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Abstract

The tracking of pollutants in gas and liquid is a major problem to address in atmo-
spheric environment, air quality characterization and industrial material processes. A
Lagrangian scheme devoted to the approximation of the advection term in an advection-
diffusion equation is proposed to deal with small diffusivity values or large Péclet numbers.
The Lagrangian scheme is used in practice as an Eulerian method discretized on Lagrangian
marker points. Advection and diffusion of a circular concentration spot in a vortex flow
are considered for validation purpose. The resulting mixed Eulerian-Lagrangian scheme
reduces the numerical diffusion to almost computer error and provides better results than
other Eulerian classical schemes of the literature. The scheme is finally illustrated in a
natural convection situation.

Keywords: Advection-diffusion; Finite volume; Incompressible flow; Natural convec-
tion; Mixed Eulerian-Lagrangian scheme; Scalar transport

1 Introduction

The modeling and simulation of pollutant or chemical species transport in gaseous or liquid
surrounding media are of primary importance for various applications such as indoor air qual-
ity [27], occupational health [14, 16], urban air pollution [31], transport of tracers through
permeable sediments [23] or Carbone Fiber Composite (CFC) material design [10]. When a
low diffusivity is considered or for high velocity flow regimes, the resulting Péclet number is
high, testifying that advection is predominant in the concentration transport equation against
diffusion. Among high Péclet number flows, we can quote forced convection in differentially
heated channels [8], the transport of pollutants in aquifers [38], liquid-liquid extraction in
chemical engineering processes [13] or mixing of pure and polluted liquids for material design
applications [2, 7]. As soon as an Eulerian model is chosen for the concentration evolution
over time, i.e., an advection-diffusion equation (ADE), which is the case in most applications,
the discretization of the scalar ADE requires developing specific schemes as soon as the Péclet
number is high. Indeed, in these configurations, the hyperbolic nature of the equation domi-
nates the scalar problem.

The design of schemes for the hyperbolic advection term of the transport equation for pol-
lutant concentration has been widely studied, with mostly Eulerian schemes relying on spline
reconstruction, high-order spectral, finite difference and finite volume schemes, combined with
limiters belonging to the class of TVD or WENO approaches. Reviews and comparisons of these
schemes are, for example, given in [18, 31, 42]. Outside the framework of atmospheric applica-
tions, a lot of works have been also conducted in the community of applied Mathematics, which
are reported and synthesized, for example, in [19]. Combination of TVD and WENO schemes
together with Runge Kutta schemes, proposed for dealing with hyperbolic equations, is also
available (see for example [44]) for reducing the CPU cost compared to pure WENO schemes
while maintaining a good accuracy. Other sophisticated schemes can be applied to the advec-
tion term of a transport equation, with slightly better results than standard WENO schemes.
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Among them, we can cite the semi-Lagrangian multi-moment finite volume method with fourth-
order WENO projection [40], the Lagrangian modeling of advection-diffusion transport in open
channel flow by [9] that is very accurate at high Péclet number but only presented in 1D ap-
plications and also the Adaptive Mesh Refinement (AMR) TVD scheme [7]. The conclusion of
all studies is that when the molecular or turbulent diffusion is low compared to advection, all
schemes are diffusive or dispersive, providing unexpected spreading or nonphysical oscillations
of the numerical solutions. In the present work, a hybrid Lagrangian scheme [42], previously
applied to advection, is improved for the ADE that avoids numerical diffusion and respects to
some extent, but not in the mathematical sense, the monotonicity of the solution. The initial
idea for the design of our scheme was inspired by several pioneer works:

• The Particle-in-Cell-method (PIC) initially developed by the team of F.H. Harlow at Los
Alamos [17] is based on the spatial domain mapped by an Eulerian mesh, as it is classically
achieved with finite volumes, finite differences or finite elements. Each Eulerian cell brings
physical variables such as pressure or fluid velocity. Lagrangian marker particles are
seeded in the Eulerian cells. They represent fluid elements that move through the Eulerian
mesh and interact with other fluid elements in a procedure that couples the two materials
together. Reseeding or remeshing procedures are used to maintain a certain number
of particles in cells and thus a good precision [4], and also transfer techniques between
Eulerian and Lagrangian representations, built based on interpolation, shape or kernel
functions. Intermediate or fictitious time variables are finally introduced to be able to
solve Lagrangian part of the transfers (mainly number density, current density, advection
or convection) and also Eulerian ones (diffusion for example). These approaches have
been extensively used for plasma physics and electromagnetism but also for compressible
flows and solid mechanics.

• The Smooth Particle Hydrodynamics (SPH) approach [20, 30] is a computational method
to simulate fluid flows. It has been used in many areas of research, including astrophysics,
ballistics, volcanology and oceanology to cite but a few. It belongs to the family of full
Lagrangian methods. It consists in advecting a set of particles as a kind of Lagrangian
mesh. Thanks to these Lagrangian control points, a mapping is built with quadrature for-
mulae, weighted approximations and kernel functions. These reconstructed variables are
then derived or used to solve the conservation equations. In SPH, particles are bestowed
with volume, mass, momentum, temperature, concentration or any other hydrodynamic
property. Various examples and applications are illustrated, for example, in [36] concern-
ing air/water flows interacting with an airplane, sloshing in a compartment tank of a fluid
cargo, aquaplaning of a car tire or filling patterns predicted for high pressure die casting.

• Other more specific and interesting Lagrangian techniques are the Particle Strength Ex-
change (PSE) and the Lagrangian Filtered Density Function (FDF) approaches.
The PSE has been used to solve two-dimensional pollutant transport in porous media [45].
The main idea is to introduce regularization functions to approximate integral analytical
solutions of the diffusion or dispersion operators.
On the other hand, combined with Large Eddy Simulation (LES) models of turbulence,
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the FDF method has been also applied to pollutant transport [43]. The FDF/LES is used
to account for the near-wall molecular transport. It is evaluated on a heated channel flow
and compared with DNS data.

A review of various existing Lagrangian schemes available in the literature was written by
Koumoutsakos [24].

The main purpose of the present work is to present a Lagrangian scheme for advection and its
coupling to an Eulerian solving of diffusion. Several important steps are required for designing
the Lagrangian scheme, such as marker seeding and reseeding over time, Lagrangian transport
of the markers, velocity interpolation from the Eulerian Navier-Stokes grid to the marker po-
sitions, projection of the Lagrangian concentration field to the Eulerian grid and treatment of
boundary conditions. The novelty of the resulting Mixed Eulerian-Lagrangian (MEL) method
introduced in this paper, in particular compared to PIC methods, is that the particles seeded
in cells are used to approximate the advective part of advection-diffusion equation in some
kind of Lagrangian Method Of Characteristic (MOC) scheme [35], whereas in classical PIC
approaches, the particles are used to solve different physics (plasma, electromagnetism, . . .)
than the Eulerian mesh. In the proposed approach, the physical information provided by the
Lagrangian markers feeds the Eulerian located variables and reciprocally. In addition to these
discretization aspects, validation problems have been chosen, some with analytical solutions,
in order to demonstrate the capacity of the new mixed Lagrangian-Eulerian scheme for ADE
solving to provide better results as soon as the Péclet number is high or the mesh resolution is
low, or both. A conceptually similar approach to our scheme, combining Lagrangian treatment
of the advection and Eulerian discretization of diffusion, is reported in the work of [39]. It
is based on a semi-Lagrangian Crank-Nicolson scheme. Applied to analytical scalar advection
test cases, it provides monotonic solutions but induces numerical diffusion, that is not present
in our scheme when diffusion is negligible.

The structure of this manuscript is as follows. In Sect. 2, the model and numerical methods
considered for handling the simulation of concentration transport are briefly presented, laying
emphasis on a new Lagrangian scheme proposed for tackling the advection part of the ADE.
In particular, the coupling between the Lagrangian treatment of advection and Eulerian solv-
ing of diffusion is discussed as well as reseeding operations for Lagrangian scheme markers.
Thereafter, Sect. 3 is devoted to validating the new Lagrangian-Eulerian scheme for ADE on
various problems such as 2D advection-diffusion of a concentration peak, concentration spot in
2D and 3D sheared velocity fields and 2D natural convection at moderate Rayleigh number.
Conclusions and perspectives are finally drawn in Sect. 4.

