N

N

A User-centric Process Management for System and
Software Engineering Projects
Mojtaba Hajmoosaei, Hanh Nhi Tran, Christian Percebois

» To cite this version:

Mojtaba Hajmoosaei, Hanh Nhi Tran, Christian Percebois. A User-centric Process Management for
System and Software Engineering Projects. 7th International Conference on Industrial Engineering
and Systems Management (IESM 2017), Oct 2017, Saarbriicken, Germany. pp.123-128. hal-02879719

HAL Id: hal-02879719
https://hal.science/hal-02879719

Submitted on 24 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02879719
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26150

Official URL
https://www.htwsaar.de/htw/wiwi/Forschung%?20und%20Wissenstransfer/publikationen/d
ateien/Proceedings IESM2017.pdf

To cite this version: Hajmoosaei, Mojtaba and Tran, Hanh Nhi
and Percebois, Christian A User-centric Process Management for
System and Software Engineering Projects. (2017) In: 7th
International Conference on Industrial Engineering and Systems
Management (IESM 2017), 11 October 2017 - 13 October 2017
(Saarbriicken, Germany).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

A User-centric Process Management
for System and Software Engineering Projects

(presented at the 7" TESM Conference, October 11-13, 2017, Saarbriicken, Germany)

Mojtaba Hajmoosaei
IRIT, University of Toulouse,
Toulouse, France
mojtaba.hajmoosaei @irit.fr

Abstract—In traditional process environments, process mod-
eling is performed by process designers and process enacting is
performed by process actors. Due to this separation, there is often
a gap between process models and their real enactments. As a
consequence, the operational level of process environments has
stayed low, especially in system and software industry, because
they are not directly relevant to process actors’ needs. In order to
facilitate the usage of process environments, this paper presents a
solution that enables process actors to perform both the modeling
and enacting of their real processes. To this end, first, an end-
user process modeling approach was proposed to allow each
process actor to easily describe the process fragment containing
the activities carried out by his role. Second, an artifact-centric
process engine was developed to enact activities coming from
different process fragments. Our process engine does not require
predefined work-sequence relations among these activities to
synchronize them, but deduces such dependencies from their
exchanged artifacts. As a result, the process engine can enact even
a partially defined process where some fragments are missing.

I. INTRODUCTION

Modern System and Software Engineering (SSE) processes are
often extremely complex, involve multi-disciplines and can be
realized by different teams. Such complicated processes can
be modeled and then applied to different projects. Process’s
execution should be managed by a process environment that
monitors and controls the project’s activities.

Most process environments adopt a top-down approach
where the whole process is first modeled by process designer
and then deployed in a project where real enactment happens
by process actors, i.e., persons operating the process. However,
in general it is almost impossible for process designers to
model accurately the entire process as they don’t have a
thorough knowledge about the process’s application domain.
Thus, several details of the process may be left initially
unspecified; some execution scenarios may be unseen and the
process model does not describe exactly what will be done
by process actors. Consequently, deploying a process model
in a process environment to manage a project requires an
important refinement [4] that is not evident for process actors.
First, they are not trained to work with complicated process
modeling languages. Second, they don’t have a global view on
the process; each process actor only knows his own activities.
For this reason traditional process environments have been still
weakly adopted by end-users in system and software industry.

To promote the practical use of process environments, we
put the main emphasis on process actors and aim at providing

Hanh Nhi Tran
IRIT, University of Toulouse,
Toulouse, France
hanh-nhi.tran @irit.fr

Christian Percebois
IRIT, University of Toulouse,
Toulouse, France
christian.percebois @irit.fr

them a friendly environment allowing each process actor to
model himself his working process so that the obtained model
is closer to his real activities and thus executable after a
simple deployment. In contrast to the top-down approach that
requires the whole process model to enable its enactment and
synchronization, we propose: (1) modeling the global process
in separate fragments belonging to different roles and then
(2) constructing dynamically the global view of the system at
enactment-time to synchronize activities belonging to different
process fragments that are progressively instantiated during the
process’s execution. In order to achieve these objectives, we
developed:
e A Structural Process Modeling Language enabling each
process actor to specify his process fragment independently
of other process fragments. To be more relevant to process
actor’s vision about process, our language suppresses the
work-sequence relations in process models but strengthens the
description of artifact exchanges among process activities. This
simple language will be described in Section III.
e An Artifact-centric Process Engine enacting process frag-
ments performed by different process actors. The process en-
gine analyzes the data exchanged among the running activities
to deduce their inter-dependencies and then synchronize them.
Section IV presents the proposed process engine.

