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Abstract

Bayesian games offer a suitable framework for
games where the utility degrees are additive. This
approach does nevertheless not apply to ordinal
games, where the utility degrees do not capture
more than a ranking, nor to situations of a decision
under qualitative uncertainty. This paper proposes a
representation framework for ordinal games under
possibilistic incomplete information and extends
the fundamental notion of Nash equilibrium (NE)
to this framework. We show that deciding whether
a NE exists is a difficult problem (NP-hard) and
propose a Mixed Integer Linear Programming en-
coding. Experiments on variants of the GAMUT
problems confirm the feasibility of this approach.

1 Introduction
Game theory proposes a very simple but powerful framework
to capture decision problems involving several agents: in a
game with complete information, each agent (each “player”)
chooses an action among a set of possible actions, and the
final outcome depends on the actions chosen by all the agents.

The preferences of the agents among the outcomes are cap-
tured by utility functions. The term “payoff” is often used
to designate their utility - this suits to problems where the
satisfaction can be expressed on a cardinal scale, typically a
monetary scale. But there are instances where the assump-
tion of cardinality can be questioned (see, e.g., [Ouenniche
et al., 2016; Cruz and Simaan, 2000]). Moreover, several
fundamental notions of game theory, e.g., Nash Equilibrium
and Dominance, do not require such an assumption - they are
basically ordinal notions. A cardinal notion is called in two
cases at least: (i) when the game is repeated (and outcomes
are “collected” and assumed to be additive), and (ii) when the
outcomes depend on a probabilistic event (e.g., in the pris-
oner dilemma, if the verdict does not only depend on the con-
fession of the prisoners, but also on the result of the trial).
To capture such incomplete information situations, Bayesian
games have been proposed by Harsanyi [1967]. This ap-
proach does nevertheless not apply to ordinal games, where
the utility degrees capture no more than a ranking, nor to sit-
uations of a decision under qualitative uncertainty.

Following the seminal work of [De Clercq et al., 2018]
on possibilistic Boolean games, we propose to use possibil-
ity theory to model qualitative uncertainty in ordinal games.
Unlike [De Clercq et al., 2018], we do not develop a com-
plex language. We stay at the semantic level and work out
the idea of possibilistic games, extending the notion of Nash
Equilibrium [Nash, 1950] to such games and showing how to
transform them into classical games.

Section 2 presents the notions on which the paper relies.
Section 3 and 4 propose a possibilistic model for ordinal
games with incomplete information and generalizes the no-
tion of a Nash Equilibrium (NE) to this framework. Section 5
states the complexity of the problem of the existence of a NE
and proposes a Mixed Integer Linear Programming encoding
of the problem. Experiments are reported in Section 6. The
proofs are omitted for the sake of brevity; they can be found
at [Ben Amor et al., 2019].

2 Background
2.1 Normal Form Games
A strategic game or normal form game is classically defined
as follows [Morgenstern and Von Neumann, 1944]:

Definition 1 (Normal Form Game) A normal form game is
a triple G = 〈N,A, µ〉, where:

• N = {1, . . . , n} is a finite set of players;

• A = ×i∈NAi, where Ai is a finite set of actions avail-
able to player i ∈ N ;

• µ = {(µi)i∈N} is a set of utility functions µi : A 7→ ∆.

A joint (or “pure”) strategy is a vector a ∈ A which specifies
an action for each player and µi(a) is the utility of agent i
for the joint strategy a; it takes values in a finite totally or-
dered scale ∆ (the higher µi(a), the more satisfied agent i).
Typically ∆ = [0, 1], but any ordered scale may be used.

A joint strategy is a Nash Equilibrium (NE) if no player
can improve her utility by unilaterally changing her strategy:

Definition 2 (Nash Equilibrium) A strategy profile a ∈ A
is a NE, iff ∀i ∈ N, ∀a′i ∈ Ai: µi(ai.a−i) ≥ µi(a

′
i.a−i).

where ∀a ∈ A, ai is the action of i in a, a−i =
(a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i = ×j 6=iAj is its restric-
tion to all the players but i and “.” denotes the concatenation
(e.g., ∀(a′i, a−i), a′i.a−i = (a1, . . . , ai−1, a

′
i, ai+1, . . . , an)).
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2.2 Possibility Theory
The basic building block in possibility theory [Dubois and
Prade, 1988] is the notion of possibility distribution. A pos-
sibility distribution π is a mapping from a set of states S to
an ordered scale ∆ (here to ∆ = [0, 1]). π(s) = 1 means
that s is totally plausible, π(s) = 0 means that s is impos-
sible and π(s) > π(s′) means that s is more plausible than
s′. π is assumed to be normalized: there is at least one to-
tally possible state (a s such that π(s) = 1). From π, one
can compute the possibility Π(E) and the necessity N(E) of
any event E ⊆ S: Π(E) = sups∈E π(s) evaluates to what
extent E is consistent with the knowledge represented by π
while N(E) = 1−Π(Ē) = 1− sups/∈E π(s) corresponds to
the extent to which ¬E is inconsistent and thus evaluates at
which level E is certainly implied by the knowledge.

