These acquisition devices usually generate volumetric data, i.e., 3D images,
composed of regularly spaced data in a cuboidal domain. 3D volumes come
from the segmentation of such 3D images. They are also generated in scientific
modeling because numerous simulation schemes rely on the regularity of the
data support.

Digital surfaces form the boundary of 3D volumes. Their geometry is diffi-
cult to analyze because for any resolution a digital surface is only made up of
quadrangular surface elements, whose normal vector is parallel to one axis. A
standard approach consists in choosing a larger computation window in order
to estimate the geometry by some kind of smoothing or averaging method. It is
even possible to get convergent estimates of the normal vector field along digi-
tizations of sufficiently smooth shapes [11,21]. However, this approach has two
drawbacks. First it comes at the cost of blurring sharp features. The trade-off
between a sufficiently large neighborhood to get a relevant normal direction
and a sufficiently small neighborhood to preserve sharp features is hard to find
and may vary across the digital shape. Second, these approaches ignore the
arithmetic nature of the geometry of digital surfaces. At a given digitization
scale, this implies that in planar zones the computation window size depends
on the arithmetic direction of the normal vector. Purely digital methods have
thus emerged and try to perform digital surface analysis without any exter-
nal parameters. We review in the next paragraphs some of the main methods
that can be used to infer the geometry of digital surfaces, especially the ones
that focus on estimating their normal vector field, since this information is
the first step toward deeper geometric analysis. Indeed, many high-level tasks
in computer graphics, vision and 3D image analysis rely on the quality of
the normal estimation on digital surfaces: rendering, surface fairing, surface
deformation for physical simulation or tracking, scene understanding, precise
geometric measurements, primitive extraction, etc.

Generic methods for normal inference from point clouds. Of course, a first
way to analyze a digital surface is to consider its vertices as a point cloud
that samples some continuous surface. There exists a lot of methods to infer
the geometry of a point cloud. The simplest approach is to compute the k-
nearest neighbors and fit a plane to these points. In our case, it is hard to
find a number k that is meaningful on the whole digital surface, so results
would be considerably biased for any choice. More evolved methods are re-
lated to the Voronoi diagram of the point cloud, like cocone [13] and its many
variants. However the point cloud must sample the continuous surface or be
very close to it for these methods to be reliable. The Voronoi Covariance Mea-
sure (VCM) [26] is interesting in our case since it provides provable stability
of inferred normals when the point cloud is close to the continuous surface.
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(a) input (b) denoised (c) Influence of parameters

Fig. 1: Limited applicability of mesh denoising methods to digital surfaces.
Here, we have chosen the recent and representative guided mesh normal fil-
tering method [34]. (a) Input digital surface and (b) denoised digital surface,
using the program provided by authors. (c) Choice of parameters is crucial
even on standard meshes – image taken from [34].

This is our case since we know that the digitization of a continuous surface
is close to it in the Hausdorff sense [25]. Further works have also shown that
this approach can be extended to point clouds with outliers [10]. A drawback
is that the VCM involves several parameters that depend on the geometry of
the point sample. Typical parameter setting would oversmooth normals near
features of the digital surface. On the contrary, the statistical approach of [2]
and its follow-up [3] recognize the piecewise smooth aspect of normal vector
fields and are efficient on point clouds with sharp features and with Gaussian
random noise. It would still be difficult to find the correct set of parameters for
their algorithm in the case of digital surfaces, and the possible improvements
provided by deep learning is yet unclear in our case.

Geometry inference through mesh denoising. When processing triangulated or
quadrangulated meshes, most works do not distinguish between noise in vertex
positions or bad normals for faces. Inferring a good geometry is thus achieved
in general by regularizing the mesh, often called mesh denoising. Bilateral
mesh filtering is a popular approach [15], but many others are possible like
L0-minimization [19] or the more recent guided mesh normal filtering [34] or
Mumford-Shah mesh processing [1]. As illustrated on Fig. 1, the tuning of
parameters is crucial for these approaches, and it is difficult to find a correct
set of parameters for digital surfaces. Furthermore all these approaches are
variational by nature, they have no guarantee to converge toward the correct
solution and require a lot of computations.

Normal estimation methods dedicated to digital surfaces. As said in the begin-
ning, most methods for estimating the normal vector field of a digital surface
perform a local averaging of the face trivial normals, e.g., [16]. More recently,
several methods based on a variable radius/window of computation have been
shown to be multigrid-convergent, like the digital integral invariant approach
[9,21] or a digital variant of the VCM [11]. The established convergence re-
quires digitizations of smooth surfaces, and the radius of computation depends
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on the digitization step. These approaches oversmooth features and we must
still rely on an external parameter to infer an accurate normal vector field.
We finally note that the variational model of [8] is able to estimate piecewise
smooth normal vector field over digital surfaces from previous normal estima-
tions, at the price of further parameters (especially the user-chosen length of
discontinuities) and increased computations.

Greedy decomposition into digital plane segments. The previous approaches do
not really exploit the specific nature of digital surface data and their arithmetic
properties. We therefore turn our attention to more specific digital geometry
methods. A natural approach, which was successfully used in 2D, is to try to
recover the linear geometry of the digital surface. The idea is to find digital
plane segments (DPSs) that locally fit the digital surface. Such strategy has
been used for surface area estimation [20], reversible polyhedrization [17,31],
surface segmentation and smoothing [28], piecewise smooth reconstruction [7],
or normal estimation [6]. Note that the difficulty is not to recognize if a set of
digital points is a DPS, since there are numerous methods to do so, e.g., [32,12,
27,4,18,5,14,33], to quote a few. All these DPS recognition algorithms take a
point set as input, possibly in an incremental way, determine whether this set
can be a DPS or not, and if so, provide its geometric characteristics. The most
difficult part consists in determining which input points should be taken into
account during the recognition process in order to guarantee that the obtained
DPSs are indeed tangent to the digital surface. For instance, all the approaches
listed above rely on heuristics to determine a candidate set of points for DPS
recognition: greedy decomposition [20,31], repetitive identification of largest
DPS [7] or approximately largest [28], expansion from maximal planar disks
[6].

Plane-probing algorithms. Therefore, recently, another category of recognition
algorithms has been developed [22–24,30]. These algorithms, called plane-
probing algorithms in [24], decide on-the-fly where to probe the digital surface
in order to grow a tetrahedron, which is tangent by construction. The growth
direction is given by both arithmetic and geometric properties. The main char-
acteristics of these algorithms is that no parameter is required for the analysis
of the local geometry of digital surfaces. Furthermore, they present theoretical
guarantees, most notably they extract the exact normal vector of any digi-
tal plane. Henceforth, these approaches have not only a correct asymptotic
behavior, but they provide a correct output at a given scale.

Outline of the paper. We review plane-probing algorithms in more detail in
section 2. We present a general framework for some of the reviewed plane-
probing algorithms in section 3. In section 4, we prove that our method is a
way of locally computing the correct normal vector of a digital plane, from
any starting point. In addition, denoting by ω the thickness of the underlying
digital plane, we prove that there are O(ω logω) probed points in the worst-
case scenario. In section 5, we conduct an experimental analysis in order to



An Optimized Framework for Plane-Probing Algorithms 5

assess the number and position of the probed points on average. The proposed
method is also shown to be relevant for analyzing the local planar geometry
of digital surfaces.

