
HAL Id: hal-02879709
https://hal.science/hal-02879709v3

Submitted on 6 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Adding geodesic information and stochastic patch-wise
image prediction for small dataset learning

Adam Hammoumi, Maxime Moreaud, Christophe Ducottet, Sylvain Desroziers

To cite this version:
Adam Hammoumi, Maxime Moreaud, Christophe Ducottet, Sylvain Desroziers. Adding geodesic
information and stochastic patch-wise image prediction for small dataset learning. Neurocomputing,
2021, 456, pp.481-491. �10.1016/j.neucom.2021.01.108�. �hal-02879709v3�

https://hal.science/hal-02879709v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Neurocomputing 456 (2021) 481–491
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Adding geodesic information and stochastic patch-wise image prediction
for small dataset learning
https://doi.org/10.1016/j.neucom.2021.01.108
0925-2312/� 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: adam.hammoumi@ifpen.fr (A. Hammoumi).
Adam Hammoumi a,⇑, Maxime Moreaud a,b, Christophe Ducottet c, Sylvain Desroziers d

a IFP Energies nouvelles, Rond-point de l’échangeur de Solaize BP 3, 69360 Solaize, France
bMINES ParisTech, PSL-Research University, CMM, Fontainebleau, France
cUniversité de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023 Saint-Etienne, France
d IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
a r t i c l e i n f o

Article history:
Received 15 April 2020
Revised 8 January 2021
Accepted 9 January 2021
Available online 16 February 2021

Keywords:
Image augmentation
Deep learning
Distance transform
Patch-wise segmentation
Stratified sampling
a b s t r a c t

Most recent methods of image augmentation and prediction are building upon the deep learning para-
digm. A careful preparation of the image dataset and the choice of a suitable network architecture are
crucial steps to assess the desired image features and, thence, achieve accurate predictions. We first pro-
pose to help the learning process by adding structural information with specific distance transform to the
input image data. To handle cases with limited number of training samples, we propose a patch-based
procedure with a stratified sampling method at inference. We validate our approaches on two image
datasets, corresponding to two different tasks. The ability of our method to segment and predict images
is investigated through the ISBI 2012 segmentation challenge dataset and generated electric field masks,
respectively. The obtained results are evaluated using appropriate metrics: VRand for image segmenta-
tion and SSIM, UIQ and PSNR for image prediction. The proposed techniques demonstrate that the estab-
lished framework is a reliable estimation method that could be used for a wide range of applications.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep Convolutional Neural Networks (DCNNs) have demon-
strated throughout the recent years their remarkable performance
in handling a variety of problems in the fields of image processing
and computer vision [1,2]. In particular, DCNNs are becoming a
major tool for visual recognition modern tasks such as image clas-
sification, segmentation, semantic segmentation and so on.

Considering the global dimension that DCNNs have taken, pre-
dominant implementations often require large datasets, which is
not always possible in many domains. Regarding that, the interest
in small sample learning (SSL) is increasingly growing [3]. Novel
network topologies and training methodologies are required to
address this issue. In the literature, there are many approaches that
attempt to face out the SSL paradigm. The data augmentation
approach tries to compensate the lack of samples by applying ade-
quate transformations to the original dataset [4]. Besides expand-
ing the size of the initial dataset, distorted images improve the
generalisability of the network. Another approach is knowledge
transfer of fully trained networks that can be used to fit small data-
sets [5]. One could transfer knowledge from similar tasks or even
from uncorrelated tasks [6]. Essentially, generic pattern matching
tasks, created from unlabeled data, have been relevant for SSL
[7]. To handle limited data, unsupervised pre-training strategies,
consisting of making fine adjustments to the initialization param-
eters of the network, have shown promising results as well [8].

In this paper, we focus on specific DCNN architectures using
only convolutionnal layers. These architectures referred to as fully
connected neural networks (FCNNs) are mainly used for semantic
segmentation or image prediction [9]. In this context, an important
strategy which has been proposed to address SSL issue is to com-
bine small neural net models and patch-based training [10–12].
First the input size of the model (ie. the number of input neurons)
is reduced providing a global model with less parameters. And sec-
ond, the training images are cut into small patches to feed the net-
work. Besides requiring smaller architectures, the patch sampling
strategy allows to enlarge the dataset by providing much more
independent samples to train the network. At inference time, an
arbitrary large target image can be processed by dividing it into
patches and merging the corresponding inferred results to recon-
struct a big prediction image. However, the reconstructed image
is subject to patch border effects mainly due to the lack of transla-
tion invariance of the network. Several strategies have been pro-
posed to overcome these effects [13] but there is no detailed
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study about this problem. Another important issue of the patch-
based strategy is related to spatial-awareness. Information outside
the patch box is unexplored at training time due to the limited
receptive field of the network. That is, the network may not learn
spatial relationships larger than the patch size, which may be
important for the considered task. In this work, we propose two
contributions related to the patch-wise network scheme in the
context of FCNN. First, we propose to reinforce the spatial-
awareness of a patch-based training by adding geodesic informa-
tion to the original images yielding richer spatial representations.
Second, we propose a sampling strategy at inference time to over-
come border effects, appearing when the assembled patches are
added uniformly. The outline of this paper is organized as follows:

In Section 2, we discuss existing works about the distance trans-
form in the context of semantic segmentation, as well as a method
dealing with border effects and translation invariance of DCNNs. In
Section 3, brief introduction to fully convolutional neural networks
is given along with the used U-Net network architecture. We also
describe some patch-based methods from the literature. We con-
clude this part by explaining our patch-based training procedure.
In Section 4, we reveal our two contributions: adding geodesic
information to the original training data, together with a stratified
sampling strategy at inference time. Throughout Section 5, two
datasets corresponding to two different tasks are introduced with
their appropriate error metrics. In Section 6, we explain our
method to quantify the shift invariance of the U-Net network,
the corresponding results follow soon after. Henceforth, several
comparisons are showed to demonstrate the effectiveness of our
contributions. Section 7 concludes the paper.
2. Related work

A DCNN starts the process of features extraction according to a
growing architecture from low level to high level features. Convo-
lutional filters capture abstract features, often, not relevant for a
human observer, they are recognized as crucial image characteris-
tics. Seeking for more informative representations help extracting
more features. A recent regression approach for semantic segmen-
tation suggests that constraining the network to learn spatial infor-
mation allows reducing blurry boundaries and ill segmented
shapes in predictions [14]. The proposed technique is based on
the distance transform. The latter yields a distance map, where,
each pixel acquires a spatial awareness about its local proximity.
In this configuration, less informative surfaces become more infor-
mative throughout all the image space. Without changing the net-
work architecture, and by adding distance transformed labels as
regression targets, the method proved to be an asset for the task
of semantic segmentation. However, our method operates differ-
ently by combining the geodesic information, extracted from the
distance map, with the original images. The addition of the dis-
tance map provides information about elements outside the scope
of a patch, implicitly increasing the field of view of the network.

DCNNs are believed to be translation invariant [15] at some
degree. Although convolutional layers have a property of equivari-
ance to translation [16], it is not exactly the same for the complete
network. This general consensus is supported by the fact that the
networks have the inherent ability of learning arbitrary features:
important ones, but also features as affine transformations that
are irrelevant and must be discarded. Two main ideas in the liter-
ature try to address this issue. According to the first, the ability to
learn translation invariance is due primarily to the networks archi-
tecture, in which the succession of convolution layers augments
the receptive field of neurons [17], and to pooling layers that select
a value from convolution layer output regardless of its position
[18]. That is, the imperfect translation invariance is due to pooling
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layers [13]. Using translation sensitivity maps and radial
translation-sensitivity to quantify shift invariance introduced in
[13], it can be demonstrated that the use of appropriate input data
along with data augmentation comes beyond the network archi-
tecture in terms of learning translation invariant representation.
A careful examination of the extent to which the network architec-
ture is shift invariant is a relevant information for data preparation.
We propose in this article a throughout study of the translation
invariance of the U-Net architecture using different metrics com-
puted on the common area of translated inference patches. Addi-
tionally, we propose an adequate stochastic sampling strategy to
overcome the lack of strict translation invariance.
3. Background

3.1. Fully Convolutional Neural Networks

While DCNNs for image classification are predicting a single
class for a whole image, FCNNs can be used to make dense predic-
tions. Given an input image of any size, a FCNN produces an output
having the same spatial support (possibly re-sampled) and predict-
ing a value associated to each input pixel (or each group of pixels).
For instance, the tasks of image segmentation and prediction
require a pixel-wise (or a patch-wise) labeling of the output image.
Therefore, feature elements are distinguished from each other by
unique labels obtained from a classification process, at the pixel
or patch level. Usually in a convolutional neural network, the input
image goes through the convolutional layers for features extraction
and gets downsized by the pooling layers. Thereupon, the results of
the convolution/pooling operations are fed to the fully connected
layers (FC) to classify the image. At this stage, two situations arise,
if the labeling process yields one class for the whole image, it
becomes a classification task. If, on the other hand, the image is
classified by a label map, where each sub-part of the image is
uniquely labeled, the corresponding task is most likely to be image
prediction or segmentation. To obtain a label map instead of a sin-
gle value label, an up-sampling step is mandatory to calculate a
pixel wise output. Our attention is drawn to FCNNs and dense pre-
diction [19,9] since they recapture the spatial information lost dur-
ing down-sampling operations by up-sampling or deconvolution.
FCNN architecture transforms the size of the label map back to
the size of the input image or a sub-sampled version through the
up-sampling process. Hence, the output image have a pixel-to-
pixel correspondence with the input image. U-Net is a popular
FCNN. It has first appeared under the scope of biomedical images
segmentation [20]. It consists of a contraction path made of con-
secutive (3� 3) convolutions followed by (2� 2) max pooling
matrices. An expansion path, which is composed of consecutive
(3� 3) convolutions and (2� 2) transposed convolution matrices.
To regain spatial information lost during the contraction path, a
concatenation procedure, that consists of transferring feature maps
to the expansion path, through a layer-by-layer correspondence, is
established. The final step is a (1� 1) convolution matrix along
with a Softmax activation function. Our experimental setup,
namely the used FCNN architecture, is more or less identical to
the U-Net architecture as shown in Fig. 1. It consists of an alternat-
ing sequence of two convolutions per max pooling operations. The
ReLU is the used activation for each convolution and it is preceded
by a batch normalization operation. The max pooling downsizes
the image by a factor of two and doubles the number of features
maps (or, channels). The transposed convolution operation is per-
forming both convolution and up-sampling (through a stride of
(2;2), that has the effect of spacing out the input) while the con-
catenation operation collects information from features map of
the contraction path. In this work, the U-Net architecture is cus-