Considering qualitative (possibilistic) problems of decision
under uncertainty, where each consequence is evaluated by
a utility function µ : S 7→ ∆, [Dubois and Prade, 1995;
Dubois et al., 2001] have proposed qualitative utilities, called
pessimistic and optimistic utility degrees, as counterparts to
von Neumann and Morgenstern’s [1944] expected utility:

Upes(π) = min
s∈S

max((1− π(s)), µ(s)) (1)

Uopt(π) = max
s∈S

min(π(s), µ(s)) (2)

Upes generalizes the Wald criterion and estimates to what ex-
tent it is certain (i.e., necessary according to measure N ) that
µ reaches a good utility. Uopt estimates to what extent it is
possible that µ reaches a good utility. In the framework of
competitive game theory, Uopt is rather unnatural (too ad-
venturous), while Upes conveniently models the cautious de-
cision makers. As many other models this models makes a
commensurability assumption between the utility levels and
the levels of likelihood. This assumption is common to all the
models which considers that the agent’s preference relation
is complete and transitive (this is the case in many models,
be they qualititative or quantitative: expected utility [Savage,
1954; Morgenstern and Von Neumann, 1944], multi-prior non
expected utility [Gilboa and Schmeidler, 1989], Sugeno inte-
grals [Dubois et al., 1998], etc. ).

In the following, we shall finally use the notion of condi-
tional possibility measure proposed by [Hisdal, 1978] in or-
der to stay in the pure ordinal framework (for a discussion
about the alternative definitions of conditional possibilities,
see [Walley and De Cooman, 1999]). For any events E and
F ⊆ S the possibility of E given F is:

Π(E|F ) =

{
1 if Π(E ∩ F ) = Π(F )
Π(E ∩ F ) Otherwise.

(3)

3 Possibilistic Games with Incomplete
Information

The classical framework of games under perfect information
assumes that each player knows everything about the game:
the players, the actions available to every player, all their util-
ities, etc. What is not known by a player is the decision of
the other ones, but the game itself is assumed to be perfectly
known by everyone (hence the name “perfect information”).

This assumption cannot always be satisfied. In the real
world indeed, players are not so well informed, and the
knowledge about the game is often incomplete. For instance,
a landlord may ignore if a potential tenant is honest and has a
moral incentive to pay his loan or not, if we consider the clas-
sical battle of sexes example, a person who has doubts about
the faithfulness of his/her partner has some uncertainty about
his/her priorities (being together or missing the appointment).

Bayesian games [Harsanyi, 1967] offer a suitable frame-
work for cardinal games under incomplete knowledge; they
assume that the utility degrees are additive in essence and
that the knowledge of the players can be quantified in a prob-
abilistic way. This kind of approach does not apply to ordinal
games, where the utility degrees do not capture more than a
ranking, nor to situations of a decision under qualitative un-
certainty. We propose in the following a model for (ordinal)
games under possibilistic information.

A game with incomplete information can be first under-
stood as a set S of states of nature, each state correspond-
ing to a classical game. The utility µi of an agent i depends
not only on the actions of the other players but also on the
real world. Originally, none of the players know which is
the real world, but all of them share a common knowledge
about the game. Just before playing, each agent i will receive
from Nature some information τi(s) about the real world - τi
maps any s ∈ S to an element θi of a set Θi called the set of
“types” of i. After having observed τi(s), agent i knows more
about the real game, but several games may still be plausi-
ble. The agent, thus, conditions her knowledge on τi(s). The
use of a space type is classic in game theory - it is the ba-
sis of Bayesian games. The set of possible types of i, Θi,
can be considered as the local state space for the player i
and Θ = Θ1 × · · · × Θn as the effective global state space.
The idea of Harsanyi when defining types was that a player’s
local state can encapsulate all the information to which the
player has access: it contains not only the status of the exter-
nal world that the player has observed but also his introspec-
tive mental states (see [Brandenburger, 1993] [J. Aumann and
Brandenburger, 1995] [Battigalli and Bonanno, 1999], [Bran-
denburger, 2008], [Dekel and Siniscalchi, 2015] for the links
between belief states and types, and more generally for fur-
ther developments about epistemic game theory.