2 Review of Plane-Probing Algorithms

A digital plane is an infinite digital set that consists of several consecutive and
parallel layers of coplanar points. It is defined by a (nonzero) normal N ∈ Z3

and a position µ ∈ Z as follows [29]:

Pµ,N := {x ∈ Z3 | µ ≤ x ·N < µ+ ‖N‖1}. (1)

Given a digital plane Pµ,N ⊂ Z3 and a starting point p ∈ S, a plane-probing
algorithm computes the parameters of a digital plane Pµ′,N′ containing p by
sparsely probing Pµ,N with the predicate InPlane := “is x in Pµ,N?”. When
the algorithm terminates, µ and N are expected to be equal to µ′ and N′

respectively.
What makes plane-probing algorithms promising is that they decide on-

the-fly how to probe the digital surface and make grow a piece of digital
plane, which is tangent by construction. The first algorithm of this category
has been proposed in [22]. Its principle is to deform an initial unit tetra-
hedron, positioned at some starting point, with only unimodular transfor-
mations. Each transformation is decided by looking mostly at a few points
around the tetrahedron. These points are chosen so that the transformed
tetrahedron lies in Pµ,N, with the same volume, but closer to the upper plane
P+
µ,N := {x ∈ R3 | x ·N = µ+ ‖N‖1− 1}. At the end of this iterative process,

one face of the tetrahedron has an extremal position in the plane and is thus
parallel to P+

µ,N.
New plane-probing algorithms were proposed in [23,24]. They also itera-

tively deform an initial tetrahedron and stop when one face is parallel to P+
µ,N

(see Fig. 2 for an illustration). However, these new algorithms differ from the
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(e)

Fig. 2: The current tetrahedron is depicted in blue. It is initialized at a corner
(a) and it is then deformed step by step by the R-algorithm proposed in [24]
(b-e). When the algorithm terminates (e), the normal of the facet not incident
to the fixed vertex (depicted with a red point) is equal to the normal of the
underlying digital plane, i.e., (1, 2, 5).

first work on several aspects. First, they are simpler, because they repeat one
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simple operation instead of several possible transformations depending on the
current configuration as in [22]. Second, one vertex of the evolving tetrahedron
is a fixed point lying above the starting point and the opposite triangular facet
(red point in Fig. 2). The position of the evolving tetrahedron is thus better
controlled than in [22]. Third, a geometric criterion has been introduced in [23,
Algorithm 2] and is also used for the two algorithms proposed in [24], called H-
and R-algorithm, so that the evolving tetrahedron is not too much elongated
during the computation. Last, these algorithms do extract the exact normal
vector to a digital plane, but only when starting from specific positions, and
otherwise return only approximations of the normal vector.

The H-algorithm is essentially the same but slightly different from [23,
Algorithm 2] because only one point of the hexagon is selected at each it-
eration, instead of possibly several ones in case of cospherical points in [23,
Algorithm 2]. This choice leads to a simpler characterization because two con-
secutive triangles must share exactly two vertices, instead of one or two, but
do not significantly change the running time or the results.

The H- and R-algorithm follow the same general procedure but use two
different candidate sets to probe next the digital surface. The candidate set
of the H-algorithm consists of six points that form a H exagon, whereas the
candidate set of the R-algorithm consists of six Rays. Each ray starts from
a vertex of the previous hexagon, which means that the candidate set of the
H-algorithm is included in the one of the R-algorithm.

To end, an optimized version of the R-algorithm has also been proposed
in [30]. It returns the same triangular facet – and normal vector – as the R-
algorithm, but requires fewer probes. It is called R1-algorithm because only a
few points along one ray over six are probed in the worst case.

Regarding the quality of the results, we have observed that the R-algorithm
is the most local algorithm. Indeed, it computes a sequence of tetrahedra gen-
erally closer to the starting point than the one computed by other algorithms.
This observation is somehow related to the concept of lattice reduction. Let us
recall that the plane-probing algorithms proposed in [23,24] iteratively deforms
an initial tetrahedron. One vertex, denoted by q, is however fixed and is al-
ways projected into the opposite triangular facet, denoted by T := (v0, v1, v2).
For any permutation σ over {0, 1, 2}, T defines a 2D lattice embedded in
3D: Λ := {vσ(0) + k(vσ(1) − vσ(0)) + k′(vσ(2) − vσ(1)) | k, k′ ∈ Z}. The basis
(vσ(1) − vσ(0), vσ(2) − vσ(1)) is reduced if and only if they are the two shortest
nonzero vectors of Λ.

We ran all algorithms on all vectors ranging from (1,1,1) to (200,200,200).
There are 6578833 vectors with relatively prime components in this range. We
have observed that the R-algorithm, unlike all others, always returns a reduced
basis. However, less than 0.01% of bases computed by the H-algorithm were
non-reduced. In addition, we have found that there always exists a sequence of
choices, in case of cospherical candidate points, such that all bases computed
in the range (1,1,1) to (200,200,200) were reduced.

In what follows, we assume w.l.o.g. that µ = 0 and we simply write P
for P0,N. We also assume w.l.o.g. that the components (a, b, c) ∈ N3 of the



An Optimized Framework for Plane-Probing Algorithms 7

algorithm principle initialization candidate set

[22] deforms and moves 4 vertices
of an upward-oriented tetra-
hedron inside P

any 4 points in P 6 points in a triangle
above + rays

[23, Alg. 1]

deforms 3 vertices of a
downward-oriented
tetrahedron inside P with a
fixed 4th vertex q outside P

any reentrant
corner: 3 inside P,
point q outside

6 points in a hexagon
around q[23, Alg. 2]

[24, H-alg.]

[24, R-alg.] 6 points in a hexagon
around q + 6 rays

[30, R1-alg.] 6 points in a hexagon
around q + 1 ray

PH-alg. deforms 8 vertices of a
parallelepiped with at least
1 inside and 1 outside P

any surfel: 4 inside
P, at least 1 point
q outside

6 points in a hexagon
around q

PR1-alg. 6 points in a hexagon
around q + 1 ray

Table 1: Principle and evolution of plane-probing algorithms. The last two
lines sum up our contribution. P is the digital plane.

algorithm complexity observed reduced
basis

local output

[22] O(ω logω) c3 logω 6% no N in all cases
[23, Alg. 1] O(ω) c2 logω 27%

yes
N only if the
height of q is ω

[23, Alg. 2] O(ω) c2 logω 99.99%
[24, H-alg.] O(ω) c2 logω 99.99%
[24, R-alg.] O(ω logω) c5 logω 100%
[30, R1-alg.] O(ω) c1 logω 99.99%

PH-alg.
O(ω logω)

c6 logω 99.99%
yes in practice N in all cases

PR1-alg. c4 logω 100%

Table 2: Main properties of plane-probing algorithms. If P is a digital plane
of normal N, let ω = ‖N‖1 be its thickness. The complexity is given in terms
of the number of calls to predicate InPlane. Constants (ci)i=1...6 are sorted so
that c1 < c2 < c3 < c4 < c5 < c6 (see also Table 5 for more details). The last
two lines sum up our contribution.

normal vector N are such that 0 ≤ a ≤ b ≤ c, and gcd (a, b, c, ) = 1. For
any point x ∈ Z3, the quantity x ·N is called the height of x. The height of
(1, 1, 1), i.e., (1, 1, 1) ·N = ‖N‖1 is denoted by ω and called thickness. It is a
key quantity because the complexity of all plane-probing algorithms depends
on it. Table 1 and Table 2 sum up the differences and similarities between
existing plane-probing algorithms, including our contribution.

Contribution. In the next section, we present a new variant of the H-algorithm,
called PH-algorithm, because we deform a Parallelepiped, instead of a tetra-
hedron. It gathers in a unique framework the advantages of both [22] and [24,
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H-alg.], i.e., arbitrary starting point, exact normal extraction, good localness
and almost always reduced basis. We could have presented similar variants
for the R and R1-algorithms, called PR and PR1-algorithms respectively, but
the presentation would have been more cumbersome. Note also that the PH-
algorithm is the easiest to implement, it almost always outputs reduced basis
and is still quite fast in practical use.

3 A Generalized Plane-Probing Algorithm

3.1 Motivation and Outline of the Algorithm

In the most recent plane-probing algorithms, i.e. [23, Alg.1 and Alg.2], [24,
H- and R-alg.] and [30], the starting point must be a reentrant corner. This
restriction avoids degenerate cases, but limits the practical usage of the algo-
rithm for digital surface analysis. In addition, these plane-probing algorithms
stop prematurely and output only an approximation of the normal vector for
starting points, which are not located deeply enough in the digital plane (see
Fig. 3 (a) and (b)). Even if we know how to detect and remove approximated
results a posteriori [24], we would like to keep these algorithms running until
they return the right normal vector.

Another but related problem is that all plane-probing algorithms are able
to return only one kind of triangular facet with the right normal: those located
above points of height ω − 2 for [22], those located below points of height ω
for all other algorithms (see Fig. 3 (c)).

(a) (b) (c)

Fig. 3: (a) Starting points of height 0 (red) and 1 (blue). (b) Last triangular
facets obtained by the H-algorithm on a digital plane of normal (2, 6, 15).
When started from the red (resp. blue) points, it outputs the red (resp. blue)
triangles of normal (2, 6, 15) (resp. (1, 3, 7)). In (c), the red triangles are those
located below points of height ω and can be returned by the H-algorithm,
whereas the blue ones are those located above points of height ω − 2 and can
be returned only by [22].
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In this section, we provide a general framework for plane-probing algo-
rithms so that they can start from any point and that return one kind of final
triangular facets or another, depending on the starting point.

