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Microstructure of the near-wall layer of filtration-induced colloidal
assembly

Mohand Larbi Mokrane,a,b † Térence Desclaux,a † Jeffrey Morris,c Pierre Josephb and Olivier
Liota,b ∗

This paper describes an experimental study of filtration of a colloidal suspension using microfluidic
devices. A suspension of micrometer-scale colloids flows through parallel slit-shaped pores at fixed
pressure drop. Clogs and cakes are systematically observed at pore entrance, for variable applied
pressure drop and ionic strength. Based on image analysis of the layer of colloids close to the device
wall, global and local studies are performed to analyse in detail the near-wall layer microstructure.
Whereas global porosity of this layer does not seem to be affected by ionic strength and applied
pressure drop, a local study shows some heterogeneity: clogs are more porous at the vicinity of
the pore than far away. An analysis of medium-range order using radial distribution function shows
a slightly more organized state at high ionic strength. This is confirmed by a local analysis using
two-dimension continuous wavelet decomposition: the typical size of crystals of colloids is larger for
low ionic strength, and it increases with distance from the pores. We bring these results together in
a phase diagram involving colloid-colloid repulsive interactions and fluid velocity.

1 Introduction
Filtration is a central process in many fields of application, such
as water treatment or bioprocessing. Membrane fouling and the
induced hydraulic resistance enhancement are key problems for
improving filtration processes (power consumption, membranes’
lifetime). When a suspension flows through a membrane, many
objects (colloids, cells, bacteria, aggregates) can accumulate at
the membrane surface. The efficiency of the filtration decreases
as the hydraulic resistance induced by accumulated particles rises.
This has a dramatic impact on oil recovery1, ink-jet printing2,
biodetection3 or water infiltration in soils4 and even in brain dis-
eases5. For decades, filtration studies have focused on membrane
scale and global hydraulic response6,7 or membrane materials8.
Since the advent of microfluidics at the beginning of the 21st cen-
tury, the study of microfiltration has become a very active field of
research9. The use of microfluidic devices is indeed an efficient
way to understand the key microscopic mechanisms involved dur-
ing the filtration process. Wyss et al.10 were precursors in this do-
main, followed by many others, as detailed in a recent review11.

Different strategies and scales have been explored. At parti-
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cle level, the first steps of clogging process have been studied
using confocal microscopy12,13. Adhesion of one particle on a
pore surface involves different parameters or mechanisms such as
pore geometry14,15 or Brownian motion16. At pore scale, many
studies proposed experimental and/or theoretical-numerical ap-
proaches10,17–21 to clogging dynamics. The upscaling of pore-
scale results towards membrane scale is a recent development
using parallel pore arrays21–23 or more complex porous-like me-
dia24,25. This revealed some complex mechanisms of “cross-talk”
between pores during filtration processes. Especially, previous
work of our team22 revealed that pore redistribution by Brownian
diffusion accelerates the clogging process. The proposed model is
based on assumptions about clog hydraulic permeability.

In such (sub-)micrometric devices, direct measurements of flow
rate under given pressure drop are not accessible using commer-
cial apparatus. Some indirect measurements are possible26. But a
direct analysis of the clog micro-structure can provide insights on
clog permeability. Up to now, the first studies of pore microstruc-
ture have been performed for soft particle microfiltration such as
microgel27–30. These studies focused on microgels deformation,
but they observed different structures of the filtration cake with
amorphous or crystalline behaviours depending on forcing. To
our knowledge, there is no systematic study of colloidal clog mi-
crostructure.

Contrary to deformable microgels, colloidal particles of the
form we study are essentially rigid and the physico-chemical sur-
face properties are crucial to understand the way they accumu-
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late under external forcing. At colloidal scale (. 1 µm), typical
interaction scales are similar to particle diameter. In addition,
Brownian diffusion brings an extra energy source which can al-
low energy barrier crossing necessary for adhesion; or influence
particle spatial organisation31.

The Derjaguin, Landau, Verwey and Overbeek (DLVO) theory,
consisting of a superposition of van der Waals interactions and
electrostatics in an aqueous solution, is the standard approach to
explain colloid-colloid or colloid-wall interactions32–35.

The repulsive colloid-colloid or surface-colloid interactions are
caused by Electrical Double Layer (EDL) interactions33,34. The
zeta potential ζ corresponds to the electric potential at the slip
plane between the two sub-layers composing the EDL. The typi-
cal thickness of the total layer, the Debye length, corresponds to
electrostatic surface charge screening. It is expressed as:

κ
−1 =

√
εrε0kBT

e2 ∑i ρ∞,iz2
i
, (1)

where εr is the relative dielectric constant of the fluid, ε0 the vac-
uum electric permittivity, kB the Boltzmann constant, T the tem-
perature, e the elementary charge, ρ∞,i the bulk concentration of
ion i and zi its valence. Consequently, the Debye layer is inversely
proportional to bulk concentration to the power 1/2: the more
concentrated the solution, the thinner the EDL. The ionic strength
is defined as:

I =
1
2 ∑

i
ρ∞,iz2

i . (2)

So we can write κ−1 ∝ 1/
√

I.
The total interaction energy is the combination of electrostatic

and van der Waals interactions. When the distance between
two objects is reduced, a secondary minimum appears (which is
known to have a significant impact on filtration36). The energy
profile contains a primary minimum at very low inter-particle dis-
tance. A particle in this primary minimum is at a much lower
energy than that needed to escape, thus it is adhered through van
der Waals interactions.

