
HAL Id: hal-02879709
https://hal.science/hal-02879709v2

Submitted on 4 Dec 2020 (v2), last revised 6 Sep 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Adding geodesic information and stochastic patch-wise
image prediction for small dataset learning

Adam Hammoumi, Maxime Moreaud, Christophe Ducottet, Sylvain Desroziers

To cite this version:
Adam Hammoumi, Maxime Moreaud, Christophe Ducottet, Sylvain Desroziers. Adding geodesic
information and stochastic patch-wise image prediction for small dataset learning. Neurocomputing,
2021, 456, pp.481-491. �10.1016/j.neucom.2021.01.108�. �hal-02879709v2�

https://hal.science/hal-02879709v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Adding geodesic information and stochastic patch-wise image prediction for small
dataset learning

Adam Hammoumia,∗, Maxime Moreauda,b, Christophe Ducottetc, Sylvain Desroziersd
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cUniversité de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023, Saint-Etienne, France
dIFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France

Abstract

Most recent methods of image augmentation and prediction are building upon the deep learning paradigm. A
careful preparation of the image dataset and the choice of a suitable network architecture are crucial steps to
assess the desired image features and, thence, achieve accurate predictions. We first propose to help the learning
process by adding structural information with specific distance transform to the input image data. To handle cases
with limited number of training samples, we propose a patch-based procedure with a stratified sampling method
at inference. We validate our approaches on two image datasets, corresponding to two different tasks. The
ability of our method to segment and predict images is investigated through the ISBI 2012 segmentation challenge
dataset and generated electric field masks, respectively. The obtained results are evaluated using appropriate
metrics: VRand for image segmentation and SSIM, UIQ and PSNR for image prediction. The proposed techniques
demonstrate that the established framework is a reliable estimation method that could be used for a wide range
of applications.

Keywords: image augmentation, deep learning, distance transform, patch-wise segmentation, stratified sampling

1. Introduction

Deep Convolutional Neural Networks (DCNNs) have demonstrated throughout the recent years their remark-
able performance in handling a variety of problems in the fields of image processing and computer vision [1][2].
In particular, DCNNs are becoming a major tool for visual recognition modern tasks such as image classification,
segmentation, semantic segmentation and so on.

Considering the global dimension that DCNNs have taken, predominant implementations often require large
datasets, which is not always possible in many domains. Regarding that, the interest in small sample learning
(SSL) is increasingly growing [3]. Novel network topologies and training methodologies are required to address
this issue. In the literature, there are many approaches that attempt to face out the SSL paradigm. The data
augmentation approach tries to compensate the lack of samples by applying adequate transformations to the
original dataset [4]. Besides expanding the size of the initial dataset, distorted images improve the generalisability
of the network. Another approach is knowledge transfer of fully trained networks that can be used to fit small
datasets [5]. One could transfer knowledge from similar tasks or even from uncorrelated tasks [6]. Essentially,
generic pattern matching tasks, created from unlabeled data, have been relevant for SSL [7]. To handle limited
data, unsupervised pre-training strategies, consisting of making fine adjustments to the initialization parameters
of the network, have shown promising results as well [8].
In this paper, we focus on specific DCNN architectures using only convolutionnal layers. These architectures
referred to as fully connected neural networks (FCNNs) are mainly used for semantic segmentation or image
prediction [9]. In this context, an important strategy which has been proposed to address SSL issue is to combine
small neural net models and patch-based training [10][11][12]. First the input size of the model (ie. the number of
input neurons) is reduced providing a global model with less parameters. And second, the training images are cut
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into small patches to feed the network. Besides requiring smaller architectures, the patch sampling strategy allows
to enlarge the dataset by providing much more independent samples to train the network. At inference time, an
arbitrary large target image can be processed by dividing it into patches and merging the corresponding inferred
results to reconstruct a big prediction image. However, the reconstructed image is subject to patch border effects
mainly due to the lack of translation invariance of the network. Several strategies have been proposed to overcome
these effects [13] but there is no detailed study about this problem. Another important issue of the patch-based
strategy is related to spatial-awareness. Information outside the patch box is unexplored at training time due to
the limited receptive field of the network. That is, the network may not learn spatial relationships larger than the
patch size, which may be important for the considered task. In this work, we propose two contributions related to
the patch-wise network scheme in the context of FCNN. First, we propose to reinforce the spatial-awareness of a
patch-based training by adding geodesic information to the original images yielding richer spatial representations.
Second, we propose a sampling strategy at inference time to overcome border effects, appearing when the assembled
patches are added uniformly. The outline of this paper is organized as follows:
In section (2), we discuss existing works about the distance transform in the context of semantic segmentation,
as well as a method dealing with border effects and translation invariance of DCNNs. In section (3), brief
introduction to fully convolutional neural networks is given along with the used U-Net network architecture. We
also describe some patch-based methods from the literature. We conclude this part by explaining our patch-based
training procedure. In section (4), we reveal our two contributions: adding geodesic information to the original
training data, together with a stratified sampling strategy at inference time. Throughout section (5), two datasets
corresponding to two different tasks are introduced with their appropriate error metrics. In section (6), we explain
our method to quantify the shift invariance of the U-Net network, the corresponding results follow soon after.
Henceforth, several comparisons are showed to demonstrate the effectiveness of our contributions. Section (7)
concludes the paper.