In the present paper we follow Harsanyi’s approach, based
on types, extending it to qualitative games with possibilistic
uncertainty. Thus, the action of an agent i depends only on
the information θi ∈ Θi she receives. A joint strategy σ =
(σ1, . . . , σn) is thus a tuple of functions σi that map each
possible information (each “type” θi in Θi) to action in Ai1.
Definition 3 A strategy is a vector σ = (σ1, . . . , σn) of func-
tions σi : Θi → Ai.
σi(θi) specifies the action that player i will execute when re-
ceiving the private information θi. Given a strategy σ and a
configuration of the players types θ ∈ Θ = Θ1 × · · · × Θn,
σ(θ) = (σ1(θ1), . . . , σn(θn)) denotes the joint action (the el-
ement of A) prescribed by strategy σ when θ occurs. In the

1In this paper, we consider pure strategies only: in our qualitative
context, the notion of a mixed (Bayesian) strategy, which relies on
additive probabilities, is not pertinent.
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following, Σi denotes the set of all functions from Θi to Ai
and Σ = Σ1 × · · · × Σn the set of all joint strategies.

In the Bayesian framework, the game under incomplete in-
formation is most of the time described on the space of types
(underlying worlds are omitted). In the present work, we pro-
ceed in the same way and define a possibilistic game with
incomplete information as follows:
Definition 4 (Π-game) A possibilistic game with incomplete
information (Π-game) G is a tuple 〈N,A,Θ, π, µ〉 where:
• N is a finite set of n players {1, ..., n};
• A = ×i∈NAi where Ai is the set of actions of player i;
• Θ = ×i∈NΘi, where Θi is the set of types of player i

gathers all the configurations of types, i.e. vectors θ =
(θ1, . . . , θn). θi denotes the type of i in θ and θ−i =
(θ1, . . . , θi−1, θi+1, . . . , θn) . Likewise Θ−i = ×j 6=iΘj;
• π: Θ → ∆ is a joint possibility distribution over the

combinations of types;
• µ = {(µi)i∈N} where µi : A × Θ → ∆ is the utility

function of player i.
Possibility distribution π captures the common knowledge

of the players. The information that the players have about
the real world corresponds to a θ ∈ Θ but is not common:
i does not know θ, but only θi (θi is the private knowledge
of agent i). π(.|θi) represents the knowledge that agent i has
when learning θi. On the other hand, utility µi(a, θ) (utility of
joint action a for player i when learning θ) will be obtained
once all players have played their action and revealed their
type (thus µi depends on the whole θ and not only on θi).

A Π-game can be equivalently defined as a set of |Θ| nor-
mal form games with the same set of players N and the same
set of actions A. More precisely, for each θ ∈ Θ, there is a
game Gθ = 〈N,A, {{µθi }i∈N}〉 where:

µθi (.) = µi(., θ) and π(Gθ) = max
θ′ s.tGθ′=Gθ

π(θ′) (4)

Example 1 (A landlord and a tenant) A landlord L can rent
a house to a tenant T . She can Accept (A) or Refuse (R),
i.e., AL = {A,R} and the tenant can Pay the landlord (P )
or not (P ), i.e., AT = {P, P}. The tenant can be honest
(H) or dishonest (D), i.e., ΘT = {H,D}. The landlord does
not know the type of the tenant but she receives information
indicating that the tenant is honest (IH) or dishonest (ID),
i.e., ΘL = {IH, ID}. Generally, the tenant is honest and the
landlord is informed that the tenant is honest. But the tenant
may be dishonest and the landlord well informed. There is a
low possibility that the landlord is informed that the tenant is
honest while it is not the case. Finally, it cannot be excluded
that the landlord is informed that the tenant is dishonest while
she is honest. This is captured by the following common π:
π(H, IH) = 1 π(D, ID) = 0.75 π(D, IH) = 0.5 π(H, ID) = 0.25

The projections of π on ΘT and ΘL yield: π(H) = 1,
π(D) = 0.75, π(IH) = 1 π(ID) = 0.75. For each strategy,
each player has a utility in {0, 0.25, 0.5, 0.75, 1} (from 0
meaning “completely dissatisfied” to 1 meaning “completely
satisfied”, 0.5 meaning “neutral”, etc.) When the landlord
refuses to rent, the utility of the tenant is equal to 0 if honest
and equal to 0.25 if dishonest. When the landlord accepts,

landlord
IH ID

t
e
n
a
n
t

H

A R A R

P 1,1 0,0.5 P 1,1 0,0.5
P 0.25,0 0,0.5 P 0.25,0.25 0,0.5
π(H, IH) = 1 π(H, ID) = 0.25

D

A R A R

P 0.25,1 0.25,0.5 P 0.25,1 0.25,0.5
P 1,0 0.25,0.5 P 1,0.25 0.25,0.5
π(D, IH) = 0.5 π(D, ID) = 0.75

Table 1. A Π-game with 4 types combinations

the tenant’s utility of P (resp. P ) is equal to 1 (resp. 0.25)
when she is dishonest and equal to 0.25 (resp. 1) when she
is honest. The utility of the landlord is neutral (0.5) when
refusing. When accepting, the landlord’s utility is high (1)
when the tenant pays, low when she does not pay (0 if the
landlord believes that the tenant is honest, 0.25 otherwise).
There are four combinations of types, and thus four possible
games (see Table 1) the possibility degrees of which are:
π(GH,IH) = π(H, IH) = 1 π(GH,ID) = π(H, ID) = 0.25

π(GD,IH) = π(D, IH) = 0.5 π(GD,ID) = π(D, ID) = 0.75

Clearly, Π-games properly generalize classical games (with
complete information) since:
Proposition 1 Any classical normal form game is a Π-game
with |Θi| = 1, ∀i ∈ N .