In Section V, we report the experiments carried out by
using our prototype process environment with participation of
our industrial partners.

II. MOTIVATING EXAMPLE

Figure 1 presents an extract of a process given by our
industrial partners in the project FUI' ACOVAS (Agile tools
for COnception and VAlidation of Systems) to reconfigure the
wiring system of a testbench due to an evolution of the system
under test. The process Modify Testbench Wiring concerns
several expertise domains but we only focus on the electrical
and instrumentation ones to simplify the description. The pro-
cess is performed by five roles: Analyst, Electrical Designer,
Instrumentation Team, Wiring Team and Bench Coordinator.

In practice, each role describes his fragment of process as a
list of activities that he performs, with their input and output ar-
tifacts in a specific state. For instance, an Analyst performs the
activity Detail Change Requirement, which receives the artifact
Change Demand in the state defined and produces three output
artifacts: a Component Purchase List (defined), an Electrical

!French academic industry joint research program.

Component Testbench
purchase List-— o,?,‘,‘,ﬁ’,’:.';’,,t o,'“"s;';’,'e'nt | ——————————————————
<defined> | " 3 ¢ omponents B <defined>
<def|ned> i Bench Coordinator

“E" Detail lectrical |
E Change . gpecification
i [Requiremen <defined>
£ : :

i i Electrlcal De5|gner

A Electrical

hange v
Demand Design) Designi S, i Build Bench VAl
<defined> Electrical onfiguratio
Model g A SR
Legend : s 2 : : s
I£| Artifact Bench TestBench '
<> State FICD Generate = Z‘;'ffl':::;'\’_n Configuratior
[Activity --l<outlined>| Bench : <defined>
H Specificationf-------
B o o - - ol R R R R R R

Fig. 1: Process Modify Testbench Wiring

Specification (defined) and a Functional Interface Control
Document (FICD) (outlined). Often, activities are described
without an explicit execution order; their inter-dependencies
however can be deduced by analyzing the artifacts that they
exchange. For example, Design Electrical Model can only start
after the termination of Detail Change Requirement because
it requires the Electrical Specification produced by Detail
Change Requirement.

In a top-down approach, to obtain an executable process,
the process designer must refine the process in Figure 1
to model the enactable tasks of all roles as well as their
execution order in all possible circumstances that may happen
at enactment-time. Figure 2 shows one possible modeling of
the process fragments concerning the activities of Analyst and
Instrumentation Team.

Define) N Component ™
Purchase | "o > Purchase List
i Il <defined>
Define Electrical D
Electrical @ ---I>| Specification
Specification <defined>
Wiring
= Change
> Demand
E <Defined> Outline
< Electrical
Specification
instr
FicD™ Outline
outlined><g---____________ Instrumentation
= o= g Model
<
Bnech
£ -~ Dspecification
(=2 Design Evaluate Generate <defined>
= Instrumentation Bench Bench
-g Model Specification Specification
£ :
L R N N AC i MU
=
=
=
2 ICD
_r<defined>|

Fig. 2: Process Modify Testbench Wiring in BPMN

For complex processes, this modeling is challenging, par-
ticularly when tasks’ sequence is non linear because different
modeling constructs as loops or choices are needed to ex-
press execution orders. For example, inside the activity Detail
Change Requirement while the tasks, Define Purchase List
and Define Electrical Specification are always performed, the
task Outline Instrumentation Model will be enacted only if the
option instrumentation is chosen. Often, the process designer
has to spend several interviews with involved process actors
to obtain the formal process model which can become super
complex. Moreover, it requires a lot of process designer’s effort

in order to deploy the process by establishing the data mapping
concerning information flow from the process context to a
particular task and from the task to the process.