The approach may be coarsely described as follows:

– we use a parallelepiped, which can be thought as a pair of a upward-oriented
and downward-oriented tetrahedra along one direction. Its vertex set is in
addition partitioned into two non-empty sets, one in P, one outside P.

– we iteratively deform the parallelepiped using the H, R or R1-algorithm on
the downward-oriented tetrahedron so that we can make a vertex closer to
the upper plane {x ∈ R3 | x ·N = ω − 1}, even if it was not in P or does
not stay in P after the update.

– to guarantee that the parallelepiped is separating, i.e. at least one of its
vertex is in P and one is not, there may be some steps where we apply
our update procedure on the upward-oriented tetrahedron. In this case,
the algorithm is said to be in a reverse state.

3.2 A Parallelepiped-Based Representation

In the rest of the paper and due to its repetitive use, the symbol 3 stands for
the set {0, 1, 2} or Z/3Z depending on the context. In addition, Σ is the set
of permutations over {0, 1, 2}.

In the H, R and R1-algorithms, at each step i ∈ {0, . . . , n}, the current

tetrahedron consists of a fixed point q, the apex, and three vectors (m
(i)
k )k∈3,

which defines the base triangle T(i) := (q(i)−m
(i)
k )k∈3. In our new framework,

q may be modified and that is why we add the iteration step (i) as an exponent
to q. We also denote by n the last iteration. For now n could be infinite, but
we will show that it is finite in Corollary 1.

At each step i ∈ {0, . . . , n}, the algorithm deforms a parallelepiped, implic-

itly described by q(i) and (m
(i)
k )k∈3:

p(i) := q(i) −
∑
k∈3

m
(i)
k , (2)

Π(i) := {q(i)} ∪ {q(i) −m
(i)
k }k∈3 ∪ {p(i) + m

(i)
k }k∈3 ∪ {p(i)}. (3)

This parallelepiped can be thought as a pair of a upward-oriented and
downward-oriented tetrahedra along one direction (see Fig. 4 (a)).

At each step i ∈ {0, . . . , n− 1} of the H, R and R1-algorithms, the triangles
T(i) and T(i+1) share two vertices; the new point T(i+1) \T(i) is drawn from

a candidate set included in the set of rays
{
R(i)
σ }σ∈Σ , where a ray is defined

as follows:

R(i)
σ :=

{
q(i) −m

(i)
σ(0) + m

(i)
σ(1) + λm

(i)
σ(2)}λ∈Z≥0 .

In our framework, we can use the update procedure of either the H, R or
R1-algorithm, which means that ∀i ∈ {0, . . . , n− 1}, there exist a permutation
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q(i)

p(i)

Π(i)

(a)

q(i)

p(i)

(b) (c)

p(i)

p(i)′

q(i)

(d)

Fig. 4: In (a), the current parallelepiped is represented as the union of two
tetrahedra. If the H-algorithm is used, only six points may be used to update
the tetrahedron containing q(i) and thus Π(i). They are depicted with crosses
in (b). As illustrated in (c), two consecutive parallelepipeds share exactly six
vertices in this case, whatever the chosen point. In (d), the relative positions
of q(i), p(i) and p(i)′ are indicated.

σ? ∈ Σ and a positive integer λ such that:
m

(i)′

σ?(0) := m
(i)
σ?(0) −m

(i)
σ?(1) − λm

(i)
σ?(2),

m
(i)′

σ?(1) := m
(i)
σ?(1),

m
(i)′

σ?(2) := m
(i)
σ?(2).

(4)

Note that λ is free in the R and R1-algorithms, whereas it is set to 0 in the H-
algorithm. For sake of clarity, we assume in what follows that the H-algorithm
is used and that λ = 0. In this case, it is easy to check from (3) and (4) that
Π(i) and Π(i)′ share exactly two consecutive quads, i.e. six vertices (see Fig. 4
(b) and Fig. 4 (c)).

Let us imagine that each vertex x ∈ Π(i) is colored as white if InPlane(x) =
InPlane(q(i)) and black otherwise. We now assume that Π(i) contains at least
4 black vertices. After the update Π(i)′ contains at least one black and one
white vertex. However, if Π(i)′ is separating, it may contain less than four
black vertices, and therefore may lead to a non-separating parallelepiped after
the next iteration. In order to guarantee that the parallelepiped is always
separating, we check whether at least four vertices of Π(i)′ are black or not
after the deformation. If there are strictly less than four black vertices, the
representation of the parallelepiped is turned upside-down (see also lines 7-9
of Algorithm 2, which is described in subsection 3.4):

∀i ∈ {0, . . . , n},



q(i+1) := q(i)′ , ∀k∈ 3, m
(i+1)
k := m

(i)′

k

if Card({x ∈ Π(i)′ | InPlane(x) 6= InPlane(q(i)′)}) ≥ 4,

q(i+1) := q(i)′ −∑k∈3 m
(i)′

k ,

m
(i+1)
0 := −m

(i)′

1 ,m
(i+1)
1 := −m

(i)′

0 ,m
(i+1)
2 := −m

(i)′

2

otherwise.
(5)
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Note that in the second case, we take the opposite of the basis vectors and
we swap two of them to keep a consistent orientation. This operation is the only
one that makes q(i+1) 6= q(i). In addition, after this step, there are at least five
black vertices in Π(i+1), because the colors then depend on InPlane(q(i+1)),
which is equal to InPlane(p(i)′), which is itself not equal to InPlane(q(i)). We
prove that InPlane(p(i)) 6= InPlane(q(i)) for all i ∈ {0, . . . , n} in Lemma 2 (see
section 4.2).

We say that when ¬ InPlane(q(i)) the algorithm and Π(i) are in common
state, else they are in reverse state.

3.3 A New Predicate

Plane-probing algorithms are based on the predicate InPlane := “is x in P?”.
For all steps i ∈ {0, . . . , n}, the triangle T(i) must be included in P, while q
must lie above P, i.e. q ·N ≥ ω.

The predicate InPlane is actually a way of comparing the height of a given
point x to the height of q, without knowing the normal direction N that is
sought for. Indeed, since q ·N ≥ ω by definition, we have x ·N < q ·N for all
x ∈ P. However, for x /∈ P, x ·N may be less than, equal to or greater than
q ·N. Therefore, requiring that ∀i ∈ {0, . . . , n}, T(i) ⊂ P, is a way of requiring

that ∀i ∈ {0, . . . , n}, ∀k∈ 3, m
(i)
k ·N > 0.

The goal of this subsection is to use a more general predicate that provides
a way of comparing the height of q to the height of points that belong or not
to P. More precisely, the predicate NotAbove is defined so as to return true
if and only if x ·N < q ·N, for all x ∈ Z3 such that x ·N ≥ q ·N − ω. This
condition is not restrictive because at each step, the candidate set consists of
points such that x ·N ≥ q ·N− ω. Using the predicate NotAbove, instead of

InPlane, is then a way of having ∀i ∈ {0, . . . , n}, ∀k∈ 3, m
(i)
k ·N > 0, without

requiring that ∀i ∈ {0, . . . , n}, T(i) ⊂ P. It may happen that no vertex of T(i)

at all belong to P. However, we would like to stay close to the digital plane,
while having points in P and not in P. That is why we use this predicate into
the framework presented above.

In what follows, we use the bar notation · above any point x ∈ Z3 to denote
its height relative to the current state: in common state, i.e. if ¬ InPlane(q(i)),
x := x ·N, while in reverse state, i.e. if InPlane(q(i)), x := (−x+ p(i) + q(i)) ·N.
For instance, x < q(i) must be read x ·N < q(i) ·N if ¬ InPlane(q(i)), but
x ·N > q(i) ·N otherwise. Similarly, for an iteration (i)-dependent vector,
w(i) < 0 must be read w(i) ·N < 0 if ¬ InPlane(q(i)), but w(i) ·N > 0 other-
wise.