Π-games can be related to the framework proposed by
[De Clercq et al., 2018] as a semantics for possibilistic
Boolean games. In possibilistic Boolean games, the knowl-
edge of each player can be captured by a distinct possibility
distribution πi (the knowledge is not common) and the play-
ers do not receive any private information (there is no type).
[De Clercq et al., 2018] propose to compute the possibility
and the necessity of a given profile of actions being a NE
in the usual sense (Definition 2): each agent computes these
indices according to her own knowledge. The authors then
consider the problem from the external point of view of an
observer who proceeds to a fusion of these distributions and
deduces a unique π = mini∈N πi over types of players.

Adapting these notions to Π-games, where the prior knowl-
edge is common, we can compute, for any profile a of actions:

Π(a is a NE) = max
θ,a is NE forGθ

π(θ)

N(a is a NE) = 1− max
θ,a is not a NE forGθ

π(θ)

Contrarily to the framework of [De Clercq et al., 2018], ours
can handle the knowledge that each agent i has when receiv-
ing some private information θi. Then, the posterior neces-
sity (resp. possibility) that a is a NE can be different from
one agent to another:

Πi(a is a NE|θi) = min
θ−i,a is a NE forGθi.θ−i

π(θ−i|θi)

Ni(a is a NE|θi) = 1− max
θ−i,a is not a NE forGθi.θ−i

π(θ−i|θi)
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4 Nash Equilibrium
One problem with the concepts proposed in [De Clercq et
al., 2018] above is that they are based on the definition of
strategies as profiles of actions, as usual in a classical normal
form game. This definition does not take uncertainty about
the types of the players into account: it supposes that the full θ
is eventually known by all the players, and thus that the utility
of each agent is known by each other before the actions are
played. In other words, the definition of the above necessity
and possibility indices only suits games which are presently
incomplete but will eventually become completely known.

In the present work, an agent i only knows π(.|θi) when
receiving θi and deciding what to play. As in any incomplete
information game, strategy σ specifies an action for each θi.
σ is a NE when i has no incentive to change her choice of
action for θi, given π(.|θi) and σ. Using possibilistic quali-
tative decision theory, the utility of σ(θi) is evaluated, using
Equation (1) (we suppose that the agent is cautious).

Definition 5 (Utility of an action Utility of joint strategy)
The utility of ai for player i of type θi in the context of σ−i is

Upesi (ai, σ−i, θi) =

min
θ−i∈Θ−i

max(1−π(θ−i|θi), µi(ai.σ(θ−i), θi.θ−i)) (5)

The utility of strategy σ to agent i of type θi is:

Upesi (σ, θi) = Upesi (σi(θi), σ−i, θi) (6)

Of course Upesi (σi(θi), σ−i, θi) is independent of the choices
of player i when her type is different from θi.

A best response for player i of type θi is computed knowing
the provisional strategies of the other players, i.e., knowing
σ−i. This is the action ai which maximizes Upesi (ai, σ−i, θi)
(again, when considering a joint strategy σ, the uncertainty of
i only bears on the types of the other players. What they plan
to do depending on their type is known, prescribed by σ).
Definition 6 (Best Response in a Π-game)

BRi(σ−i, θi) = argmax
ai∈Ai

Upesi (ai, σ−i, θi) (7)

A (Nash) Equilibrium (NE) is a joint strategy from which no
player i will deviate unilaterally knowing σ−i. In the possi-
bilistic context, we thus set the following definition:
Definition 7 (Nash Equilibrium in a Π-game) σ is a Π-
Nash equilibrium (Π-NE) iff ∀i ∈ N, ∀θi ∈ Θi, ∀a′i ∈ Ai,

Upesi (ai, σ−i, θi) ≥ Upesi (a′i, σ−i, θi)

This definition generalizes Definition 2, which is recovered
when |Θ| = 1 (only one possible type per player). As a con-
sequence, a pure equilibrium may not exist for a Π-game (a
classical normal form game does not always admit a NE).
Example 2 (cont’ Example 1) Let us first compute the con-
ditional possibility distribution (Equation (3)):

π(H|IH) = π(IH|H) = 1 π(D|IH) = π(IH|D) = 0.5
π(H|ID) = π(ID|H) = 0.25 π(D|ID) = π(ID|D) = 1

For instance, when the landlord learns that the tenant is
honest, i.e., when the landlord is of type IH , the most plausi-
ble type for the tenant is H (π(H|IH) = 1) but it can not be
excluded that is not the case (π(D|IH) = 0.5).