2. Related work

A DCNN starts the process of features extraction according to a growing architecture from low level to high
level features. Convolutional filters capture abstract features, often, not relevant for a human observer, they are
recognized as crucial image characteristics. Seeking for more informative representations help extracting more
features. A recent regression approach for semantic segmentation suggests that constraining the network to learn
spatial information allows reducing blurry boundaries and ill segmented shapes in predictions [14]. The proposed
technique is based on the distance transform. The latter yields a distance map, where, each pixel acquires a spatial
awareness about its local proximity. In this configuration, less informative surfaces become more informative
throughout all the image space. Without changing the network architecture, and by adding distance transformed
labels as regression targets, the method proved to be an asset for the task of semantic segmentation. However,
our method operates differently by combining the geodesic information, extracted from the distance map, with
the original images. The addition of the distance map provides information about elements outside the scope of
a patch, implicitly increasing the field of view of the network.
DCNNs are believed to be translation invariant [15] at some degree. Although convolutional layers have a property
of equivariance to translation [16], it is not exactly the same for the complete network. This general consensus
is supported by the fact that the networks have the inherent ability of learning arbitrary features: important
ones, but also features as affine transformations that are irrelevant and must be discarded. Two main ideas in
the literature try to address this issue. According to the first, the ability to learn translation invariance is due
primarily to the networks architecture, in which the succession of convolution layers augments the receptive field of
neurons [17], and to pooling layers that select a value from convolution layer output regardless of its position [18].
That is, the imperfect translation invariance is due to pooling layers [13]. Using translation sensitivity maps and
radial translation-sensitivity to quantify shift invariance introduced in [13], it can be demonstrated that the use of
appropriate input data along with data augmentation comes beyond the network architecture in terms of learning
translation invariant representation. A careful examination of the extent to which the network architecture is
shift invariant is a relevant information for data preparation. We propose in this article a throughout study of
the translation invariance of the U-Net architecture using different metrics computed on the common area of
translated inference patches. Additionally, we propose an adequate stochastic sampling strategy to overcome the
lack of strict translation invariance.
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3. Background

3.1. Fully Convolutional Neural Networks

While DCNNs for image classification are predicting a single class for a whole image, FCNNs can be used to
make dense predictions. Given an input image of any size, a FCNN produces an output having the same spatial
support (possibly re-sampled) and predicting a value associated to each input pixel (or each group of pixels). For
instance, the tasks of image segmentation and prediction require a pixel-wise (or a patch-wise) labeling of the
output image. Therefore, feature elements are distinguished from each other by unique labels obtained from a
classification process, at the pixel or patch level. Usually in a convolutional neural network, the input image goes
through the convolutional layers for features extraction and gets downsized by the pooling layers. Thereupon,
the results of the convolution/pooling operations are fed to the fully connected layers (FC) to classify the image.
At this stage, two situations arise, if the labeling process yields one class for the whole image, it becomes a
classification task. If, on the other hand, the image is classified by a label map, where each sub-part of the image
is uniquely labeled, the corresponding task is most likely to be image prediction or segmentation. To obtain a
label map instead of a single value label, an up-sampling step is mandatory to calculate a pixel wise output.
Our attention is drawn to FCNNs and dense prediction [19][9] since they recapture the spatial information lost
during down-sampling operations by up-sampling or deconvolution. FCNN architecture transforms the size of the
label map back to the size of the input image or a sub-sampled version through the up-sampling process. Hence,
the output image have a pixel-to-pixel correspondence with the input image. U-Net is a popular FCNN. It has
first appeared under the scope of biomedical images segmentation [20]. It consists of a contraction path made of
consecutive (3× 3) convolutions followed by (2× 2) max pooling matrices. An expansion path, which is composed
of consecutive (3 × 3) convolutions and (2 × 2) transposed convolution matrices. To regain spatial information
lost during the contraction path, a concatenation procedure, that consists of transferring feature maps to the
expansion path, through a layer-by-layer correspondence, is established. The final step is a (1 × 1) convolution
matrix along with a Softmax activation function. Our experimental setup, namely the used FCNN architecture,
is more or less identical to the U-Net architecture as shown in figure (1). It consists of an alternating sequence
of two convolutions per max pooling operations. The ReLU is the used activation for each convolution and it
is preceded by a batch normalization operation. The max pooling downsizes the image by a factor of two and
doubles the number of features maps (or, channels). The transposed convolution operation is performing both
convolution and up-sampling (through a stride of (2, 2), that has the effect of spacing out the input) while the
concatenation operation collects information from features map of the contraction path. In this work, the U-Net
architecture is customized for use with a patch-wise procedure. The network is rather focused on image patterns
occurring locally at the patch level. The resulting output is a prediction patch as well. The training is carried
out by a set of sliding (48 × 48) windows cropped from training images. The output is obtained from a (1 × 1)
convolution followed by a Sigmoid activation function.

