
HAL Id: hal-02879709
https://hal.science/hal-02879709v1

Submitted on 24 Jun 2020 (v1), last revised 6 Sep 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance transform data augmentation and stochastic
patch-wise image prediction methodology for small

dataset learning
Adam Hammoumi, Maxime Moreaud, Christophe Ducottet, Sylvain Desroziers

To cite this version:
Adam Hammoumi, Maxime Moreaud, Christophe Ducottet, Sylvain Desroziers. Distance transform
data augmentation and stochastic patch-wise image prediction methodology for small dataset learning.
Neurocomputing, In press. �hal-02879709v1�

https://hal.science/hal-02879709v1
https://hal.archives-ouvertes.fr


Distance transform data augmentation and stochastic
patch-wise image prediction methodology for small dataset

learning

Adam Hammoumia,∗, Maxime Moreauda,b, Christophe Ducottetc, Sylvain
Desroziersd

aIFP Energies nouvelles, Rond-point de l’échangeur de Solaize BP 3, 69360 Solaize,
France

bMINES ParisTech, PSL-ResearchUniversity, CMM, Fontainebleau, France
cUniversité de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien

UMR5516, F-42023, Saint-Etienne, France
dIFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France

Abstract

Most recent methods of image augmentation and prediction are building
upon the deep learning paradigm. A careful preparation of the image dataset
and the choice of a suitable network architecture are crucial steps to assess
the desired image features and, thence, achieve accurate predictions. We first
propose to help the learning process by adding structural information with
specific distance transform to the input image data. To handle cases with
limited number of training samples (as 12 training and 2 validation images),
we propose a patch-based procedure with a stratified sampling method. We
illustrate our approaches on image dataset generated by an FFT-based ho-
mogeneization technique for heterogeneous media physical properties. The
obtained results are evaluated using SSIM, UIQ and PSNR metrics. The pro-
posed techniques demonstrate that the established framework is a reliable
estimation method that could be used for a wide range of applications.
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1 INTRODUCTION 2

1. Introduction

Deep Convolutional Neural Networks (DCNNs) have demonstrated throu-
ghout the recent years their remarkable performance in handling a variety
of problems in the fields of image processing and computer vision [1][2]. In
particular, DCNNs are becoming a major tool for visual recognition mod-
ern tasks such as image classification, segmentation, semantic segmentation
and so on. Considering the global dimension that DCNNs have taken, pre-
dominant implementations often require large datasets, which is not always
possible in many domains. Regarding that, the interest in small sample
learning (SSL) is increasingly growing [3]. Novel network topologies and
training methodologies are required to address this issue. In the litterature,
there are many approaches that attempt to face out the SSL paradigm. The
augmented data approach tries to compensate the lack of samples by apply-
ing adequate transformations to the original dataset [4]. Another example
is knowledge transfer of fully trained networks that can be used to fit small
datasets [5]. In this paper, we propose a training methodology that is inde-
pendent from network architecture and field of application. The proposed
methodology consists of a patch-based procedure with stratified sampling
along with a data augmentation technique. Patch-based methods were in-
tensively used in the recent years [6][7][8]. Besides enlarging the sample size
by feeding the network with a large number of extracted patches, they cap-
ture local features and don’t require large memory footprint. We address the
problem of data augmentation in a new way using a patch-based technique
coupled with a stratified sampling strategy [9] to cancel an apparent edge
effect at the patch boundaries. We also propose augmenting the training
images by adding structural information to reinforce the learning process.
A classical DCNN starts the process of features extraction according to a
growing architecture from low level to high level features. The dynamical
aspect of convolutional filters is the reason why abstract features –often, not
relevant for a human observer– are recognized as important image variant
characteristics. Taking advantage of the maximum implicit and explicit in-
formation that can be embedded in one image can only be beneficial for
pertinent training. Used augmentation data is extracted from a distance
map of the considered images [10], which provides implicit information. The
method yields a mapping of each element in the background to its distance
from the closest foreground element. In a symmetrical way, the distance
map for foreground space is provided. In this configuration, less informative
surfaces become more informative throughout all the image space. A use
case of the distance transform in the framework of semantic segmentation
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regularization has been addressed in recent work [11]. These concepts will
be illustrated through estimation of a grayscale image from a binary image.
This application study corresponds to the approximation using DCNN of
the dielectric field computed initially by homogenization technique from a
microstructure of a model material. Our methodology doesn’t rely on any
ad hoc application. The intuition behind is to offer meaningful ideas that
aim to improve the network outcomes in the case of SSL.

