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Abstract. This paper gives an overview of small-t ALCQe, an experi-
mental programming environment for a graph transformation language
that is based on the ALCQ description logic. small-tALC Qe not only
allows developers coding and executing graph transformations but also
assists them in analyzing and verifying their codes. We describe the com-
ponents that make up small-tALC Qe: the transformation language itself,
the compiler for generating executable transformations, the code ana-
lyzers and the prover for reasoning about transformations. All of them
interact under the hood of an Eclipse user interface to provide different
levels of assistance for achieving correct graph transformations.

Keywords: Graph Transformations, Software Analysis, Program Verification,
Program Testing, Counterexample Generation

1 Introduction

Transformations of graph structures in computer science appear in a rather pure
form as model transformations or modifications of graph databases, and in a
more disguised form in programs that manipulate pointer structures. In many
cases, it is necessary to associate a notion of correctness with the transformation,
such as preservation of coherence of a model wrt. a meta model or a database wrt.
a database schema. Many theoretical studies have been done, often separately,
on executing and verifying graph transformations. However, there have been few
works offering practical assistance throughout the development to implement
correct graph transformations. Thus, writing graph transformations and ensuring
their correctness is still challenging, especially for real life applications.

Motivated by this lack, we aim at integrating various tools to assist both
developing and reasoning about graph transformations. This paper presents an
experimental environment that provides the assistance in coding, executing and
verifying transformations written in small-t ALCQ, a graph transformation lan-
guage based on the ALCQ description logic.

For reasoning about transformations, two principal methods are employed:
automated proofs and code analysis. These two methods are complementary:



proofs provide an infallible evidence correctness, but are limited in expressiveness
(at least when considering full automation, as we do), whereas analysis can
deal with a wider spectrum of language features and more expressive assertions,
but do not provide full coverage. Proofs and static analysis are done statically,
whereas dynamic analysis need an execution mechanism, which is also provided
in our environment.

We focus on pure graph transformations and do not deal with the transfor-
mations that are combined with manipulations of other data types, which are
more of theoretical interest than practically feasible. An operational prototype of
the presented framework has been implemented and is available for download.?.

The paper begins with a brief outline of the syntax and semantics of the
graph transformation language small-t. ALCQ in Section 2. Then we dive into the
description of the tools constituting our framework: the compiler for producing
executable code (Section 3.1), the dynamic and static analyzers (Sections 3.2 and
3.3) for helping to construct correct code and deriving appropriate program spec-
ifications, the prover (Section 3.4) for verifying the correctness of programs. The
possible interactions of these components during the development are sketched
out in Section 4. We give some discussion on related works in (Section 5) and
wrap up the paper with possible improvements and extensions in (Section 6).

2 Graph Transformation Language

small-tALCQ language is an imperative-style programming language based on
the ALCQ description logic [1], which is the logical counterpart of knowledge
representation formalisms such as OWL [2] and modeling frameworks such as
UML [3]. The distinctive characteristics of this graph transformation language
are a precisely and formally defined semantics and the tight integration of logical
aspects with the intended execution mechanism, with the overall aim to obtain
a decidable calculus for reasoning about program correctness in a pre- / post-
condition style.

Our logic is a three-tier framework, the first level being Description Logic
(DL) concepts (or classes, thus collections of individuals), the second level facts,
the third level formulas (Boolean combinations of facts and a simple form of
quantification). Formulas occur not only in assertions (such as pre- and post-
conditions), but also in statements (Boolean conditions and select statement).