3.2. Patch procedure

Training a FCNN at the pixel level of an image can be a challenging task in several cases. For example, in
many medical applications [10], the training data is a set of high resolution images, which will require a very large
memory footprint. The process of gathering a large set of training data in many domains is not always possible.
An additional drawback to this approach arises, which is the risk to bias the training by forcing the network to only
learn the most distinctive features from the whole image. Many attempts have been made to address this issue. In
particular, evidence from [11] draw our attention to a patch-wise setup. In order to overcome the SSL issue, the
latter suggests training the network on large set of patches instead of few original training images. By means of
this scheme, the question of the use of context arises regarding the ability to learn compelling patterns. Basically,
the size of the patches and the number of hidden layers of the FCNN control the field of view of the network
and contribute explicitly in the learning of important features. For example, the authors in [12] postulate that a
small patch size is not needed for their specific case, since there is little chance of finding relevant information in
small image regions. Other techniques, such as [21] proposes to combine pixel-level and patch-level (ie. one label
per patch) to improve segmentation accuracy. We build our method in compliance with the patch-based method
proposed in [11]. Traditionally, patches are assembled in a mosaic way or by overlapping half patches. In our
configuration, a patch is characterized by its size K ×K with a sliding step s over the image. That makes a total
number (1 + b(IW −K)/sc) × (1 + b(IH −K)/sc) of patches for an image of size IW × IH . The following patch
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Figure 1: U-Net architecture. Left: contraction path; right: expansion path. After each set of operations, the size of the image and
the number of channels is indicated. Operations are: convolution, transposed convolution, max pooling and concatenation. Input and
output images are described later in the experimental results section.

parameters are adopted: patch size K = 48 with a sliding step s = 24. s is chosen in a manner to cause the
overlap of patches. Suppositionally, significant information captured in-between patches can be extracted. This
hypothesis was verified empirically by trying different sliding steps. For instance, a training image of the size
IW = IH = 512, contains L = 400 overlapping patches. Figure (2) illustrates this process.

𝑠 

𝑘 

400 overlapping 
patches 

1 × 48 × 48 

𝐼𝑤 

𝐼𝐻 

Figure 2: Illustration of the patch extraction process. Parameters: IH = IW = 512, K = 48 and s = 24

4. Adding geodesic information and stratified patch sampling

4.1. Distance transform

Within the framework of SSL, we propose a methodology based on the distance transform to enhance the
amount of accessible information in input data. Flat surfaces contained in images are less informative than
textured surfaces. The lack of information in these regions will cancel the effect of the convolution matrices. The
features outside the size of the convolution matrix will not be extracted as well. The distance map computation
is a commonly used technique in several image processing tasks such as connected components labeling [22],
Skeletonization [23], Voronoi diagrams and so on. For binary images, the distance map can be computed in the
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following way: we consider the two dimensional metric space E = R2. Let I : ψ → {0, 1} be a binary image and
ψ ⊂ E the support of I. The latter can be divided into background and foreground subspace. We let the set of
foreground elements ω = {x ∈ ψ : I(x) = 1} be the reference set of features. A distance map is an image transform
that substitutes the value of each element in ψ by its distance from the closest feature object of ω. The operator
of the distance transform writes:

DT d(x) = min
{y|I(y)=0}

d(x, y) x, y ∈ ψ (1)

An overall formulation of the distance transform that extends to grayscale and color images may be found in [24].
In general, the distance between two points x and y is expressed by:

d(x, y) = inf
Γ∈Px,y

∫ l(Γ)

0

√
1 + γ2(∇I(s) · Γ'(s)

2
) ds (2)

where Γ is a path parameterized by its arc length s ∈ [0, l(Γ)] and Px,y is the set of all differentiable paths.The
geodesic factor γ measures the contribution of the image gradient ∇I(s) and spatial distances. Γ'(s) = ∂Γ(s)/∂s
is the unit vector tangent to the direction of the path. Notice that the binary image distance transform is a special
case of Eq.(2), where the image has scalar values {0, 1} and γ = 0. In this case, Eq.(2) simplifies to the euclidean
length of path Γ. Our strategy to extract a maximum amount of information from the image consists of probing
both the background and foreground space. The related distance map from the foreground writes:

DT dc (x) = min
{y|I(y)=max(I)}

d(x, y) x, y ∈ ψ (3)

Our main assumption is that distance maps can favorably enhance the spatial information contained in the image.
Thus, we propose to combine both grayscale and distance maps and use this enhanced image for training the
network. Denoting Ie the enhanced image, we have:

Ie(x) = I(x) + αDT d(x)− βDT dc (x) α, β constants (4)

It is possible to compute the distance map for a grayscale image using the approach from [25]. It corresponds to
a distance transform starting from lowest to highest grayscale intensities:

¯DT d(x) =
∑
i

d(x, Fi)wi |Fi = {x; I(x) ≥ i}, wi = 1 (5)

Similarly, an extended symmetric distance map starting from highest to lowest grayscale intensities can be defined:

¯DT dc (x) =
∑
i

d(x,Gi)wi |Gi = {x; I(x) < i}, wi = 1 (6)

The resulting enhanced image writes:

Ie(x) = I(x) + α ¯DT d(x)− β ¯DT dc (x) α, β constants (7)

The former distance has an important time complexity, which leads us to define an approximated distance map for
grayscale images that can be deduced from a functional projected distance map d⊥ [26]. The latter is independent
of grayscale scaling. A formulation of the distance in the background space is achieved by using the set of pixels
of low intensities:

D̂T
d
(x) = min

{y|I(y)=min(I)}
d⊥(x, y) x, y ∈ ψ (8)

where d⊥ is the projected distance of the one developed in Eq. (2). Likewise, its symmetric distance map is given
by:

D̂T
d
c(x) = min

{y|I(y)=max(I)}
d⊥(x, y) x, y ∈ ψ (9)

The enhanced image writes:

Ie(x) = I(x) + α ˆDT d(x)− β ˆDT dc (x) α, β constants (10)

Distance transform can be computed with a two pass raster scanning algorithm which is well established in the
literature [27]. The utility of the distance transform is stressed by the added information, emphasized in Eqs. (4),
(7) or (10). Figure (3) illustrates this process for binary and grayscale images. For our illustrations and results
parts, α and β are taken equal to 1.
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4.2. Stratified sampling of patches

On the basis of individual patches extracted from the input image, the estimated image is fully assembled by
adding the corresponding predicted patches. It was found that an exact convolution strategy (one patch for each
pixel) leads to fuzzy and low quality results. This problem is tackled in the experimental results section through
the shift invariance analysis. However, a major shortfall needs to be considered when using patches. When the
latter are regularly distributed and summed to produce the whole prediction image, an edge effect at the border
of each patch may appears, as shown in figure (9). Thereby, an adequate sampling strategy is required to reduce
this effect. Consider the set of patches contained in one image χ = {χi,j}. Each patch occupies a total area of
A = W×H where W and H are the width and the height of each patch respectively. An uniform sampling strategy
consists of cropping patches as fragments of the original image following a scanning strategy from top to bottom
and from left to right. Mathematically, this sampling strategy boils down to:

χi,j = {x, y | x ∈ [i,W + i] , y ∈ [j,H + j] } ,with (11)

i = 0, s′, (2× s′), (3× s′), ..., (Iw −W + s′)

j = 0, s′, (2× s′), (3× s′), ..., (Ih −H + s′)
(12)

Eq.(11) corresponds to a formulation of the patches. The indexation strategy expressed in Eq.(12) yields a uniform
sampling. To remove the edge effect at the borders, patches must be drawn stochastically. We propose using a
stratified sampling strategy [28]. It consists of a uniform density of values drawn in the interval [−s′, s′] denoted
U(−s′, s′). Indexing the patches with random coordinates will guarantee the generation of fresh ones every time.
The new indexation strategy can be phrased in terms of:

ir =
s′

2
+ U(−s′, s′),

3s′

2
+ U(−s′, s′),

5s′

2
+ U(−s′, s′), ...

jr =
s′

2
+ U(−s′, s′),

3s′

2
+ U(−s′, s′),

5s′

2
+ U(−s′, s′), ...

(13)

Consider N random samples of the whole set of patches contained in one image. The latter are yielding N
predictions. The final result should be obtained by averaging over the N samples. We write:

If = 1/N ×

(
N∑
v=1

∑
ir,jr

χ̂ir,jr

)
(14)

where χ̂ refers to inferred patches. ir and jr have random values according to Eq.(13) and are subject to constant
change. Thus, the distribution of patches in each image is unique.