2 Model and numerical methods

2.1 Generalities

The present approach is developed within the framework of incompressible fluid flows simulated
with the Finite-Volume method on Cartesian staggered grid [17]. It can be extended straight-
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forwardly to collocated grids without loss of generality. Concerning scalar evolution over time,
the following Eulerian ADE is considered

∂Φ

∂t
+ ~∇ · (~uΦ) = ~∇ · (Γ~∇Φ) (1)

where Φ is the advected field (temperature, concentration, . . .), Γ its diffusivity and ~u the fluid
velocity, either prescribed or given by the last iteration of the Navier-Stokes resolution. Classical
Eulerian centered, upwind, QUICK, TVD or WENO schemes are generally used to discretize
the advection term. It is worth mentioning that solving Eq. (1) with centered scheme introduces
oscillations and unbounded solutions for low diffusivity coefficient Γ or high values of the Péclet
cell number given by Pec = ‖~u‖∆x/Γ. On the contrary, low order upwind like schemes are
Total Variation Diminishing (TVD). However, they generate an important numerical diffusion
that alters the physical meaning of the solution, as centered scheme does.

In the method proposed here, contrary to classical schemes that consider the whole Eq. (1)
with explicit, implicit or mixed discretizations, we have chosen to split the equation into two
unsteady equations: on the one part the advection and the diffusion on the other part. Indeed,
the new approach for approximating ADE does not directly solve Eq. (1), it uses a sequential
operator splitting method [3, 12]. Introducing a time step ∆t, the solution of Eq. (1) is marched
in time according to two sub-steps. First, the advection equation

∂Φ

∂t
+ ~∇ · (~uΦ) = 0 (2)

is solved on the time interval ]t, t + ∆t] and provides the intermediate solution Φ?. Then, the
unsteady diffusion equation

∂Φ

∂t
− ~∇ ·

(
Γ~∇Φ

)
= 0 (3)

is treated on the same time interval ]t, t+ ∆t] with the initial condition Φ(t) = Φ?(t+ ∆t) and
provides the approximated solution of Φ(t+∆t). The sequential operator splitting method used
here is second-order accurate at each time step and first-order accurate when it is applied to
update the solution from t = 0 to the final time tend [3]. Note that more sophisticated operator
splitting methods and their properties can be found in [3, 12].

The time discretization introduces the following notations: For the sake of simplicity (not
restrictive), a constant time step, compatible with the CFL condition, is here considered. Φn =

Φ(tn) is the discrete value of Φ at time tn = t0+n∆t, n is the iteration number, and ∆t = tn+1−
tn is the time step. In practice, the post-advection intermediate solution Φ? is updated solving
Eq. (2) with an explicit scheme (see below), while Eq. (3) is discretized with an implicit centered
spatial scheme. The resulting linear system is resolved by using direct solvers (MUMPS [1]) or
iterative Bi-CGSTAB II solvers [46] preconditioned under Jacobi or MILU techniques [15]. In
addition to the mixed Eulerian Lagrangian scheme developed in this paper, the Lax-Wendroff
TVD scheme with a Superbee limiter [41] and conservative or non-conservative WENO schemes
of order 5 [5, 21, 37] will be used to solve Eq. (2), both coupled with a third order Runge-
Kutta TVD time integration. For comparison purposes, classical implicit centered and upwind
schemes, that directly resolve Eq. (1), are also presented.
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2.2 Scales analysis

Advection diffusion problems involve two characteristic length scales. The advection scale
corresponds to a distance L = V0t, where V0 is the fluid velocity, while the diffusion scale δ is
linked to the boundary layer growth rate. As δ varies as K

√
Γt, where the constant K depends

on the studied problem, the dimensionless parameter characterizing the problem is the ratio

η =
L

K
√

Γt
(4)

For K of the order of unity, a diffusivity of 10−6 m2/s and t = 1 s, the diffusive length scale is
about δ ≈ 10−3 m. In problems where the advective length scale is about 1 meter, the ratio η
between advection and diffusion is at least three orders of magnitude. Note that, the K value
is chosen here as the unity to simplify the scale analysis, but the correct value according to the
considered problem will be specified in the next sections.

2.3 Mixed Eulerian-Lagrangian scheme for advection-diffusion

A Mixed Eulerian (for diffusion) - Lagrangian (for advection) (MEL) scheme is proposed as an
extension of the Volume of fluid Sub-Mesh (VSM) scheme from [42]. The main interest of this
approach is to avoid numerical diffusion in the advection step when advection is predominant.
For the sake of simplicity, the scheme is here presented on a regular grid. Few adjustments
have to be considered to deal with irregular Cartesian grids and unstructured meshes.

2.3.1 General treatment

A number of M markers (Lagrangian particles) of positions ~Xm, m = 1, . . . ,M , and volumes
δVm, are seeded in the Eulerian grid (Fig. 1) devoted to solving the conservation equations.
The volumes δVm used here have no physical meaning, but they allow, as it will be shown later,
to use weighted averages for the reconstruction of the Eulerian values Φ. Initially, the markers
are equally placed in each cell according to a number of particles per direction and per cell, or
particle density number, P ; a simulation then handles M = P d × Nx × Ny × Nz Lagrangian
objects, where d is the space dimension and Nx, Ny and Nz are the numbers of Eulerian mesh
cells in each space direction. Note that in 2D applications Nz = 1. Furthermore, the markers
carry a local information, noted φm, associated with the Eulerian field Φ. At the initial time,

φ0
m = Φ0( ~X0

m) (5)

With the knowledge of the velocity ~u| ~Xm
at the position of the particle, the markers are then

advected solving the Lagrangian equation:

d ~Xm

dt
= ~u| ~Xm

(6)

For a second-order Runge-Kutta Euler scheme, the time integration starts with a prediction of
the solution using a first order Euler scheme:

~X?
m = ~Xn

m + ∆t ~un| ~Xn
m

(7)
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Figure 1: Sketch of the Lagrangian particles (blue diamond) on the 2D staggered regular grid
used to discretize the incompressible Navier-Stokes equations. Velocities at particle position
are interpolated with surrounding grid velocities (see marker 3 for example, red right triangles
and green triangles stand for horizontal and vertical components, respectively). Filled blue
region denotes the volume δV carried by a particle (shown for particles 1 and 2). The dashed
blue surface stands for the part of the volume assigned to the neighboring cell. The Eulerian
information is computed with averages of markers included in the corresponding cell (see cell
Ωi+1,j surrounding Φi+1,j for example).

where ~un| ~Xn
m

is the fluid velocity interpolated from the surrounding velocity points at the
particle position (see Fig 1). The second step reads formally:

~Xn+1
m =

1

2

(
~Xn
m + ~X?

m

)
+

1

2
∆t ~un+1

∣∣
~Xn+1
m

(8)

In the framework of the Navier-Stokes resolution, the velocity ~un+1 is generally unknown at this
step. Except for the first time step where ~un+1 = ~un is forced, a classical linear extrapolation
in time is used: ~un+1 is approximated by 2~un − ~un−1. Furthermore, in the right-hand side of
Eq. 8, the position ~Xn+1

m to which the velocity has to be interpolated is also unknown. It is
approximated by the intermediate position value ~X?

m. Finally, Eq. (8) can be written as

~Xn+1
m =

1

2

(
~Xn
m + ~X?

m

)
+

1

2
∆t (2~un − ~un−1)

∣∣
~X?
m

(9)

The interpolations at particle positions (initial and intermediate) are then carried out either
with the Parabolic Edge Reconstruction Method (PERM) [29] (needs a five point stencil per
direction) or with a classical linear Q1 method near domain boundaries.

The two-step second-order Runge-Kutta (RK) scheme (Eqs. (7) and (8)) used here is for-
mally third-order accurate at each time step and second order accurate over multiple time steps.
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With a given velocity field, it has been checked numerically that the second-order accuracy is
obtained for the particle positions and velocities. Using high-order RK methods improves
the accuracy of these quantities but does not improve significantly the global solution (addi-
tional numerical tests have been achieved with RK2 mid-point, RK3, RK4 and Velocity-Verlet
schemes). An explanation is that the Eulerian field is built from averages of the marker local
values φm which are not directly dependent on the particle positions and velocities. Indeed,
φm is unaffected over the Lagrangian time integration regardless of the choice of the time in-
tegrator; the use of high-order and/or more sophisticated schemes is then not justified/useful.
The RK2 Euler scheme is in our case the best compromise between accuracy and number of
operations involved.

The post-advection value of the Eulerian field Φ is evaluated with weighted averages on
each cell Ωi,j,k. Formally, it reads:

Φ?
i,j,k =

Np∑
m=1

φnmδV
′
m

Np∑
m=1

δV ′m

with δV ′m = δVm ∩ Ωi,j,k (10)

where Np and δV ′m are the particle number and the overlapping associated volume belonging
to the cell, respectively. As illustrated in Fig. 1 with particle 2, due to its associated volume
δVm, a marker can contribute to the computation of Φ? on neighboring cells. Practically, as it
is difficult to handle overlapping volume in 3D grids for spherical particles and spherical shapes
do not bring a complete conformal mapping of the physical space, the volumes are assumed to
be boxes, defined by δV = ∆x∆y∆zd−2/P d. The initial volume of particles contained in a cell
is then equal to the cell volume. If markers were only considered as point particles, i.e., their
volumes δV → 0, Eq. (10) would simply resume as an arithmetic mean. Note that this simple
treatment allows the MEL scheme to be easily applied to irregular meshes. The main additional
difficulty is to use an efficient searching procedure in order to get the cell index associated with
the particle position on the irregular mesh.