For all i ∈ {0, . . . , n}, the predicate NotAbove is defined so as to return
true if and only if x < q(i), for all x ∈ Z3 such that x ≥ q(i) − ω. Such
a predicate is implemented in Algorithm 1. The idea is to consider a ray in
direction u := x − q(i) starting from a point s lying above P and to search
for a non-negative integer l such that InPlane(s + lu) in order to be able
to determine the sign of u ·N and compare x with respect to q(i). We also
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consider the ray of opposite direction −u to minimize the number of calls to
InPlane (see Fig. 5 for an illustration).

q(i) = s

x

u

Π(i)

common state

q(i)

s x

Π(i)

u

reverse state

Fig. 5: Illustration of the way predicate NotAbove is implemented in common
state on the left and reverse state on the right. We search for points in P
along two rays of direction ±u from s. Direction u is defined as the difference
between the point x to test and q(i). Point s is defined as the highest point of
the current parallelepiped and is always above P (see Lemma 2 in section 4.2
for the proof).

Algorithm 1 is proven to be correct in Proposition 1 provided some pre-
requisites involving the height of q(i) and x (P1) and a constant L big enough
(P2). Note that this constant is used to stop the search when direction u is
collinear with P. The proof of Proposition 1 is postponed until section 4.2.

Proposition 1 For all i ∈ {0, . . . , n}, NotAbove(x), as it is implemented in
Algorithm 1, returns true if and only if x < q(i) (P1) for all x ∈ Z3 such that
q(i) − ω ≤ x, (P2) provided that L ≥ ω.

Algorithm 1: Implementation of predicate NotAbove such that
NotAbove(x) iff x < q(i) for some x ∈ Z3 such that q(i) − ω ≤ x.

Data: InPlane, q(i), (m
(i)
k )k∈3 and an integer L ≥ ω

Input: A point x ∈ Z3 such that q(i) − ω ≤ x
Output: true iff x < q(i)

1 isReversed← InPlane(q(i)) ; // common or reverse state

2 u← x− q(i) ; // direction

3 s← q(i) ; // starting point

4 if isReversed then s← s−
∑
k∈3 m

(i)
k ; // ω ≤ s ·N < 2ω

5 l← 1;
6 while l < L do
7 if InPlane(s+ lu) then return ¬isReversed ;
8 if InPlane(s− lu) then return isReversed ;
9 l← 2l;

10 return False;
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3.4 PH-algorithm

The whole plane-probing procedure is given by Algorithm 2. The parallelepiped
is initialized from an oriented surfel included in P (lines 1 and 2). This surfel
is described by a point p and three unit vectors (uk)k∈3 such that the set
{p + µu0 + νu1 | (µ, ν) ∈ [0, 1]2} is the geometrical realization of the surfel
and u2 is its normal direction. Since we assume that the components of N are
non-negative integers, (uk)k∈3 = (ek)k∈3, the canonical basis of R3 and it is
easily checked that

∑
k uk = (1, 1, 1) and

∑
k uk ·N = ω.

The parallelepiped is then iteratively deformed by calls to function Find
and possibly turned upside-down (from line 7 to line 11). The algorithm stops
at step n, when triangle T(n) is aligned with the plane. It then returns the
estimated normal to P and a basis of the lattice of points of same height (line
14).

Algorithm 2: PH-algorithm: computes a normal vector and a basis
from the predicate InPlane a starting point and a frame.

Input: The predicate InPlane, a starting point p ∈ P and a frame (uk)k∈3 such
that ∀k∈ 3, ‖uk‖2 = 1, uk ·N > 0 and {p+ u0, p+ u1, p+ u0 + u1} ⊂ P.

Output: A normal vector and a basis of a 2D lattice.

1 (m
(0)
k )k∈3 ← (uk)k∈3 ; // initialization

2 q(0) ← p+
∑
k m

(0)
k ;

3 i← 0;

4 while {x ∈ {q(i) ± (m
(i)
k −m

(i)
k+1)}k∈3 | NotAbove(x)} 6= ∅ do

5 σ? ← Find(NotAbove, q(i), (m
(i)
k )k∈3) ; // update

6 m
(i)′

σ?(0)
←m

(i)
σ?(0)

−m
(i)
σ?(1)

,m
(i)′

σ?(1)
←m

(i)
σ?(1)

,m
(i)′

σ?(2)
←m

(i)
σ?(2)

;

7 if Card({x ∈ Π(i) | InPlane(x) 6= InPlane(q(i))}) < 4 then
// Change state: reverse inside/out.

8 m
(i+1)
0 ← −m

(i)′

1 ,m
(i+1)
1 ← −m

(i)′

0 ,m
(i+1)′

2 ← −m
(i)′

2 ;

9 q(i+1) ← q(i)
′ −

∑
k m

(i)′

k ;

10 else
// Keep the same state.

11 (m
(i+1)
k )k∈3 ← (m

(i)′

k )k∈3, q(i+1) ← q(i)
′

;

12 i← i+ 1;

13 B ← {m(i)
0 −m

(i)
1 ,m

(i)
1 −m

(i)
2 ,m

(i)
2 −m

(i)
0 };

14 return
∑
k m

(i)
k ×m

(i)
k+1, B \ arg maxb∈B ‖b‖2 ;

If the update procedure of the H-algorithm is used, function Find returns

a permutation σ? ∈ Σ such that the circumsphere of T(i) ∪ {q(i) −m
(i)
σ?(0) +

m
(i)
σ?(1)} does not include in its interior any other point of the candidate set

S(i) := {x ∈ {q(i) − m
(i)
σ(0) + m

(i)
σ(1)}σ∈Σ | NotAbove(x)}. (6)
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Implementation details for Find may be found in [24], where InPlane is used
instead of NotAbove. We however include an implementation in this paper for
completeness, see Algorithm 3.

Algorithm 3: Find: candidate selection used in the H-algorithm to
update the current parallelepiped.

Input: A predicate P, the point q and three vectors (mk)k∈3.
Output: A permutation σ? ∈ Σ such that the circumsphere of

T(i) ∪ {q(i) −m
(i)
σ?(0)

+ m
(i)
σ?(1)

} does not include in its interior any other

point of the candidate set S(i).
1 Candidates← ∅ ;
2 foreach σ ∈ Σ do
3 if P(q −mσ(0) + mσ(1)) then
4 Candidates← Candidates ∪ {σ} ;

5 Let σ? be an arbitrary permutation in Candidates ;
6 foreach σ ∈ Candidates do

7 if the circumsphere of T(i) ∪ {q −mσ?(0) + mσ?(1)} includes

q −mσ(0) + mσ(1) in its interior then
8 σ? ← σ ;

9 return σ? ;

Fig. 6 shows the behaviour of Algorithm 2 when run from two distinct
surfels of the digital plane of normal vector N(1, 2, 4). Fig. 7 shows the final
parallelepiped, computed from three distinct surfels of the digital plane of
normal vector N(3, 7, 15). The position of the final parallelepiped with respect
to the starting surfel is discussed in section 5.1.

3.5 Variants

The use of the R and R1-algorithm is possible by adapting the Find function,
see [24, Section 2.4] for the implementation details of the R-algorithm and [30,
Sections 3 and 4] for the R1-algorithm. But replacing the Find function is not
enough as directly updating the parallelepiped by a point located far away on
a ray may make it non-separating, because only four vertices instead of six are
kept unchanged. If neither the four unchanged vertices are in P, nor the four
new vertices, then no vertex of the parallelepiped at all may belong to P.

To overcome this difficulty, we simply decompose the update operation
into smaller steps similar to updates done in the H-algorithm. We now briefly
explain this procedure. Assume that we want to assign to mσ(0) the following
quantity: mσ(0) − mσ(1) − λmσ(2), with a permutation σ ∈ Σ and a non-
negative integer λ (see (4)). We remove mσ(1) from mσ(0) once and we remove
λ times mσ(2) from mσ(0). After each operation, if needed, we reverse the state
of the parallelepiped and update σ accordingly.
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(a) step 1 (b) step 2 (c) step 3 (d) step 4

(e) step 1 (f) step 2 (g) step 3 (h) step 4

Fig. 6: Algorithm 2 has been applied on a digital plane of normal vector
N(1, 2, 4) from two distinct surfels in (a) to (d) and (e) to (h). In each image,
the current parallelepiped is depicted in blue and purple for p(i) and q(i). Disks
(resp. circles) are used for points lying inside (resp. outside) the digital plane.
Note that in the second row, since there are only three vertices in the digital
plane at step (g), the parallelepiped is in reverse state at the end (h) (see (5)
in section 3.2).

(a) (b) (c)

Fig. 7: Algorithm 2 has been applied on a digital plane of normal vector
N(3, 7, 15) from three distinct surfels in (a), (b) and (c). Each image shows
the last parallelepiped. The starting surfel (resp. point) is drawn in gray (resp.
red) and p(0) ·N equals to 14 in (a), 0 in (b) and 1 in (c).