The second main mechanism at play in assembling colloids is
Brownian motion. When a colloid is advected by surrounding
flow, the competition between advection and Brownian diffusion
can be interpreted using the dimensionless Péclet number:

Pe =
advective transport
diffusive transport

=
3πηd2U

kBT
, (3)

with η the fluid viscosity, d the particle diameter and U the typical
advection velocity. A PÃl’clet number smaller than 1 means that
diffusion is more important than advection, which can easily be
reached when colloids are advected at a decreasing velocity dur-
ing membrane fouling process. This mechanism (shear, Brownian
motion) was added to the DLVO theory37,38, as well as hydrogen
bonds39, to build an extended DLVO theory (XDLVO).

This theoretical framework is essential to study microfiltration
of colloids. In this work we use an experimental approach to in-
vestigate the microstructure of filtration-induced colloidal assem-
bly in model microfluidic systems. We flow a suspension which

progressively clogs the pore. Spinning-disk confocal microscopy is
used to determine individual positions of accumulating particles
during clogging, for different ionic strengths and applied pressure
drops. We propose an analysis of the global clog properties before
focusing on more local tools to understand the heterogeneity in
the spatial organisation of the colloidal particles.

2 Experimental methods
We use a model-system approach in order to tightly control the
different parameters such as pore dimension, colloid size and
properties or ions concentration.

2.1 Particle suspension

Our experiments consist in flowing a suspension through micro-
fabricated slits to observe accumulation of colloids at their en-
trance. We use polystyrene beads (diameter d = 1±0.02 µm, den-
sity 1.05 g.cm−3) volume-loaded with fluorophore, so they can
be easily observed using fluorescence microscopy. Very nearly
monodisperse particles used insures that the particle diameter
distribution should not influence on clog structure. The parti-
cle surfaces are carboxylate-modified leading to a negative sur-
face charge, with measured zeta-potential near −50mV (pH ≈
6); measurements performed by dynamic light scattering on a
Malvern “Zeta-Sizer” instrument.

We use suspensions with volume fraction of φ = 4× 10−5.
For the 1 µm-diameter particles we use, this corresponds to
7.9× 104 particles per µL. By adding potassium chloride, two
ionic strengths are used to compare repulsive interaction effects:
I = 0.5mM and I = 5mM. This corresponds to κ−1 = 13nm and
κ−1 = 4nm respectively. Note that for the carboxylate-modified
latex particles we use, the Critical Coagulation Concentration in
presence of ions K+ is 51 mM40. Thus we work in a salt con-
centration range far from spontaneous particle coagulation. The
measured pH of the suspension is about 6.

In the ionic strength range we used, the force profile between
two carboxylate-modified latex particles versus interparticle dis-
tance reveals an electrostatic barrier whose height is about 0.5–
1 nN, and without secondary minimum41. If we consider the
glass-particle interaction, the profile is very similar with a barrier
of the same order of magnitude42.

2.2 Microfluidic device

A two-level microfabricated device is used to mimic membrane
constrictions. Four parallel slits of cross-section w× h = 5×
3.2 µm2 and length L = 50 µm are formed using plasma etching
in silicon. Separated by 50 µm (center to center), they are sup-
plied using inlet and outlet microfluidic channels (depth 18 µm,
width 300 µm). A 170 µm-thick borosilicate glass plate covers the
silicon-etched wafer, sealed using anodic bonding. In our pH and
saline conditions, the zeta potential of microfluidic chip materials
is about -30 mV for silicon43 and -55 mV for borosilicate44. In the
range of ionic strength we consider, surface charge of both silicon
and borosilicate are not fully screened44,45. Consequently, the
EDL interactions between surfaces and beads will be repulsive.
The design is presented in figure 1 (top). Due to the manufac-
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turing process, the slits connect the corners of the cross-section
of the inlet and outlet microchannels. Figure 1 (bottom) shows
a bright-field micrograph of the microfluidic device we used. At
40× magnification the slits can easily be observed.
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Fig. 1 Top: sketch of the microfluidic chip, slits (red) connect the
microfluidic channel (blue); slits are connected to microchannel corners.
Top view is on the left, side view is on the right. Bottom: micrograph
of the slits, 40× magnification.

The flow is imposed using a Fluigent pressure controller in the
range ∆P =10–100 mbar with precision under 0.1 mbar. In the
absence of any clog, this corresponds to a flow rate of Q =37–
370 nL.min−1. Note that the hydraulic radius rh of one slit and of
the microchannel are related as:

rmicrochannel
h = 8.7rslit

h (4)

Thus, as the hydraulic resistance scales as r−4
h , we consider that

the applied pressure drop is entirely a result of flow through the
slits.

2.3 Clog observation

The clogging dynamics and clog structure are observed using
confocal fluorescence microscopy (63× magnification). Unfor-
tunately, because of non-transparency of the beads, we cannot
access the 3D structure of the clogs. Confocal microscopy enables
removal of background light originating from out-of-plane parti-

cles. Thus, the particles at the wall layer are well resolved (see
figure 2), permitting accurate particle detection.

Clog formation is recorded with a frequency of 2 frames per
minute. Figure 2 shows a sequence of images at increasing
time under flow of the clog formation, recorded by confocal mi-
croscopy. Clogging is stopped after 2400 s for each experiment,
so that a similar amount of suspension flows through the device
during the experiment. The clog growth dynamics is beyond the
scope of this article; some insights into this topic can be found
in our previous work22. The “final” size of a clog will depend on
the (stochastic) first steps of the clogging process. Consequently,
when the experiment is stopped, some clogs have reached their
maximal size whereas other are still growing. We use custom
Python scripts to analyze the images and allow detection of both
clog contour and particle position with sub-pixel precision. Figure
3 shows an example of particle detection within a clog.