Consider the joint strategy where the tenant pays
if she is honest, and does not pay otherwise, and the
landlord accepts iff learning that the tenant is honest:
σ∗T (H) = P , σ∗T (D) = P σ∗L(IH) = A, σ∗L(ID) = R.

The pessimistic utility of the honest tenant is: UpesT (σ∗, H)

= min max
{

1− π(IH|H), µT ((P.A), (H.IH))
}
,

max
{

1− π(ID|H), µT ((P.R), (H.ID))
}

= min max
{

1− 1, 1
}
,max

{
1− 0.25, 0

}
= 0.75.

In the same way, we get: UpesT (σ∗, D) = 0.25;
UpesL (σ∗, IH) = 0.5; UpesL (σ∗, ID) = 0.5.

The best response to σ∗L for the tenant of type H is P ;
indeed: UpesT (P, σ∗L, H) = 0.75, UpesT (P , σ∗L, H) = 0.25.
The two responses P and P are equally interesting for tenant
of typeD: UpesT (P, σ∗L, D) = 0.25, and UpesT (P , σ∗L, D) = 0.25.

It can also be checked that strategy σ∗ is a Π-NE; the pes-
simistic utility of the H tenant playing P (resp. P ) is equal
to 0.75 (resp. 0.25). So, in this case, the tenant prefers P
to P . The dishonest tenant is indifferent between P and P
(UT (P, σ∗L, D) = UT (P , σ∗L, D) = 0.25). Also, an IH land-
lord prefers A to R (UL(A, σ∗T , IH) ≥ UL(R, σ∗T , IH)). Un-
like the IH landlord, the ID landlord prefers R to A (utility
0.5 instead of 0.25).
We finally show that any incomplete game can be transformed
into an equivalent normal form game with complete informa-
tion, the pure equilibria of which are in bijection with the
pure equilibria of the Π-game. This representation result is a
qualitative counterpart of Harsyani’s about the representation
of Bayesian games by normal form games under complete
information. The idea is to consider as many players as the
number of pairs (i, θi), each (i, θi) havingAi as a set of avail-
able actions. A joint strategy in this (classical) normal form
game then corresponds to a strategy σ of the Π-game.
Definition 8 (Transformed Game) Given a Π-game G =
〈N,A,Θ, µ〉 G̃ = 〈Ñ , Ã, µ̃〉 is the normal form game where:

• Ñ = {(i, θi), i ∈ N, θi ∈ Θi};
• Ã(i,θi) = Ai for all (i, θi) ∈ Ñ ;

• µ̃(i,θi)(a) = Upesi (σa, θi) ∀a, i, θi, where σa is the strat-
egy of the original game defined by: σai (θi) = a(i,θi).

Example 3 (Cont’ Example 1) The transformed game G̃
has 4 players: Ñ = {(T,H), (T,D), (L, IH), (L, ID)}, with
Ã(T,H) = Ã(T,D) = {P, P}, Ã(L,IH) = Ã(L,ID) = {A,R}. The
joint action a = (P, P ,A,R) of G̃ corresponds to σ∗ in G.
The utilities of a in G̃ are:

µ̃(T,H)(a) = UpesT (σ∗, H) = 0.75 µ̃(T,D)(a) = UpesT (σ∗, D) = 0.25
µ̃(L,IH)(a) = UpesL (σ∗, IH) = 0.5 µ̃(L,ID)(a) = UpesT (σ∗, ID) = 0.5

Let us check that a is a NE in G̃; the utility of player (T,H)
playing P (resp. P ) is equal to 0.75 (resp. 0.25): she prefers
to play P than P . For player (T,D), µ̃(T,D)(a) = UpesT (σ,D)
= 0.25 and µ̃(T,D)(P.a−i) = UpesT (P, σ−i, D) = 0.25. So, she
is indifferent between P and P , etc.

The following proposition holds.

Proposition 2 a is a pure NE in G̃ = 〈Ñ , Ã, Ũ〉 iff σa is a
Π-NE in G = 〈N,A,Θ, µ〉.
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As to the complexity of the transformation, consider that
the games are extensively represented, by tables. The trans-
formed game contains Σi=1,n|Θi| utility functions of size
Πi=1,n|Ai||Θi|. If we write for simplification purpose that
|Ai| = a and |Θi| = d ∀i ∈ N (same number of types and
the same number of actions for all players), this means that a
game containing n utility functions of a size (a · d)n is trans-
formed into a game containing n · d utility functions of size
(an)d. Except when the number of types is very small, the
transformation does not provide a convenient way to solve
the game. Proposition 2 is, as in the Bayesian case, more a
representation result than the premise of a solving tool.