The value of Φn+1 is then obtained solving the unsteady diffusion Eq. (3) formulated as
follows in semi-discrete form, i.e., Φn+1−Φ?

∆t
− ~∇ ·

(
Γ~∇Φn+1

)
= 0. After this Eulerian diffusion

step, the advection-diffusion equation (1) has been approximated on the Eulerian mesh at time
tn+1. This means that Φn+1 is known. On a Lagrangian point of view, only the advection of
the markers has been solved. That is to say that the Lagrangian value brought by the markers
is only advanced in time with respect to advection, i.e., only φ?m = φnm is known at the new
marker positions ~Xn+1

m . So, to finally obtain φn+1
m at the Lagrangian level of representation,

the diffusion has to be added to the value brought by the markers. This is achieved by adding
to φnm, the value advected by the marker at position ~Xn+1

m , the difference between the Eulerian
values Φn+1 and Φ?, respectively, after and before the diffusion step:

φn+1
m = φnm + Φn+1( ~Xn+1

m )− Φ?( ~Xn+1
m ) (11)

With this updating of the Lagrangian value, it is assumed that the diffusion is homogeneous in
a given Eulerian cell at the Lagrangian scale.
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Note that except in special cases, the number of particles per cell, Mc, varies over time. On
the one hand, this number can increase over a value that corresponds to a total marker volume
larger than the physical volume of a given cell. This number of particles per cell has to be
discussed. It can be interesting to remove particles in order to save computational time. On
the other hand, the information of the Eulerian cell cannot be built if there is no particle. Due
to these considerations, Mc is reduced to a constant value at each iteration. For that purpose,
the following reseeding treatments are applied at the beginning of the time step:

(R1) In each cell where Mc > P d, the distances between particles and their neighbors are
computed for every pair. The marker having the lower norm, defined by

distm =
Mc∑
i 6=m

‖ ~Xm − ~Xi‖2 (12)

is removed (particle 7 in Fig. 1), and this procedure is applied until Mc = P d.

(R2) In cells where Mc < P d, new particles are randomly introduced until Mc = P d.

The main interest of the reseeding procedures is to ensure that the advection is always described
by several markers and also that a controlled number of markers are present in a given cell.
As numerically shown in the following section, these reseeding operations can lead to spurious
effects. Referring to the sketch shown in Fig. 2, a simplified description of the behavior of
the reseeding treatments is presented here. At the beginning of the time step, the Eulerian
value Φn came from an averaging on the markers in the cell and the diffusion process during
the previous time step.

• When the insertion of a marker occurs (treatment (R1)), here marker 4, its value is chosen
as φ4 = Φn

i . The difference to the "solution" (blue line) is denoted ∆φ. In the case of
a flow oriented to the right (u > 0), the marker will be advected in the cell Ωi+1 and
will generate, in this example, an over-estimated averaged value Φ?

i+1 after the advection
process.

• In the case of a removal (treatment (R2)), for example marker 7 in the cell Ωi+1, the
consequence is the same; the post averaged advected value Φ? can present over- or un-
derestimated values.

Note that these spurious effects are important when i) markers are introduced far away from
those already present in the cell, ii) only few markers map the cell and iii) high gradients are
present. In any cases, a solution to reduce spurious effects linked to the reseeding methods is
to choose a sufficiently large number of markers per cell. This point is discussed in Sect. 3.
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Figure 2: 1D sketch of the spurious effects linked to the reseeding methods. Markers unaffected
by the insertion and removal processes are denoted with a blue filled diamond, while empty
symbols (4 and 7) stand for treated markers. The insertion (R1) treatment is illustrated with
marker 4 in cell Ωi, while removal (R2) treatment involves marker 7. The thick blue line denotes
a reference solution. The Eulerian value carried by the markers in cell Ωi is Φn

i = 1/2(φ1 +φ2).
This Eulerian value is affected by new created marker value like φ4, in order to respect the
mean value of the cell, i.e., Φn

i = 1
2
(φ1 + φ2) = 1

3
(φ1 + φ2 + φ4).
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2.3.2 Algorithm

In order to clarify the method and the operator splitting, the schematic Algorithm 1 resumes the
above presentation of the Mixed Eulerian-Lagrangian scheme for advection-diffusion equation.

Algorithm 1 Pseudo code for the Mixed Eulerian-Lagrangian scheme for ADE
1: ~un+1 ← ~u0

2: Φn+1 ← Φ0

3: φ0
m = Φ0( ~X0

m) . Eq. (5)
4: procedure Time Evolution
5: for n = 1 to tend/∆t do . n ∈ N+

6: tn+1 ← tn + ∆t

7: ~Xn ← ~Xn+1

8: ~un ← ~un+1

9: Φn ← Φn+1

10: φn ← φn+1

11: procedure Lagrangian Scalar Advection
12: inputs: ~Xn

m, ~un, φnm
13: outputs: ~Xn+1

m , Φ?

14: Apply Reseeding Procedures . (R1) and (R2)
15: for m = 1 to M do . m ∈ N+

16: ~Xn+1
m ← Update Marker Positions( ~Xn

m, ~un) . Eqs. (7) and (9)
17: Φ? ← Compute Averages( ~Xn+1

m , φnm) . Eq. (10)
18: end for
19: end procedure
20: Φn+1 ← Eulerian Scalar Diffusion(Φ?) . Eq. (3)
21: procedure Update Markers
22: inputs: ~Xn+1

m , Φn+1, Φ?, φnm
23: outputs: φn+1

m

24: for m = 1 to M do . m ∈ N+

25: φn+1
m ← Update φ( ~Xn+1

m , Φn+1, Φ?, φnm) . Eq. (11)
26: end for
27: end procedure
28: ~un+1 ← Update Velocity Field(~un, Φn+1) . Navier-Stokes resolution
29: end for
30: end procedure

In the case where an Eulerian explicit scheme is used, the scalar advection procedure (line 11
in Algorithm 1) is substituted by the explicit resolution of Eq. (2) and the update marker proce-
dure (line 21) is not performed. In order to optimize the computation time, linked list and cell
list storage techniques, widely used in molecular dynamics simulations (see for example Chap. 3.
of [33]), are adapted to manage the Lagrangian markers in the Eulerian cell neighborhood.
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2.3.3 Boundary conditions

As suggested above, boundary conditions are needed during the unsteady diffusion equation (3)
resolution. The operator splitting and the Lagrangian method proposed to deal with the
advection part (Eq. (2)) introduce a need to tackle the Eulerian boundary conditions with
respect to the Lagrangian markers. Both the values they carry or their velocities and positions
can be affected. To clarify the adopted treatment, Fig. 3 is proposed for the sake of clarity and

Figure 3: Zoom near a physical boundary. The update (Eq. (11)) of particle local information
φ in boundary cells (blue empty diamonds) is modified. Markers outside the domain boundaries
are turned off during the time integration process.

a boundary cell (i = 1, j) is considered. Note that the staggered grids used in our approach
have the specificity that the scalar nodes are on the physical boundaries (see Fig. 3).

Management of markers

As markers are fluid flow tracers, they follow trajectories. If the incompressibility constraint
were fully satisfied at a discrete level, the markers would not cross wall boundaries. Due to
interpolation errors of marker velocities that do not satisfy divergence-free properties in a
conservative sense but just on a local sense for PERM [29], the marker trajectories can violate
conservation principles and cross physically impermeable boundaries. Moreover, in the case
where the time step is too large, due to time integration of marker trajectories (Runge-Kutta
scheme), a marker can cross an impenetrable physical boundary (marker 4 in Fig. 3). These
later markers are simply deactivated during the position update (Eqs. (7) and/or (9)).