Due to the inability to unclog microfluidic devices in a satis-
factory way, each experiment was made in a new device, adding
complexity to the experimental process. A total of 11 experiments
are usable, at different pressure drops and two ionic strengths.
Three to four clogs are visible on each experiment, leading to
about 40 different clogs. Each point and curve presented below is
an average of three or four clogs extracted from the same experi-
ment.

10µm
t=0 s

t=800 s

t=1600 s

t=2400 s

Flow

Fig. 2 Confocal micrography timelapse of the clog formation. Red lines
represent the slits limits. ∆P = 20mbar and I = 5mM. The small clog
visible at the right-hand pore entrance (t = 0s) is due to particles flowing
in the device during experiment installation. It will not affect the clog
microstructure, only the clogging trigger.

Journal Name, [year], [vol.],1–13 | 3



Fig. 3 Detection of the clog particles, with zoom on a portion of the
clog. Red points correspond to detected particles’ position.

3 Results
Since we can only access the wall layer – the one in contact with
the borosilicate glass plate – a bias on spatial organisation could
be induced by this wall. However the similar zeta potential of
colloids and wall should limit this bias, if it exists, to geometric
and confinement factors. Moreover, the trends shown here are
generic to filtration processes, because they are related to parti-
cle/particle interactions, of the same nature as the ones with the
walls of our devices. Observations detailed below remain related
to physical and physico-chemical phenomena at play in filtration.
Two main parameters are discussed: applied pressure drop and
ionic strength.

3.1 Global wall layer properties
We start our analysis with global properties of the wall layer of the
clog obtained by microfiltration. Two attributes can be computed:
apparent porosity and radial distribution function.

We define the clog – at least the wall layer – apparent porosity
as:

ε = 1− Vparticles

Vclog
. (5)

Vparticles is the total volume of particles included in the wall
layer of the clog. If we note N the number of particles, we get
Vparticles = Nπd3/6. The wall layer clog volume Vclog is estimated
as the volume defined by the clog area Aclog on a thickness d:
Vclog = dAclog. Finally we have:

ε = 1−N
πd2

6Aclog
. (6)

Both N and Aclog are computed directly from the clog pictures
(figures 2 and 3). Figure 4 shows the apparent porosity for differ-
ent applied pressure drops and two ionic strengths (0.5 mM and
5 mM). We do not observe a visible trend when changing I and
applied pressure drop which means that the mean porosity of the
wall layer is not affected by these two parameters and remains in

the range 0.42–0.52. It is a bit higher than the expected porosity
for a 2D random packing of monodisperse spheres. Intuitively,
applying relatively weak pressure drop allows particles to find a
better location, so it could lead to a less porous clog, which is
not the case for these results. Actually, when we study the local
porosity (see next section), some spatial heterogeneities appear.
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Fig. 4 Apparent porosity of the wall layer of the clog, as a function of
the applied pressure drop and for two different ionic strengths. The two
dashed lines represent the random close packing and minimal porosity for
a 2D assembly of monodisperse spheres.

To go further than the ratio between void and solids in the clog,
we analyse the spatial organisation of the particles in the wall
layer of the clog. We consider the Radial Distribution Function
(RDF) which gives insights about average order at a distance r
from any particle. It can be expressed as (see e.g. Saw et al.46):

g(r) =
N

∑
i=1

ψi(r)/N

(N−1)
(

dSr

Aclog

) , (7)

where ψi(r) is the number of particle centers included in a shell
between r− δ r and r+ δ r. N is the the total number of particles
in the clog of area Aclog. dSr represents the shell surface. Edge ef-
fects represent the main limitation of this formula. Our clogs have
indeed specific and non-regular shapes. To bypass this problem,
we adapted a method proposed by Larsen & Shaw47.

We computed the RDF for different configurations (I,∆P) on
the whole cake’s wall layer formed at the pore entrance. Figures
5 and 6 show the RDF for (I = 0.5mM, ∆P = [30;80]mbar) and
(I = 5mM, ∆P= [10;80]mbar) respectively. Inset in figure 5 shows
the RDF (∆P = 80mbar, I = 0.5mM) computed for different ori-
entations. The angular domain is divided in 9 segments and nine
RDF are computed by selecting only particles in each angular seg-
ment. This leads to nine RDF. Results are angle-interpolated to
obtain a radial chart where color represents the g(r) amplitude.
This shows an isotropy of colloids spatial organisation.

For the total RDF, we do not observe a clear difference when
changing the applied pressure drop at fixed ionic strength. The
comparison of I = 0.5mM and I = 5mM (not shown here) at given
pressure drop does not reveal notable difference either. The small
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Fig. 5 Radial distribution function for two applied pressure drops at I =
0.5mM. Inset: RDF conditioned by direction angle (see text for details).
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Fig. 6 Radial distribution function for two applied pressure drops at
I = 5mM. The blip observed at r = 0.5 µm is probably related to aliasing.

differences in peak positions and heights, visible in figure 5, are
difficult to analyse because of RDF resolution. Nevertheless, these
RDF can give some insights about average spatial organisation of
particles in a filtration clog/cake. The oscillations observed on
the RDF of a 2D amorphous crystal can be modeled as48–50:

g(r)−1 =
K

r1/2
exp
(
− r

λ

)
sin
(

2πr
D

+φ

)
, (8)

where K, λ , D and φ are constant coefficients. D represents the
oscillation period while λ is a “screening length” quantifying the
decay of a local spatial organisation (not to be confused with the
Debye screening length). The higher λ , the more spatially orga-
nized the material. This expression is an asymptotic behaviour
and is a signature of the medium-range order of the considered
2D assembly. For this reason, we fit the experimental RDF ex-
cluding the first peak. Inset in figure 7 shows an example of fitted
RDF (actually of r1/2(g(r)−1)).