5 Solving the Possibilistic NE Problem
Finding a Π-NE in a Π-game is a difficult problem. Indeed:
Definition 9 (Π-NE problem) Given a Π-game G =
〈N,A,Θ, π, µ〉, the Π-NE problem consists in etermining
whether there exists a Π-Nash equilibrium.

Proposition 3 Π-NE is NP-Hard, even in symmetric 2-
player games where π corresponds to total ignorance , i.e.,
∀θ1 ∈ Θ1 and ∀θ2 ∈ Θ2, π(θ1, θ2) = 1.

Taking advantage of the efficiency of modern solvers, we pro-
pose a Mixed Integer Linear Programming (MILP) formula-
tion for finding Π-NE in Π-game (we follow in this the line
opened by [Ceppi et al., 2009] for solving Bayesian games).
The main decision variables are Boolean variables encoding
the strategy searched for: each σi,ai,θi is a Boolean vari-
able indicating whether action ai is prescribed for type θi of
player i: ∀i = 1, n, ∀ai ∈ Ai, ∀θi ∈ Θi : σi,ai,θi ∈ {0, 1}.
The utilities are encoded by continuous variables: Ui,ai,θi is
the utility (according to σ−i) of agent i if action ai is chosen
for type θi (i.e., if σi(θi) = ai):

∀i = 1, n, ∀ai ∈ Ai, ∀θi ∈ Θi : Ui,ai,θi ∈ [0, 1]

We will also use the following to constrain the Ui,ai,θi to be
equal to the minθ−i∈Θ−i of max(1−π(θ−i|θi), µi(a, θ)) (and
not only lower than the min):

∀i = 1, n, ∀ai ∈ Ai, ∀θ ∈ Θ : Mi,ai,θ ∈ {0, 1}

Let MAXi,a,θ = max(1 − π(θ−i|θi), µi(a, θ)), the con-
straints are the following:

∀i = 1, n, ∀θi ∈ Θi,
∑
ai∈Ai

σi,ai,θi = 1 (8)

∀i = 1, n, ∀ai, a′i ∈ Ai s.t ai 6= a′i, ∀θi ∈ Θi,

Ui,ai,θi − Ui,a′i,θi ≥ σi,ai,θi − 1 (9)

∀i = 1, n, ∀a ∈ A, ∀θ ∈ Θ,

Ui,ai,θi ≤MAXi,a,θ +
∑

j=1,n j 6=i
(1− σj,aj ,θj ) (10)

Ui,ai,θi +Mi,ai,θ +
∑

j=1,n j 6=i
(1− σj,aj ,θj ) ≥MAXi,a,θ (11)

∀i = 1, n, ∀ai ∈ Ai, ∀θi ∈ Θi,
∑

θ−i∈Θi

(1−Mi,ai,θi.θ−i) = 1 (12)

Constraints (8) ensure that the strategy σ searched for speci-
fies exactly one action per type, for each player i.

Constraints (9) require that σ is a Π-NE: when σi,ai,θi = 1,
this constraint requires Ui,ai,θi ≥ Ui,a′i,θi , i.e., that player i
has no incentive to deviate from ai. When actions ai is not
chosen for θi, (σi,ai,θi = 0) the constraint is always satisfied
(Ui,ai,θi − Ui,a′i,θi is always greater than −1).

Constraints (10) implement Definition (5). They ensure
that the utility of player i playing σ(θi) = ai is lower than
all, i.e., the minimum over the θ−i of the MAXi,ai.σ(θ−i),θ.
Indeed, for any profile of action a that does not correspond to
what is prescribed by σ, Σj 6=i(1 − σj,aj ,θj ) ≥ 1 and the con-
straint is always satisfied (Ui,ai,θi ≤ 1). If a−i is chosen for
θ−i, then σj,aj ,θj = 1 ∀j 6= i and Σj 6=i(1 − σj,aj ,θj ) = 0: the
constraint becomes Ui,ai,θi ≤MAXi,a,θ.

Constraints (11) and (12) ensure that Ui,ai,θi is equal to the
min of the MAXi,a,θ: when a−i does not correspond to σ−i,
Σj 6=i(1 − σj,aj ,θj ) is at least equal to 1 and the constraint is
always satisfied. When a−i does correspond to σ−i, the sum
is equal to 0 and does not annihilate the constraint. The min
is reached if Ui,ai,θi = MAXi,a,θ. Mi,ai,θi.θ−i is another way
to annihilate the constraint, and reaching the min means not
annihilating the constraint for one θ−i - hence Equation (12).

The above problem is linear (the max operator which ap-
pears in constraints (10) and (11) deals with constants only).
The above formulation does not lead no a combinatorial ex-
plosion of the space required. Recall that the size of the orig-
inal problem is size = n · |Θ| · |A|+ |Θ|. Let us denote a (resp.
d) the number of actions (resp. types) of each player. The
MILP formulation contains:
• n·d·a continuous variablesUp,ap,θp , n·d·aBoolean vari-

ables σp,ap,θp and n · a · |Θ| Boolean variables Mp,ap,θ;
• n · d constraints (8), each involving a variables;
• n·d·a·(a−1) constraints (9), each involving 3 variables;
• n · |Θ| · |A| constraints (10) each involving n variables;
• n·|Θ|·|A| constraints (11) each involving n+1 variables;

• n · a · d constraints (12) each involving |Θ|d variables.