Scalar conditions

For solid walls, the most used boundary conditions are homogeneous Dirichlet or Neumann
conditions. As mentioned above, the Eulerian boundary conditions are implicitly imposed
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during the diffusion process with a volume penalty method [22] adapted for scalar equations. It
consists in the addition of a penalty term B (f(Φ)− γ) in the conservation equation, such that
the unsteady diffusion equation can be formally rewritten, with a first-order time discretization,
as

Φn+1 − Φn

∆t
− ~∇ ·

(
Γ~∇Φn+1

)
−B

(
f(Φn+1)− γ

)
= 0 (13)

where B is the penalty coefficient and γ the value of variable Φ or its derivative to be imposed
on the given boundary. If B → 0, the classic diffusion equation is obtained while if B → ∞,
f(Φn+1) takes the imposed value γ. The definition of function f then specifies the kind of
boundary condition that is applied by penalty. It is more convenient to specify the f function
once the space discretization is made. In the general case, with the boundary condition applied
on the ijk node, the penalty term is finally approximated by

B
(
f(Φn+1)− γ

)
' Bi,j,k

[
αi,j,kΦ

n+1
i,j,k

+β
(x)
i,j,k

Φn+1
i+1,j,k − Φn+1

i−1,j,k

2∆x

+β
(y)
i,j,k

Φn+1
i,j+1,k − Φn+1

i,j−1,k

2∆y

+β
(z)
i,j,k

Φn+1
i,j,k+1 − Φn+1

i,j,k−1

2∆z

− γi,j,k
]

(14)

where αi,j,k and β
(•)
i,j,k are coefficients allowing to locally achieve Dirichlet (αi,j,k = 1 and β(•)

i,j,k =

0), Neumann (αi,j,k = 0 and β(•)
i,j,k = 1) or mixed (αi,j,k 6= 0 and β(•)

i,j,k 6= 0) boundary conditions
(• = x, y or z denotes the direction to which the boundary condition is applied). The coefficients
β carry the information of the direction to which gradient ~∇φ is oriented (i.e., a Neumann
condition like ~∇φ · ~n = γ). Note that the interest of this formulation is that it allows for
imposing immersed boundary conditions in cells not belonging to physical boundary conditions.
Practically, the penalty coefficient is set to Bi,j,k = 1040 at boundary scalar nodes and left to
Bi,j,k = 0 elsewhere in the fluid domain.

Without any specific treatment, the boundary conditions of the continuum problem are not
satisfied by the MEL approach. The update of φ values (Eq. (11)) is then modified for activated
markers in scalar boundary cells (empty blue diamonds indexed from 1 to 3 in Fig. 3). The
main idea is that the averaged value computed from marker information on a scalar bound-
ary cell is expected to satisfy the prescribed conditions. In the method developed here, the
boundary conditions are implicitly imposed on the Eulerian field during the diffusion process
(Eqs. (3) or (13), line 20 of Algorithm 1). The Φn+1 value after this step then satisfies boundary
conditions, regardless of their type. A simple way to convey this information to the markers is
then to replace Eq. (11) by

φn+1
m = Φn+1

i,j,k (15)

at boundary scalar cells.
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Note that in the case of a fluid flow output, for example with zero gradient condition on the
velocity normal component, the particles that go outside the computational domain undergo
the following treatment: i) the average computation (Eq. (10)) allows building a post-advection
value on the boundary scalar nodes; ii) the marker is deactivated or reused at an inlet condition
(the carried value φ is changed according to the case).

3 Results

The proposed Mixed Eulerian-Lagrangian approach for Advection Diffusion Equation is devel-
oped from the VSM scheme [42] that was initially devoted to advection equation only. One-
dimensional cases and convergence analysis of the transport of various functions can be found
in [42]. Adding the diffusive contribution, the MEL method is first tested in a one-dimensional
configuration.

In a periodic domain defined by x ∈ [−L/2, L/2], L = 1 m, a peak of concentration of half-
length `0/L = 1 is placed at x = 0. With a constant velocity field, u = 1 m/s, the peak center
returns to its initial position after 1 second. The concentration peak is smoothed according to
the diffusion coefficient value. The analytical solution is given in Appendix A.1 by Eq. (28).

Figure 4 presents, for different space steps, the solutions for two values of the diffusivity Γ.
Only few nodes, around 10, are necessary over the peak length to recover the solution. It has

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Φ

x / l0

∆x/l0 = 1.25
∆x/l0 = 0.625

∆x/l0 = 0.3125
∆x/l0 = 0.15625

∆x/l0 = 0.078125
initial solution

analytical solution

(a) Γ = 10−4 m2/s

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Φ

x / l0

∆x/l0 = 1.25
∆x/l0 = 0.625

∆x/l0 = 0.3125
∆x/l0 = 0.15625

∆x/l0 = 0.078125
initial solution

analytical solution

(b) Γ = 10−6 m2/s

Figure 4: Analytical solution at t = 1 and numerical profiles obtained with the MEL scheme
for different space steps and two values of Γ. The dashed line shows the initial condition.

been checked that the solution converges to the analytical one with a second order accuracy.
However, this test case is not enough discriminatory. Indeed, as the velocity is constant, both
the interpolation at marker positions and the time integration with a RK scheme are exact,
regardless of the value of the CFL condition. In fact, a time step based on the maximum CFL
value, i.e., u∆t/L, allows to recover the solution. Moreover, as each marker moves with the
same velocity, all cells contain, for each time step, the same number of particles which makes
the reseeding procedures not necessary. Finally, the particle density number P , does not have
a significant influence on the solution or the order of accuracy. In this specific configuration,
the MEL approach is more accurate and efficient than any other Eulerian scheme (except the
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explicit upwind scheme with CFL = 1). As this 1D configuration avoids the complexity of
scalar transport in real cases, the Mixed Eulerian-Lagrangian scheme will be tested in 2D
and 3D situations with given velocity fields before an application to a natural convection case
involving a coupling with the Navier-Stokes equations.

3.1 Advection-diffusion of a concentration peak

The case is a two-dimensional extension of the configuration above introduced. Simple to
implement, it makes spatial interpolations and time integrations no longer trivial. Reseeding
procedure is also required.

3.1.1 Problem setup

A peak of concentration is placed in a square domain defined by (x, y) ∈ [0, L]2, L = 1 m, with
the velocity field expressed as

~u(x, y) = u~ex + v~ey =
π

2

(
−(y − yc)
x− xc

)
(16)

A solid body rotation motion is generated around the fixed point (xc, yc) = (L/2, L/2). A
marker placed in this field needs t = 4 seconds to make a complete turn and return to its
initial position. In this analytical velocity field, a peak of concentration (dimensionless volume
fraction) of radius r0 = L/10 is initialized such as

Φ(r, t = 0) =


r0 − r
r0

if r ≤ r0

0 otherwise
(17)

where r =
√

(x− xp)2 + (y − yp)2 is the radial coordinate centered around (xp, yp) the position
of the peak center. At initial time, (xp, yp) = (L/2, 3L/4). The reference solution over time in
the moving frame of the concentration peak is given by

Φref (r, t) =
∞∑
n=1

AnJ0(λnr) exp(−λ2
nΓt) (18)

where J0 is the zeroth order Bessel function of the first kind and λnr0 the nth root of J0(x) = 0.
The expression of coefficient An is given in Appendix A.2 by Eq. (45). Practically, the first 200
terms are used to compute the reference solution given by Eq. (18). The numerical solutions
obtained with different schemes are compared to this reference solution after a simulation time
of t = 4 seconds (corresponding to 1 turn), and the diffusion coefficient Γ varies from 10−4 to
10−6 m2/s.

Snapshots of the reference solution Φref are presented in Fig. 5 for different times. The
z-axis and iso-values Φ = 0.01, 0.1, 0.5 and 0.9 are used to represent the intensity of the
concentration peak. After one turn, the peak is diffused around its initial position according
to the diffusion coefficient Γ = 10−4 m2/s.

The diffusion scale δ is defined through the analytical solution by Φ(δ, t) = Φ∞ + 1%∆Φ

where Φ∞ = 0 and ∆Φ = 1 are, respectively, the concentration far from the peak and the
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Figure 5: Reference solution for times t = 0, 1, 2, 3 and 4 s and for Γ = 10−4. Iso-values
are 0.9, 0.5, 0.1 and 0.01. Square and dot-dashed line presented in Fig. 5(e) show the zones in
which the solution presented in the next section.

maximum concentration difference. The computed constant of Eq. (4) is then K ≈ 2.2 and
leads to η values of about 100 to 1000, respectively, for Γ = 10−4 and 10−6 m2/s. The choice
of the diffusivity Γ has been motivated by allowing for a noticeable diffusion after one turn of
the peak while keeping its initial shape almost unchanged, so as to try to keep the sharp profile
of it. This is equivalent to have a high Péclet number. In the present configuration, based on
the initial peak diameter and velocity, Pe = 785 and 78500, respectively, with Γ = 10−4 and
10−6 m2/s. The domain is first discretized with Nx = Ny = N regular control volumes in each
space direction and the time step ∆t is chosen according to CFL condition defined by π

4
∆t/∆x

(π/4 is the maximum velocity).