Figure 7 presents the screening length λ versus the applied
pressure drop ∆P for I = 0.5 mM and I = 5mM. Two results

0 20 40 60 80
1.5

2

2.5

3

1 2 3 4 5 6

−
0
.5

0
0.
5

Distance [µ m]

r1
/
2
(g
(r
)
−

1)
[µ

m
1
/
2
]

Measured RDF
Fitted RDF

∆P [mbar]

Sc
re

en
in

g
le

ng
th

,λ
[µ

m
] I = 0.5 mM

I = 5 mM

Fig. 7 Screening length as a function of applied pressure drop for the two
different ionic strengths. Error bars correspond to fit’s 95%-confidence
bounds. Inset: normalized RDF for ∆P = 80mbar and I = 0.5mM. The
solid line represents the fit obtained with equation 8.

emerge from this plot. First, the screening length is higher for
low ionic strength. Second, screening length seems to decrease
at high pressure drop. This could be the signature of the com-
petition between hydrodynamic forcing and electrostatic repul-
sion. At low I and ∆P, particle adhesion will be prevented or
delayed allowing for colloids to self-organize, whereas at high I
and ∆P, adhesion is facilitated which leads to a more amorphous
clog. This interpretation will be detailed in the section 4. In
fact our results averaged on the whole clog’s wall layer are rather
dispersed. This is due to heterogeneity of the clogs: very amor-
phous regions coexist with perfectly crystalline ones. This was
already observed in filtration cakes during microgel filtration27.
However our situation is quite different because we study hard
particles, and physico-chemical colloid-colloid interactions differ
widely from microgel-microgel ones.

3.2 Local analysis
In order to quantify these heterogeneities, we propose a local
analysis of clog microstructure, considering the local porosity and
local colloid organisation.

3.2.1 Clog local porosity

The averaged porosity measurements presented above are not
sufficient to understand in detail the clog microstructure and
underlying physical and physico-chemical mechanisms at play
in colloid assembly under filtration. We propose a systematic
study of the local porosity εloc of each clog. We define the lo-
cal porosity at a given point of the clog (in polar coordinates
−→r ) as the porosity in a radially-oriented curved-trapezoidal box
of approximately 60 µm2 centered on −→r (corresponding to a 8-
colloid wide box). Figure 9 (a) and 9 (b) show two examples for
(I = 0.5mM,∆P = 30mbar) and (I = 5mM,∆P = 10mbar) respec-
tively. One can observe qualitatively that the porosity decreases
with the distance from the pore entrance, with a porosity divided
by approximately 2. This can be counter-intuitive as a compres-

Journal Name, [year], [vol.],1–13 | 5



0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

I = 0.5 mM

r [µm]

〈ε
lo
c
〉 θ

∆P = 30 mbar
∆P = 30 mbar
∆P = 40 mbar
∆P = 60 mbar
∆P = 80 mbar

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

I = 5 mM

r [µm]

〈ε
lo
c
〉 θ

∆P = 10 mbar
∆P = 20 mbar
∆P = 40 mbar
∆P = 80 mbar

Fig. 8 Angularly averaged local porosity for (left) I = 0.5mM and (right) I = 5mM as a function of the distance from the pore entrance. The
uncertainty range corresponds to standard deviation obtained with several clogs in the same experiment (when possible). Short plateau for small r is
an extrapolation of the smallest exploitable radius r.
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Fig. 9 Examples of 2D map of local porosity εloc. (a) I = 0.5mM and
∆P = 30mbar; (b) I = 5mM and ∆P = 10mbar. Red lines represent pore
edges. At the pore entrance, uniform patch is a consequence of the local
porosity processing. The radial approach does not permit to detail the
porosity at this location, and the porosity at r = 0 is replicated on a
surface corresponding to the surface of 60 µm2 used to compute local
porosity.

sion of the clog could happen during the clogging process. We
did not observe such a compression. It can be easily attributed
to van der Waals adhesion of the particles which prevents them
from moving.

We perform an angular average at fixed r of local porosity to
obtain the porosity as a function of the distance r to the pore
entrance. Note that only locations whose absolute value of the x-
projection of −→r is lower than half of inter-pore distance (25 µm)
are selected. This prevents taking into account parts of the cake
in the “influence region” of a neighbour clog. We made this first-

order choice because we do not have information of the influence
of clog interaction on their microstructure. Interactions between
clogs (overlapping for instance) could locally affect the velocity
field and so the local hydrodynamic forcing. This could lead to
more dispersion of the results. Figure 8 shows this quantity de-
noted 〈εloc〉θ as a function of r for I = 0.5mM and I = 5mM, and
various ∆P. When possible, this quantity is averaged over sev-
eral clogs in the same experiment. One observes systematically a
decrease of clog local porosity in the range r ∈ [0,12]µm. Fur-
thermore, figure 8 (right) does not show significant difference
when changing the applied pressure drop, especially at low r.
For I = 0.5mM, there is more variability of the local porosity for
r ∈ [0,12]µm. It reveals the stochastic facet of colloid-surface ad-
hesion and the initial steps of the clogging process, as discussed
in previous works12,15,16. The way and position first particles
stick on the surface will affect the first portions of the clog and
change locally the porosity (and so the global clog permeability).
In summary, porosity is shown to be higher close to the pores,
but without any strong systematic influence of ionic strength or
applied pressure drop.