At the end, we have assigned to mσ(0) the quantity mσ(0)−mσ(1)−λmσ(2)

while preserving the separability of the parallelepiped. Note that this decom-
position adds some calls to the predicate InPlane as we need to check whether
points are in P or not to reverse the state. However, the parallelepiped is
guaranteed to contain at least one point in P and one point not in P.
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4 Algorithm Analysis

In this section, we analyze the algorithm described in section 3. We first prove
that it always terminates in section 4.1. Then, in section 4.2, we prove that
Algorithm 1 correctly implements the predicate NotAbove, which is a key
point of our method. Finally, we prove that the proposed algorithm returns
the correct normal vector and a basis of the 2D lattice of the points of same
height in section 4.3. The section ends with two extra results about the number
of state changes during the execution.

4.1 Termination

In this section, we simply write ∀k instead of ∀k∈ 3 when no confusion may
arise.

Thanks to the definition of the candidate set (6) that involves an appro-
priate predicate (see section 3.4), we get the following result:

Lemma 1 ∀i ∈ {0, . . . , n}, ∀k, m
(i)
k > 0.

Proof It is easily checked that ∀k, m
(0)
k = ek ·N > 0 (see section 3.4 and lines

1, 2 of Algorithm 2). We now prove that if for some i ∈ {0, ..., n−1}, ∀k, m
(i)
k >

0, then ∀k, m
(i+1)
k > 0.

Recall that σ? is the permutation returned in line 5 of Algorithm 2. We

have m
(i)′

σ?(1) > 0 and m
(i)′

σ?(2) > 0 due to the induction hypothesis. It remains

to show that m
(i)′

σ?(0) > 0. Since the point q(i)−m
(i)
σ?(0) +m

(i)
σ?(1) is by definition

in S(i) and therefore not above q(i), we have q(i) −m
(i)
σ?(0) + m

(i)
σ?(1) < q(i),

which is equivalent to m
(i)′

σ?(0) > 0 (line 6 of Algorithm 2).

Now the state may stay the same and we get ∀k, m
(i+1)
k = m

(i)′

k which

implies that ∀k, m
(i+1)
k = m

(i)′

k > 0. If the state change, there is a sign change

(see (5)), which also implies that ∀k, m
(i+1)
k = m

(i)′

k > 0, since the ·̄ notation
makes the sign change. ut

We can now derive the following theorem:

Theorem 1 The sequence (
∑
k m

(i)
k )i=0,...,n is a strictly decreasing sequence

of integers between ω and 3, where ω is the thickness of the digital plane P.

Proof It is easily checked that ∀k, m
(0)
k = ek and

∑
k m

(0)
k = ω (see sec-

tion 3.4). In addition, we already know by Lemma 1 that

∀i ∈ {0, . . . , n}, ∀k, m
(i)
k > 0 and

∑
k

m
(i)
k ≥ 3.
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Therefore, it remains to show that (
∑
k m

(i)
k )i=0,...,n is a strictly decreasing

sequence of integers, i.e.

∀i ∈ {0, . . . , n− 1},
∑
k

m
(i)
k >

∑
k

m
(i+1)
k .

Recall that σ? is the permutation returned in line 5 of Algorithm 2. After

line 6 of Algorithm 2, we have ∀i ∈ {0, . . . , n− 1}, m
(i)′

σ?(0) = m
(i)
σ?(0) −m

(i)
σ?(1).

Since ∀k, m
(i)
k > 0 by Lemma 1, we clearly have m

(i)′

σ?(0) = m
(i)
σ?(0) −m

(i)
σ?(1) <

m
(i)
σ?(0). We can conclude that

∑
k m

(i+1)
k =

∑
k m

(i)′

k <
∑
k m

(i)
k whether

there is a change of state or not. ut

A straightforward corollary is that the algorithm terminates:

Corollary 1 The number of steps n in Algorithm 2 is bounded from above by
ω − 3, where ω is the thickness of the digital plane P.

We end this subsection by the worst-case complexity in terms of predicate
calls:

Theorem 2 The number of calls to predicate InPlane in Algorithm 2 is upper
bounded by O(ω logω), where ω is the thickness of the digital plane P.

Proof First, according to Corollary 1, there are at most ω − 3 steps in Al-
gorithm 2. Second, at each step, there are 6 calls to NotAbove at line 4 to
check if the algorithm must stop or not, 6 other calls to NotAbove to choose
a candidate point (line 3 of Algorithm 3, where P is the predicate NotAbove)
and 8 calls to InPlane at line 7 to determine if we need to reverse or not the
state of the current parallelepiped.

To sum up, there are at most 8(ω− 3) calls to InPlane and 12(ω− 3) calls
to NotAbove. However, each call to NotAbove requires some calls to InPlane.
In Algorithm 1, there is one call to InPlane at the very beginning and at most
two calls to InPlane in the while loop. The worst case is when the algorithm
returns after the while loop. In this case, due to the exponential march, the
number of iterations is less than log2(L) and therefore, the number of calls
to InPlane is less than 1 + 2 log2(L). According to Proposition 1, L must be
chosen such that L ≥ ω. With L = ω, each call to NotAbove requires O(logω)
calls to InPlane.

In conclusion, the total number of calls to InPlane is upper bounded by
O(ω logω). ut

Note, as it was shown in [30, Theorem 1], that the number of calls to
InPlane in the R1-algorithm is asymptotically equal to the number of steps,
i.e., is in O(ω). It can be similarly shown that the number of calls to NotAbove
in PR1-algorithm is also in O(ω) and that the overall complexity is O(ω logω).
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4.2 Correctness of Algorithm 1, Which Implements Predicate NotAbove

We first show that the current parallelepiped always lies across the upper plane
{x ∈ R3 | x ·N = ω − 1} because its lowest vertex belongs to P, while its
highest vertex lies above P. One of the key point to prove Proposition 1 is
that the highest vertex is never too far above P, because its height is always
between ω and 2ω − 1.

Lemma 2 Let us recall that ω is the thickness of the digital plane P. For
all i ∈ {0, . . . , n}, p(i) ·N (resp. q(i) ·N) lies in the range [0, . . . , ω− 1], while
q(i) ·N (resp. p(i) ·N) lies in the range [ω, . . . , 2ω − 1] in common (resp. re-
verse) state.

Proof The result is trivial for i = 0, because p(0) must belong to P and q(0) =
p(0) +

∑
k uk (line 2 of Algorithm 2), which implies that 0 ≤ p(0) ·N < ω and

q(0) ·N = p(0) ·N + ω.
We assume that, for some i ∈ {0, . . . , n− 1}, in common state, 0 ≤ p(i) ·N <

ω ≤ q(i) ·N < 2ω. The case where we are in reverse state is symmetric and
left to the reader. We now want to show that Lemma 2 is true at step i+ 1.

There is a permutation σ? ∈ Σ such that m
(i)′

σ?(0) = m
(i)
σ?(0) −m

(i)
σ?(1) (line

6 of Algorithm 2). On one hand,

p(i)′ = q(i)′ −
∑
k

m
(i)′

k

= q(i) − (m
(i)
σ?(0) −m

(i)
σ?(1))−m

(i)
σ?(1) −m

(i)
σ?(2)

= p(i) + m
(i)
σ?(1).

Note that, due to the induction hypothesis, p(i) ·N ≥ 0, which means that,

by Lemma 1, (p(i) + m
(i)
σ?(1)) ·N ≥ 0.

On the other hand, by Lemma 1, ∀k, m
(i)
k > 0 and m

(i)′

σ?(0) = m
(i)
σ?(0) −

m
(i)
σ?(1) > 0. Consequently,

0 < m
(i)
σ?(1) < m

(i)
σ?(0),

m
(i)
σ?(1) < (m

(i)
σ?(0) + m

(i)
σ?(1)),

m
(i)
σ?(1) < (m

(i)
σ?(1) + m

(i)
σ?(2)),

m
(i)
σ?(1) < (m

(i)
σ?(0) + m

(i)
σ?(2)),

m
(i)
σ?(1) < (m

(i)
σ?(0) + m

(i)
σ?(1) + m

(i)
σ?(2)).