The size of the MILP encoding is thus in O(n2 · |Θ| · |A|)
(polynomial in the size of the original size).

6 Experimental Study
To conduct our experimental study, we developed a novel Π-
game generator based on GAMUT [Nudelman et al., 2004],
a suite of classical normal form games (with complete infor-
mation) generators (following the approach of [Ceppi et al.,
2009] for the generation of Bayesian games). More precisely,
to generate a Π-game version of a GAMUT problem (e.g.,
the Covariant game), we need as inputs: the number of de-
grees in ∆, the number n of players, the class of game and
if necessary the number of actions |Ai| and of types |Θi| for
each player i. Then, we ask GAMUT to generate |Θ| nor-
mal form games of the class given in input, the range of util-
ity of which is ∆ and we generate a normalized distribution
π : Θ 7→ ∆ (a randomly selected θ receives degree 1; the de-
grees of the other elements of Θ are selected in ∆ following
a uniform distribution). The utilities µi(a, θ) is simply the
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Game class Θi Ai 2 3 4 5 6 7 8 9 10

Covariant
Game

2 .00 .02 .05 .10 .30 .70 1.44 5.72 6.94 TG̃
.30 13.34 11.72 17.08 13.3 19.54 24.74 26.22 25.62 MILP

3 .01 .24 1.76 13.70 42.40 69.96 38.76 103.72 160.66 TG̃
.02 14.48 10.26 10.92 14.82 17.08 19.16 20.42 23.6 MILP

4 .51 6.6 128.48 558.84 753.86 889.18 1.1K 1.4K 1.7K TG̃
1.02 8.42 11.4 12 14.64 17.22 19.71 21.7 23.84 MILP

Dispersion
Game

2 .00 .05 .10 .13 .31 .74 5.62 1.36 7.02 TG̃
.30 .50 .60 1.00 5.38 1.44 6.78 2.34 7.72 MILP

3 .16 .32 1.76 15.76 39.12 69.94 29.64 88.46 126.38 TG̃
.48 .64 1.2 1.68 2.4 11.28 7.12 11.84 13.04 MILP

4 .20 6.9 135.28 600.74 478.22 818.52 1.1k 1.5k 1.8k TG̃
3.24 1.28 4.02 4.84 10.08 10.82 10.52 13.2 20.26 MILP

Travelers
Dilemma
Game

2 .01 .11 .13 .17 .20 .60 .96 1.52 6.94 TG̃
.23 .32 .41 .90 .56 1.44 7.38 2.94 10.74 MILP

3 .05 .32 1.84 10.22 42.38 70.1 30.38 60.18 173.82 TG̃
.32 .64 .88 8.48 11.96 11.68 21.08 22.36 33.52 MILP

4 .09 3.84 50.62 546.46 1.5k 1.5k 1.6k 2.8k 3.4k TG̃
.03 2.36 5.34 9.92 14.82 15.14 19.42 21.32 23.00 MILP

Table 2. Avg. memory usage of MILP & TG̃ (MB), n = 2

Game class Θi Ai 2 3 4 5 6 7 8 9 10

Covariant
Game

2 .5 .4 .8 1.9 4.3 10.3 35.7 61.3 144.1 TG̃
12.8 850.2 633.3 1.6k 2k 2.2k 2.4k 1.9k 2.1k MILP

3 .3 .34 43 261.8 947.2 2.4k 5.9k 14.7k 22.6k TG̃
21.8 1.1k 1.5k 2.1k 1.8k 1.3k 1.8k 1.7k 1.6k MILP

4 1.9 139.9 2.4k 3.9k 85.6k 318.5k - - - TG̃
23.9 853.6 1.3k 885.8 1.7k 1.3k 1.6k 867.8 1.1k MILP

Dispersion
Game

2 .4 .3 .7 1.8 4.6 8.8 28.3 64.8 116.8 TG̃
11.8 44.5 53.5 81.8 78.3 80.3 115.5 96 110.2 MILP

3 .3 .0 35.8 220.9 813 2.3k 5.7k 14.3k 27.4k TG̃
62.5 65.1 46.6 63.1 50.1 60.1 63.5 97.6 109.2 MILP

4 1.9 116.1 1.3k 9.7k 41.5k 113.2k 295.6k 478.1k - TG̃
87.5 58.7 34.3 35.3 54.3 65.0 88.0 98.9 145.6 MILP