3.2.2 Colloid spatial organisation

A first way to study local organisation of clogs consists in com-
puting the 2D Fourier transform of different portions of the clogs’
wall layer. Figure 10 shows three examples of power spectra com-
puted by 2D Fast Fourier Transform (FFT) on three different re-
gions of a clog. One can differentiate three different local organ-
isations: hexagonal, square and random. For each, the 2D FFT
reveals a typical signature. Around the central spot, secondary
spots separated by an angle specific to the lattice (60o for hexag-
onal arrangement and 90o for square arrangement) appear for
the organized regions. On the contrary the more amorphous re-
gion reveals a kind of annular 2D FFT without spatial regularity.

The power spectrum obtained by 2D FFT will depend on the
window dimension chosen for computation. To generalize this
reciprocal-space analysis, we use a wavelet decomposition which
is better suited for the local analysis aimed here. While Fourier
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Fig. 10 Examples of 2D Fast Fourier Transform applied to different
regions of a clog (I = 0.5mM, ∆P = 30mbar). Predominately hexagonal,
amorphous and square organization is seen, from left to right.

decomposition uses a base with infinite-space support (sine and
cosine), wavelet decomposition is a projection on a base com-
posed of finite-space support elementary functions. Since we have
a heterogeneous spatial organisation of the clogs, a Fourier trans-
form does not allow a more quantitative local analysis of the lo-
cal microstructure than figure 10. Continuous Wavelet Transform
(CWT) overcomes this difficulty. Each point of the image and its
surrounding environment can be decomposed in functions which
generate a basis: the wavelets∗. They are localized both in space
and frequency51. Wavelet transformation is a widely used tech-
nique in many fields such as image processing52 or glass structure
analysis53,54. Each wavelet is built from a single “mother” func-
tion ψ(

−→
X ). A specific rotation, translation and expansion gener-

ates each wavelet for a given position
−→
X = (x,y) :

Ψs,Θ(
−→
X ) =

1
s

ψ

(
R−1

Θ

(−→
X
s

))
, (9)

with

∗They correspond to the sine and cosine functions in Fourier decomposition.

RΘ =

(
cosΘ −sinΘ

sinΘ cosΘ

)
. (10)

s is the expansion factor (or period) of the wavelet and Θ the ro-
tation factor. We have chosen the classical 2D Morlet wavelet as
the “mother” wavelet. It is a complex function which conserves
phase information with good angular selectivity55. So it is a good
candidate to study crystalline arrangements. A detailed explana-
tion of the use of 2D-CWT is available in Chen & Chu (2017)56.
Figure 11 shows an example of 2D Morlet “mother” wavelet.
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Fig. 11 Example of 2D Morlet wavelet used for wavelet analysis; Θ = 0
and s = 1 µm.

The result of applying a CWT on an image is a 2D map with
angle Θ in abscissa and period s in ordinate. Some examples are
shown in figure 12. Whereas for a Fourier decomposition, the
power spectrum obtained from the transform can be plotted on
a classic graph, coefficients derived from CWT are two-variable
functions. Consequently, color on insets of figure 12 represents
the power that is carried by each elementary function Ψs,Θ(

−→
X )

for a given (Θ,s). The higher the power, the more important the
corresponding elementary function contributes to the picture (2D
signal). One can observe that for a point selected in an apparently
hexagonal-lattice region, yellow spots appear with a periodicity
of about 60o. The period corresponds to the typical inter-particle
distance, which is a bit under 1 µm (one particle diameter). The
same observation can be made for an apparently square-lattice
region (periodicity of 90o). For an amorphous region, no regular
pattern appears on the CWT. Continuous Wavelet Transform thus
enables extraction of quantitative information on local typical pe-
riod and angular distributions.

The results obtained from CWT can be averaged along “period”
or “angle” direction. The “period” averaging gives a peak whose
full width at half maximum gives some information on typical
inter-particle distance distribution. That gives information very
similar (not shown here) as the local porosity analysis (figure 8).
The average on the angle provides a succession of peaks, espe-
cially when a crystalline lattice is detected. Then we are able to
compute the mean inter-peak distance. This quantity allows sep-
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Fig. 12 Examples of Continuous Wavelet Transform applied to different
locations of a clog (I = 0.5mM, ∆P = 30mbar). The colorbar represents
the power and is common to the three plots. 〈·〉s means the average of
the power spectrum amplitude on the period s.

aration of three distinct regions: amorphous, hexagonal-lattice
and square-lattice. Practically, hexagonal lattice corresponds to
mean inter-peak angular distance in the range 55-65o and square
lattice corresponds to mean inter-peak angular distance in the
range 85-95o. Other angular distances are considered as related
to amorphous regions. Figure 13 shows an example of a map ob-
tained from this analysis (for two different ionic strengths). One
can observe that hexagonal-lattice regions are largely predomi-
nant compared to square-lattice ones. Moreover, for I = 0.5mM
the hexagonal-lattice regions seem larger when the distance from
the pores increases, whereas for I = 5mM, they are quite homo-
geneously distributed.

In fact, maps presented in figure 13 are noisy. A lot of locations
fit with crystalline zones whereas their typical size is not com-
patible with such a description. To denoise the maps, we apply
an erosion-dilatation algorithm. Each blue or red connected re-
gion is eroded from the edge over 0.5 µm (corresponding to one
particle diameter total erosion). Remaining regions are then di-
lated by the same length. This allows us to isolate the sufficiently-
extended crystalline-lattice regions.