2. Methods

2.1. Fully Convolutional Neural Network
While DCNNs for image classification are predicting a single class for

a whole image, fully convolutional networks (FCNs) can be used to make
dense predictions. Given an input image of any size, a FCN produces an
output having the same spatial support (possibly resampled) and predicting
a value associated to each input pixel (or each group of pixels). For instance,
in image augmentation or prediction, each pixel must be labeled. Meaning
that, a pixel-wise mask of each element is created in the initial image. The
goal is to distinguish between elements by classifying every pixel to the de-
sired labels. To formulate a problem of image prediction, a set of possible
grayscale image values that represents the pixel brightness can be defined.
Generally, in a convolutional neural network, the input image goes through
the convolutional layers for features extraction and gets downsized by the
pooling layers. The results of the convolution/pooling operations are fed to
the fully connected layers (FC) to classify the image into a label. To obtain
a label map instead of a single value label, an upsampling step is manda-
tory to calculate a pixel wise output. Our attention is drawn to FCNs and
dense prediction [12][13] since they recapture the spatial information lost
during downsampling operations by upsampling or deconvolution. There-
fore, a FCN architecture transforms the size of the label map back to the
size of input image or a subsampled version through the upsampling process
so that the predictions have a pixel-to-pixel correspondence with the input
image. U-Net is a popular FCN that demonstrated its performance in seg-
menting biomedical images [14]. It consists of a contraction path made of
consecutive 3 × 3 convolutions followed by 2 × 2 max pooling matrices, an
expansion path which is composed of series of 3× 3 convolutions and 3× 3
transposed convolution matrices. The aim from this step is to concatenate
the features maps with the corresponding layers from the contraction path
to regain spatial information. A final layer is a 1 × 1 convolution matrix
that yields the final labeled image. In this work, we keep the original U-Net
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architecture as shown in figure (1). It consists of a series of two convolutions
per max pooling. The ReLU activation function is used for of each convolu-
tion and it is preceded by a batch normalization operation. After each max
pooling, the size of the image is divided by 2 and the number of features
maps (or, channels) is doubled. The transposed convolution operations are
used to up scale the images to a higher resolution while the concatenation
operation collects information from features map of the contraction path.
The training is made on the basis of a sliding 48× 48 window cropped from
the initial image of the size 500× 500. The output is obtained from a 1× 1
convolution followed by a sigmoid activation function.

1 × 48 × 48 

32 × 24 × 24 

64 × 12 × 12 

128 × 6 × 6 

256 × 3 × 3 

128 × 12 × 12 

64 × 24 × 24 

32 × 48 × 48 

1 × 48 × 48 

256 × 3 × 3 

(Conv 3 × 3, ReLU) × 2 
Concatenate 

Transposed conv 3 × 3  

(Conv 3 × 3, ReLU) × 2 
Concatenate 

Transposed conv 3 × 3  

(Conv 3 × 3, ReLU) × 2 
Concatenate 

Transposed conv 3 × 3  

Max pool 2 × 2  

(Conv 3 × 3, ReLU) × 2 

(Conv 3 × 3, ReLU) × 2 

Max pool 2 × 2  

(Conv 3 × 3, ReLU) × 2 

Concatenate 

Conv 1 × 1 

Transposed Conv 3 × 3  
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(Conv 3 × 3, ReLU) × 2 
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(Conv 3 × 3, ReLU) × 2 