Complex concepts can be constructed, via concept complement, intersec-
tion and union. Qualified number restrictions permit to express cardinality con-
straints of the form x: (< n R C) or x: (> n R C) saying that x has less than
(respectively at least) n successors of class C via role R (relation between indi-
viduals). The abstract syntax of concepts C can be defined by the grammar:

Cu=1 (empty concept) | a (atomic concept)
| IC (complement)
| ¢ M C  (intersection) |C U C  (union)
| (> nRC) (at most) | (< n RC) (at least)

4 https://www.irit.fr/ Martin.Strecker/CLIMT/Software/smalltalc.html



Facts make assertions about an instance being an element of a concept, and
about being in a relation. The grammar of facts is defined as follows:
fact ::= i : C (instance of concept)
| ¢ri (instance of role)
| ¢ !ri (instance of role complement)
A formula is a boolean combination of facts. It is represented by the following
grammar:
form = L | fact | ~form
| form A form | formV form
The transformation language features first the elementary instructions as
delete and add for manipulating graph elements. The select statement selects
non-deterministically a node having the property as specified in the formula
following with.The remaining language constructors are sequence of statements,
looping statement and conditional branching statements as it is defined in the
following grammar:

stmt ::= skip (empty statement)
| select i with form (assignment)
| delete(i: C) (delete element from concept)
| add(i: C) (add element to concept)
| delete(iri) (delete edge from relation)
| add(iri) (insert edge in relation)
| stmt ; stmt (sequence)
|

if form then stmt else stmt
| while form do stmt

A small-tALCQ program consists of a sequence of transformation rules. A
rule is structured into three parts: a precondition, the transformation code (a
sequence of statements) and a postcondition. We give in Figure 1. an illustrat-
ing example of a transformation rule written in small-tALCQ. A more detailed
description of the language can be found in [4].

pre: (a : A) && (a : (>= 3 R A));
select n with (a R n) & (n : A);
delete(a R n);

delete(a : A);

post: (a : 'A) && (a : (>= 2 R A));

Fig. 1: Example of a rule

In this example, the precondition expresses that a is a node of concept (or
class) A and that a is linked to at least three successors of class A via role (or arc,
attribute) R. The rule first selects a node n that is R-linked to a and which is of
class A. Then, it deletes this link and removes a from class A. It seems plausible
that after these transformations, the postcondition holds: a is no more of class
A (i.e. , a belongs to A’s complement !A) and a has at least two R-successors of
class A.



Many popular applications have been developed using small-t ALCQ, as the
model transformation from class diagrams to relational data base models [5],
and Ludo, an English game which is one of the case studies of the AGTIVE
2007 Tool Contest [6].

3 Supporting Tools

Figure 2 shows the “big picture” of our framework and its components. Each
component provides a specific support for small-t ALCQ programs: the compiler
translates a small-t.ALC Q program to an executable code; the dynamic analyzer
examines the behavior of a running a program; the static analyzer and the prover
use different reasoning mechanisms to analyze programs without executing them.
The development of each component is based on an implementation of small-
tALCQ’s semantics in an appropriate foundation. These components will be
further described in the following.
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Fig. 2: Overview of the Architecture

3.1 Compiler

The execution engine of small-t ALCQ is based on Java. In this context, a Java
API was developed implementing the semantics of small-t ALCQ’s instructions.
This API, called small-t.ALCQ2Java, allows defining a graph and translating a
small-t ALCQ program into an executable Java target code. In order to make the
execution automatic, a small-t.ALC Q compiler was developed using the compiler
generator Coco/R°.

Within the small-t ALC Q2Java API, a graph is represented by the Java class
Graph which is composed of sets of Node and Fdge (Figure 3a). An edge typed
by a Role connects two Nodes possibly belonging to one or several concepts.
Note that an atomic concept, as well as, a concept complement, intersection,
union and restriction are all sub-classes of the class Concept as it is defined by
the small-t ALCQ grammar.

5 http://www.ssw.uni-1linz.ac.at/Coco/#Docu
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Fig. 3: Java API classes

As it is mentioned in the grammar also, a formula is a Boolean combination
of facts. The most appropriate pattern to describe this composition is the com-
posite pattern where Formula is the component, Fact represents the leaf on the
one hand, and Conjunction, Disjunction and Negation represent sub-classes of
the composite FormulasCombination on the other (Figure 3b). Fact assertions
are represented by sub-classes of the class Fact. Each statement of our language
is implemented by a Java static method defined in a class named STALCQ.