Fig. 1. U-Net architecture. Left: contraction path; right: expansion path. After each set of operations, the size of the image and the number of channels is indicated. Operations
are: convolution, transposed convolution, max pooling and concatenation. Input and output images are described later in the experimental results section.
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tomized for use with a patch-wise procedure. The network is
rather focused on image patterns occurring locally at the patch
level. The resulting output is a prediction patch as well. The train-
ing is carried out by a set of sliding (48� 48) windows cropped
from training images. The output is obtained from a (1� 1) convo-
lution followed by a Sigmoid activation function.
Fig. 2. Illustration of the patch extraction process. Parameters:
IH ¼ IW ¼ 512; K ¼ 48 and s ¼ 24.
3.2. Patch procedure

Training a FCNN at the pixel level of an image can be a challeng-
ing task in several cases. For example, in many medical applica-
tions [10], the training data is a set of high resolution images,
which will require a very large memory footprint. The process of
gathering a large set of training data in many domains is not
always possible. An additional drawback to this approach arises,
which is the risk to bias the training by forcing the network to only
learn the most distinctive features from the whole image. Many
attempts have been made to address this issue. In particular, evi-
dence from [11] draw our attention to a patch-wise setup. In order
to overcome the SSL issue, the latter suggests training the network
on large set of patches instead of few original training images. By
means of this scheme, the question of the use of context arises
regarding the ability to learn compelling patterns. Basically, the
size of the patches and the number of hidden layers of the FCNN
control the field of view of the network and contribute explicitly
in the learning of important features. For example, the authors in
[12] postulate that a small patch size is not needed for their speci-
fic case, since there is little chance of finding relevant information
in small image regions. Other techniques, such as [21] proposes to
combine pixel-level and patch-level (ie. one label per patch) to
improve segmentation accuracy. We build our method in compli-
ance with the patch-based method proposed in [11]. Traditionally,
patches are assembled in a mosaic way or by overlapping half
patches. In our configuration, a patch is characterized by its size
K � K with a sliding step s over the image. That makes a total num-
ber 1þ b IW � Kð Þ=scð Þ � 1þ b IH � Kð Þ=scð Þ of patches for an image
of size IW � IH . The following patch parameters are adopted: patch
size K ¼ 48 with a sliding step s ¼ 24. s is chosen in a manner to
cause the overlap of patches. Suppositionally, significant informa-
tion captured in-between patches can be extracted. This hypothe-
sis was verified empirically by trying different sliding steps. For
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instance, a training image of the size IW ¼ IH ¼ 512, contains
L ¼ 400 overlapping patches. Fig. 2 illustrates this process.
4. Adding geodesic information and stratified patch sampling

4.1. Distance transform

Within the framework of SSL, we propose a methodology based
on the distance transform to enhance the amount of accessible
information in input data. Flat surfaces contained in images are
less informative than textured surfaces. The lack of information
in these regions will cancel the effect of the convolution matrices.
The features outside the size of the convolution matrix will not be
extracted as well. The distance map computation is a commonly
used technique in several image processing tasks such as con-
nected components labeling [22], Skeletonization [23], Voronoi
diagrams and so on. For binary images, the distance map can be
computed in the following way: we consider the two dimensional
metric space E ¼ R2. Let I : w ! 0;1f g be a binary image and w � E
the support of I. The latter can be divided into background and
foreground subspace. We let the set of foreground elements
x ¼ x 2 w : I xð Þ ¼ 1f g be the reference set of features. A distance
map is an image transform that substitutes the value of each ele-
ment in w by its distance from the closest feature object of x.
The operator of the distance transform writes:
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DTd xð Þ ¼ min
yjI yð Þ¼0f g

d x; yð Þ x; y 2 w ð1Þ

An overall formulation of the distance transform that extends to
grayscale and color images may be found in [24]. In general, the dis-
tance between two points x and y is expressed by:

d x; yð Þ ¼ inf
C2Px;y

Z l Cð Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 rI sð Þ � C0 sð Þ2

� �r
ds ð2Þ

where C is a path parameterized by its arc length s 2 0; l Cð Þ½ � and
Px;y is the set of all differentiable paths.The geodesic factor c mea-
sures the contribution of the image gradient rI sð Þ and spatial dis-
tances. C0 sð Þ ¼ @C sð Þ=@s is the unit vector tangent to the direction
of the path. Notice that the binary image distance transform is a
special case of Eq. (2), where the image has scalar values 0;1f g
and c ¼ 0. In this case, Eq. (2) simplifies to the euclidean length of
path C. Our strategy to extract a maximum amount of information
from the image consists of probing both the background and fore-
ground space. The related distance map from the foreground writes:

DTd
c xð Þ ¼ min

yjI yð Þ¼max Ið Þf g
d x; yð Þ x; y 2 w ð3Þ

Our main assumption is that distance maps can favorably enhance
the spatial information contained in the image. Thus, we propose to
combine both the original image and distance maps and use this
enhanced image for training the network. Denoting Ie the enhanced
image, we have:

Ie xð Þ ¼ I xð Þ þ aDTd xð Þ � bDTd
c xð Þ a; b constants ð4Þ

It is possible to compute the distance map for a grayscale image
using the approach from [25]. It corresponds to a distance transform
starting from lowest to highest grayscale intensities:

DTd xð Þ ¼
X

i
d x; Fið Þwi jFi ¼ x; I xð Þ P if g; wi ¼ 1 ð5Þ

Similarly, an extended symmetric distance map starting from high-
est to lowest grayscale intensities can be defined:

DTd
c xð Þ ¼

X
i
d x;Gið Þwi jGi ¼ x; I xð Þ < if g; wi ¼ 1 ð6Þ

The resulting enhanced image writes:

Ie xð Þ ¼ I xð Þ þ aDTd xð Þ � bDTd
c xð Þ a; b constants ð7Þ

The former distance has an important time complexity, which leads
us to define an approximated distance map for grayscale images
that can be deduced from a functional projected distance map d?

[26]. The latter is independent of grayscale scaling. A formulation
of the distance in the background space is achieved by using the
set of pixels of low intensities:

D̂Td xð Þ ¼ min
yjI yð Þ¼min Ið Þf g

d? x; yð Þ x; y 2 w ð8Þ

where d? is the projected distance of the one developed in Eq. (2).
Likewise, its symmetric distance map is given by:

D̂Td
c xð Þ ¼ min

yjI yð Þ¼max Ið Þf g
d? x; yð Þ x; y 2 w ð9Þ

The enhanced image writes:

Ie xð Þ ¼ I xð Þ þ adDTd xð Þ � bdDTd
c xð Þ a;b constants ð10Þ

Distance transform can be computed with a two pass raster scan-
ning algorithm which is well established in the literature [27].
The utility of the distance transform is stressed by the added infor-
mation, emphasized in Eqs. (4), (7) or (10). Fig. 3 illustrates this pro-
cess for binary and grayscale images. For our illustrations and
results parts, a and b are taken equal to 1.
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4.2. Stratified sampling of patches

On the basis of individual patches extracted from the input
image, the estimated image is fully assembled by adding the corre-
sponding predicted patches. It was found that an exact convolution
strategy (one patch for each pixel) leads to fuzzy and low quality
results. This problem is tackled in the experimental results section
through the shift invariance analysis. However, a major shortfall
needs to be considered when using patches. When the latter are
regularly distributed and summed to produce the whole prediction
image, an edge effect at the border of each patch may appears, as
shown in Fig. 9. Thereby, an adequate sampling strategy is required
to reduce this effect. Consider the set of patches contained in one

image v ¼ vi;j

n o
. Each patch occupies a total area of A ¼ W � H

where W and H are the width and the height of each patch respec-
tively. An uniform sampling strategy consists of cropping patches
as fragments of the original image following a scanning strategy
from top to bottom and from left to right. Mathematically, this
sampling strategy boils down to:

vi;j ¼ x; y j x 2 i;W þ i½ � ; y 2 j;H þ j½ �f g ;with ð11Þ

i ¼ 0; s0; 2� s0ð Þ; 3� s0ð Þ; . . . ; Iw �W þ s0ð Þ
j ¼ 0; s0; 2� s0ð Þ; 3� s0ð Þ; . . . ; Ih � H þ s0ð Þ ð12Þ

Eq. (11) corresponds to a formulation of the patches. The indexation
strategy expressed in Eq. (12) yields a uniform sampling. To remove
the edge effect at the borders, patches must be drawn stochasti-
cally. We propose using a stratified sampling strategy [28]. It con-
sists of a uniform density of values drawn in the interval �s0; s0½ �
denoted U �s0; s0ð Þ. Indexing the patches with random coordinates
will guarantee the generation of fresh ones every time. The new
indexation strategy can be phrased in terms of:

ir ¼ s0
2 þ U �s0; s0ð Þ; 3s02 þ U �s0; s0ð Þ; 5s02 þ U �s0; s0ð Þ; . . .

jr ¼ s0
2 þ U �s0; s0ð Þ; 3s02 þ U �s0; s0ð Þ; 5s02 þ U �s0; s0ð Þ; . . . ð13Þ

Consider N random samples of the whole set of patches contained in
one image. The latter are yielding N predictions. The final result
should be obtained by averaging over the N samples. We write:

If ¼ 1=N �
XN

v¼1

X
ir ;jr

v̂ir ;jr

� �
ð14Þ

where v̂ refers to inferred patches. ir and jr have random values
according to Eq. (13) and are subject to constant change. Thus,
the distribution of patches in each image is unique.