Due to the above result, if (p(i) + m
(i)
σ?(1)) ·N ≥ ω, at least six vertices

of Π(i), i.e., {(p(i) + m
(i)
σ?(0)), (p

(i) + m
(i)
σ?(1)), (p

(i) + m
(i)
σ?(0) + m

(i)
σ?(1)), (p

(i) +

m
(i)
σ?(1) + m

(i)
σ?(2)), (p

(i) + m
(i)
σ?(0) + m

(i)
σ?(2)), (p

(i) + m
(i)
σ?(0) + m

(i)
σ?(1) + m

())
σ?(2)},
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do not belong to P, which raises a contradiction because in this case, the state
should have been reversed. We conclude that

0 ≤ (p(i) + m
(i)
σ?(1)) ·N = p(i)′ ·N < ω.

In addition, due the induction hypothesis, we have:

ω ≤ q(i) ·N = q(i)′ ·N < 2ω.

If the state stays the same, p(i+1) ·N lies in the range [0, . . . , ω− 1], while
q(i+1) ·N lies in the range [ω, . . . , 2ω − 1]. Conversely, if the state change,
p(i+1) = q(i)′ and q(i+1) = p(i)′ (lines 7 to 9 of algorithm 2) and therefore
q(i+1) ·N lies in the range [0, . . . , ω − 1], while p(i+1) ·N lies in the range
[ω, . . . , 2ω − 1]. ut

Before proving Proposition 1, we show its first prerequisite. There is noth-
ing to prove for the second one, which simply states the values for the input
parameter L in Algorithm 1 for which Proposition 1 is true.

Lemma 3 For all i ∈ {0, . . . , n}, Algorithm 2 guarantees that the prerequisite
(P1) of Proposition 1 is true, i.e., q(i) − ω ≤ x for all points x passed as
argument to the predicate NotAbove.

Proof At each step i ∈ {0, . . . , n}, any point x passed as argument to NotAbove
belong to the candidate set S(i) (6), i.e., there is a permutation σ ∈ Σ such that

x = q(i)−m
(i)
σ(0) + m

(i)
σ(1) (see line 4 of Algorithm 2 and line 3 of Algorithm 3).

By Lemma 1 and Corollary 1, we have

m
(i)
σ(0) <

∑
k

m
(i)
k ≤ ω < ω + m

(i)
σ(1),

which gives

−ω < −m
(i)
σ(0) + m

(i)
σ(1).

We conclude that, in both states,

q(i) − ω < q(i) −m
(i)
σ(0) + m

(i)
σ(1) = x.

ut

We can now prove that Algorithm 1 is correct:

Proof (of Proposition 1) The proof is decomposed into three parts:

1. At line 7, Algorithm 1 returns true if and only if x < q(i),
2. At line 8, Algorithm 1 also returns true if and only if x < q(i),
3. If Algorithm 1 returns false at the end (line 10), then x ≥ q(i).



20 Jacques-Olivier Lachaud et al.

The three above results obviously prove Proposition 1.
One point, s, and one vector, u, are involved in Algorithm 1. We have u =

x− q(i) in both state, s = q(i) in common state, but s = q(i) −∑k m
(i)
k = p(i)

in reverse state. Thus, in both states, s ·N ≥ ω by Lemma 2 and we focus
now on the sign of u ·N.

1. Assume that Algorithm 1 returns ¬isReversed, i.e. true (resp. false) in
common state (resp. reverse state) (line 7 of Algorithm 1). There exists l > 0
such that InPlane(s + lu) with ¬ InPlane(s + l′u) for all l′ = 0, . . . , l − 1. As
a consequence,

(s+ lu) ·N < ω ≤ s ·N⇔ u ·N < 0⇔ x ·N < q(i) ·N,

which means that x < q(i) (resp. x > q(i)) in common state (resp. reverse
state).

2. Assume now that Algorithm 1 returns isReversed, i.e. false (resp. true)
in common state (resp. reverse state) (line 8 of Algorithm 1). Then there exists
l > 0 such that InPlane(s− lu) and ¬ InPlane(s− l′u) for all l′ = 0, . . . , l− 1.
This case is exactly symmetric to the case 1. and we can similarly show that
x > q(i) (resp. x < q(i)) in common state (resp. reverse state).

3. If Algorithm 1 returns false at the end (line 10 of Algorithm 1), then
¬ InPlane(s+ lu) and ¬ InPlane(s− lu), for all l = 1, . . . , L.

We first show by contradiction that the ray of direction ±u cannot go
through the digital plane without intersecting it due to prerequisite (P1) and
Lemma 2. Let l′ be the smallest non-negative integer such that (s+ l′u) ·N <
0. The case where (s− l′u) ·N < 0 is exactly symmetric and left to the reader.

If l′ = 1, we have s ·N + u ·N < 0, but −ω ≤ u ·N (P1) and ω ≤ s ·N
(Lemma 2) lead to s ·N+u ·N ≥ 0, which raises a contradiction. If l′ ≥ 1, then
(s+ l′u) ·N < 0 and ω ≤ (s+ (l′/2)u) ·N. Summing up these two inequali-
ties, we get (l′/2)u ·N < −ω. However, summing up (s+ (l′/2)u) ·N ≥ ω and
2ω > s ·N (Lemma 2), we get (l′/2)u ·N > −ω, which raises a contradiction
too.

As a consequence, since s ·N ≥ ω by Lemma 2, (s+ lu) ·N ≥ ω for all
l = 1, . . . , L and especially

(s+ Lu) ·N ≥ ω ⇔ ω − s ·N
L

≤ u ·N.

Since s ·N < 2ω ⇔ −ω < ω − s ·N by Lemma 2 and L ≥ ω (P2), we get

−1 ≤ −ω
L

<
ω − s ·N

L
≤ u ·N,

which implies that u ·N ≥ 0⇔ x ·N ≥ q ·N⇒ x ≥ q. ut

4.3 Correctness of Algorithm 2

Let M(i) be the 3× 3 matrix that consists of the three row vectors (m
(i)
k )k∈3.

We prove below that M(i) is unimodular, which is an important property to
show that the algorithm returns N at termination.
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Lemma 4 ∀i ∈ {0, . . . , n}, det (M(i)) = 1.

Proof It is easily checked that det (M(0)) = 1. We now prove that if det (M(i)) =
1 for i ∈ {0, . . . , n− 1}, then det (M(i+1)) = 1.

There is a permutation σ? ∈ Σ such that m
(i)′

σ?(0) = m
(i)
σ?(0) −m

(i)
σ?(1) (line

6 of Algorithm 2). The other vectors are not modified so the remaining two
rows of M(i) are not modified in M(i)′ . We get

det(M(i)′)

= det(m
(i)
σ?(0) −m

(i)
σ?(1),m

(i)
σ?(1),m

(i)
σ?(2))

= det(m
(i)
σ?(0),m

(i)
σ?(1),m

(i)
σ?(2)) (by linearity)

= det(M(i)) = 1. (by induction hypothesis)

But now, if the algorithm does not change state, we have ∀k, m
(i+1)
k =

m
(i)′

k , so det(M(i+1)) = det(M(i)′) = det(M(i)) = 1. And if the algorithm
reverses its state, we flip the sign of the three matrix lines, but we also swap
two of them (lines 7 to 9 of Algorithm 2) so that det(M(i+1)) = det(M(i)′) =
det(M(i)) = 1. ut

Since we now focus on the last step n, we omit the exponent (n) in the
proofs to improve their readability.

Theorem 3 The height of all basis vectors is equal to one at the end, i.e.

∀k, m
(n)
k = 1.

Proof The first step of the proof is to show that m0 = m1 = m2. If not,
then there exists k∈ 3 such that mk − mk+1 6= 0. In this case, either (i)
mk−mk+1 < 0 or (ii) −mk + mk+1 < 0. Let x1 := q+ mk−mk+1 and x2 :=
q−mk+mk+1. In common state (resp. reverse state), (i) (resp. (ii)) implies that
x̄1 < q. Conversely, in reverse state (resp. common state), (i) (resp. (ii)) implies
that x̄2 < q. It follows that either NotAbove (x1) or NotAbove (x2) is true and
{x ∈ {q ± (mk − mk+1)}k∈3 | NotAbove(x)} 6= ∅. This is a contradiction
because this set must be empty at the last step (line 4 of Algorithm 2). As a
consequence, ∀k, mk = mk+1 and ∀k, mk = γ, which is a strictly positive
integer by Lemma 1.