Max pool 2 × 2 

(Conv 3 × 3, ReLU) × 2 

1 × 500 × 500  1 × 500 × 500 
input output 

Figure 1: U-Net architecture. Left: contraction path; right: expansion path. After
each set of operations, the size of the image and the number of channels is indicated.
Operations are: convolution, transposed convolution, max pooling and concatenation.
Input and output images are described later in the experimental results section.
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2.2. Patch procedure
Training a Convolutional Neural Network at the pixel level of each image

can be a challenging task in several cases. For example, in many medical
applications as shown in [6], the training data is a set of high resolution
images, which will require a very large memory footprint. An additional
drawback to this approach is the risk to bias the training by forcing the
network to only learn the most distinctive features from the whole image.
On the other hand, the process of gathering a large set of training data in
many domains is not always possible. Many recent works tried to address
this issue. In [7], a patch-wise setup was firstly introduced to predict the
class label of each pixel. This method has the big advantage to train the
network on a large set of patches instead of the few original training images.
The question of the use of context arises regarding this approach. Basically,
the size of the patches and the number of hidden layers of the FCN control
the field of view of the network and contribute explicitly in the learning of
important features. For example, the authors in [8] postulate that a small
patch size is not needed for their specific case, since there is little chance of
finding relevant information in small image regions. Other techniques as the
one shown in [15] propose to combine pixel-level and patch-level to improve
the segmentation accuracy. We follow the patch-based method proposed in
[7]. A patch is characterized by its size K ×K with a sliding step s over the
image. That makes a total number (1 + (IW −K)/s)× (1 + (IH −K)/s) of
patches for an image of size IW × IH , which are the width and the height
of the image respectively. By trying several patch sizes and sliding steps,
we found out that a patch size K = 48 with a sliding step s = 24, give the
best results for the application we used to illustrate our method. We assume
that overlapping patches allow to extract significant information captured in-
between patches. This hypothes was verified empirically. Given the size of
the training images IW = IH = 500, the total number of patches contained in
each image is L = 400. Following this method, we augment our data training
number from 12 images to a total of 12 × 400 = 4800 patches. Figure (2)
shows the process of patch extraction.

2.3. Shift invariance
CNNs are believed to be translation invariant [16] at some degree. Al-

though convolutional layers have a property of equivariance to translation
[17], it is not exactly the same for the complete network. This general con-
sensus is supported by the fact that the networks have the inherent ability
of learning arbitrary features: important ones, but also features as affine
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Figure 2: Illustration of the patch extraction process. Parameters: IH = IW = 500,
K = 48 and s = 24

transformations that are irrelevant and must be discarded. Two main ideas
in the litterature try to address this issue. According to the first, the ability
to learn translation invariance is due primarily to the networks architecture,
in which the succession of convolution layers augments the receptive field of
neurons [18], and to pooling layers that select a value from convolution layer
output regardless of its position [19]. Using translation sensitivity maps and
radial translation-sensitivity to quantify shift invariance introduced in [20],
it can be demonstrated that the use of appropriate input data along with
data augmentation comes beyond the network architecture in terms of learn-
ing translation invariant representation. A careful examination of the extent
to which the U-Net architecture is shift invariant is relevant information for
data preparation. Several outcomes are provided in the experimental results
section.

2.4. Pre-processing of training data
In the following, for illustration, images of binary microstructures (white:

solid space, black: porosity space) and their corresponding electric field re-
sponse images representing the ground truth data are used. A detailed ex-
planation of how we obtained such images is discussed in the experimental
results section.

2.4.1. Distance transform
Our focus in this part is to demonstrate the effectiveness of a novel strat-

egy in pre-processing the training data. Following the patch-based approach
and from the network perspective, roughly speaking, flat surfaces contained
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(a) Original microstructure (b) Augmented microstructure

Figure 3: Illustrations of the process of adding information to the input image: (a) original
microstructure; (b) augmented microstructure, expressed by Eq.(4).

in the image are less informative than textured surfaces. Obviously, the lack
of information in these regions will cancel the effect of the convolution matri-
ces of the network. Moreover, features outside the size of the matrix will not
be extracted. Considering first the case of binary images as training data,
distance map computation is a commonly used technique in several image
processing tasks such as connected component labeling [21], skeletonization
[22], Voronoi diagrams and so on. For binary images, the distance map can
be computed in the following way: we consider the two dimensional metric
space E = R2. Let I : ψ → {0, 255} be a binary image and ψ ⊂ E the
support of I. We separate objects of I into two categories: background and
foreground elements, the latter denotes feature objects in the image. To
probe the background space, we let the set of foreground space elements
ω = {x ∈ ψ : I(x) = 255} be the reference set of features. A distance map
is an image transform that substitutes the value of each element in ψ by its
distance from the closest feature object of ω. The operator of the distance
transform is:

DT d(x) = min
{y|I(y)=0}

d(x, y) x, y ∈ ψ (1)

A more general formulation of the distance transform that extends to grayscale
and color images may be found in [23]. The distance between two points x
and y is expressed by:

d(x, y) = inf
Γ∈Px,y

∫ l(Γ)

0

√
1 + γ2(∇I(s) · Γ′(s)2

) ds (2)
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where Γ is a path parameterized by its arc length s ∈ [0, l(Γ)] and Px,y is the
set of all differentiable paths.The geodesic factor γ measures the contribution
of the image gradient ∇I(s) and spatial distances. Γ

′
(s) = ∂Γ(s)/∂s is the

unit vector tangent to the direction of the path. Notice that the binary
image distance transform is a special case of Eq.(2), where the image has
scalar values {0, 255} and γ = 0. In this case, Eq.(2) simplifies to the
euclidean length of path Γ. Our strategy to extract a maximum amount
of information from the image consists of probing both the background and
foreground space. The related distance map to the latter space is:

DT d
c (x) = min

{y|I(y)=255}
d(x, y) x, y ∈ ψ (3)

We now define an augmented binary image as:

I(x) = I(x) + αDT d(x)− βDT d
c (x) α, β constants (4)

It is possible to compute distance map for grayscale image using approach
from [24]. It corresponds to a distance transform starting from lowest to
highest grayscale intensities:

¯DT d(x) =
1

255

∑
i

d(x, Fi)wi |Fi = {x; I(x) ≥ i}, wi = 1 (5)

Similarly, an extended symmetric distance map going from highest to lowest
grayscale intensities can be defined:

¯DT d
c (x) =

1

255

∑
i

d(x,Gi)wi |Gi = {x; I(x) < i}, wi = 1 (6)

The resulting augmented grayscale image writes:

I(x) = I(x) + α ¯DT d(x)− β ¯DT d
c (x) α, β constants (7)

The former distance has an important time complexity, which leads us to de-
fine an approximated distance map for grayscale images that can be deduced
from a functional projected distance map d⊥ [25]. This projected distance
makes it independent of greyscale scaling. It suggests a similar formulation
of the distance in the background space using the set of pixels of lowest
intensities:

D̂T
d
(x) = min

{y|I(y)=min(I)}
d⊥(x, y) x, y ∈ ψ (8)
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where d⊥ is the projected distance of the one developed in Eq. (2). Likewise,
its symmetric distance map is given by:

D̂T
d
c(x) = min

{y|I(y)=max(I)}
d⊥(x, y) x, y ∈ ψ (9)

The augmented grayscale image writes:

I(x) = I(x) + α ˆDT d(x)− β ˆDT d
c (x) α, β constants (10)

Distance transform can be computed with a two pass raster scanning algo-
rithm which is well established in the literature [26]. The augmentation of
the images lies on adding information, seen in Eqs. (4), (7) or (10), and
helps the network learning accurately patterns and flat surfaces. Figure (3)
illustrates this process. In our illustrations and results parts, α and β are
taken equal to 1. A grayscale image example of data augmentation according
to the former distance transform formalism is provided in figure (4).

Figure 4: Left: initial image (boehmite aggregate). From left to right: distance trans-
form, combined distance transform, symmetric distance transform , combined symmetric
distance transform; with at the top, grayscale distance transform from [24], and bottom,
fast approach with projected distance transform from [25].

2.5. Stratified sampling of patches
On the basis of individual patches extracted from the input image, the

estimated image is assembled from clustered patches predicted by the net-
work. If they are regularly distributed, an edge effect in the border of each
patch may arises, as shown in figure (9). On the contrary, an exact convo-
lution strategy (one patch for each pixel) leads to fuzzy and reduced quality
results. We show these problems in the experimental results section. Hence,
an adequate sampling strategy is required to reduce this effect. Consider
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the set of patches contained in one image χ = {χi}i∈[0,L−1]. L is the num-
ber of patches. Each patch occupy a total area of A = W × H where W
and H are the width and the height of each patch respectively. An uniform
sampling strategy consists of cropping patches as fragments of the original
image following a scanning strategy from top to bottom and from left to
right. Mathematically, this sampling strategy boils down to:

χi,j = {x, y | x ∈ [i,W + i] , y ∈ [j,H + j] } with, (11)

i = 0, s, (2× s), (3× s), ..., (Iw −W + s)

j = 0, s, (2× s), (3× s), ..., (Ih −H + s)
(12)

Eq.(11) correspond to a formulation of the patches and the indexation strat-
egy shown in Eq.(12) yields a uniform sampling. To remove the edge effect
on the borders, patches must be drawn stochastically. We propose using the
stratified sampling strategy [9]. It consists of a uniform density of sampled
points U(−s, s) covering the whole size of the patch. Indexing the patches
with random coordinates will guarantee the generation of fresh ones every
time. We rewrite the new indexation as:

m = i+ U(−s, s)
n = j + U(−s, s)

(13)

Consider a set of N images representing the prediction result of the same
input image. We divide this set to N subsets (or, strata). Each stratum is
an image where the patches were drawn randomly. We generate 2× L×N
random points. The final result should be obtained by averaging the strata.
We write:

If = 1/N ×

(
N∑
v=1

Iw−W+s,IH−H+s∑
m,n

χv,m,n

)
(14)

wherem and n have random values according to Eq.(13) and vary constantly.
As a consequence, the distribution of patches in each image is unique.

2.6. Evaluation metrics
The performance of our proposed methods is investigated through sev-

eral metrics. We use some of the most common reference image quality
measures, in particular the ones that are based on different measuring ap-
proaches. The goal is to measure dissimilarities between two images. Here-
after in this section, we use the formulation I? = {I?(i, j); ∀i = 1, ...W, ∀j =
1, ...H}, with ? = {o, d} for both original (ground truth) and distorted (pre-
dicted) image.
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2.6.1. PSNR
Peak signal-to-noise ratio (PSNR) –related to the mean squared error

(MSE)– is firstly deployed. PSNR is based upon an explicit numerical cri-
terion which is the comparison between pixel values. Let Io be the original
image and Id the distorted image. To perform a comparison between these
images, the PSNR metric writes:

PSNR(Io, Id) = 10× log10

[
(2d − 1)2

MSE(Io, Id)

]
,with (15)

MSE(Io, Id) =
1

W ×H

W−1∑
i=0

H−1∑
j=0

(
Io(i, j)− Id(i, j)

)2

(16)

2d− 1 denotes the maximum possible value that a pixel can have. For d = 8
byte coded image, the maximum value is 255. Eq. (16) measures the value
differences between corresponding pixels of each image. PSNR is expressed
in decibels which is a logarithmic unit. From Eq. (15), we can see that
higher PSNR value is an indicator of highly similar images.

2.6.2. UIQ
Universal Image Quality (UIQ) [27] is another important tool to measure

dissimilarities between two images in terms of their statistical properties.
The UIQ index writes:

UIQ(Io, Id) =
σIoId
σIoσId

× 2ĪoĪd

Īo
2

+ Īd
2 ×

2σIoσId
σ2
Io

+ σ2
Id

(17)

where Ī and σ2 denote mean and variance value, respectively. Eq. (17) is an
expression of the UIQ index as a product of three factors: loss of correlation
(measures linear correlation), luminance and contrast distortion. UIQ range
is [-1,1] so that the index of very similar images approaches 1.

2.6.3. SSIM
Structural similarity index measure (SSIM) [28] is an adaptation of the

human visual system (HVS) that aims to assess the structural information
of an image. The SSIM equation writes:

SSIM(Io, Id) = A(Io, Id)×B(Io, Id)× C(Io, Id) ,where (18)
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A(Io, Id) = (2ĪoĪd + C1)/(Īo
2

+ Īd
2

+ C1)

B(Io, Id) = (2σIoσId + C2)/(σ2
Io + σ2

Id
+ C2)

C(Io, Id) = (σIoId + C3)/(σIoσId + C3)

C1 = (K1×L)2, C2 = (K2×L)2 and C3 = C2/2. l is the image dynamic, K1,
K2 are constants and Ī and σ2 are the mean and variance values, respectively.
SSIM aims to identify the perceptual similarity between two images through
the evaluation of luminance (A-Eq.(18)), contrast (B-Eq.(18)) and image
structure (C-Eq.(18)). In the presented application, K1 and K2 are taken
equal to 0.01 and 0.03, respectively.