To perform a local analysis of colloid arrangement in the filter
cake, we adopt the same method as we used for porosity. We use
polar coordinates with origin at pore entrance. We define shells
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Fig. 13 Map of structures determined by CWT for ∆P = 80mbar, (a)
I = 0.5mM and (b) I = 5mM. Blue regions correspond to hexagonal lattice
and red ones to square lattice. White regions are amorphous. Black
overhangs at the bottom of the cakes face pore entrances. Note that the
white strip around the cake corresponds to a non-analyzed zone due to
CWT edge effects.

of radius r for θ ∈ [0,π] with thickness δ r∼ 6µm. In this shell, we
can define the probability to have points included in a crystalline
region Pθ

crystal(r). Note that only locations whose absolute value
of the x-projection of −→r is lower than half of inter-pore distance
(25 µm) are selected. Again, the basis for this is that it prevents
taking into account parts of the cake in the “influence region” of
a neighbour clog, to count one same position for two different
clogs. Figure 14 shows this quantity as a function of r for (left)
I = 0.5mM and (right) I = 5mM, and different ∆P.

One observes again a systematic inhomogeneity of the clog mi-
crostructure. The probability to encounter crystalline regions in-
creases with r then reaches a plateau. As we move away from
the pore entrance, the clog microstructure is more and more crys-
talline. For I = 0.5mM, this plateau is between 0.3 and 0.4, and
seems to decrease as ∆P rises. For I = 5mM, the difference when
changing ∆P is less clear, but globally the plateaus are around 0.2,
lower than for I = 0.5mM.

4 Discussion: regimes of particle adhesion
The results presented above are split in two categories: global
approach and local analysis. The mean cake porosity is in the
range 0.42–0.52 and does not depend on applied pressure drop
or ionic strength. This averaged approach suggests that there is
no influence of the forcing and physico-chemical properties on
clog microstructure. However, the local analysis gives some de-
cisive insights. Clogs are more porous at the vicinity of the pore
entrance, then become more and more compact before reaching
a plateau at a distance larger than ∼ 12 µm from pore entrance.
The porosity for small r is clearly higher for low ionic strength
than for I = 5mM. This heterogeneity is totally concealed when
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both plots.

one makes an average on the whole cake’s wall layer.
Concerning the spatial organisation, a more refined study of

radial distribution function shows a subtle effect: the screening
length – corresponding to the medium-range order – is higher at
low ionic strength and seems to decrease at high applied pressure
drop. A local wavelet decomposition reveals crystalline regions –
mainly hexagonal lattices. The crystalline-region proportion in-
creases with the distance from the pore and the plateau is higher
for I = 0.5mM. Similar results were obtained numerically by Ag-
bangla et al.18. In the absence of inter-particle repulsive forces,
particles are aggregated cake-like, without visible crystalline or-
ganisation. Addition of repulsive forces lead to formation of more
organised arches of particles at the pore entrance.

We propose an interpretation based on competition between
hydrodynamic forcing and colloid-colloid repulsive interactions.
To cross the energy barrier and cause adhesion of two colloidal
particles, an external forcing is necessary. It can be provided by
drag force due to hydrodynamic advection. Note that this drag
force should be influenced by hydrodynamic interactions57,58

which appear when a particle is travelling close to the wall or
near another particle. It could affect the energy provided by the
advection, at a distance up to several particle radii. Extra energy
can also come from Brownian motion. Let us consider a parti-
cle arriving in contact with the clog. We propose three different
mechanisms:

1. ballistic regime: the drag force applied on the impacting col-
loid is large enough to drive direct adhesion with colloid(s)
in the clog;

2. diffusive regime with adhesion: the drag force applied on the
impacted colloid has decreased. Brownian motion however
causes the particle to explore local configurations where the
flow is still strong enough to lead to adhesion;

3. diffusive regime without adhesion: there is not enough energy
to observe colloid-colloid adhesion, the impacting colloid is
simply constrained to be part of a “repulsive glass”.

The consequences on porosity and spatial organisation can be
summed up as follows for each regime:

1. there is no time for particles to self-organize so porosity is
high and structure is amorphous;

2. Brownian motion allows a particle to explore a larger energy
landscape before adhesion, and to find a more constrained
position. This leads to less porous and more crystalline struc-
ture;

3. the structure is similar to regime 2, but porosity could be
slightly lower.

Let us insist about the role of Brownian motion. It cannot bring
extra energy sufficient to cross DLVO energy barrier and lead to
particle adhesion: the typical Brownian motion energy is ∼ kbT
whereas the energy barrier is few tens of kbT 59. Consequently, in
regime 2, adhesion is still provoked by the drag force. But Brown-
ian motion acts as a repulsive force allowing fluid to lubricate the
interactions. Numerical simulations showed that Brownian mo-
tion facilitates yield of a colloidal gel under shear stress60,61. This
is the way a Brownian particle could access a larger energy land-
scape and help the clog self-organization. This statement is rather
difficult to access experimentally by the methods we used, and it
should deserve a specific study with higher acquisition framerate,
possibly higher spatial resolution and specific designs.