5. Experiments

We evaluate our distance transform-based enhancement and patch sampling strategy for two datasets. One is
a state-of-the-art example on 2D segmentation of electron microscopic (EM) images of the brain, while the other is
about predicting the electric field from binary images of heterogeneous materials. Each dataset requires a different
task. In particular, image segmentation and prediction. Results are evaluated using adequate scoring metrics,
namely: VRand for image segmentation and PSNR, UIQ, SSIM for image prediction.

5.1. 2D segmentation of EM images of the brain

The training dataset is a part of the public ISBI 2012 EM segmentation challenge [29]. The aim is to precisely
segment an EM image, where, pixels inside a cell area have value 1 and pixels at the boundaries between neurite
cross sections have value 0. A set of 30 training images (512×512) pixels along with their ground truth annotations
are made public for participants. Another set of 30 validation images of the same resolution is available. Its
corresponding ground truth data is kept secret by the organizers. The latter is used to evaluate the performance of
the proposed algorithms. Comparisons between some of the existing state-of-the-art methods, such as, the original
U-Net network instead of the patch-wise procedure, also, with and without data augmentation (mainly, affine
transformations), are investigated and compared to our approach. To extract training, validation and inference
images, the original training dataset is randomly shuffled into k = 5 equal sized samples. Each subsample contains
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Original grayscale image Grayscale distance transform Enhanced image

(a)

Background distance transform Foreground distance transformOriginal binary image Enhanced image

(b)

Figure 3: Distance transform application to grayscale (a) and binary (b) images. [25]. From left to right: the process of extracting the
distance map from the original image. The combination of the two yields an enhanced input image.

26 training images, 3 validation images and 1 inference image. The outcome estimation is the average of the
5 predicted images. Thus, with the chosen K and s parameters (see section 3.2), one network is trained on a
dataset of 11466 patches and is validated on 1323 patches. The sigmoid activation function f(x) = 1/(1 + e−x)
is computed over the final feature map. The network is trained using the Adam [30] optimizer and binary cross
entropy loss function defined as:
L(y, y′) = −1/N ×

(∑N
i=1(y log(y′i)) + (1 − y) log(1 − y′i)

)
y and y′ being ground truth and predicted patches,

respectively. It was noticed that the stability of accuracy and loss values requires a number of epochs ≥ 25. For
a batch size of 4, 30 epochs are performed. Afterwards, the measures are done for the 5 networks that were
trained on random combinations of the data above. As we are not using the validation set of the competition,
our results cannot be compared with the results from other participants. We have thus reproduced some of the
state-of-the-art methods and networks, and evaluated them in our configuration. Our contributions are focused on
demonstrating the effect of adding the distance transform to the initial image, and using a stochastic patch-wise
procedure. Detailed comparisons showing improvements are presented in the results section.

5.2. Electric field estimation

Knowing properties of components and spatial distribution of heterogeneous media, an efficient way to solve the
problem of homogenization of physical properties uses numerical solutions of the corresponding partial differential
solutions before estimating the effective properties by spatial averaging of the solution. The case of dielectric per-
mittivity conducts to the prediction of electric field by solving the Gauss equation of electrostatics from Maxwell’s
equations. Iterative Fourier Transform numerical scheme can compute this field [31]. Here we explore the possi-
bility of estimating this field directly from the media using deep learning. The heterogeneous media are modeled
by Cox Boolean random models of spheres [32] [33] allowing to generate realistic multi-scale microstructures. A
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(a) EM image of the brain (b) Boundary map annotated by human
expert

Figure 4: The ISBI 2012 segmentation challenge training dataset

(a) Binary microstructure (b) Electric field groundtruth

Figure 5: The dataset utilized for the image prediction task. (a) Is a binary microstructure obtained from a boolean model of spheres
and (b) its corresponding electric field image. Field intensity is proportional to grayscale pixel values.

specific algorithm described in [34] uses an original construction method which allows to run wide simulations with
the least computational cost. We follow the guidelines of the latter algorithm to generate our training images.
In this framework, a multi-scale microstructure is modeled by volume fractions that define aggregates (Vv,inc of
inclusion areas), grains inside and outside the inclusion areas (Vv and Vv,out, respectively). The training dataset
is made of 5002 pixel images. The parameters R = 20 (radius of spheres), Vv,inc = 0.4,Vv = 0.6 and Vv,out = 0.7
are fixed for the whole image set. Based on the foregoing microstructures and phase dielectric properties, we use
a numerical scheme to estimate the electric field. This method lies on several works, namely [35],[36],[37] and [31].
Labeled images are representations of electric field response E(x) estimated inside and outside microstructures.
For dielectric constants of the phases of the binary microstucture, 0.1 and 100 (no imaginary part) are used for
the black and white pixels respectively. The resulting electric field response module is converted to 8bit format
(256 values) by uniform sampling. The training is performed on a dataset of 4800 training and 800 validation
patches. Only binary and grayscale images are used, colored illustrations are shown solely for clarity purposes.
The experimental setup is akin to the one described for the EM images of the brain. The network reaches its
optimal performance after one epoch and a batch size 4. Dataset generations and homogenization codes can be
found in the open access software ”plug im!” [38].
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5.3. Evaluation metrics