The Code 1.1 shows the translation of the program introduced in Figure 1
into Java. Note that the small-tALCQ select statement allows the assignment
of one or more instances satisfying a given formula. This assignment is done by
a non-deterministic way. Therefore, this statement requires first translating the
given formula into Java by storing all the elements satisfying the formula into
the map data structure, then selecting randomly the required element from the
map. Thus, each execution of a code in which it occurs a select statement, may
provide different output graph even if it has the same input graph.

Code 1.1: Java code for the rule in Figure 1

// select n with (a R n) && (n : A)

FormulasCombination f1 = new Conjunction();
f1.add(r.createRoleInstances(graph,"a", "R","n")); //a R n
f1.add(i.createConceptInstances(graph,'n",new AtomicConcept("A"))); //n:A
List<String> p = new LinkedList<String>();

p-add("n");

Map<String, Node> m = STALCQ.select(graph, p, fl.instancesOf(graph));
Node n = m.get("n"); // select n

// delete (a R n);

STALCQ.delete(graph, a, "R", n);

// delete (a : A);

STALCQ.delete(graph, a, "A");

3.2 Dynamic Analyzer

Our dynamic analysis aims to find inconsistencies between a transformation
code and its specifications by executing the transformation code, then applying



automated tests on the output graph. The test cases are generated from the
post-condition. The input graph can be generated automatically from the pre-
condition or can be given by the user.

Before presenting the diagnostic provided by the dynamic analyzer, let us
introduce below how graphs can be generated from a pre-condition formula,
and how test cases are also generated from a post-condition using small-tALCQ
testing library.

3.2.1 Graph Generator

In small-t ALCQ, a formula can be represented graphically by a graph and vice
versa. Actually, each fact of a formula represents the existence of a node or an
edge in a graph. Thus, the generation of a source graph from the precondition is
done by translating each fact in the precondition’s formula into a corresponding
possible Java statement in order to construct one or more objects of the class
Graph. Having a few number of facts in the language makes generation of a
graph from a formula not so difficult.

For example, given the precondition of the example in Figure 1, the corre-
sponding typical graph (Figure 4a) consists of a node a of concept A, connected
by R-edges to three anonymous nodes of concept A.

D
COHCHTA CHCHCA

(a) Typical graph (b) Generated graph

Fig. 4: Input graphs

Having only one graph as data input for testing is not always sufficient be-
cause the test coverage is very low. To test more thoroughly graph transforma-
tions, more possible input graphs should be generated. For this purpose, fist we
vary the number n of the restriction in a precondition to generate a set of typical
graphs presenting different graph families. Then, for a graph family we can gen-
erate more graphs that are isomorphic to the typical graphs of the family® on
the basis of Molloy-Reed algorithm [7,8]. This algorithm consists of first cutting
all the edges between nodes in the graph when preserving the number of each
node’s outgoing edges, then pairing all the half-edges randomly. In our case, the
second phase of the algorithm to match a pair of half-edges has to take into
account the types of examined edges and the concepts of examined nodes. For
example we cannot pair an outgoing edge R with an incoming edge S, or connect
a node of concept C to a concept C1 in case it was previously connected to a node
of concept C2. By applying this algorithm to the typical graph in the Figure 4a,
we can obtain at least the graph of the Figure 4b if we consider that the number
corresponding to the restriction is equal to 3.

5 Without considering isolated nodes



3.2.2 Test cases Generator

In order to test structural properties of a graph transformed by the execution
of a small-t. ALCQ program, a unit testing library was defined and called small-
tALCQ testing library. Its implementation is based on the small-tALCQ Java
API and the unit testing framework JUnit. The assertion methods defined in
this library enable tests on existence and multiplicity of graph’s elements. For
the moment, these assertion methods are written in Java, a XUnit framework
for the small-tALCQ language is under construction. As mentioned before, a
formula can be translated into a graph satisfying the formula. In other words,
each fact of a small-t.ALCQ’s formula represents a property of a graph’s element.
Thus, by associating each fact to a corresponding assertion in the small-tALCQ
unit testing library, we can generate a set of test cases from the given formula
to test if a given graph satisfies the requires properties. Table 1 shows some of
the tests methods that are associated to the facts of small-t ALCQ language.