Two other mechanisms could stimulate appearance and sta-
bility of the crystal zones, especially for the regime 3 (diffusive
regime without adhesion). Larsen & Grier62 showed that long-
range attractive interactions between like-charge colloids can al-
low the formation of metastable colloidal crystals. Moreover,
presence of a wall lets appear attractive interactions between two
colloids. Their study was made with very similar colloids (size,
surface charge) as we used, but with an ionic strength 100 times
lower than the ones we fixed (much larger repulsive interactions).
Consequently we can assess that these mechanisms should play a
role in the appearance of this third regime, when the relative con-
tribution of repulsive interactions becomes dramatic.
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Figure 15 shows a schematic phase diagram for these three
regimes. Two parameters define the three regions of the phase
diagram, corresponding to the three regimes described below: (i)
hydrodynamic forcing (flow rate) and (ii) electric repulsive in-
teractions (decreasing with increasing ionic strength). For weak
repulsion and high hydrodynamic forcing, ballistic regime is dom-
inant. For high repulsion and weak hydrodynamic forcing, dif-
fusive regime without adhesion is dominant. For intermediate
repulsion and hydrodynamic forcing, one can observe diffusive
regime with adhesion. A change in Brownian motion intensity
(determined by particle size, temperature, fluid viscosity) could
slightly move the boundaries of the diagram.
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Fig. 15 Schematic diagram phase representing the three regimes for dif-
ferent ionic strength and hydrodynamic forcing. Shaded particle edges
represent the EDL. Their overlapping mimes particle adhesion. Arrows
represent possible displacements in the phase diagram during an experi-
ment.

We transpose this interpretation to our data. If we look at figure
7, the higher screening length (and hence the increased order) for
I = 0.5mM than for I = 5mM could indicate a regime difference:
diffusive (with or without adhesion) for I = 0.5mM; ballistic for
I = 5mM. Furthermore, the plateau of Pθ

crystal(r) (figure 14) is
higher for I = 0.5mM than for I = 5mM. This is consistent with
a more organized microstructure, and so with the predominance
of a diffusive regime at high interparticle electrostatic repulsion,
and of the ballistic regime at high ionic strength. For I = 0.5mM,
the plateau seems lower as ∆P rises. This is also consistent with
the appearance of a ballistic regime.

We could hope for sharp transitions when changing ionic
strength or pressure drop. Actually, hydrodynamic forcing condi-
tions are time-dependent. Since we work at fixed pressure drop,
the flow rate decreases as the clog grows. Such situation where
pressure drop is fixed can be encountered in real crossflow fil-

tration devices. Consequently, velocity (and so drag force) of an
arriving particle will decrease with time. For a given experiment,
salt concentration is fixed, and thus the resulting double layer
repulsion is also fixed. The phase diagram is traversed along a
horizontal line from right to left. Two possible trajectories in the
phase diagram are proposed in figure 15 for two different ionic
strengths. Consequently, a regime transition is expected during
the clogging process. This is consistent with local analyses. The
decrease of 〈εloc〉θ with r for both I = 0.5mM and I = 5mM is
compatible with such a transition (see figure 8). Moreover, the
increase of Pθ

crystal with r, as shown in figure 14, reveals an in-
crease of crystal regions proportion. This is also consistent with a
transition inside the clog, from ballistic to one of the two diffusive
regimes.

We globally observe some dispersion when changing the ap-
plied pressure drop. We should be able to extract a typical length
of the local porosity decrease with r – and of the crystal propor-
tion increase. Such a characteristic length should be dependent
on I and δP, which is not obvious on presented plots (figures
8 and 14). This assumption would be true if the first steps of
the clogging process were reproducible among two experiments.
Unfortunately, the stochastic facet of clogging makes a more ac-
curate analysis difficult. The hydraulic resistance increase (and
subsequent flow rate decline) can vary significantly from one ex-
periment to another, depending on the local structure of the ini-
tial clog, next to the pore, which strongly influences the clog’s
hydrodynamic resistance.

Furthermore, regimes 2 and 3 are actually two sub-regimes of a
more general diffusive regime. We propose these two sub-regimes
because of observations made after pressure release. A release
of hydrodynamic forcing revealed that a fraction of the clog re-
mains stuck to the membrane (and therefore adhesive) whereas
another part is re-suspended in the surrounding fluid, as pre-
sented in figure 16. Particles still stuck after pressure release and,
in addition to the amorphous region, large parts of the remaining
clogs/cakes’ wall layer have a crystalline microstructure – reveal-
ing that in the crystalline zone, particles can be adhered or not.

Nevertheless, we are not able to distinguish from the clog struc-
ture analysis the two diffusive regimes (with and without adhe-
sion). Further experiments, based on the unclogging process, are
necessary to discriminate these regimes. This could be a way to
refine our interpretation. In addition, the fact that particles re-
main motionless after releasing the pressure drop is a clue that
they are stuck to the glass plate.

An important point of our experiments concerns the absence of
particle motion inside the clogs. As shown in figure 2, the parti-
cles belonging to a clog at a given time are at the same location
at a later time. We never observed particle motion during the dif-
ferent image sequences acquired for this work. Such a motionless
behaviour is also a clue of particle adhesion, or their belonging
to a “repulsive glass” where hydrodynamic forcing freezes non-
adhering particles in a given position – the one they took up when
they arrived at the clog. Moreover, this immobility is an indica-
tion that the fluid flowing through the clog does not affect clog
microstructure over time. Particles belonging to an amorphous
zone are indeed stuck to the surface and cannot move anymore.
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Fig. 16 Unclogging after pressure release. Clog before (top) and after
(bottom) pressure release.