Travelers
Dilemma
Game

2 .2 .2 .6 1.5 3.7 8.4 18.9 40.5 76 TG̃
21.2 59.3 78.4 89.1 76.6 95.8 103.2 93.9 182.8 MILP

3 .3 2.7 20.3 104.2 365.4 932.9 2.3k 6.3k 13.1k TG̃
51.0 71.8 59.5 643.4 578.8 217.8 689.2 1k 1.6k MILP

4 1.5 47.4 535.7 3.9k 18.9k 77.4k 271.8k - - TG̃
18.8 26.6 257.4 525.9 794.4 647.3 1.3k 632.8 670.5 MILP

Table 3. Avg. execution time of MILP & TG̃ (ms), n = 2

utility of a for player i in game Gθ. In our experiments, we
vary the number of players from 2 to 6, the number of types
from 2 to 8 and the number of actions from 2 to 15. For each
combination of parameters, we have generated 50 instances
and measured the time necessary to get a Π-NE (or a neg-
ative result). We present in the following results of 3 game
classes: Covariant games, Dispersion games and Travelers
Dilemma game. All experiments were conducted on an In-
tel Xeon E5540 processor and 64GB RAM workstation. We
used CPLEX [CPLEX, 2009] as a MILP solver. We also im-
plemented the transformation of the Π-game as a normal form
game (TG̃) in Java 8. This method, which is exponential in
time and space, cannot be considered as a solving method,
and this is supported by the experimental results. The im-
plementation of the TG̃ and MILP solver are available online
[Ben Amor et al., 2019]. In our evaluation, we bounded the
execution time to 10 minutes as in [Sandholm et al., 2005;
Porter et al., 2008] experiments.

Table 2 and Table 3 present, respectively, the average mem-
ory (in MB) required to decide whether the problem admits a
Π-NE or not and the average of execution time (in millisec-
onds) needed to find one Π-NE (best results are in bold). We
vary the |Ai| from 2 to 10 and |Θi| from 2 to 4 for player
i while fixing n = 2. “-” mentions that the execution time
exceeds 10 minutes. Table 2 confirms that TG̃ is a very
naive (exponential) way and that cannot scale up contrarily
to MILP which requires less memory, e.g., TG̃ requires more
than 3, 4MB when MILP needs just 23MB to solve Travel-
ers Dilemma game with 2 players, 10 actions and 4 types per
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Number of Actions
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Figure 1. Avg. execution time of MILP (s), n = 2

Θi n 2 3 4 5 6 7

Covariant
Game

2 13 50 244 720 4k 49.5k
3 22 587 1k 8k 26.5k -
4 24 1.5k 3.6k 50.1k - -
5 33 2.3k 30.2k 213.6k - -

Dispersion Game
2 12 49 2.5k 6.8k 82.9k 33.7k
3 63 350 9.5k 32.2k 14.8k -
4 87 788 14.8k 42.9k - -
5 48 480 19.5k 107.1k - -

Travelers Dilemma
Game

2 21 73 35 1k 4.4k 35.5k
3 19 224 648 5.4k 155.5k -
4 19 139 1.5k 40.1k -
5 51 173 2.3k 185.6k - -

Table 4. Avg. execution time of MILP (ms), |Ai| = 2 i = 1..7

player. The non-scalability of TG̃ is also observable in Ta-
ble 3 showing that this latter cannot be used in practice. We
also deepened our study of MILP by varying its complexity
parameters. More precisely, we first vary the number of ac-
tions from 2 to 15 and the number of types from 2 to 8 with
two players (n = 2) (see Figure 1). Then, we vary n from 2 to
7 and the number of types from 2 to 5 while fixing the number
of actions to 2 (see Table 4). Globally MILP results confirm
the feasibility of the qualitative approach of incomplete game
advocated by this paper. Results show that MILP has almost
the same behavior with different games and that the number
of players highly impacts the execution time which is con-
sistent with the theoretical complexity since adding a player
directly increases |Θ| and |A|.

7 Conclusion
The main contributions of this paper are threefold: first, it
proposes possibilistic games as new representation frame-
work for (ordinal) games under possibilistic incomplete in-
formation and extends the standard notion of Nash Equilib-
rium to such games. Second, it proposes a transformation
from possibilistic games to normal form games with complete
information and shows the equivalence between pure Nash
Equilibria in both frameworks. Third, it proves that finding a
pure Nash Equilibrium in a Π-game is a NP-hard problem and
proposes a Mixed-integer linear constraints system model to
find a possibilistic Nash Equilibrium if any. The experimen-
tal study we led shows that, except when the number of types
and actions are very small, the MILP approach outperforms
the transformation to normal form game approach. As fu-
ture work, we first plan to define possibilistic mixed NE in
possibilistic games and design polynomial time solution al-
gorithms to find them, in the line of [Ben Amor et al., 2017].
Another interesting line of research is to explore concisely
expressed possibilistic games, in the line of Bayesian action-
graph games [Jiang and Leyton-Brown, 2010], for example.
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