Top-down process engines enact and synchronize all pro-
cess activities in an established way as described in the process
model. This strict solution has two disadvantages. Firstly,
it does not allow executing a process partially defined, i.e.
some process fragments are missing when the process starts
to run. Unluckily, it is difficult to fully model SSE processes
because they are generally performed by various teams and
also by external subsidiaries. Secondly, it cannot let process
actors handle emerging events that are not described in the
model. However, it is hard, especially for process designers,
to anticipate in the process model all process’s execution
possibilities.

Being aware of the above drawbacks of top-down based
process environments, we are interested in an opposite ap-
proach. We argue that by separating the performers of process
modeling and process enacting, a process is often inadequately
described and therefore not faithful to its real enactment. In
contrast, our end-user approach that puts the main emphasis
on process actors by letting them carry out both modeling
and enacting can eliminate the inconvenience of the top-down
approach and reduce process gap. We present in the following
sections the solutions to implement this idea.

III. END-USER PROCESS MODELING

This section explains how our approach enables process actors
to model their working process. For this purpose, the standard
process modeling languages as BPMN [10] and SPEM [9],
which are developed for process designer and thus very com-
plex for process actors to use, are not suitable for our intention.
We aim at an end-user friendly process modeling language
which includes only the concepts known by process actors
in their daily work and avoids introducing concepts requiring
process-special knowledge.

Our process modeling language, named SPML (Structural
Process Modeling Language), has two key features: (1) re-
moving the work-sequence relations among activities from the
process model; (2) describing in detail the artifacts entering
and leaving the activities to provide sufficient information to
deduce the behavioral aspect of process at enactment-time.

In our language, a Process Fragment encapsulates the
activities belonging to a Role. An Activity describes the func-
tional view of a work performed by a specific role and is

composed of tasks corresponding to different sub-objectives.
A Task, mandatory or optional, represents an enactable and
manageable action taken to achieve one specific activity’s sub-
objective. An Artifact is a tangible work product describing
the system to be delivered; at a moment in its lifecycle,
an artifact is defined in a specific State. A task can use
an artifact as input, output or input/output parameter via
the relation TaskParameter. The property UsageKind of the
relation TaskParameter indicates if the concerned artifact is
necessary for a task’s pre-condition (7oStart) or for a task’s
post-condition (ZoFinish). Finally, a Process is comprised of
several process fragments.

Our language introduces a concept Option to allow process
actors specifying alternative ways to realize an activity in
different execution contexts of a process. An option represents
a specific choice that activates the use of some optional tasks
and artifacts.

Using the proposed process modeling language, a process
actor can model the process fragment corresponding to the
role that he plays in the project. Each process fragment can
be modeled independently of the other fragments. However
all fragments are described based on common company assets
including the definitions of participating roles, working arti-
facts together with their possible states, used resources, and
development options. In practice, such company assets always
exist even if the process is not formally modeled.

Each role models simply the structure of his process
fragment without specifying its behavioral aspect, i.e. the
sequence flows between activities and tasks. Concretely, he
defines a list of activities which are decomposed further into
tasks. Each task is specified with the input and output artifacts
in a specific required state.

Figure 3 illustrates the Analyst’s process fragment mod-
eled with SPML. This process fragment includes an activity
comprising three tasks without specifying any work-sequence
flow between them. The task Outline Instrumentation Model
is optional and activated under option instrumentation.

Process Modify Testbench Wiring
options instrumentation, interface
ProcessFragment Analyst
Activity Detail Change Requirement options instrumentation
MandatoryTask Define Purchase List
Artifact Wiring Change Demand(in, defined)
Artifact Component Purchase List(out, defined)
MandatoryTask Define Electrical Specification
Artifact Wiring Change Demand(in, defined)
Artifact FICD(in, defined, toFinish)
ifOption instrumentation
Artifact Electrical Specification(out, defined)
OptionalTask Outline Instrumentation Model
ifOption instrumentation
Artifact Wiring Change Demand(in, defined)
Artifact FICD(out, outlined)

Fig. 3: Process Fragment of Analyst

By suppressing the work-sequence flows, an activity can
invoke freely and separately its inner tasks. This feature
facilitates the reworks and enables variable ways to perform an
activity. Another advantage of our end-user modeling approach
is that it is not necessary to define the whole process from
the beginning of the project. The process fragments can be

progressively defined during the project execution. Moreover,
if some process fragments are not provided, the rest of the
process can be specified and enacted independently to the
missing parts.