Note that these analyses are made using only the wall colloid
layer. Although the glass plate at contact with the colloids could
affect the absolute structure and organisation of this layer, the
transitions and differences observed are consistent with a phys-
ical interpretation in the 3D bulk of the clog, and are repro-
ducible. Moreover, if the glass plate was the main ingredient at
play in wall-layer colloid organisation, it should make uniform
the wall-layer microstructure. Unfortunately, the polystyrene par-
ticles used in these experiments are opaque and do not permit
a 3D analysis using confocal microscopy. Working with optical-
index-matched particles, which could enable analysis in the depth
of clogs, is not at all straighforward without changing the inter-
actions. As a matter of fact, van der Waals interactions, at play
in the force balance (see DLVO in first section) are influenced by
electric polarizability, related to the optical properties. Further-
more, real filtration devices can comprise lateral walls. This work
proposes some insights about clog microstructure, and call other
experimental studies to investigate the 3D structure and under-
stand the way particles pile up on the wall layer and affect its
microstructure – use of opaque colloids did not allow a 3D study
in our case.

5 Conclusion and perspectives
The filtration experiments we performed using microfluidic de-
vices allow us to study the wall layer microstructure of clogs
for two different parameters: applied pressure drop and ionic
strength. We observed a clog development at the entrance of
the pore, followed by growth of a filtration cake. Resolution was
good enough to detect particles’ positions. An analysis of clog
porosity did not reveal strong global difference when changing
pressure drop or salt concentration. At first glance, a study of
colloid spatial organisation using radial distribution function also
did not reveal clear influence of pressure drop and ionic strength.
Nevertheless, by fitting these functions, we were able to extract a
screening length which represents the medium-range order. This
screening length is higher for low ionic strength, revealing a bet-
ter spatial organisation.

A local analysis revealed spatial heterogeneity of the clogs.
Porosity is higher at the vicinity of the pore then decreases with

the distance from the pore. This observation is systematic for
all pressure drops and ionic strengths. This heterogeneity is also
valid for colloid spatial organisation. Fourier transform analy-
sis of images of the clogs showed the presence of amorphous,
square-lattice and hexagonal-lattice regions. Using 2D continu-
ous wavelet transform, we were able to perform a local and sys-
tematic analysis of spatial organisation of the clogs. It revealed
a large predominance of hexagonal-lattice regions compared to
square-lattice ones. Moreover, the proportion of crystalline re-
gions increases with the distance from the pore entrance before
reaching a plateau. It is higher for high interparticle repulsion,
and seems to be lower as pressure drop rises.

We gathered all these observations in a new framework based
on a phase diagram. Three regimes are accessible, depending on
flow and repulsive interaction intensity. One is a ballistic regime,
where addition of a colloid to a clog is the result of a direct ad-
hesion due to drag force. Two diffusive regimes (with or without
adhesion) are due to lower hydrodynamic forcing or higher re-
pulsion. Whereas the ballistic regime does not allow organisation
of the particles, the two others let allow time to an arriving col-
loid to “plug the holes”. Where there is adhesion, it is always
due to drag forces. Brownian motion can only help to organize
the clog. This framework is compatible with all our experimental
observations. These results could be compared with the distinc-
tion between diffusion-limited aggregation (DLA) and reaction-
limited aggregation (RLA)63. DLA is a rapid process in which par-
ticles immediately adhere to the aggregate, and provides loosely
packed aggregates, whereas RLA is a slower process that requires
each particle to make multiple attempts, allowing exploration of
the existing aggregate and results in a denser (higher fractal di-
mension) aggregates.

Several kinds of experiments could complete this study: 3D
analysis using confocal microscopy (but that would require index
matching, which is not straightforward), X-ray microtomography
and different chip designs to observe clogs from the side, in or-
der to refine our results in the third dimension; unclogging anal-
ysis to distinguish the two diffusive regimes; acquisitions with
higher framerate and spatial resolution to observe the subtle ef-
fect of Brownian motion on clog self-organization. The second
point could be the opportunity to study the unclogging dynamics
when hydrodynamic forcing is released.
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15, 1230–1249.

4 W. Zhang, X. Tang, N. Weisbrod and Z. Guan, Journal of
Mountain Science, 2012, 9, 770–787.

5 D. Bonazzi, V. Lo Schiavo, S. Machata, I. Djafer-Cherif,
P. Nivoit, V. Manriquez, H. Tanimoto, J. Husson, N. Henry,
H. ChatÃl’, R. Voituriez and G. DumÃl’nil, Cell, 2018, 174,
143–155.e16.

6 C. In-Soung, L. C. Pierre, J. Bruce and J. Simon, Journal of
Environmental Engineering, 2002, 128, 1018–1029.

7 W. Guo, H.-H. Ngo and J. Li, Bioresource Technology, 2012,
122, 27–34.

8 F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin and
F. Yang, Water Research, 2009, 43, 1489–1512.

9 H. M. Vollebregt, R. G. M. v. d. Sman and R. M. Boom, Soft
Matter, 2010, 6, 6052–6064.

10 H. M. Wyss, D. L. Blair, J. F. Morris, H. A. Stone and D. A.
Weitz, Physical Review E, 2006, 74, 1–4.

11 E. Dressaire and A. Sauret, Soft Matter, 2017, 13, 37–48.
12 B. Dersoir, A. B. Schofield and H. Tabuteau, Soft Matter, 2017,

13, 2054–2066.
13 B. Dersoir, A. Schofield, M. Robert de Saint Vincent and

H. Tabuteau, Journal of Membrane Science, 2019, 573, 411–
424.

14 P. Duru and Y. Hallez, Langmuir, 2015, 31, 8310–8317.
15 T. v. d. Laar, S. t. Klooster, K. SchroÃńn and J. Sprakel, Scien-
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