3.1.2 Convergence study and computational cost

A first set of results is shown in Fig. 6 for Γ = 10−4 and 10−6 m2/s and different schemes.
Four concentration iso-values (Φ = 0.9, 0.5, 0.1 and 0.01) obtained from numerical simulation
are plotted and compared to the reference one. As mentioned above, due to the high value of
the Péclet number, the centered scheme is unstable and the low order upwind scheme is very
diffusive (almost 85% of the signal is lost after one turn). The MUSCL and QUICK schemes
have also been tested. They give very similar results and present an excessive numerical diffusion
in the fluid flow direction (not presented). Finally, the Lax-Wendroff TVD, WENO5 and MEL
schemes give the best results (WENO5n and WENO5c stand, respectively, for non-conservative
and conservative WENO5 schemes). For Γ = 10−4 m2/s, the Lax-Wendroff scheme is anti-
diffusive and then tends to stiffen the signal, while WENO5 schemes give accurate solutions.
The MEL method, used here with the particle density number P = 2, also gives a good solution
but introduces oscillations in the solution. For a smaller diffusion coefficient, Γ = 10−6 m2/s,
the WENO5 schemes introduce more diffusion. Oscillations still slightly disrupt the numerical
solution of the MEL approach. However, this later does not introduce numerical diffusion and
presents, on this mesh, a better solution than Lax-Wendroff and WENO5 schemes. Note that
the MEL, with P = 2 particles per direction and per cell, is able to represent 95% of the peak
value.

The second set of results (Fig. 7) presents, on the same mesh, the solutions obtained with
the MEL scheme and different values of the particle density number P . The first observation
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Figure 6: Zoom on the numerical (black dashed lines) and reference solutions (filled) after one
turn for different schemes on a N2 = 1282 mesh and for Γ = 10−4 (top row) and Γ = 10−6 m2/s
(bottom row). The CFL is set to 0.5. Iso-lines are, starting from the peak center, equal to 0.9,
0.5, 0.1 and 0.01 (iso-line 0.9 is not present for Γ = 10−4 m2/s).
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Figure 7: Zoom on the numerical (black dashed lines) and reference solutions (filled) after one
turn for different values of P on a N2 = 1282 mesh and for Γ = 10−4 (top row) and Γ = 10−6

m2/s (bottom row). The CFL is set to 0.5. Same iso-lines as in Fig. 6 are shown.

is that the oscillations can be reduced by increasing P . At the same time, the quality of
the solution increases; 99.2% of the peak value is correctly represented for P = 8. It has
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been verified that the oscillations come from the reseeding procedures. Indeed, all the markers
follow circle trajectories and come back to their initial position after time t = 4 s. Removing
reseeding procedures in this particular rotation motion case suppresses the oscillations even with
a small particle density number value. However, in practical cases, enrichment is mandatory
to balance particle lack in sheared zones. Furthermore, it has been checked that, for a defined
case, different simulation runs associated with different random draws (used in the particles
reseeding procedures) lead to various solutions around the expected statistical solution.

As the projection of the Eulerian field on Lagrangian markers is made with an interpolation
and its opposite with an average, nothing guarantees the conservation of the global scheme.
In practice, we use the volume brought by the markers to transfer the Lagrangian information
to the Eulerian grid, i.e., the estimation of the Eulerian concentration or temperature. At the
opposite, when the Eulerian scalar information is transferred from the Eulerian mesh to the
markers, the volume brought by the markers is not considered in the present version of the
paper. This step aims to ensure local conservation (on the Eulerian cell) of the given quantity
but not the global one. In order to illustrate the reseeding procedures effect on the global
conservation, the quantity

errC(t) =
1

NR

NR∑
i

∫
D

Φ(t;x, y) dS∫
D

Φ(t = 0;x, y) dS
− 1 (19)

which represents the relative variation of the integral of Φ over the whole domain, averaged
on NR different runs, is plotted in Fig. 8 for different meshes and the particle density number
P = 4. In the case of a conservative scheme, for example for the conservative WENO5 scheme
(not shown), the value of errC is strictly 0 over time.
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Figure 8: Evolution of the global conservation estimator errC over time for different meshes.
The averages are done over NR = 128 runs. (A study on the mean value and variance has
been performed on the 642 mesh and over 2048 runs and has shown a convergence around the
NR = 128 value.)

For the coarse N2 = 322 mesh, the error oscillates over a range of 10%. Although the
average conservation is quite similar to the two times smaller N2 = 642 mesh, the amplitude of
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oscillations shows that the solution is less accurate. Both the variation range and the oscillations
are significantly reduced increasing the resolution. On the chosen mesh for illustration and
comparisons, N2 = 1282, the quantity Φ is conserved with a relative error lower than 0.5‰ in
relation to the initial value. The errors are insensitive with the diffusion coefficient value. It
is worth mentioning that the quantity errC only gives information about the conservation but
not on the solution. For example, the upwind scheme is conservative but (very) diffusive. In
this case, errC will be 0, but the solution will be far away from the expected one, as presented
in the following.

Figure 9 synthesizes the previous results with plots of the concentration values on the line
defined by y = 3L/4 and after one turn. For the diffusivity Γ = 10−4 m2/s (Fig. 9(a)) and at the
plotting scale, the analytical solution is superposed to the WENO5 and MEL scheme solutions.
As mentioned above, the Lax-Wendroff TVD scheme amplifies the stiffness of the concentration
profile; the solution overestimates the maximum value. The case with the low diffusivity value
Γ = 10−6 m2/s (Fig. 9(b)) allows a better discrimination against the different schemes. Only
the MEL approach is able to properly reproduce the concentration profile. The oscillations are
strongly reduced and are no longer distinguishable at the figure scale, as soon as the particle
density number P > 2. All the other tested schemes introduce a significant numerical diffusion
and deviate from the analytical solution. In the class of Eulerian approaches, the conservative
version of the WENO5 scheme is identified as the best for this problem. Centered and upwind
implicit schemes are also given for guidance purposes. Note that contrary to the explicit version,
the centered scheme is not dispersive and allows to obtain a solution. For the presented range of
x-positions, oscillations of the centered scheme are not visible, but the global solution provides
undershoots of about 5% of the maximum value.

MEL, P=4
MEL, P=8

MEL, P=2

(a) Γ = 10−4 m2/s

MEL, P=2
MEL, P=4
MEL, P=8

(b) Γ = 10−6 m2/s

Figure 9: Solution profiles on the line y = 3L/4 after one turn for the different schemes on a
N2 = 1282 mesh and two values of Γ. The CFL is set to 0.5.

19



Figure 10 presents the space convergence of the relative error defined by

err =


∫ L

0

∫ L

0

(Φ− Φref )
2 dxdy∫ L

0

∫ L

0

Φ2
ref dxdy


1
2

(20)

between simulation and reference solutions after one turn and for Γ = 10−4 and 10−6 m2/s. Gen-
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Figure 10: Evolution of error with the space step with ∆x = 1/N , N = 16 (most right points),
32, . . . , 512 for different diffusivity values. The CFL condition is kept at 0.5. For guidance, the
top horizontal axis gives the cell Péclet number Pec.

erally, and as mentioned above, the WENO5c scheme is more accurate than the WENO5n and
Lax-Wendroff schemes. Its convergence order is strongly linked to the regularity of the solution.
For Γ = 10−4 m2/s, the diffusion process quickly smooths the initial piecewise concentration
peak and a third order convergence is observed (it has been checked that the theoretical fifth
order convergence is obtained for regular functions such as sinusoidal profiles). In the case of a
lower diffusivity, Γ = 10−6 m2/s, the Lax-Wendroff and WENO5 schemes present quite similar
convergence orders that tend toward second order accuracy in the asymptotic region. Again,
among the cited schemes, WENO5c gives the best results and is used for comparisons with the
MEL scheme in the rest of this paper.

The convergence order and level of accuracy of the MEL method are strongly linked to
the particle density number value P but also to the diffusivity Γ. Figure 10 shows that for
given mesh and P , the error level is smaller for a larger diffusion coefficient. Nevertheless, this
variation is small for two orders of magnitude of the diffusion coefficient compared to the order
of magnitude of error when acting on P . The scheme is then less adapted to cases involving ratio
η of about the unity or less. Obviously, in these cases, classical centered or upwind schemes will
give better results for shorter computing times (compared to WENO5 or MEL). For a particle
density number P = 2 and despite the numerical oscillations observed on the solution, the error
level is quite similar to the Lax-Wendroff scheme and the slope suggests a first order accuracy.
Increasing P significantly reduces the error level and increases the accuracy order to about 2
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for P = 16. Furthermore, increasing P is also useless beyond a certain value (here 12) and the
increased accuracy is negligible compared to the additional computational cost. Finally, as a
practical result, the convergence results show that for low diffusivity Γ = 10−6 m2/s and on a
1282 mesh, the error level of the MEL is about one order of magnitude lower than the WENO5c
scheme as soon as the particle density number P ≥ 8. Note that the same accuracy level can
be reached with the WENO5c scheme for four times finer meshes. Even for intermediate values
of P between 2 and 8, the MEL gives more accurate results on coarser grids than WENO5c.