Table 1: Assertions associated to small-t ALCQ facts

i:C assertExistNode(GtlGraph g, Instance i, Concept C)

i:!cC assertNotExistNode(GtlGraph g, Instance i, Concept C)

irj assertExistEdge(GtlGraph g, Instance i, Role r, Instance j)
ilr j assertNotExistEdge(GtlGraph g, Instance i, Role r, Instance j)
i : (<= n R C)|assertAtMostNumberOutgoingEdges(g, i, C, R, Integer n)

i : (>= n R C)|assertAtLeastNumberOutgoingEdges(g, i, C, R, Integer n)

3.2.3 Diagnostic

Let us get back to the main issue, our dynamic analyzer. If the pre- and post-
conditions of a program are given, small-t.ALCQ unit testing library can be used
in the context of a dynamic analyzer to generate test cases that allow detecting
possible inconsistencies between a transformation code and its specifications.
This can be done automatically by generating an input graph from the given
pre-condition, generating test cases from the given postcondition, then executing
the examined transformation code on the source graph and finally applying the
generated assertions on the program’s target graph.

For the post-condition of the given example, the following test cases are
automatically generated:

— assertNotExistNode(graph, a, A) which corresponds to the fact a : !A.
— assertAtLeastNumberOutgoingEdges(graph, a, A, R, 2) which corresponds
to the facta : (>= 2 R A)

As the select statement in the code is non-deterministic, executing the same
transformation code several times may not always give the same output graph.
Thus, the generated test cases may pass for one execution and fail for another,
even if it always has the same input graph. For example, considering the graph
in Figure 4b as the rule input, we have these two output graphs according to the



configuration chosen in the select statement between the two possible configu-
rations: if one of the anonymous nodes is selected as n, the output graph will be
the graph 5a, contrariwise, if the node a is selected as n, the output graph will
be the graph 5b.

o D
CHCHCH CAHCHCD
(a) (b)

Fig. 5: Output graphs

The generated tests pass by applying them on the first graph but fail by
applying them on the second one. In particular, the second test which verifies
that the number of the edges outgoing from the node a to nodes of concept A
is equal 2, is the one that fails. This indicates that there is an inconsistency
between fact a : (>= 2 R A) in the postcondition and the code. In this case,
the developer tends to change this fact intoa : (>= 1 R A).

3.3 Static Analyzer

Unlike the Dynamic Analyzer which executes the program to find inconsisten-
cies between a code and its specifications, the Static Analyzer checks, without
executing the code, the inconsistencies between the given specifications and the
behavior of the code implementing these specifications. Starting from the given
pre-condition, the Static Analyzer analyses the code statically to extract the
condition that will be satisfied after the execution of the code. Comparing the
extracted conditions with the given post-condition using automated test cases,
Static Analyzer can inform developers if the behavior of the code corresponds
to the given condition or not.

To do so, first the Static Analyzer analyses the code’s control flow to generate
all possible execution paths and then executes each path symbolically to con-
struct the post-condition incrementally from the code. Starting by the formula
representing the given precondition, the static analysis of the code consists of
updating the constructed formula according to each encountered statement on
the examined path.

The comparison between the extracted post-condition and the given one will
be done by generating test cases from the extracted post-condition and then
executing them on the typical graph generated from the given post-condition,
also by generating test cases from the given post-condition and then executing
them on the typical graph of the extracted post-condition.