5.3.1. Image segmentation

Foreground-restricted Rand scoring: V Rand. The boundary maps assessment is done on the basis of the
official metric of the ISBI 2012 challenge. Such a boundary detection problem is sensitive to split and merge
errors, where one feature element is incorrectly split into two segments, and where two distinct feature elements
are incorrectly merged into one segment [29]. The V Rand score combines the two errors:

V Rand
α =

∑
ij p

2
ij

α
∑

k s
2
k + (1− α)

∑
k t

2
k

(15)

where
∑

ij p
2
ij is the probability that two random elements belong to the same segment of the predicted segmen-

tation S and to the same segment of the groundtruth segmentation T . A segment by definition is a connected
component. Belonging to an object A in this context means having the same label as A. The α measures the
importance of both the merge and split errors. In fact, they can be derived from the equation above. We have:
V Rand
α=0 =V Rand

split and V Rand
α=1 =V Rand

merge. Finally,
∑

k s
2
k and

∑
k t

2
k are appropriate normalization. The used script

allowing the computation of V Rand is the one that is proposed in the website of the challenge [29].

5.3.2. Image prediction

For the evaluation of the predicted electric field image, we use some of the most common reference image
quality measures, in particular the ones that are based on different measuring approaches. The goal is to measure
dissimilarities between two images. Hereafter in this part, we use the formulation I? = {I?(i, j); ∀i = 1, ...W, ∀j =
1, ...H}, with ? = {o, d} for both original (ground truth) and distorted (predicted) image.

Peak signal-to-noise ratio: PSNR. Related to the mean squared error (MSE) is firstly deployed. PSNR is
based upon an explicit numerical criterion which is the comparison between pixel values. Let Io be the original
image and Id the distorted image. To perform a comparison between these images, the PSNR metric writes:

PSNR(Io, Id) = 10× log10

[
(2d − 1)2

MSE(Io, Id)

]
,with (16)

MSE(Io, Id) =
1

W ×H

W−1∑
i=0

H−1∑
j=0

(
Io(i, j)− Id(i, j)

)2

(17)

2d−1 denotes the maximum possible value that a pixel can have. For d = 8 byte coded image, the maximum value
is 255. Eq. (17) measures the value differences between corresponding pixels of each image. PSNR is expressed in
decibels which is a logarithmic unit. From Eq. (16), we can see that higher PSNR value is an indicator of highly
similar images.

Universal Image Quality: UIQ. Is an important tool to measure dissimilarities between two images in terms
of their statistical properties [39]. The UIQ index writes:

UIQ(Io, Id) =
σIoId
σIoσId

× 2ĪoĪd

Īo
2

+ Īd
2 ×

2σIoσId
σ2
Io

+ σ2
Id

(18)

where Ī and σ2 denote mean and variance value, respectively. Eq. (18) is an expression of the UIQ index as a
product of three factors: loss of correlation (measures linear correlation), luminescence and contrast distortion.
UIQ range is [-1,1] so that the index of very similar images approaches 1.

Structural similarity index measure: SSIM. Is an adaptation of the human visual system (HVS) that aims
to assess the structural information of an image [40]. The SSIM equation writes:

SSIM(Io, Id) = A(Io, Id)×B(Io, Id)× C(Io, Id) ,where (19)
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Shift values -5 -4 -3 -2 -1 0 1 2 3 4 5
PSNR 26.6912 30.2654 28.1801 32.6074 29.8986 50 29.8177 33.4603 28.2784 30.2763 26.4302
UIQ 0.9523 0.9776 0.9645 0.9867 0.9766 1 0.97503 0.9859 0.9654 0.9744 0.9473
SSIM 0.9532 0.9780 0.9652 0.9869 0.9771 1 0.9755 0.9861 0.9661 0.9749 0.9484
BCE 0.2547 0.2516 0.2472 0.2440 0.2409 0.2401 0.2415 0.2448 0.2480 0.2516 0.2547

Table 1: PSNR, UIQ, SSIM mean values and BCE values evaluated between common area of original and shifted patches.