For the analysis, the errors associated with the pure advection (solving only Eq. (2) with the
Lagrangian scheme) and pure diffusion (Eq. (3)) cases are added. As the analytical solution is
purely diffusive in the moving reference frame, the associated error obtained for this last case is
only linked with the accuracy to the diffusion solver. For a smooth solution, (like in Fig. 9(a)),
a second order accuracy is obtained, while in the case of a stiffer case (Fig. 9(b)), the second
order is only reached in the asymptotic region; a first order accuracy is obtained on coarse
meshes. The error considering only the advection part is large when the diffusion coefficient is
high. On the other hand, one might think that solving only advection in such heavily advection-
dominated problem might be sufficient. This is indeed the case if we compare the error made
with that of the Eulerian schemes. On the contrary, the figure clearly shows the profit related
to the MEL approach: the error is bounded by the advective and diffusive solutions, and, even
for small diffusion values, the consideration of the diffusion reduces the error by one or two
orders of magnitude depending on the particle density number value P .

Finally, the number of particles per direction and per cell P can be regarded as a discretiza-
tion parameter. A convergence with this parameter is presented in Fig 11. The errors decrease

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-1.2 -1 -0.8 -0.6 -0.4

16 12 8 4 2

lo
g

1
0
(e

rr
)

log10(1/P)

P

16×16
32×32
64×64

128×128
256×256
512×512

slope 2

slope 1

(a) Γ = 10−4 m2/s

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-1.2 -1 -0.8 -0.6 -0.4

16 12 8 4 2

lo
g

1
0
(e

rr
)

log10(1/P)

P

16×16
32×32
64×64

128×128
256×256
512×512

slope 2

slope 1

(b) Γ = 10−6 m2/s

Figure 11: Evolution of error with 1/P , P = 2 (most right points), 4, 8, 12, 16 for different
diffusivity values. The CFL condition is kept at 0.5.

with the number of particles per cell. The slopes suggest a second order variation up to P
values around 4 and 8. A first order is obtained for intermediate values between 8 and 12,
while a constant value is reached for P & 12. An optimal parameter is between 4 and 8 and
must be chosen according to the CPU time cost of the computation as discussed in the next
paragraph.
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As the Lagrangian particle tracking has an extra computational time (increasing with the
particle number), this later must be included in the analyses. Figure 12 shows the computational
cost for the different approaches, always for two Γ values. All the costs are normalized by the
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Figure 12: Normalized computational cost for the different schemes as a function of the
total unknowns N2. The gray area represents solutions with less than 1% relative difference
(numerical values) with the reference solution.

simulation time with the WENO5c scheme on a 1282 mesh. First, the cost increases as N3 for
all schemes. In the case of the MEL scheme, increasing the number of particles per direction
and per cell P obviously increases the computational cost. For the reference mesh 1283, the
extra cost is 50% for the particle density number P = 4, but it is multiplied by a factor 4 for
P = 8 and by 11 for P = 12. Note that according to the convergence study, it is not interesting
to increase P beyond a value around 12. The numerical values associated with each point stand
for the relative error to the reference solution. The gray area in Fig. 12 represents the solution
with less than 1% difference from the reference. It has been reconstructed by approximating
the meshes leading to 1% error from the convergence study presented in Fig. 10. This 1% zone
is lower bounded by the WENO5c scheme and left bounded by the minimal mesh necessary to
obtain a 1% accurate solution. From these figures, it can be extracted that:

• The analysis of the 1% area associated with considering only the MEL scheme exhibits
an optimal value of 8 for the particle density number P .

• The MEL approach is quite insensitive to the ratio η between advection and diffusion.
With meshes around 1002 and increasing the particle density number P , it is possible to
obtain an accurate solution (here 1% error from the reference). The slight increase in the
minimal required mesh is driven by the diffusion process.

• However, for small η ratio, the setup of the MEL method is not justified since it introduces
a non negligible extra cost of about 25% compared to the simulation with the WENO5c
scheme on finer grid. For example, from Fig. 12(a), 1% error solution is obtained on a
642 mesh and P = 8 for MEL and a normalized computation time of about 0.5, while ex-
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trapolation shows that an equivalent solution can be obtained with the WENO5c scheme
on a mesh of about 1002 for a normalized computation time of about 0.4.

• For large η ratio, the computation cost is totally reversed as the required meshes are
very different. The MEL method needs a mesh of about N2 = 902 and a particle density
number P = 8 while the WENO5c scheme reaches the same accuracy on a 3202 mesh
(Fig. 12(b)). The Lagrangian approach allows three times coarser grids than classical
schemes. The ratio of CPU times is then strongly affected: the MEL scheme is at least
one order of magnitude cheaper (or faster) than WENO5c.

In practice, the particle density number value P = 4 is chosen. Through the different
examples discussed, this value is the best compromise between the CPU cost and the accuracy.
Just as one does space and time convergences in order to find proper values of space and time
steps, a convergence study (see for example [42]) can be investigated to optimize the value of P .

3.2 Concentration spot in a sheared field

To illustrate the capacity of the Mixed Eulerian-Lagrangian scheme to approximate a physical
field even on coarse meshes, a spot of concentration

Φ(r, t = 0) =

{
1 if r ≤ r0

0 otherwise
(21)

is now advected in a sheared incompressible flow field given by

~u(x, y) =
π

2

(
− sin2(πx) cos(πy) sin(πy)

sin2(πy) cos(πx) sin(πx)

)
(22)

in the domain [0, L]2, L = 1 m. The solutions are presented for t = 4 seconds for the MEL
scheme with the particle density number P = 4, the WENO5c and the centered schemes. Two
regular grids are used, a "coarse" 1282 mesh and a four time finer 5122 mesh. The diffusion
coefficient varies form Γ = 10−4 to 10−6 m2/s. Magnitude orders of η and Péclet number are
the same as in the previous section. Results are plotted in Fig. 13.

• For high diffusion value (top line), all schemes on the fine mesh give very similar results.
On the coarse mesh, the MEL scheme with P = 4 particles per direction and per cell
presents a good solution, while the WENO5c scheme is not able to represent high values
of the concentration field.

• For lower values of the diffusion coefficient, on the coarser mesh, the WENO5c is no more
able to discriminate against the diffusion process. The results are improved on the finer
mesh but remain too much diffusive. Concerning the centered scheme, it provides results
comparable to the WENO5c scheme except for the lower diffusion coefficient. In all cases
and for all meshes, the MEL scheme provides a more accurate solution that is able to
account for diffusion, even when advection is predominant. The coarse MEL solution is
comparable to the 5122 solutions brought by the Eulerian schemes. This is a very nice
feature and advantage of the MEL approach.
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Figure 13: Iso-lines of concentration at t = 4 s. From top to bottom Γ = 10−4, 10−5 and
10−6 m2/s. The centered scheme (last column) is presented as guidance for the finer mesh. It
introduces oscillations for high values of the Péclet cell number, here for coarse meshes (not
presented) or a low Γ value.

The maximum concentration values at t = 4 s are summarized in Tab. 1 for different meshes.
As shown in Sect. 3.1.1 in a similar situation, the MEL scheme produces the lower error level; its

N2 322 642 1282 2562 5122

Γ (m2/s) MEL, P = 4

10−4 0.455 (22%) 0.412 (11%) 0.382 (3%) 0.372 (0.3%) 0.371 (ref.)
10−5 0.559 (-35%) 0.740 (-14%) 0.821 (-6%) 0.854 (-2%) 0.869 (ref.)
10−6 0.506 (-50%) 0.770 (-22%) 0.956 (-4%) 0.990 (-1%) 0.998 (ref.)

WENO5c
10−4 0.170 (-54%) 0.254 (-31%) 0.344 (-7%) 0.370 (-0.3%) 0.371 (0%)
10−5 0.179 (-79%) 0.290 (-66%) 0.496 (-43%) 0.760 (-13%) 0.864 (-0.5%)
10−6 0.180 (-81%) 0.294 (-70%) 0.516 (-48%) 0.864 (-13%) 1.020 (2%)

Table 1: Convergence of max(Φ(t = 4 s))) with the grid for different diffusion coefficient values
and for MEL and WENO5c schemes. Results with MEL scheme on the 5122 mesh serves as
reference. The bracketed values stand for the relative difference with the reference.

results on the finer mesh are then used as reference. In the range of covered diffusion coefficient,
leading to Péclet numbers from about 103 to 105, both schemes converge through similar values.
On the finer grid, the relative difference between MEL and WENO5c increases as the diffusion
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coefficient decreases. For Γ = 10−6 m2/s, an over-estimated value (above the upper bound
Φ = 1) occurs for the WENO5c scheme and produces a maximum difference around 2%.