Thanks to this fine-grained modeling, the deployment of
a process in a project becomes a simple instantiation of the
process fragments models, i.e., creating concrete instances of
activities and tasks, then providing these tasks the required
effective parameters selected from the real artifacts managed
in the project.

IV. ARTIFACT-CENTRIC ENACTMENT

This section presents how our process engine instantiates
process fragment models and systematically controls the enact-
ment of the running processes. As tasks are real actions that
change artifacts” state and progress the process’s execution,
the main function of the process engine is managing tasks.
The lack of work-sequence relations in our process models
causes a new issue for the process engine in synchronizing
tasks because it must deduce the dependencies among tasks
from the real enactment circumstances.

The conventional process engines cannot satisfy our special
requirement on tasks synchronizing. Hence, we developed a
new process engine that can establish dynamically the work-
sequence dependencies among running tasks by analyzing
the artifacts that they exchange. To do so, we proposed: (1)
a Process Dependency Graph (PDG) as a run-time storage
keeping the information of process element instances coming
from different process fragments and therefore represent the
global view of the system; (2) An artifact-centric process
synchronization mechanism to manage tasks’ life-cycle. We
implemented these solutions in the Bottom-up Artifact-centric
Process Environment (BAPE).

A. Process Environment BAPE

Figure 4 shows our Bottom-up Artifact-centric Process Envi-
ronment (BAPE) comprising the following components:

interact

External

interact

i listen
_5 tngger\
o%]
mteract |= O| tiigger N Process Engine
3 % (Event Listener/Handler) update ppG
§ 8| listen/update —>
Process > retrieve ﬁ
Actor <

ulpoadireload
Process Repositor

Fig. 4: Architecture of BAPE

1) Modeling/Enactment Ul: This component provides in-
terfaces that allow process actors to interact with the process
environment during the modeling and enacting phases. The
modeling interface enables process actors to define company
assets and model the fragments of their processes then store

them into the Process Repository. The enactment interface
enables process actors to manage their activities and tasks (e.g.,
create activities, start and complete tasks, etc.).

2) Database Management System (DBMS): We suppose
that resources (e.g., process actors, tools, etc.) and working
artifacts are externally managed by each company proper tools.
However, those external tools use a central DBMS which
is connected to BAPE. This connection makes the process
environment being aware of any events changing the state of
artifacts and resources in the external systems.

3) Process Dependency Graph (PDG): This component
stores the information of running processes managed by BAPE.
PDG is progressively updated by the process engine to reflect
always the current state and the global view of the system
at run-time. Hence, PDG is a source of information for the
process engine to coordinate and synchronize processes.

4) Process Engine: This component is in charge of enacting
and synchronizing the processes managed by BAPE. The be-
havior of process engine is based on state machines specifying
the life-cycles of activities, tasks and artifacts. These state
machines pilot the engine by defining the list of listened events
triggered by users or external systems along with engine’s
actions to handle these events to update the PDG and make
process enactment progress.

In the following, we present how the PDG and the artifact-
centric process engine enable process execution and synchro-
nization in a flexible way.

B. Process Dependency Graph (PDG)

PDG is our solution to monitor process elements’ instances as
well as the relations among them [13]. As process models are
fragmented in our system, the role of PDG is not only storing
runtime information but also establishing the global view of
the system from separate process fragments. For this purpose,
PDG is defined as a directed and typed graph where each PDG
element refers to its defining process element in our SPML
language. In this way, PDG nodes represent process element
instances and PDG edges represent the relations between them.
Representing the behavioral aspect of the process, each PDG
node has the property describing its current state in the system.
The instantiation of a process fragment is then a creation of
PDG’s nodes and edges conforming to the elements specified
in the fragment’s model. The execution of process concerns
updating the PDG progressively.