5. Experiments

We evaluate our distance transform-based enhancement and
patch sampling strategy for two datasets. One is a state-of-the-
art example on 2D segmentation of electron microscopic (EM)
images of the brain, while the other is about predicting the electric
field from binary images of heterogeneous materials. Each dataset
requires a different task. In particular, image segmentation and
prediction. Results are evaluated using adequate scoring metrics,
namely: VRand for image segmentation and PSNR, UIQ, SSIM for
image prediction.

5.1. 2D segmentation of EM images of the brain

The training dataset is a part of the public ISBI 2012 EM seg-
mentation challenge [29]. The aim is to precisely segment an EM
image, where, pixels inside a cell area have value 1 and pixels at
the boundaries between neurite cross sections have value 0. A
set of 30 training images 512� 512ð Þ pixels along with their



Fig. 3. Distance transform application to grayscale (a) and binary (b) images [25]. From left to right: the process of extracting the distance map from the original image. The
combination of the two yields an enhanced input image.
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ground truth annotations are made public for participants. Another
set of 30 validation images of the same resolution is available. Its
corresponding ground truth data is kept secret by the organizers.
The latter is used to evaluate the performance of the proposed
algorithms. Comparisons between some of the existing state-of-
the-art methods, such as, the original U-Net network instead of
the patch-wise procedure, also, with and without data augmenta-
tion (mainly, affine transformations), are investigated and com-
pared to our approach. To extract training, validation and
inference images, the original training dataset is randomly shuffled
into k ¼ 5 equal sized samples. Each subsample contains 26 train-
ing images, 3 validation images and 1 inference image. The out-
come estimation is the average of the 5 predicted images. Thus,
with the chosen K and s parameters (see Section 3.2), one network
is trained on a dataset of 11466 patches and is validated on 1323
patches. The sigmoid activation function f xð Þ ¼ 1= 1þ e�xð Þ is com-
puted over the final feature map. The network is trained using the
Adam [30] optimizer and binary cross entropy loss function defined

as: L y; y0ð Þ ¼ �1=N � PN
i¼1 y log y0i

� �� �þ 1� yð Þ log 1� y0i
� �� �

y and

y0 being ground truth and predicted patches, respectively. It was
noticed that the stability of accuracy and loss values requires a
number of epochs P 25. For a batch size of 4;30 epochs are per-
formed. Afterwards, the measures are done for the 5 networks that
were trained on random combinations of the data above. As we are
not using the validation set of the competition, our results cannot
be compared with the results from other participants. We have
thus reproduced some of the state-of-the-art methods and net-
works, and evaluated them in our configuration. Our contributions
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are focused on demonstrating the effect of adding the distance
transform to the initial image, and using a stochastic patch-wise
procedure. Detailed comparisons showing improvements are pre-
sented in the results section.
5.2. Electric field estimation

Knowing properties of components and spatial distribution of
heterogeneous media, an efficient way to solve the problem of
homogenization of physical properties uses numerical solutions
of the corresponding partial differential solutions before estimat-
ing the effective properties by spatial averaging of the solution.
The case of dielectric permittivity conducts to the prediction of
electric field by solving the Gauss equation of electrostatics from
Maxwell’s equations. Iterative Fourier Transform numerical
scheme can compute this field [31]. Here we explore the possibility
of estimating this field directly from the media using deep learn-
ing. The heterogeneous media are modeled by Cox Boolean random
models of spheres [32,33] allowing to generate realistic multi-scale
microstructures. A specific algorithm described in [34] uses an
original construction method which allows to run wide simula-
tions with the least computational cost. We follow the guidelines
of the latter algorithm to generate our training images. In this
framework, a multi-scale microstructure is modeled by volume
fractions that define aggregates (Vv ;inc of inclusion areas), grains
inside and outside the inclusion areas (Vv and Vv ;out , respectively).