Except the MEL approach with Γ = 10−4 m2/s, the maximum value max(Φ) converges
by lower values to the reference. The over-estimated values with the MEL scheme are very
localized and are explained by the reseeding procedures (see Sect. 2). In the same way as in
Sect. 3.1.2, the results show that a finer grid is needed by the WENO5c scheme in order to
reach the same level of error as the MEL. As only the velocity field changes, the computational
costs are similar to those presented in Fig. 12, which makes the Mixed Eulerian-Lagrangian
scheme more efficient to reach a fixed level of accuracy. In this case, around N2 = 1282 grid
points are required to reach an error around 5% with the MEL, while WENO5c needs more
than a 2562 mesh. To obtain the same level of accuracy, the CPU time ratio between the MEL
and the WENO5c schemes is approximately 1/5.

3.3 Three-dimensional deformation

The approach is now applied in a three-dimensional configuration. As in the previous section,
schemes are compared on coarse grids and a four time finer mesh is used to compute a reference.
The underlying idea is that in CFD simulations dealing with passive scalar, the grid choice is
generally based on convergence of the velocity field. Here, the purpose of the 3D simulations is to
illustrate the capability of Mixed Eulerian-Lagrangian scheme to deal with sharp concentration
profiles at high Péclet numbers (or η values). The aim is to be able to undertake these cases
with relatively coarse grids compared to classical Eulerian methods dealing with the hyperbolic
advection term, like WENO or TVD schemes.

In a box unit, the incompressible flow field is given by [26]:

~u(x, y, z) =

2 sin2(πx) sin(2πy) sin(2πz)

− sin(2πx) sin2(πy) sin(2πz)

− sin(2πx) sin(2πy) sin2(πz)

 (23)

In the constant field Φ = 0 of diffusivity Γ = 10−6, a sphere of radius 0.15 m and reduced
concentration Φ = 1 is placed at (x, y, z) = (0.35 m, 0.35 m, 0.35 m). Its evolution is simulated
over one second, and final iso-surfaces of concentration Φ = 0.2 and 0.9 are plotted in Fig. 14

As explained in [11], this test case shows some surface aliasing when the resolution is in-
sufficient to resolve thin filaments, or films, formed during the simulation. The WENO5c
simulation on a 2563 mesh (Fig. 14(d)) is used as a reference. Comparisons with schemes on
four time coarser grids show a good overall agreement except for the restitution of the filament
whose thickness is of the order of the space step. On the same 643 mesh, the WENO5c scheme
(Fig. 14(a)) loses a large part of the film that the MEL approach is almost able to render
totally, whatever the spatial interpolation method used (classical Q1 or high level interpolation
method PERM [29]). Differences are also observed on high values of the concentration, here
Φ ≥ 0.9. Again, the non-diffusive nature of the advection term in the MEL method allows a
better representation of the passive scalar physics on meshes for which the velocity field is well
resolved but which would require two to three times more cells per direction when classical
Eulerian schemes are used.
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(a) WENO5c, 643 (b) MEL/Q1, 643 (c) MEL/PERM, 643 (d) WENO5c, 2563

Figure 14: XZ view of iso-surfaces Φ = 0.2 (gray) and 0.9 (dark gray) for schemes (a) WENO5c
on a 643 mesh, MEL with the particle density number P = 4 on 643 meshes for Q1 (b) and
PERM (c) spatial interpolations and (d) WENO5c on a 2563 mesh, which is used as a reference.
The time is t = 1 second, the diffusivity is Γ = 10−6 m2/s and the CFL = 0.5.

In this paper, no effort has been made to optimize the computational extra cost of the Mixed
Eulerian-Lagrangian scheme. As the particle density number P is the same per direction, each
cell contains P 3 particles and the additional cost arising by using one more particle per direction
is important to consider as well as the memory requirements. Particle number optimization
strategies, e.g., by making the number of markers per cell independent of the spatial dimension
d or local adaptations of P in each cell, in a kind of AMR approach for MEL scheme, according
to the Φ variations are currently being developed. First, results show that they allow to
significantly reduce the computational cost of the MEL scheme.

3.4 Natural convection

The mixed Eulerian-Lagrangian scheme is now applied to the very used benchmark case of the
thermally driven square cavity. The scalar Φ here represents the temperature field T . The
Navier-Stokes and energy equations are coupled through the Boussinesq assumption for the
volume forces in the y-momentum contribution. The Rayleigh Ra and Prandtl Pr numbers
are the dimensionless parameters of interest for this study. The attention is focused on the
Pr = 0.71 and Ra = 106 configuration.

The difficulty of this case is to have sufficiently fine meshes near walls in order to correctly
represent the dynamical and thermal boundary layers whose thicknesses decrease with the
Rayleigh number. To this purpose, spectral methods, based on global approximation of spatial
derivatives, need approximately four times less nodes than Finite-Volume method (see for
example [6] and [25]). They then provide accurate values for comparison purposes. Several
characteristic values, obtained for Gauss-Lobatto distribution of cell centers, with the centered
and the Mixed Eulerian-Lagrangian schemes, are reported in Tab. 2 and are compared with
the reference values of [25] obtained with a spectral method.

As a recall of the fluid and thermal fields, iso-lines of dimensionless temperature T , pressure
variation p and stream function Ψ are presented in Fig. 15. This natural convection configu-
ration does not involve high values of Péclet cell numbers, so the centered scheme is suitable
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Figure 15: Iso-lines of the temperature T , δT = 0.1, pressure variation p, δp = 105, and stream
function Ψ, δΨ = 2 × 10−3, fields obtained with the MEL scheme (plain lines) and centered
(dashed lines) schemes. The 1282 mesh is refined near walls with a Gauss-Lobatto distribution
of the cell centers.

and recommended for this case. However, the MEL scheme, used with four particles per di-
rection and per cell, P = 4, gives very similar results to the centered scheme on a 1282 mesh.
The present benchmark simulation illustrates again the ability and adaptability of the MEL
approach to represent the correct physical behavior even with for low values of the Péclet num-
ber. This problem also emphasizes the ability of the MEL to provide a discrete approximation
of the advection term on irregular grids. Extension to unstructured meshes is possible.

As a quantitative comparison, values and relative difference with reference [25] are presented
in Tab. 2. Except for the positions of the maximum stream function and the maximum surface
Nusselt, all relative differences are lower than 1%. For the later, the error is linked to the
accuracy of the reference solution; the variation of the last digit produces the 2.5% relative
difference. This is a very nice result of the Mixed Eulerian-Lagrangian scheme: it can be used
preferably for high Péclet problems, but also for problem involving low advection compared to
diffusion. This can be the case for turbulent problems containing dead flow zones driven by
diffusion, as can be encountered in air quality models with pollutant transport.

4 Concluding remarks

In the present work, the efficiency of a Mixed Eulerian-Lagrangian (MEL) method has been
evaluated and demonstrated in the framework of the resolution of the advection-diffusion equa-
tion. It is even more effective when the ratio between advection and diffusion is important.
The extra cost of the particle tracking method used by the MEL approach is counterbalanced
by the fact that the Lagrangian advection process does not introduce numerical diffusion and
allows the use of coarser meshes, contrary to more classical approaches. The particle tracking
also involves interpolation method for the fluid velocity at the particle positions and a tem-
poral integrator. Although it was not as detailed as the grid or the particle density number
influences, these points have been studied on the presented cases. It comes out that the use of

27



method MEL, P = 4 centered spectral
N2 322 642 1282 1282 Ref. [25]

Ψ(1/2, 1/2)× 103 16.526 ( 0.8) 16.436 ( 0.3) 16.444 ( 0.3) 16.782 ( 2.4) 16.386
Ψmax × 103 16.755 (-0.3) 16.798 ( 0.1) 16.839 ( 0.2) 16.788 (-0.1) 16.811

x 0.146 (-2.7) 0.146 (-2.7) 0.154 ( 2.7) 0.146 (-2.7) 0.150
y 0.548 ( 0.2) 0.551 ( 0.7) 0.548 ( 0.2) 0.549 ( 0.4) 0.547

umax(1/2, y)× 102 6.711 ( 3.5) 6.542 ( 0.9) 6.511 ( 0.4) 6.483 ( 0.0) 6.483
y 0.862 ( 1.4) 0.852 ( 0.2) 0.850 ( 0.0) 0.850 ( 0.0) 0.850

vmax(x, 1/2)× 10 2.243 ( 1.7) 2.214 ( 0.3) 2.210 ( 0.2) 2.207 ( 0.1) 2.206
x 0.037 (-2.6) 0.037 (-2.6) 0.038 ( 0.0) 0.038 ( 0.0) 0.038

N̄u 8.783 (-0.5) 8.805 (-0.2) 8.814 (-0.1) 8.825 ( 0.0) 8.825
Numax 17.610 ( 0.4) 17.940 ( 2.3) 17.544 ( 0.1) 17.552 ( 0.1) 17.536

y 0.059 (51.3) 0.038 (-2.5) 0.038 (-2.5) 0.039 ( 0.0) 0.039
Numin 0.9873 ( 0.8) 0.9863 (-1.3) 0.9904 ( 1.1) 0.9811 ( 0.2) 0.9795

y 0.997 (-0.3) 0.999 (-0.1) 0.999 (-0.1) 0.999 (-0.1) 1.000

Table 2: Characteristic values for Pr = 0.71 and Ra = 106 with MEL and centered schemes.
The bracketed values stand for the relative difference (in %) with the spectral reference [25]
which is recalled in the last column. Note that the reference length and velocity are, respectively,
H and (κ/H)

√
Ra with κ the thermal diffusion coefficient.

a high level interpolation method PERM [29] does not have a significant influence on the result
compared to a classical linear interpolation method. This later even reduces the computational
cost. Similarly, using high order Runge-Kutta schemes for particle motion does not influence
the results.