Figure 5 illustrates an extraction of the PDG representing
a snapshot of the system corresponding to the execution of
the Modify Testbench Wiring process in the project Proj.
This snapshot includes only the fragments of Analyst and
Instrumentation Team performed respectively by the actors
A1 and IT;. The PDG shows the current state of process
elements and the relations among them. The dependencies
among tasks, both inside or among process fragments, can be
established based on their exchanged artifacts. For example,
in the activity Detail Change Requirement DCR;, the task
Outline Instrumentation Model OIM; produced the artifact
FICD; in the state outlined; the task Define Instrumentation
Model DIM; is modifying an outlined FICD; and will produce
the defined FICD; which will be used by the task Define
Electrical Specification DES;. Thus, OIM; has to finish so
that DIM; can start and DIM; has to finish so that DES| can
finish.

Thanks to the information provided by the external systems
which manages company’s resources and data, the PDG’s

ActorNodes and ArtifactNodes can be created and updated.

When process actors enact process’s activities and tasks, the
corresponding ActivityNodes and TaskNodes will be added
progressively into the PDG and the edges among the concerned
nodes will be established or updated.

inProgress,

child

data

(oD gste
\getee/

"‘_ Analyst Process Fragment ‘."

i Instrumentation:
: Team H
Process
Fragment

(O Projectiode (D ActorNode () ActivityNode () TaskNode () ArtifactNode

Fig. 5: A Snapshot of PDG

C. Artifact-centric Task Synchronization

To manage the life-cycle of tasks, we adopt a state machine
inspired from the standard WS-HumanTask Specification [8]
as illustrated in Figure 6.

This state machine pilots the process engine in creating
and updating the TaskNodes of the PDG when a task event
is triggered by process actors through their Enactment UlI.
For each task event, the process engine verifies the condition
of the required transition to enable or refuse the transition.
If the transition is accepted, the process engine updates the
concerned PDG TaskNode and its parameters by using the
predefined actions for the transition and then allows the actor
to perform task. If the transaction is refused, the demanding
task has to wait until another event validates the transition
condition. In this way, the process engine synchronizes the
execution of different process actors’ tasks.

Note that in conventional process engines, the condition
of a transition between task’s states is principally based on
work-sequence relations defined among tasks. This solution
cannot be applied to our process engine as we do not describe
the work-sequence relations among tasks in process models.
Instead of work-sequence relations, our process engine uses
artifacts as the main source to enable the transitions between
task states.

The conditions of two most important transitions to start
and to finish a task are defined in the task’s model as pre-
and post-conditions that specify respectively the required state
of the task’s input and output artifacts. The process engine
verifies the pre/post conditions of a task instance in the PDG
by checking if the states of the concerned ArtifactNodes
are the required ones. If the pre-condition is satisfied, the
process engine updates the TaskNodes’s state from created to
inProgress. If not, the TaskNode will be put in waiting state
to wait until the required input ArtifactNode is available. The
post-conditions are verified similarly. For instance, Figure 5

Legend
t: Task
t' : Task Instance

o waitng J<

TaskWakeUP(t)
/ verify all required artifacts are available

waiting

[allRequiredArtifactsNotAvailable]

[preConditionNotValid]
[postConditionNotValid]

[allRequiredArtifactsAvailable]

CreateTask(t)

(StartTask(t))
/ create task instance

i - CompleteTask(t))
/ verify task pre-condition

/ verify task post condition [.p.ost .
N e onditionValid]

> inProgress
i AbortTask(t')
AbortTask(t') / abort task instance (\

/ abort task instance > aborted j

>

[preConditionValid

Y
X

created completed

Fig. 6: Task State Machine

illustrates the situation where the task DES) is waiting for the Regarding process synchronization, both jBPM and

artifact FICD in a state de fined which is required to produce
the artifact Electrical Specification.