3. Experimental results

In this section, a series of comparisons between predicted results and
ground truth data are performed. The goal is to estimate grayscale from
binary images through: a suitable transformation of input data that adds
relevant information and an adequate patch sampling method. The train-
ing is performed on a dataset of 4800 training and 800 validation patches.
The energy function is computed by a sigmoid activation function, f(x) =
1/(1 + e−x), over the final feature map. The network is trained using the
Adam [29] optimizer and binary cross entropy loss function defined as:
L(y, y′) = −1/N ×

(∑N
i=1(y log(y′i)) + (1 − y) log(1 − y′i)

)
y and y′ being

ground truth and predicted patches, respectively. The network achieves its
optimal performance after one epoch and a batch size of 4. Only binary and
grayscale images are used, colored illustrations are shown solely for the sake
of clarity.

3.1. Image dataset
Boolean random models of spheres located by Poisson point process are

considered to generate one-scale microstructures [30][31]. A generalization
to this process by the Cox Boolean model [32] allows to generate multi-scale
microstructures. The power of these models lies on their ability to generate
realistic microstructures according to tailor-made characteristics. A specific
algorithm described in [33] uses an original construction method which al-
lows to run wide simulations with the least computational cost. We follow
the guidelines of the latter algorithm to generate our training images. In
this framework, a multi-scale microstructure is modeled by volume fractions
that define aggregates (Vv,inc of inclusion areas), grains inside and outside
the inclusion areas (Vv and Vv,out, respectively). The training dataset is
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made of 5002 pixel images. The parameters R = 20 (radius of spheres),
Vv,inc = 0.4,Vv = 0.6 and Vv,out = 0.7 are fixed for the whole image set.
On the basis of the foregoing microstructures, which have known structure
and properties, we use an efficient method to estimate the effective dielectric
constant (more specifically, the macroscopic equivalent dielectric constant
ε∗). This method lies on several works, namely [34],[35],[36] and [37]. La-
beled images are representations of electric field response E(x) estimated
inside microstructures and necessary to compute ε∗. For dielectric constants
of the phases of the binary microstucture, 0.1 and 100 (no imaginary part)
are used for the black and white pixels respectively. The resulting electric
field response module is converted to 8bit format (256 values) by uniform
sampling. Dataset generations and homogenization codes can be found in
the open access software "plug im!" [38].

3.2. Shift invariance
We conduct shift transformations from −5 to +5 pixels (in the x’s axis)

applied to all patches of validation images. Given a fully trained U-Net on
the original dataset, we compare the binary cross entropy value for each
shift value. The goal is to evaluate the ability of the network to predict
translated images from non translated training data. Figure (5) shows that
the minimum error value coincides with the prediction of a non translated
image, and, thence, the network smoothly looses accuracy proportionally to
increasing shift values. An alternative approach would consists of feeding a
trained network a prediction image Ip that yields a prediction field Fp. We
select a patch Xp of the size W ×H centered at position (x, y), the network
result is an estimated patch field fp at position (x, y). Considering shift
values h, patches Xp − h of the same size and their respective estimations
fp − h are assessed. The intersection area of these patches is of the size
(W − 2h × H) centered at (x, y). For h = [−5, 5], we compare the dissim-
ilarities through the PSNR, UIQ and SSIM mean values of three different
patches between the common area of each shifted patch. Table (2) and fig-
ures (5),(6) manifest these differences and quantify the shift "invariance"
of the U-Net architecture. That suggests that the network, in our specific
case, is not suited for a pixel-wise approach. Rather, a patch based proce-
dure is stabilizing the network by forcing it to learn features from the whole
patch dumping non-important features as the shift transformation. The use
of U-Net as a predictor for central pixel of patch (pixel-by-pixel approach)
leads to fuzzy results due to the averages of patch estimates that are not
completely similar.
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Figure 5: Evolution of the binary cross entropy loss in terms of shift transformations
applied to patches of the validation dataset.
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Figure 6: Dissimilarities given by PSNR, SSIM and UIQ mean values between common
area of original and shifted patches.