A(Io, Id) = (2ĪoĪd + C1)/(Īo
2

+ Īd
2

+ C1)

B(Io, Id) = (2σIoσId + C2)/(σ2
Io + σ2

Id
+ C2)

C(Io, Id) = (σIoId + C3)/(σIoσId + C3)

C1 = (K1 × L)2, C2 = (K2 × L)2 and C3 = C2/2. l is the image dynamic, K1, K2 are constants and Ī and σ2 are
the mean and variance values, respectively. SSIM aims to identify the perceptual similarity between two images
through the evaluation of luminance (A-Eq.(19)), contrast (B-Eq.(19)) and image structure (C-Eq.(19)). In the
presented application, K1 and K2 are taken equal to 0.01 and 0.03, respectively.

6. Results

In this section, experiments regarding the design of the used network are conducted. The ability of preserving
network’s invariance under shift transformation is investigated to demonstrate the use of the patch procedure.
Afterwards, a sequence of comparisons between predicted results and ground truth data is presented.

6.1. Shift invariance

On the electric field dataset, we conduct shift transformations from −5 to +5 pixels (in the x’s axis) applied
to all patches of validation images. Given a fully trained U-Net on the original dataset, we firstly compare the
binary cross entropy value for each shift value. The goal is to evaluate the ability of the network to predict
translated images from non translated training data. Figure (7) shows that the minimum error value coincides
with the prediction of a non translated image, and, thence, the network smoothly looses accuracy proportionally
to increasing shift values. An alternative approach would consists of feeding a trained network a prediction image
Ip that yields a prediction field Fp. We select a patch Xp of the size W × H centered at position (x, y), the
network result is an estimated patch field fp at position (x, y). Considering shift values h, patches Xp − h of the
same size and their respective estimations fp− h are assessed. The intersection area of these patches is of the size
(W − 2h × H) centered at (x, y). For h = [−5, 5], we compare the dissimilarities through the PSNR, UIQ and
SSIM mean values of three different patches between the common area of each shifted patch. Table (1) and figures
(7),(8) manifest these differences and quantify the shift ”invariance” of the U-Net architecture. That suggests
that the network, in our specific case, is not suited for a pixel-wise approach. Rather, a patch based procedure is
stabilizing the network by forcing it to learn features from the whole patch dumping non-important features as
the shift transformation. The use of U-Net as a predictor for central pixel of patch (pixel-by-pixel approach) leads
to fuzzy results due to the averages of patch estimates that are not completely similar.

6.2. EM segmentation challenge ISBI 2012

Building upon the experimental setup described in section (5), two experiments are conducted:

Patch-wise U-Net. The first aim is to investigate the effect of training the network on the enhanced image
dataset. Unlike the binary microstructures case, where there is a plenty of untextured, void areas that made the
contribution of the distance map information, intuitively useful. This application is based on grayscale and highly
textured images. Besides, the difference between the original and the transformed images is not clear from a visual
point of view as shown in figure (6). Therefore, the small change in the pixel values of the image is expected
to have a proportional improvement on the quality of the resulting probability maps. Which is not big, but
sufficient to prove the interest of adding the distance transform. Such results will allow to show the contribution
of the distance transform, even for a challenging dataset in terms of textural complexity. The sample is prepared
differently, with and without the distance map. Correspondingly, probability maps are evaluated and compared
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Boundary map image

Original image  Probability map (uniform) Probability map (stratified)

Enhanced image Probability map (uniform) Probability map (stratified)

Probability mapAugmented image

(b)

(a)

Original image  

Predicted image (uniform) Predicted image (stratified)

Predicted image (uniform) Predicted image (stratified)

Groundtruth image 

(c)

Enhanced image

Figure 6: (a),(c) Patch-wise U-Net results for two tasks, image prediction and image segmentation. Predictions images / probability
maps are given in terms of two patch sampling strategies, uniform and stratified. Results are given for the original image and the
enhanced image. (b) U-Net results for image segmentation. Probability map for augmented image dataset, by affine transformations,
is illustrated.
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Figure 7: Evolution of the binary cross entropy loss in terms of shift transformations applied to patches of the validation dataset.
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Figure 8: Dissimilarities given by PSNR, SSIM and UIQ mean values between common area of original and shifted patches.

to the ground truth segmentation images using the V Rand metric. From the results shown in table (2), more
specifically by comparing the uniform sampling strategy results, it is clear that the V Rand error has improved by
training the network on the enhanced image dataset instead of the original images.