Considering always the same example in Figure 1, let us show how our static
analyzer uses a forward computation to extract the postcondition with respect
to the given code starting from the given precondition. The static analysis starts
calculating the postcondition Q by assigning to it the precondition’s formula as
it is shown in Figure 6. After the select statement, Q stays the same because a



select statement is nothing but an assignment statement that does not affect the
condition of the program. After the delete(a R n) statement, the static ana-
lyzer decreases the number of R-successors of class A. Finally, Q will be updated
after the last statement by replacing the fact (a : A) in Q with the fact (a :
'A) and decrementing the number of R-successors of class A, since the node a
may have been one of the nodes that have an R-incoming edge and it is no more
of concept A. Therefore, the final extracted formula is Q = (a :'A) && (a :
(>= 1R M).

pre: (a : A) & (a : (>= 3 R A));
(1) @ = (a : 4) && (a : (>= 3 R 4))
select n with (a Rn) & (n : A);
(2) @ = (a : 4) & (a : (>= 3 R 4))
delete(a R n);
3) § =(a: 4) && (a : (>= 2R 4))
delete(a : A);
(4) Q = (a : '4) && (a : (>=1 R 4))

Fig. 6: Calculating the post-condition

In one hand, a typical output graph g (Figure 7a) is generated from the given
post-condition: g is composed of a node a that is not of concept A connected by R-
edge to two nodes of concept A. Then the static analyzer generates automatically
from the extracted post-condition two test cases to be applied on g:

— assertNotExistNode(g, a, A) which corresponds to the fact a : !A.
— assertAtLeastNumberOutgoingEdges(g, a, A, R, 2) which corresponds
to the fact a : (>= 2 R A).

a:lA a:'A

(a) Graph of the given post-condition  (b) Graph of the extracted post-condition

Fig. 7: Graphs generated from the given and extracted post-conditions

Every test that fails corresponds to an inconsistency between the given and
the extracted postconditions. In our case, the tests pass so we conclude that the
given post-condition implies the extracted one.

In the other hand, to check whether the implication holds in the opposite
direction, tests cases are generated from the given post-condition and applied
on the graph generated from the extracted one (Figure 7b). The test that corre-
sponds to the fact a :!A passes. However, the test corresponding to the fact a

(>= 2 R A) fails. This test result gives the developer a warning and help him
realizing that there is less than two R-edges outgoing from the node a to nodes
of concept A.



The static analyzer can perform the same process to extract a precondition
starting from a postcondition. However, this is done by executing paths statically
in a backward mode instead of a forward mode, i.e. by analyzing the code starting
from the last statement then going up until the first statement.

3.4 Prover

The purpose of the proof component of our framework is to verify rules with
respect to their pre- and postconditions. The setup is rather traditional: given a
triple (pre, statements, post), we compute the weakest precondition wp (statements,
post) of the rule transformations statements with respect to the postcondition
post, and then verify the implication pre — wp(statements, post).

This general, well-understood setup is complicated by several factors:

— the description logic ALCQ has no Boolean operators for combining facts,
such as (a : 'A) && (a : (>= 2 R A)) in our example. These are rather
straightforward to add.

— ALCQ is not closed under substitutions that occur when computing weakest
preconditions. In our example, computing wp for the statement delete (a R
n) and postcondition (a : (>= 2 R A)) would yield a formula (a : (>= 2
(R - {(a, n)}) A)), where (R - {(a, n)}) is the relation R from which
the pair (a, n) has been removed. This is syntactically not a valid ALCQ
formula and demonstrably [9] not equivalent to one.

The solution we propose is a new tableau method that can handle Boolean
combinations of facts, that treats substitutions as a separate formula constructor
and that progressively eliminates them during the tableau procedure.

A failed run of the prover results in an open tableau from which a counter
model can be extracted, which is displayed in the form of a graph with JGraph”
a modifier|. Thus, when the small-t ALCQ rule of Figure 8 is submitted to the
prover, the proof fails and the counterexample graph of Figure 8 is produced.

Fig. 8: Counterexample

The counterexample is a model of the precondition which does not satisfy
the postcondition when applying the rule of the Figure 8.