The major drawback of the Lagrangian approach is the spurious oscillations introduced by
the reseeding procedures. Nevertheless, they decrease with the numbers of markers which makes
the scheme Essentially Non Oscillating (ENO). Several improvements could be investigated
(local seeding ratio instead of global criterion for example, or the use of kernel function and
averaging technique from Smooth Particle Hydrodynamics) which would also allow to reduce the
number of particles involved and therefore the computational cost and memory requirements.

Finally, the method is quite straightforward to implement; it requires the ability to track
Lagrangian particles (fluid flow tracers) and is not restricted to staggered regular grids. Once
the particles belonging to a cell of an unstructured mesh (of polyhedral to be general) are
identified, the rest of the method remains unchanged and can be easily set up.
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A Analytical solutions

The analytical solutions used in Sect. 3 for the one- and two-dimensional cases are given here.
They are both obtained with the separation of variables method (see for example [32]).

A.1 Orthogonal symmetric case

A symmetrical scalar field c is initialized near the symmetry axis, for x ∈ [0; `0], and diffuses
in the domain [0, L], L > `0. For x = L, it takes the value c∞. In Cartesian coordinates, the
following one-dimensional problem is then considered for the reduced variable Φ = c− c∞:

∂Φ(x, t)

∂t
= Γ

∂2Φ(x, t)

∂x2

∂Φ(x, t)

∂x

∣∣∣∣
x=0

= 0

Φ(x = L, t) = 0

Φ(x, t = 0) = Φ0(x)

(24)

where Φ0 is the initial spatial condition and will be specified later. The function Φ is searched
as Φ(r, t) = g(x)× f(t). Introduced into the 1D unsteady diffusion equation, it shows a set of
two ODEs for f and g functions given by

1

Γ

f ′(t)

f(t)
=
g′′(x)

g(x)
= constant = −λ2 (25)

The solutions are, respectively,{
g(x) = C1 sin(λx) + C2 cos(λx)

f(t) = C3 exp(−λ2Γt)
(26)

or
Φ(x, t) = [C ′1 sin(λx) + C ′2 cos(λx)] exp(−λ2Γt) (27)

with C ′1 = C1C3 and C ′2 = C1C2. From the symmetry boundary condition, C ′1 = 0. The imposed
value at x = L leads the cos(λL) = 0. To each root λnL is associated with a particular solution
Φn(x, t) and the general solution is the linear superposition of all solutions:

Φ(x, t) =
∞∑
n=0

An cos

(
(2n+ 1)π

2L
x

)
exp

(
−(2n+ 1)2π2

4L2
Γt

)
(28)

Introducing the initial condition Φ0(x), the An coefficients are given by

An =
2

L

∫ L

0

Φ0(x) cos

(
(2n+ 1)π

2L
x

)
dx (29)

In the case of a "conic" spot, where

Φ0(x) =


`0 − x
`0

if x ≤ `0

0 otherwise
(30)
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the coefficients An are,

An = − 8L

(2n+ 1)2π2`0

cos

(
(2n+ 1)π`0

2L
− 1

)
(31)

Note that this solution is suitable to describe the diffusion process of a local concentration
profile while the signal variation is far enough from the domain limit x = L where the reduced
concentration is set to Φ = 0. Choosing L � `0 also ensures ∂Φ

∂x

∣∣
x=L

= 0; the concentration
profile is flat far away from the symmetry axis.

A.2 Axisymmetric case

An axisymmetric scalar field c is initialized near the symmetry axis, for r ∈ [0; r0], and diffuses
in the domain [0, R], R > r0. For r = R, it takes the value c∞. In polar coordinates, the
following one-dimensional problem is then considered for the reduced variable Φ = c− c∞:

∂Φ(r, t)

∂t
= Γ

1

r

∂

∂r

(
r
∂Φ(r, t)

∂r

)
∂Φ(r, t)

∂r

∣∣∣∣
r=0

= 0

Φ(r = R, t) = 0

Φ(r, t = 0) = Φ0(r)

(32)

where Φ0 is the initial spatial condition and will be specified later. With the classical separation
of variables method (see for example [32] or [28] for a very similar case), the function Φ is
searched as Φ(r, t) = g(r)× f(t). Introduced into the 1D unsteady diffusion equation, it shows
a set of two ODEs for f and g functions given by

1

Γ

f ′(t)

f(t)
=

[
g′′(r)

g(r)
+

1

r

g′(r)

g(r)

]
= constant = −λ2 (33)

The solutions are, respectively, {
g(r) = C1J0(λr) + C2Y0(λr)

f(t) = C3 exp(−λ2Γt)
(34)

where Jν and Yν are ν-order Bessel functions of first and second kinds respectively, and coeffi-
cients C1, C2 and C3 are determined with boundary and initial conditions. With C ′1 = C1C3 and
C ′2 = C2C3, the solution of the unsteady diffusion equation writes

Φ(r, t) = [C ′1J0(λr) + C ′2Y0(λr)] exp(−λ2Γt) (35)

From the symmetry condition in r = 0, it comes directly C ′2 = 0. The Dirichlet condition at
the domain boundary r = R leads to J0(λR) = 0. λnR is then one of the roots of the equation
J0(x) = 0. To each root is associated a particular solution Φn(r, t) and the general solution of
system (32) is then a linear superposition of all solutions:

Φ(r, t) =
∞∑
n=1

AnJ0(λnr) exp(−λ2
nΓt) (36)
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The last coefficients An are obtained with the initial condition. Using the orthogonality of Bessel
functions, the previous equation is rewritten, after multiplying it by rJ0(λmr) and integration,
as ∫ R

r=0

Φ0(r)rJ0(λmr) dr =

∫ R

r=0

∞∑
n=1

AnrJ0(λnr)J0(λmr) dr (37)

that leads, when n = m, to

An =

2

∫ R

r=0

Φ0(r)rJ0(λnr) dr

R2J2
1 (λnR)

(38)

The An expression can be clarified when Φ0(r) is specified.

• In the case of a homogeneous spot, given by

Φ0(r) =

{
1 if r ≤ r0

0 otherwise
(39)

The integral part in the expression of An becomes after the substitution x = λnr∫ r0

r=0

rJ0(λnr) dr =
1

λ2
n

∫ x0

x=0

xJ0(x) dx =
1

λ2
n

[xJ1(x)]x00 (40)

and finally, reintroducing the r variable gives

An =
2r0J1(λnr0)

λnR2J2
1 (λnR)

(41)

• In the case of a "conic" spot, where

Φ0(r) =


r0 − r
r0

if r ≤ r0

0 otherwise
(42)

the integral part of Eq. (38) is decomposed as∫ r0

r=0

(
1− r

r0

)
rJ0(λnr) dr =

∫ r0

r=0

rJ0(λnr) dr −
∫ r0

r=0

r2

r0

J0(λnr) dr (43)

where the first term of r.h.s leads to the An coefficient obtained in Eq. (41). The substi-
tution x = λnr is used again to express the second term:∫ r0

r=0

r2

r0

J0(λnr) dr =
1

r0λ3
n

∫ x0

x=0

x2J0(x) dx

=
1

r0λ3
n

[
x2J1(x)− πx

2
[H0(x)J1(x)−H1(x)J0(x)]

]x0
0

(44)

where Hν is the ν-order Struve function. The expression of the integral
∫
x2J0(x) dx can

be found in [34]. Finally,

An =
2r0J1(λnr0)

λnR2J2
1 (λnR)

− 2

r0R2J2
1 (λnR)λ3

n

(
(λnr0)2J1(λnr0)− πλnr0

2
[H0(λnr0)J1(λnr0)−H1(λnr0)J0(λnr0)]

)
(45)

As for the orthogonal case A.1, these solutions are suitable to describe the diffusion process
of a local concentration profile while the signal variation is far enough from the domain limit
r = R.
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