U-Net. At this stage, a comparison with a state-of-the-art data augmentation method is achieved. It was found
that random elastic deformations are very efficient to overcome over-fitting in the case of small data samples.
Examples are illustrated here [20] and here [41] for the ISBI 2012 segmentation challenge dataset. In our exper-
iment, the following transformations are used: rotation, width and height shift, shear, zoom and horizontal flip.
Slight changes induced by the former transformations makes the model more robust and generalizable. The use of
these operations creates artificially new images. We started with 26 samples from the original challenge dataset.
With data augmentation, the model reaches its optimal performance for 1000 steps per epoch. Each operation is
defined on a range of values. The number of the possibly generated samples is limited by the allowed number of
pixels. For instance, height and width shifts operations are restricted by the dimensions of the patch (W ×H).
For a height shift range hs = 0.05, the number of the generated samples is equal to GSi = hs× 2×H, considering
the two translation directions, top to bottom and vice versa. Similar arguments can be advanced to compute the
number of generated images from the other operations. The product

∏
iGSi × Nsamples yields the total number

of samples. Results shown in table (2) reveals that the patch-wise U-Net with the stratified sampling strategy
performs better on the used dataset compared to the U-Net with data augmentation.

6.3. Electric field estimation

For this dataset, we investigate the effect of the enhanced images to the task of image prediction. As pointed
out in the method section, the distance map enriches the information to be extracted. A comparison of the PSNR,
UIQ and SSIM indices is performed for two types of training data. Primarily, the network is trained on the original
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Network Data Sampling V Rand % (Thinned)
original uniform 94, 1± 3, 1

Patch-wise U-Net stratified 97, 3± 2, 2
enhanced uniform 95, 2± 2, 3

stratified 97,9 ± 1,5
U-Net augmented - 96, 7± 2, 0

Table 2: V Rand evaluation of probability maps of the ISBI 2012 segmentation challenge dataset for two networks: Patch-wise U-Net
and U-Net, using uniform and stratified sampling strategies. Original, enhanced and augmented images by affine transformations are
used as datasets.

dataset. Afterwards, another training is performed on the enhanced image dataset. A visual comparison is shown
in figure (6) and the values of the evaluation metrics are presented in table (3). A concluding remark is that the
PSNR, UIQ and SSIM indices have improved remarkably in the second case.

Images Sampling PSNR UIQ SSIM
original uniform 34.5997 0.6891 0.8305

stratified 32.1624 0.6443 0.7820
enhanced uniform 35.7380 0.7030 0.8803

stratified 37.9949 0.7627 0.9026
border Mask uniform 30.8096 0.6890 0.7777
interior Mask uniform 34.0679 0.6892 0.8137

Table 3: PSNR,UIQ and SSIM values comparison of predicted images in figure (6) stemming from original and enhanced training
datasets.

6.4. Effects of stratified sampling

The network processes patch by patch and yields accordingly a prediction for each one separately. To bring
together the patches, a sampling strategy needs to be defined. Uniform and stratified sampling methods are
investigated. In contrast to the first one, which consists of distributing the predicted patches uniformly over all
the image size, the latter allocates random positions to each patch based on uniform sampled points. Thus, for
each stratification iteration, novel patches and their respective predictions are created. Visually, stratified sampling
reduces considerably the edge effect on the borders of patches, related results are shown in figures (9), (10).

EM segmentation challenge ISBI 2012. Here, segmentation results are compared to ground truth boundary
maps. A part from the edge effect, which is the main drawback of the uniform sampling strategy, the predicted
membranes obtained from the stratification strategy are clearer and more precise as shown in figure (9). From a
quantitative point of view, the V Rand values related to the stratified sampling, shown in table (9), exceed the ones
obtained from the uniform sampling.

(a) Uniform sampling (b) Stratified sampling

Figure 9: Segmentation results with uniform sampling (a) and stratified sampling (b).
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Electric field estimation. A comparison between ground truth image and predicted results in terms of evalua-
tion indices is shown in table (3). For the enhanced images, stratified sampling has proven its ability to improve
results in terms of scoring metrics. On the other hand, comparison between measures from the original data, sub-
ject to the two sampling strategies, doesn’t confirm this postulate. We explain this by the fact that the evaluation
metrics are averaged over the entire image and do not reflect the visual feeling. To verify this, two masks isolating
both the edge borders and the inside area of patches are considered. A local similarity comparison between former
masks applied to figure (10-c) and to ground truth image has been conducted. As expected, PSNR, UIQ and
SSIM indices for uniform sampling evaluated at the edge borders area are lower than prior evaluated indices in
the case of stratified sampling. Figure (10) illustrates this operation and related results are shown in table (3).

(a) Border Mask (b) Interior Mask

(c) Uniform sampling (d) Stratified sampling

Figure 10: Border area mask (a) and inside area mask (b). Prediction result with uniform sampling (c) and stratified sampling (d).

7. Conclusion

A small sample learning methodology was proposed. It was shown that the distance transform improves the
spatial-awareness of the network by providing spatial information to the original images. A patch-based procedure
was applied to overcome the limited number of samples along with a stratified sampling method to remove border
edge effect. The methodology was validated on two tasks: image segmentation and prediction. Tasks are portrayed
by different types of dataset.
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