V. INDUSTRIAL CASE STUDY

The experiment presented in this paper is a simplified version
of a real case study conducted in the context of the project
ACOVAS. We carried out our evaluation in two phases of
modeling and enactment for the process described in Figure 1.
We applied a simple setup of the scenario presented in Section
II for a project including five process actors as one actor in
each team. Our evaluation has been carried out using top-down
process environments jBPM [3] and AristaFlow [1], which use
BPMN [10] as their modeling language, and our prototype
BAPE.

In order to efficiently manipulate the PDG, we used the
graph database system Neo4j [7], which excels at managing
highly connected, rapidly changing data thanks to its powerful
traversal framework. Our framework is based on the assump-
tions that a central graph database, a central resource repository
and an application server (e.g. JBOSS) are provided to support
process management in a distributed environment. Figure 7
shows the BAPE Enactment UI of role Analyst.

Our assessment on modeling phase is based on the required
roles to participate into two sub-phases process modeling and
process deployment. Our evaluation on enactment phase is
based on the required degree of process completeness to enable
the synchronization of activities and tasks.

The result of our modeling and enactment evaluations is
presented in the Table I.

TABLE I: Modeling and Enactment Phases Evaluations

jBPM AristaFlow BAPE
Modeling designer designer process actor
process actor process actor
Deployment designer designer process actor

process actor process actor

Synchronization complete-defined complete-defined partial-defined

As learned from our experience, jBPM and ArtistaFlow
require the participation of both process actors and process
designers to model and deploy the process. By proposing
SPML with a user-friendly modeling interface developed in
BAPE, process actors can conveniently model their executable
processes.

ArtistaFlow require that the whole process is modeled before
enactment so that the process engine can know how to syn-
chronize and coordinate the activities. As a main advantage,
BAPE can enact and synchronize a partially defined process
where some process fragments are missing.

VI. RELATED WORK

The lack of adoptation by end-users has been recognized as a
major problem of existing process environments in SSE [6].
To deal with this issue, many researches aim at integrating
end-users into process management life-cycle in order to suit
process actors needs [11], [2], [12].

Front et al. [2] propose a participative modeling approach
named ISEA that allows process actors to collaborate in a
centralized way to improve the process elicitation. Oppl [11]
shares the same idea as ours on eliminating the work-sequence
flows among activities and fragmentating of process models.
However, both works lack enactment support in their solution.
They propose the transformation of process models into
BPMN [10] that requires the efforts of process actors and
process designers to model the behavioral aspect of their
processes and then validate and deploy the process into target
process environment.

Stoitsev et al. [12] develop a collaborative task
management tool CTM (as add-in to Microsoft Outlook)
to enable end-users creating hierarchical to-do task lists.
Tasks can be delegated over email exchange. Tracking of
email exchanges on task delegation integrates the end-user’s
personal to-do list to overall Task Delegation Graphs (TDG).
TDGs represent weakly-structured process models that are
captured snapshots of the actual process enactment. Like
us, they apply a graph structure for the re-composition of
the global model, but the work-sequence relations among
tasks are defined as a suggestion based on the time of tasks
processing changes.

We share the same vision as PHILharmonicFlows [5]
and PET [4] about the significant role of artifacts in process
modeling and enacting. Kuhrmann et al. [4] propose a
solution to ease the process deployment for process actors
by transforming the process models from SPEM into the
artifact format of the project tools (e.g., Team Foundation
server, SharePoint and OfficeWord). Their solution eases the
deployment of processes into some specific development tools

BAPE Process Enviranment

|2 /Process Actor: AL Role: Analyst

1

Activity Instances ' |Activity Instance: Detail Change Requirement |’ Task Instance: Outline Instrumentation Model
Fiecin | Aciidd fas Task Instances Input Artifacts
1 1 Datail Change Requirement
ActivitylD | TaskiD ame Duration Type State Usage Value
1 4 Define ELectrical Specification 3d - hange Demand defined ToStart
Project 1 5 Outling Instrumentation Madal i2d =
:B Waiting Task Instances
O Adiitid | Taskb | | Duration
.cunty efinitions Output Artifacts
tail Chan rement
i oo i - Type | State | Usage | Yalue
Option
'ulstrumentation|V| | (Create Option ‘
ew Complete Camplete