We have formalized the operational semantics and the assertion logic in the
Isabelle proof assistant [10], and we have formally verified that our logical for-
malism is sound with respect to the operational semantics [4].

The Isabelle formalization (written in a functional, ML-style language) is
extracted to Scala [11], thus providing a highly reliable code base. This Scala

" http://www.jgraph.com/



code is integrated into the small-t. ALCQ environment using Java glue code with
the parser generated by the compiler generator Coco/R.

4 Intended Interaction

Our ultimate goal is writing correct graph transformations. The prover is there-
fore the cornerstone of our environment. However, it requires a correct definition
of a Hoare’s triple (pre, statements, post) coding the transformation, which is
sometimes not obvious to obtain at the first attempt. In practice, graph trans-
formations programming is an incremental and iterative cognition process that
needs a more flexible and pragmatic supports. Thus, we provide assistance for
different levels of program maturity and let developers deciding how to use them
together to define a provably correct Hoare triple.

In the ideal case, an erudite developer can successfully suggest the correct
Hoare’s triple to the prover in just one try. Then he can continue with a reliable
transformation process by using the compiler to generate the proved executable
program that transforms any source graph complied with the precondition to
a target graph respecting the postcondition. As stated earlier, this situation is
often too good to be true. A more practical situation is starting to design the
initial steps of a transformation program without knowing precisely and fully
its technical specification. The developers may need many iterations to integrate
all features of the transformation. In that case, we can imagine, as described in
Figure 9, some possible interactions between the proposed tools to evolve the
rule transformation within a development iteration.

i | : Static Analyzer | : Prover | | : Dynamic Analyzer
'
1 construct specification H : :
i i
i i
.................... i 1
B prove the triplet (pre, code, post) H H
H d 1
failure, colnterexample :| i
_|€ -------------------- ! ---------------------- T :
1 detect the inconsistencies by injecting the counterexample as a graph input 1
H 1 =
i inconsistencies 1 H
| [€mmmmmmn e b ittt SpmTmmmmmmmmmmmmsmsmmmmes
i prove the new triplet (pre, code, post) h E
] Ll 1
j i
success !
<‘ """""""""" { ] :
1

L 1
'

Fig.9: A scenario of tools interaction

First the developer can use the static analyzer to elaborate the properties
concerning pre- and post-conditions of a rule. By examining the rule in back-
ward mode, static analyzer provides a diagnostic on what the precondition must
convey with respect to the rule’s code and the given post-condition. The static
analysis in forward mode helps elicit post-condition from the rule’s code and a



given precondition. When having a valid Hoare’s triple, the developer can use
the prover to verify the correctness of the rule. If the proofs fail, the counterex-
ample generated by the prover can be sent to the dynamic analyzer to be tested
using the test cases generated from the postcondition of the rule. By providing
an instantaneous feedback about the rule behavior, the dynamic analyzer can
allow detecting defects in transformation code that make the proofs failed. After
correcting the code, the new Hoare’s triple can be submitted again to the prover.
If this time the triple is successfully proved, the current iteration is completed
and the developer can start a new iteration to add new features or rules to his
transformation program.

In summary, our environment aims at providing a user assistance in writing
both rule’s statements and its specifications. We choose a testing framework as
infrastructure for providing immediate feedback and detailed diagnostics. On
the one hand, the dynamic analyzer helps correct rule codes with respect to
given specifications. On the other hand, the static analyzer helps construct pre-
and post-conditions from a given rule code. Both can complement each other to
produce a valid Hoare triple of a rule for the prover.

5 Related works

Some graph and model transformation tools such as Groove [12], Moflon [13]
and Viatra [14] are very well developed and offer model checking facilities. Our
approach aims at a verification method based on deductive program verification.
Furthermore, we use a precisely defined semantics that is itself formalized in a
proof assistant.