The second step of the proof is to show that γ = 1. Let us denote by 1 the
vector (1, 1, 1)T . Developing the ·̄ notation, we can write the last system as
MN = ±γ1, where we have a “+” in common state and a “−” in reverse state.
Since M is invertible (because det (M) = 1 by Lemma 4), N = ±M−1γ1 and
as a consequence γ = 1 (because the components of N are relatively prime
and det (M−1) = 1). We conclude that, with the ·̄ notation, ∀k, mk = 1. ut

The following two corollaries are derived from Lemma 4 and Theorem 3.

Corollary 2 The last normal estimate is equal to N in common state and

−N in reverse state, i.e. N̂(n) :=
∑
k∈3(m

(n)
k ×m

(n)
k+1) = ±N.
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Proof On one hand, MN̂ = 1 because ∀k, mk ·(
∑
l ml×ml+1) = mk ·(mk+1×

mk+2) = det (M), which is equal to 1 by Lemma 4.
On the other hand, MN = ±1 by Theorem 3. Since M is invertible, we

have N̂ = ±N. The sign is clear from the last state. ut

Corollary 3 ∀k, (m
(n)
k −m

(n)
k+1,m

(n)
k+1 −m

(n)
k+2) is a basis of the 2D lattice

{x ∈ Z3 | x = 0}.

Proof The unit parallelepiped in the 3D lattice

{(αm0, βm1, γm2)|(α, β, γ) ∈ Z3}

does not contain any integer point because it is equivalent to Z3 (det (M) = 1
by Lemma 4). It follows that the facet conv((mk −mk+1)k∈3) does not contain
any integer point. Since ∀k, mk −mk+1 = 0 by Theorem 3, we get the result.

ut

4.4 State Change

In this subsection, the behaviour of the algorithm is discussed with respect to
the height of the starting point, i.e., p(0) ·N (and thus q(0) ·N = p(0) ·N+ω).
See Fig. 7, which shows the final parallelepiped, computed from three distinct
surfels of the same digital plane.

The two following theorems give sufficient conditions for the parallelepiped
to pass through a reverse state during the execution of the algorithm. On
one hand, Theorem 4 explains that if we start from a reentrant corner of
height 0 or 1, then the algorithm terminates without passing through a reverse
state, see Fig. 7 (b) and (c). This means that the highest vertex of the last
parallelepiped is very close to the starting point since we have in this case:
q(n) = q(0) = p(0) + (1, 1, 1).

On the other hand, Theorem 5 states that when starting from a point of
height greater than 2, the algorithm passes through at least one reverse state,
see for instance Fig. 7 (a). In this case, we do not know how to relate the
position of the last parallelepiped to the starting point, but we experimentally
show in section 5.1 that even in such cases, the last parallelepiped is never too
far from the starting point.

Theorem 4 If q(0) ·N = h, for h ∈ {ω, ω + 1}, then ∀i ∈ {0, . . . , n}, q(i) =
q(0).

Proof First, note that Card({x ∈ Π(0) | InPlane(x)}) ≥ 4.
For j ∈ {0, . . . , n − 1}, we assume that ∀i ∈ {0, . . . , j}, Card({x ∈ Π(i) |

InPlane(x)}) ≥ 4 and q(i) = q(0) and we show below that ∀i ∈ {0, . . . , j + 1},
Card({x ∈ Π(i) | InPlane(x)}) ≥ 4 and q(i) = q(0). Indeed, at step j, after

the update (lines 5 and 6 of Algorithm 2), we have ∀k, m
(j)′

k ≥ 1 (Lemma 1).

Since the height of q(j)′ = q(j) = q(0) is equal to ω or ω + 1 by hypothesis,
we get that Card({x ∈ Π(j+1) | InPlane(x)}) ≥ 4 due to the definition of



An Optimized Framework for Plane-Probing Algorithms 23

the parallelepiped. Hence, lines 7 and 9 in Algorithm 2 are not executed and
q(j+1) = q(j)′ = q(j), which concludes. ut

Theorem 5 If q(0) ·N ≥ ω + 2, there is a step i ∈ {0, . . . , n} such that Π(i)

is in a reverse state.

Proof Let us assume that there is no step i ∈ {0, . . . , n} such that Π(i) is in a
reverse state. Then, ∀i ∈ {0, . . . , n}, q(i) = q(0). However, since q(n) ·N ≥ ω+2

by hypothesis, ∀k, m
(n)
k = 1 (Theorem 3) and the definition of the paral-

lelepiped together imply that Card({x ∈ Π(n) | InPlane(x)}) ≤ 1, which
raises a contradiction, since Algorithm 2 guarantees by construction that
∀i ∈ {0, . . . , n}, Card({x ∈ Π(i) | InPlane(x)}) ≥ 4. ut

5 Experimental Analysis

We now illustrate on multiple numerical examples the properties of our method
and compare it against the previous plane-probing algorithms. We also show
that our method is useful for the piecewise linear reconstruction of digital
surfaces.

5.1 Localness

We start by testing the localness of our approach. We wish to measure how the
final parallelepiped is close to the starting surfel. Indeed, even if ∀i ∈ {0, . . . , n},
q(i) is projected onto T(i) along direction (1, 1, 1), we have ∀i ∈ {0, . . . , n},
q(i) = q(0) if and only if q(0) ·N ∈ {ω, ω + 1} (Theorem 4), i.e., for all surfels
of P incident to a point p = q(0) − (1, 1, 1) whose height is equal to 0 or 1.
In the other cases, it is not clear whether the parallelepiped stays close to the
starting surfel. In order to experimentally test this condition, we launched the
algorithm starting from every surfel of a digital plane of normal (3, 7, 15). The
results are displayed in Fig. 8 (see caption for a description of the figure).

We can make the following observations:

– for surfels incident to a point p of height 0 or 1 (white surfels in the right
image), localness is guaranteed, due to the projection invariant involving
all q(i) = p+(1, 1, 1), for i ∈ {0, . . . , n} (Theorem 4). Note that the PH, PR,
PR1-algorithms behave exactly like the H, R, R1-algorithms respectively
for a point p of height 0;

– for the other surfels (corresponding to the green arrows starting from gray
surfels in the right image), the algorithm seems to stay local as arrows
do not jump from more than two black triangles. To be more precise, we
computed the L2 distance between the center of the starting surfel and
the opposite endpoint: 1.87 in average and 3.67 at the maximum, while
the length of the two vectors forming a reduced basis is (3.74, 4.69). These
statistics show that the algorithm stays local even in this case;



24 Jacques-Olivier Lachaud et al.

– the algorithm is also able to find the triangles containing the projection
of the points of height ω − 2 along direction (1, 1, 1) (corresponding to
blue points). This was not possible with the previous H,R,R1-algorithms.
The algorithm developed in [22] is able to find them, but not the triangles
containing the projection of the points of height ω;

– for every starting point, the final basis is always reduced for PR and PR1

as it was the case experimentally for R and R1;
– we can also see, on the right image, that the algorithm always passes

through a reverse state except when starting from corners incident to a
point of height 0 or 1. Note that there exist corners where we pass through
a reverse state, see for instance the gray corners.

5.2 Number of steps and number of calls to predicate InPlane

We now look at the number of steps as well as the number of calls to the pred-
icates InPlane and NotAbove. We start by comparing the H,R,R1 and the new
PH and PR1-algorithms when starting from the reentrant corner incident to
the origin for all normals with relatively prime components comprised between
1 and 200. There are 6.5 million configurations. Results are reported in Ta-
ble 3. Let us note that we do not pass through a reverse state for the PH (resp.
PR1)-algorithm as it behaves like the H (resp. R1)-algorithm. As expected, we
observe that the number of steps is the same and that the number of calls to
InPlane in the H (resp. R1)-algorithm is the same as the number of calls to
NotAbove in the PH (resp. PR1)-algorithm. However, in the latter case, the
total number of calls to InPlane is between two and three times higher, since
we do not assume that the starting surfel is incident to a point known to be
of height 0.

We also launched the PH and PR1-algorithm on all the normals N with
relatively prime components comprised between 1 and 200 and, for each one,
we generated a starting surfel for each possible height (between 0 and ||N ||1−
1), this amounts to testing more than 985 million surfels. Results are reported
in Table 4. First of all, the final basis is almost always (resp. always) reduced
for PH (resp. PR1) as it was the case for H (resp. R). Furthermore, we see
that in average more steps are needed than in the previous experiments. This
is due to the fact that we start not only from reentrant corners but also from
many other surfels, making the computations harder. The same explanation
holds for the number of calls to the predicate InPlane. Worst cases are the
same as for the H and R1-algorithms that is for plane normals of the form
(1, r, r). We also computed the number of times where we need to reverse
the parallelepiped: 0 for reentrant corners, 3.78 in average and 197 at the
maximum, for (1, 199, 199).