3.3. Effects of enhancing input data
We investigate the effect of augmenting the data by combining the origi-

nal binary microstructure with distance map. As pointed out in the method
section, the distance map enriches the information to be extracted. A com-
parison of the PSNR, UIQ and SSIM indices is performed for two types of
training data. First, we train the network on the original microstructures and
identify the similarities between the predicted and the groundtruth image.
Then, we do the same for the augmented microstructures training images. A
visual comparison is shown in figure (7) and the values of the evaluation met-
rics are exhibited in table (1). PSNR, UIQ and SSIM indices have improved
remarkably for the augmented microstructure.
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(a) Original microstructure (b) Predicted image (uni-
form)

(c) Predicted image (strati-
fied)

(d) Augmented microstruc-
ture

(e) Predicted image (uni-
form)

(f) Predicted image (strati-
fied)

(g) Ground truth image

Figure 7: U-Net prediction results [(b), (c), (e) and (f)] for two types of training data: (a)
original image. (d) augmented image. (g) is the ground truth image.
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(a) MaskB (borders) (b) MaskI (inside borders)

Figure 8: left and right, border area mask and inside area mask respectively.

Images Sampling PSNR UIQ SSIM
Original uniform 34.5997 0.6891 0.8305

stratified 32.1624 0.6443 0.7820
MaskB uniform 30.8096 0.6890 0.7777
MaskI uniform 34.0679 0.6892 0.8137

Augmented uniform 35.7380 0.7030 0.8803
stratified 37.9949 0.7627 0.9026

Table 1: PSNR,UIQ and SSIM values comparison of predicted images in figures (7) and
(8) stemming from original and augmented training datasets.

Shift values -5 -4 -3 -2 -1 0 1 2 3 4 5
PSNR 26.6912 30.2654 28.1801 32.6074 29.8986 50 29.8177 33.4603 28.2784 30.2763 26.4302
UIQ 0.9523 0.9776 0.9645 0.9867 0.9766 1 0.97503 0.9859 0.9654 0.9744 0.9473
SSIM 0.9532 0.9780 0.9652 0.9869 0.9771 1 0.9755 0.9861 0.9661 0.9749 0.9484
BCE 0.2547 0.2516 0.2472 0.2440 0.2409 0.2401 0.2415 0.2448 0.2480 0.2516 0.2547

Table 2: PSNR, UIQ, SSIM mean values and BCE values evaluated between common area
of original and shifted patches.
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3.4. Effects of stratified sampling

(a) Uniform sampling (b) Stratified sampling

Figure 9: U-Net prediction results with uniform sampling (a) and stratified sampling (b).

The network processes patch by patch and yields accordingly a prediction
for each one separately. To bring together the patches, a sampling strategy
needs to be defined. Uniform and stratified sampling methods are investi-
gated. In contrast to the first which consists of distributing the predicted
patches uniformly over all the image size, the latter allocates random po-
sitions to each patch based on uniform sampled points. Visibly, stratified
sampling reduces considerably the edge effect on the borders of patches, re-
lated results are shown in figure (9). A comparison between ground truth
image and predicted results in terms of evaluation indices is shown in ta-
ble (1). For augmented images, stratified sampling has proven its ability to
improve results in terms of image evaluation metrics. On the other hand,
predicted image from the original dataset has been reduced. We explain this
by the fact that the evaluation metrics are being averaged over the entire
image and does not reflect the visual feeling. Two masks isolating both the
edge borders and the inside area of patches are considered. A local similar-
ity comparison between former masks applied to figure (7- b) and to ground
truth image has been conducted. As expected, PSNR, UIQ and SSIM indices
for uniform sampling evaluated at the edge borders area are lower than prior
evaluated indices in the case of stratified sampling. Figure (8) illustrates this
operation and related results are shown in table (1).
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4. Conclusion

A small sample learning methodology is proposed. It is based on the
distance transform as data augmentation. The former provides intrinsic in-
formation to the original image that enhanced the learning process. A patch-
based procedure has been applied to overcome the limited number of samples
along with a stratified sampling method to remove border edge effect. The
methodology was validated on a case study concerning the estimation of a
grayscale image from a binary image using a FCN. Future work will focus on
an application with distance transform augmentation applied to grayscale
images as input.
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