There are several deductive verification tools [15,16] that go in the direc-
tion of graph transformations. They are usually based on much more expressive
logics, usually first order logic and thus not decidable. A graph transformation
computation can also be described by a Monadic Second-Order traduction com-
bining not only schemas, i.e. structural constraints on the source and target
graphs, but also transformations [17]. We aim at verification in a decidable, but
expressive fragment of first-order logic.

Test cases can be based on verification results. This is the case for CnC
(Check ‘n’ Crash) in order to exhibit Java errors [18]. The approach considers
error reports checked by the Extended Static Checker for Java (ESC/Java) as
precondition violations. These abstract conditions define constraints on program
values which entail a crash when the source code under analysis is executed with
such test inputs. In the same way, DyTa, an automated defect detection tool
for C# [19], reduces the number of false positives detected by static analysis
techniques. To confirm these potential defects reported by the static analyzer,
the dynamic phase generates test inputs to cover feasible paths. Our objective
is not to automatically detect software defects, but to help coding a valid Hoare
triple using independent but complementary tools.

Interactive theorem provers are now more suitable for verifying programs as
the interaction between the end-user and the verification system is shortened,



in particular through the logic used by the prover and its decision procedures.
This approach is advocated by the Dafny IDE [20], the KeY tool [21] for JAVA
CARD applications and AutoProof [22] for Eiffel. However, for imperative lan-
guages, one can often observe two specific dialects when reasoning on a program:
the “programming logic” itself and the logic needed by the prover. In our case,
statements and specifications are based on the same ALCQ description logic.

Our static analyzer infers specifications from code through symbolic exe-
cution. This technique has been used by [23] to suggest loop invariants from
loop bodies. A loop body is so analyzed during a single dynamic symbolic ex-
ecution. considering a rule annotated with its specification as a whole, we are
not concerned by loop generation invariants. However, when proving a rule, we
characterize all rule executions: assuming the precondition, the code ensures the
postcondition. This stamps a summarization of the rule. We envisage to apply
the same approach to summarize loop bodies of a rule.

The language GP 2 [24] is close to small-t ALCQ. Building blocks in GP
programs are conditional rule schemata. A rule is applied to a left graph and
produces a right graph, according to a double-pushout computation with relabel-
ing. Nodes and edges of a rule schema are so labeled by sequences of expressions
over parameters of type integer, string and list. Condition of a rule schema can
check the existence of a specific labeled edge between two matched nodes, or
the in/out degree of a node. small-t.ALCQ does not propose such computations
on nodes and edges: individuals (nodes) and roles (edges) within a rule only
define local structural properties that the graph must have. We do not define
variables and values in order to simplify the small-t. ALCQ computation model.
The pre- and postconditions of our calculus are ALCQ formulae. The pre- and
post-conditions of GP are E-conditions [25] i.e. nested graph conditions extended
with expressions as labels and assignment constraints for specifying properties of
labels [26]. Proof rules for GP programs require two transformations: one (App)
to transform a set of conditional rule schemata into an E-condition, and one
(Pre) for computing the source graph weakest precondition leading to a target
graph. Tools to help the designer when a fail occurs are not addressed in GP.

6 Conclusion

Our tool occupies a particular position in a wider landscape of transformation,
verification and testing engines. As relative newcomer, it is much less developed
than many specialized tools, but it has a combination of features that, we think,
make it interesting.

Several important questions raised from our discussion on how to ensure that
the interaction between the small-t. ALC Qe components (proofs, tests, execution
semantics) is itself sound. For example, is the execution of a program based on
the same semantics as the semantics employed by the prover? This paper gives
at least an partial answer and sketch further developments.

As verification conditions for loop statements need invariants, we plan to au-
tomatically infer and test invariant candidates gathered from their corresponding



postcondition. We also aim at enhancing interface functionalities between the an-
alyzers and the prover. For instance, one can imagine first compute by a static
analysis a precondition of a path and then attempt to prove that this condition
implies the weakest precondition for this path. Another stimulating topic is to
combine formal methods and agile programming in developing small-tALCQ to
take advantages from agile best practices such as the Test Driven Development

(TDD).
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