The training dataset is made of 5002 pixel images. The parameters
R ¼ 20 (radius of spheres), Vv ;inc ¼ 0:4; Vv ¼ 0:6 and Vv ;out ¼ 0:7



Fig. 5. The dataset utilized for the image prediction task. (a) Is a binary
microstructure obtained from a boolean model of spheres and (b) its corresponding
electric field image. Field intensity is proportional to grayscale pixel values.
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are fixed for the whole image set. Based on the foregoing
microstructures and phase dielectric properties, we use a numeri-
cal scheme to estimate the electric field. This method lies on sev-
eral works, namely [35–37,31]. Labeled images are
representations of electric field response E xð Þ estimated inside
and outside microstructures. For dielectric constants of the phases
of the binary microstructure, 0.1 and 100 (no imaginary part) are
used for the black and white pixels respectively. The resulting elec-
tric field response module is converted to 8bit format (256 values)
by uniform sampling. The training is performed on a dataset of
4800 training and 800 validation patches. Only binary and grays-
cale images are used, colored illustrations are shown solely for
clarity purposes. The experimental setup is akin to the one
described for the EM images of the brain. The network reaches
its optimal performance after one epoch and a batch size 4. Dataset
generations and homogenization codes can be found in the open
access software ‘‘plug im!” [38] (see Figs. 4 and 5).

5.3. Evaluation metrics

5.3.1. Image segmentation

Foreground-restricted Rand scoring: VRand The boundary maps
assessment is done on the basis of the official metric of the ISBI
2012 challenge. Such a boundary detection problem is sensitive
to split and merge errors, where one feature element is incorrectly
split into two segments, and where two distinct feature elements

are incorrectly merged into one segment [29]. The VRand score com-
bines the two errors:

VRand
a ¼

P
ijp

2
ij

a
P

ks
2
k þ 1� að Þ

X
k

t2k
ð15Þ

where
P

ijp
2
ij is the probability that two random elements belong to

the same segment of the predicted segmentation S and to the same
segment of the groundtruth segmentation T. A segment by defini-
tion is a connected component. Belonging to an object A in this con-
text means having the same label as A. The a measures the
importance of both the merge and split errors. In fact, they can be

derived from the equation above. We have: VRand
a¼0 ¼ VRand

split and

VRand
a¼1 ¼ VRand

merge. Finally,
P

ks
2
k and

P
kt

2
k are appropriate normalization.

The used script allowing the computation of VRand is the one that is
proposed in the website of the challenge [29].

5.3.2. Image prediction
For the evaluation of the predicted electric field image, we use

some of the most common reference image quality measures, in
particular the ones that are based on different measuring
Fig. 4. The ISBI 2012 segmentation challenge training dataset.
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approaches. The goal is to measure dissimilarities between two
images. Hereafter in this part, we use the formulation
II ¼ IH i; jð Þ; 8i ¼ 1; . . .W; 8j ¼ 1; . . .Hf g; withH ¼ o; df g for both
original (ground truth) and distorted (predicted) image.

Peak signal-to-noise ratio: PSNR Related to the mean squared
error (MSE) is firstly deployed. PSNR is based upon an explicit
numerical criterion which is the comparison between pixel values.
Let Io be the original image and Id the distorted image. To perform a
comparison between these images, the PSNR metric writes:

PSNR Io; Idð Þ ¼ 10� log10

2d � 1
� �2

MSE Io; Idð Þ

2
64

3
75 ;with ð16Þ

MSE Io; Idð Þ ¼ 1
W � H

XW�1

i¼0

XH�1

j¼0

Io i; jð Þ � Id i; jð Þð Þ2 ð17Þ

2d � 1 denotes the maximum possible value that a pixel can have.
For d ¼ 8 byte coded image, the maximum value is 255. Eq. (17)
measures the value differences between corresponding pixels of
each image. PSNR is expressed in decibels which is a logarithmic
unit. From Eq. (16), we can see that higher PSNR value is an indica-
tor of highly similar images.

Universal Image Quality: UIQ Is an important tool to measure
dissimilarities between two images in terms of their statistical
properties [39]. The UIQ index writes:

UIQ Io; Idð Þ ¼ rIoId

rIorId

� 2�Io �Id
�Io2 þ �Id2

� 2rIorId

r2
Io þ r2

Id

ð18Þ

where I and r2 denote mean and variance value, respectively. Eq.
(18) is an expression of the UIQ index as a product of three factors:
loss of correlation (measures linear correlation), luminescence and
contrast distortion. UIQ range is [�1,1] so that the index of very
similar images approaches 1.

Structural similarity index measure: SSIM Is an adaptation of
the human visual system (HVS) that aims to assess the structural
information of an image [40]. The SSIM equation writes:

SSIM Io; Idð Þ ¼ A Io; Idð Þ � B Io; Idð Þ � C Io; Idð Þ ;where ð19Þ

A Io; Idð Þ ¼ 2�Io �Id þ C1
� �

= �Io2 þ �Id2 þ C1
� �

B Io; Idð Þ ¼ 2rIorId þ C2
� �

= r2
Io þ r2

Id
þ C2

� �
C Io; Idð Þ ¼ rIoId þ C3

� �
= rIorId þ C3
� �

C1 ¼ K1 � Lð Þ2; C2 ¼ K2 � Lð Þ2 and C3 ¼ C2=2. L is the image
dynamic, K1; K2 are constants and I and r2 are the mean and vari-
ance values, respectively. SSIM aims to identify the perceptual sim-



Fig. 6. (a), (c) Patch-wise U-Net results for two tasks, image prediction and image segmentation. Predictions images/probability maps are given in terms of two patch
sampling strategies, uniform and stratified. Results are given for the original image and the enhanced image. (b) U-Net results for image segmentation. Probability map for
augmented image dataset, by affine transformations, is illustrated.
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Fig. 7. Evolution of the binary cross entropy loss in terms of shift transformations
applied to patches of the validation dataset.