Finally, we studied the complexity of different plane-probing algorithms,
see Table 5. We launched each algorithm on a set of normals with increasing
1-norm (from 10 to 108). We first confirmed that the observed complexity is
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Fig. 8: Results of the PR1-algorithm when launched on 7618 surfels lying
in a digital plane of normal (3, 7, 15). The lattice of points of height ω −
1 is displayed in black, while the points of height ω − 2, ω and ω + 1 are
respectively displayed in blue, red and green. For each starting surfel, we draw
a line between its center and the highest vertex of the final parallelepiped, i.e.,
arg maxx∈{q(n),p(n)} x ·N. The color of the arrow is the same as the one of its
endpoint. On the right, we color in gray each surfel for which the algorithm
passes through a reverse state during its execution.

indeed logarithmic for every method. We then did a linear regression in log-
space to compute the complexity constant. We observe that the PH and PR1-
algorithms are twice more costly than the H and R1 which is quite tractable
considering that they can handle much more configurations.
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Algorithm Avg. steps Max. steps Avg. InPlane Avg. NotAbove

H 25.38 397 152.25 Not Applicable
R 19.25 397 271.13 Not Applicable
R1 19.25 397 131.23 Not Applicable
PH 25.38 397 359.6 152.25
PR1 19.25 397 321.7 131.23

Table 3: Number of steps, average and maximum number of calls to the predi-
cate InPlane and NotAbove for processing normals with relatively prime com-
ponents between (1, 1, 1) and (200, 200, 200) when starting from a reentrant
corner of height 0.

PH Steps InPlane NotAbove Inversions

Average 26.01 892.92 156.05 4.31
Maximum 397 20367 2382 197

PR1 Steps InPlane NotAbove Inversions

Average 19.41 771.07 130.8 4.38
Maximum 397 20367 2580 197

Table 4: Average and maximum of number of steps, calls to the predicates
InPlane, NotAbove and number of inversions (when we pass from a common
to a reverse state) for processing normals with relatively prime components
between (1, 1, 1) and (200, 200, 200) for all surfels with valid heights.

Algorithm [22] H R R1 PH PR1

Constant 40 38 66 26 80 65

Table 5: Observed complexity constants for different plane-probing algorithms.
For all the algorithms, the observed complexity is O(logω). The normal vectors
are chosen in the following way: for each i ∈ [1, 8], we pick 10000 random
vectors with a L1-norm of 10i with a certain fixed deviation. This amounts
to testing 80000 normal vectors with a L1-norm ranging from 10 to 108. In
order to be able to compare all algorithms, we start from a corner of height 0.
Constants are obtained by doing a linear regression in log-space.

5.3 Digital Surfaces

In a digital image partitionned into two voxel sets, one representing the interior
and one the exterior, a digital surface is defined as a set of surfels, incident
to an interior voxel and an exterior one and whose normal vector points to
the second one. In this final section, we briefly describe how one can run our
algorithm on digital surfaces. We start by replacing the predicate InPlane by
a predicate P such that P (x) returns true if and only if x is a 0-dimensional
vertex of the digital surface. Note that the predicate NotAbove is built on top
of P .
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There are several difficulties in adapting the algorithm to digital surfaces:

– Contrary to the ideal case of an infinite digital plane, any digital sur-
face that is not a piece of digital plane is a frontier between two voxel
sets that are not necessarily convex. As in [24, Section 5.3], at each step
i ∈ {0, . . . , n}, we detect planarity defects when two points x, y aligned
with q(i) are such that q(i) ∈ [xy] and NotAbove(x) = NotAbove(y). In
this case, the algorithm stops.

– The vertex set of the current parallelepiped cannot be always partitioned
into two separable sets, one in the digital surface, one outside. The algo-
rithm also stops as soon as this case is detected.

– The digital surface may be locally flat in one or two dimensions, i.e., one
or two components of the local normal direction can be null. In the first
case, we use a slightly modified version of the algorithm, similar to a 2D
version, while in the second case, the starting surfel trivially provides the
local normal direction and the final parallelepiped.

– The orthant of the normal is not known a priori. In this case, one can
either launch the algorithm for each of the four possible orthants, or try
to estimate it. We chose the second alternative in this preliminary work,
following an idea similar to the one used in the implementation of the
predicate NotAbove. From a surfel whose normal u points to the exterior,
we first search for an exterior point s such that s − u is one vertex of
the surfel. Then, from s, we consider rays of direction parallel to the two
orthogonal sides of the surfel. If there are points that belong to the digital
surface along these rays, we can estimate the normal orthant. Otherwise,
the digital surface is assumed to be locally flat and we use a modified
version of the algorithm as described above.

With the previous choices, we ran the algorithm on every surfel on the
boundary of multiple digital surfaces, see Fig. 9. On the right, we display in
red what we call the separating polygons that are either triangles or quads sep-
arating points inside the surface from points outside in the final parallelepiped
(see Fig. 10 for a zoom on such polygons computed on a digitization of an
ellipse). We first note that contrary to [24], we obtain an estimated normal for
every surfel instead of only the ones touching a reentrant corner. We also see
that the separating polygons form a rough linear approximation of the digital
surface. One can notice that some of those polygons are flat, see for instance
the right image of Fig. 10. This is due to the fact that we use a naive procedure
to estimate the orthant of the normal before applying our method. We have
also computed the running times and the number of calls to the predicates P
and NotAbove of this algorithm on several digital surfaces, see Table 6. We can
see that the number of calls to NotAbove (ant thus to P ) can be quite large.
This is due to the fact that the algorithm was slightly adapted when applied to
digital surfaces as mentioned above. To conclude this section, we think that a
good estimation of the orthant of the normal is not an easy task but is crucial
for the geometric analysis. There is quite a lot of room for improvement in
this direction.
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Fig. 9: Results of the PR1-algorithm on different digital surfaces. From top
to bottom: Sphere, Torus, Hollow. Left: digital surface in gray. Middle: esti-
mated normals in blue. Right: separating polygons in red.

Shape Number of surfels Time (ms) Calls P Calls NotAbove

Sphere 1902 42 481941 21578
Hollow 8392 863 9695460 158345
Torus 16232 453 4420893 259757
Fandisk-128 40424 1342 16361621 540195
Fandisk-256 165514 6694 77214440 2725493
Fandisk-512 666498 32823 358194686 12785576
Octaflower-512 671270 47600 359336259 28075048
CubeSphere-128 65280 1460 12589909 549477

Table 6: Running times of the PR1-algorithm and number of calls to the pred-
icates P and NotAbove when launched on all the boundary surfels of different
digital surfaces.
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Fig. 10: Example of separating polygons (in red on the right) when using the
PR1-algorithm on the surfels of a digitization of an ellipse. One can clearly
sees the triangles and quadrilaterals separating points inside and outside the
shape on the right. Some polygons are flat due to the way the orthant of the
normal is estimated before running our method.

6 Conclusion and Perspectives

We have presented a new framework for plane-probing algorithms. In partic-
ular, it is generic enough to extract the exact normal of the shape of interest
if it is a digital plane, no matter the position we start from. It also outputs
a tangent basis that is always reduced in practice if used together with the R
or R1-algorithm. Its complexity is comparable to the previous algorithms and
experiments show that it can be useful for digital surface analysis.

There are still a lot of future works that we intend to explore. First, we
wish to prove that the output basis is indeed reduced. This problem is difficult
since the basis may not be reduced during the parallelepiped evolution but
experimentally, we get that it is always reduced every two steps and at the
end. Second, we wish to further study the localness of our algorithms: we
would like to be able to bound the distance between the starting point and
each vertex of the last parallelepiped and even bound the distance between the
starting point and each probed point. Our new formulation of plane-probing
as the deformation of a parallelepiped might help here, since distance can now
be measured in terms of state inversion. Third, much remains to be done for
digital surface analysis. Our objective is to be able to decompose the surface
into convex, concave and saddle parts. This could be carried out by analyzing
nearby parallelepipeds. Last, we intend to improve the practical computational
complexity on digital surface with clever initializations, thanks to a global
analysis via Delaunay tessellation. This could solve the local orthant discovery
for each surfel, and save a lot of computational effort.
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7. Chica, A., Williams, J., Andújar, C., Brunet, P., Navazo, I., Rossignac, J., Vinacua,
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