Fig. 7: Enactment UI of Analyst

but does not consider the process synchronization. Kunzle et
al. [5] emphasize on the integration of process and data to
offer more flexible and efficient process enactment through
the PHILharmonicFlows framework. They address modeling
and enactment of object-aware processes. Object types and
object relations are defined in a data model, while object
behavior are expressed in terms of a process whose execution
is driven by object attribute changes. However, their work
adopts the top-down approach that requires a global view of
process model before enactment.

VII. CONCLUSIONS

To avoid the gap between a process model at high-
abstraction level and its execution in real projects, we proposed
an end-user approach that allows process actors to model and
enact the process that they perform in practice.

We developed a prototype for our process environment
BAPE that supports process actors in modeling and enacting
their process fragments. The first contribution of this work
is the simple process modeling language SPML which offers
structural and fragmented process modeling to process actors.
The second contribution is an artifact-centric process engine
that enables enacting and synchronizing of processes which
are defined, even partially, by several fragments. Our solution
makes the process modeling simpler and offers more flexibili-
ties to enactment by giving more freedom to process actors in
controlling their activities.

The first feedback of our industrial partners is rather
positive thanks to the end-user friendly characteristic of our
approach. As future work, we investigate a solution to integrate
process actor’s working tools to BAPE in order to offer them
a consolidated environment to manage their daily activities.

VIII.

Part of this research has been supported by the French
research project FUI ACOVAS which associates AIRBUS,

ACKNOWLEDGEMENT

GFIL, IRIT, LIEBHERR, NEXEYA, PROMETIL, S2C and
ZODIAC. We are grateful to our industrial partners who have

helped us on developing the case studies for our research and
on validating our prototype.

REFERENCES

[1] AristaFlow. http://www.aristaflow.com/.

[2] A. Front, D. Rieu, M. Santorum, and F. Movahedian. A participative
end-user method for multi-perspective business process elicitation and
improvement. Software & Systems Modeling, pages 1-24, 2015.

[3] JBoss. jbpm, http://www.jbpm.org/.
[4] M. Kuhrmann, G. Kalus, and M. Then. The process enactment

tool framework-transformation of software process models to prepare
enactment. Sci. Comput. Program., 79:172—188, Jan. 2014.

[5] V. Kiinzle and M. Reichert. Philharmonicflows: towards a framework
for object-aware process management. Journal of Software Maintenance
and Evolution: Research and Practice, 23(4):205-244, June 2011.

[6] R. Matinnejad and R. Ramsin. An analytical review of process-
centered software engineering environments. In /EEE 19th International
Conference and Workshops on Engineering of Computer-Based Systems,
ECBS 2012, Novi Sad, Serbia, April 11-13,2012, pages 64-73, 2012.

[71 Neo4j. Neodj website : http://www.neo4j.com.

[8] OASIS. Web Services Human Task (WS-HumanTask) Specification
Version 1.1, August 2010.

[91 OMG. Software & Systems Process Engineering Metamodel Specifi-
cation (SPEM) Version 2.0, Apr. 2008.

[10] OMG. Business Process Model and Notation (BPMN) Version 2.0.2,
Dec. 2013.

[11] S. Oppl. Articulation of work process models for organizational
alignment and informed information system design. Information &
Management, 53(5):591 — 608, 2016.

[12] T. Stoitsev, S. Scheidl, F. Flentge, and M. Miihlhduser. From personal
task management to end-user driven business process modeling. In
Proceedings of the 6th International Conference on Business Pro-
cess Management, BPM ’08, pages 84-99, Berlin, Heidelberg, 2008.
Springer-Verlag.

[13] H. N. Tran, M. Hajmoosaei, C. Percebois, A. Front, and C. Roncan-
cio. Integrating run-time changes into system and software process
enactment. Journal of Software: Evolution and Process, 28(9):762—
782, 2016.