Table 2
VRand evaluation of probability maps of the ISBI 2012 segmentation challenge dataset
for two networks: Patch-wise U-Net and U-Net, using uniform and stratified sampling
strategies. Original, enhanced and augmented images by affine transformations are
used as datasets.

Fig. 8. Dissimilarities given by PSNR, SSIM and UIQ mean values between common
area of original and shifted patches.
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ilarity between two images through the evaluation of luminance (A-
Eq. (19)), contrast (B-Eq. (19)) and image structure (C-Eq. (19)). In
the presented application, K1 and K2 are taken equal to 0:01 and
0:03, respectively.
Network Data Sampling VRand % (Thinned)

Patch-wise U-Net original uniform 94;1� 3;1
stratified 97;3� 2;2

enhanced uniform 95;2� 2;3
stratified 97,9 � 1,5

U-Net augmented – 96;7� 2;0
6. Results

In this section, experiments regarding the design of the used
network are conducted. The ability of preserving network’s invari-
ance under shift transformation is investigated to demonstrate the
use of the patch procedure. Afterwards, a sequence of comparisons
between predicted results and ground truth data is presented.
6.1. Shift invariance

On the electric field dataset, we conduct shift transformations
from �5 to þ5 pixels (in the x’s axis) applied to all patches of val-
idation images. Given a fully trained U-Net on the original dataset,
we firstly compare the binary cross entropy value for each shift
value. The goal is to evaluate the ability of the network to predict
translated images from non translated training data. Fig. 7 shows
that the minimum error value coincides with the prediction of a
non translated image, and, thence, the network smoothly looses
accuracy proportionally to increasing shift values. An alternative
approach would consists of feeding a trained network a prediction
image Ip that yields a prediction field Fp. We select a patch Xp of the
size W � H centered at position x; yð Þ, the network result is an esti-
mated patch field f p at position x; yð Þ. Considering shift values h,
patches Xp � h of the same size and their respective estimations
f p � h are assessed. The intersection area of these patches is of
the size W � 2h� Hð Þ centered at x; yð Þ. For h ¼ �5;5½ �, we com-
pare the dissimilarities through the PSNR, UIQ and SSIM mean val-
ues of three different patches between the common area of each
shifted patch. Table 1 and Figs. 7, 8 manifest these differences
and quantify the shift ‘‘invariance” of the U-Net architecture. That
Table 1
PSNR, UIQ, SSIM mean values and BCE values evaluated between common area of origina

Shift values �5 �4 �3 �2 �1

PSNR 26.6912 30.2654 28.1801 32.6074 29.8986
UIQ 0.9523 0.9776 0.9645 0.9867 0.9766
SSIM 0.9532 0.9780 0.9652 0.9869 0.9771
BCE 0.2547 0.2516 0.2472 0.2440 0.2409
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suggests that the network, in our specific case, is not suited for a
pixel-wise approach. Rather, a patch based procedure is stabilizing
the network by forcing it to learn features from the whole patch
dumping non-important features as the shift transformation. The
use of U-Net as a predictor for central pixel of patch (pixel-by-
pixel approach) leads to fuzzy results due to the averages of patch
estimates that are not completely similar.
6.2. EM segmentation challenge ISBI 2012

Building upon the experimental setup described in Section 5,
two experiments are conducted:

Patch-wise U-Net The first aim is to investigate the effect of
training the network on the enhanced image dataset. Unlike the
binary microstructures case, where there is a plenty of untextured,
void areas that made the contribution of the distance map informa-
tion, intuitively useful. This application is based on grayscale and
highly textured images. Besides, the difference between the origi-
nal and the transformed images is not clear from a visual point
of view as shown in Fig. 6. Therefore, the small change in the pixel
values of the image is expected to have a proportional improve-
ment on the quality of the resulting probability maps. Which is
not big, but sufficient to prove the interest of adding the distance
l and shifted patches.

0 1 2 3 4 5

50 29.8177 33.4603 28.2784 30.2763 26.4302
1 0.97503 0.9859 0.9654 0.9744 0.9473
1 0.9755 0.9861 0.9661 0.9749 0.9484
0.2401 0.2415 0.2448 0.2480 0.2516 0.2547



Table 3
PSNR,UIQ and SSIM values comparison of predicted images in Fig. 6 stemming from original and enhanced training datasets.

Images Sampling PSNR UIQ SSIM

original uniform 34.5997 0.6891 0.8305
stratified 32.1624 0.6443 0.7820

enhanced uniform 35.7380 0.7030 0.8803
stratified 37.9949 0.7627 0.9026

border Mask uniform 30.8096 0.6890 0.7777
interior Mask uniform 34.0679 0.6892 0.8137
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transform. Such results will allow to show the contribution of the
distance transform, even for a challenging dataset in terms of tex-
tural complexity. The sample is prepared differently, with and
without the distance map. Correspondingly, probability maps are
evaluated and compared to the ground truth segmentation images

using the VRand metric. From the results shown in Table 2, more
specifically by comparing the uniform sampling strategy results,

it is clear that the VRand error has improved by training the network
on the enhanced image dataset instead of the original images.

U-Net At this stage, a comparison with a state-of-the-art data
augmentation method is achieved. It was found that random elas-
tic deformations are very efficient to overcome over-fitting in the
case of small data samples. Examples are illustrated here [20]
and here [41] for the ISBI 2012 segmentation challenge dataset.
In our experiment, the following transformations are used: rota-
tion, width and height shift, shear, zoom and horizontal flip. Slight
changes induced by the former transformations makes the model
more robust and generalizable. The use of these operations creates
artificially new images. We started with 26 samples from the orig-
inal challenge dataset. With data augmentation, the model reaches
its optimal performance for 1000 steps per epoch. Each operation is
defined on a range of values. The number of the possibly generated
samples is limited by the allowed number of pixels. For instance,
height and width shifts operations are restricted by the dimensions
of the patch W � Hð Þ. For a height shift range hs ¼ 0:05, the number
of the generated samples is equal to GSi ¼ hs � 2� H, considering
the two translation directions, top to bottom and vice versa. Simi-
lar arguments can be advanced to compute the number of gener-
ated images from the other operations. The productQ

iGSi � Nsamples yields the total number of samples. Results shown
in Table 2 reveals that the patch-wise U-Net with the stratified
sampling strategy performs better on the used dataset compared
to the U-Net with data augmentation.

6.3. Electric field estimation

For this dataset, we investigate the effect of the enhanced
images to the task of image prediction. As pointed out in the
Fig. 9. Segmentation results with uniform sampling (a) and stratified sampling (b).
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method section, the distance map enriches the information to be
extracted. A comparison of the PSNR, UIQ and SSIM indices is per-
formed for two types of training data. Primarily, the network is
trained on the original dataset. Afterwards, another training is per-
formed on the enhanced image dataset. A visual comparison is
shown in Fig. 6 and the values of the evaluation metrics are pre-
sented in Table 3. A concluding remark is that the PSNR, UIQ and
SSIM indices have improved remarkably in the second case.

6.4. Effects of stratified sampling

The network processes patch by patch and yields accordingly a
prediction for each one separately. To bring together the patches, a
sampling strategy needs to be defined. Uniform and stratified sam-
pling methods are investigated. In contrast to the first one, which
consists of distributing the predicted patches uniformly over all
the image size, the latter allocates random positions to each patch
based on uniform sampled points. Thus, for each stratification iter-
ation, novel patches and their respective predictions are created.
Visually, stratified sampling reduces considerably the edge effect
on the borders of patches, related results are shown in Figs. 9
and 10.

EM segmentation challenge ISBI 2012 Here, segmentation
results are compared to ground truth boundary maps. A part from
Fig. 10. Border area mask (a) and inside area mask (b). Prediction result with
uniform sampling (c) and stratified sampling (d).



A. Hammoumi, M. Moreaud, C. Ducottet et al. Neurocomputing 456 (2021) 481–491
the edge effect, which is the main drawback of the uniform sam-
pling strategy, the predicted membranes obtained from the strati-
fication strategy are clearer and more precise as shown in Fig. 9.

From a quantitative point of view, the VRand values related to the
stratified sampling, shown in Fig. 9, exceed the ones obtained from
the uniform sampling.

Electric field estimation A comparison between ground truth
image and predicted results in terms of evaluation indices is shown
in Table 3. For the enhanced images, stratified sampling has proven
its ability to improve results in terms of scoring metrics. On the
other hand, comparison between measures from the original data,
subject to the two sampling strategies, doesn’t confirm this postu-
late. We explain this by the fact that the evaluation metrics are
averaged over the entire image and do not reflect the visual feeling.
To verify this, two masks isolating both the edge borders and the
inside area of patches are considered. A local similarity comparison
between former masks applied to Fig. 10c and to ground truth
image has been conducted. As expected, PSNR, UIQ and SSIM
indices for uniform sampling evaluated at the edge borders area
are lower than prior evaluated indices in the case of stratified sam-
pling. Fig. 10 illustrates this operation and related results are
shown in Table 3.
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7. Conclusion

A small sample learning methodology was proposed. It was
shown that the distance transform improves the spatial-
awareness of the network by providing spatial information to the
original images. A patch-based procedure was applied to overcome
the limited number of samples along with a stratified sampling
method to remove border edge effect. The methodology was vali-
dated on two tasks: image segmentation and prediction. Tasks
are portrayed by different types of dataset.
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