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BOUNDS FOR MULTIVARIATE RESIDUES AND FOR THE
POLYNOMIALS IN THE ELIMINATION THEOREM

MARTÍN SOMBRA AND ALAIN YGER

Abstract. We present several upper bounds for the height of global residues of
rational forms on an affine variety defined over Q. As an application, we deduce
upper bounds for the height of the coefficients in the Bergman-Weil trace formula.

We also present upper bounds for the degree and the height of the polynomials
in the elimination theorem on an affine variety defined over Q. This is an arithmetic
analogue of Jelonek’s effective elimination theorem, and it plays a crucial role in the
proof of our bounds for the height of global residues.
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1. Introduction

Given a regular sequence f = (f1, ..., fn) in the n-dimensional local ring OCn,0 of
germs at 0 of holomorphic functions of Cn and ω = g dx1 ∧ · · · ∧ dxn a germ at 0 of
a holomorphic n-form on Cn, the Grothendieck local residue at 0 of ω with respect to
f is defined as

Res0

[
ω
f

]
=

1

(2iπ)n

∫
|f1|=ε1,...,|fn|=εn

g dx1 ∧ · · · ∧ dxn
f1 · · · fn

for ε = (ε1, . . . , εn) ∈ (R≥0)n sufficiently small.
This notion can be transposed to the more general situation of an r-dimensional local

ring OX,x0 for a (reduced) complex space X of pure dimension r ≥ 1, f = (f1, ..., fr)
a regular sequence in OX,x0 , and ω a germ at x0 of a holomorphic n-form on X, thus
leading to the definition of the local residue, denoted as

ResX,x0

[
ω
f

]
.

When X ⊂ Cn is an algebraic variety of pure dimension r ≥ 1, f = (f1, ..., fr) a family
of polynomials in C[x1, . . . , xn] defining a complete intersection on X, and ω a rational
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r-form on Cn that is regular on X ∩ V (f), the zero set of the system f on X, the
(global) residue on X of ω with respect to f might be defined as of the total sum the
local residues at the points of X ∩ V (f), that is

ResX

[
ω
f

]
=

∑
x0∈X ∩V (f)

ResX,x0

[
ω
f

]
. (1.1)

These residues play an important role in division formulae on polynomial rings. An
example of these is the Bergman-Weil trace formula for the case when X = Cn [AY83,
Tsi92, BH99]. This formula was the key tool towards the first versions of the arithmetic
Nullstellensatz, giving bounds for the degree and the height of the polynomials in the
Nullstellensatz [BGVY94, BY99]. Global residues have also a deep connection with
duality for algebraic varieties [Kun08] and, moreover, they appear in several fields of
mathematics and theoretical physics, like scattering amplitude computations beyond
Feynman diagrams [SZ16].

Many of these applications involve not just one residue, but the whole residue multi-
sequence associated to the triple (X,f , ω), given by(

ResX

[ ω
fα+1

])
α∈Nn

(1.2)

with fα+1 := (fα1+1
1 , ..., fαr+1

r ) ∈ C[x1, . . . , xn]r for α ∈ Nn. For instance, this multi-
sequence is relevant for the Bergman-Weil formula and for the representation of traces
in terms of residues, as explained in §2.2.

In the arithmetic setting, that is, when the triple (X,f , ω) is defined over the field
of rational numbers, the corresponding residues are rational numbers. In spite of their
applications, up to our knowledge there are no available results allowing to control the
arithmetic complexity or height of global residues, that is, to bound the numerator
and denominator of these rational numbers. It is precisely our aim in this paper to
provide this kind of bounds.

To state our results, suppose for the rest of this introduction thatX is a subvariety of
AnQ of pure dimension r, f a system of nonconstant polynomials with integer coefficients
defining a complete intersection on X, and ω a rational r-form defined over Q that is
regular on X ∩ V (f). For α ∈ Nn, write the corresponding global residue as

ResXC

[ ω
fα+1

]
=
aα
bα

with aα ∈ Z and bα ∈ Z \ {0} coprime.
For a polynomial f ∈ Z[x1, . . . , xn], its height, denoted by h(f), is the logarithm of

the maximum of the absolute value of its coefficients. A polynomial r-form τ on Cn
defined over Z is a holomorphic r-form that writes down as

τ =
∑
I

gI dxI ,

the sum being over the subsets I ⊂ {1, . . . , n} of cardinality r, with gI ∈ Z[x1, . . . , xn]
and

dxI =

r∧
j=1

dxij .

for 1 ≤ i1 < · · · < ir ≤ n such that I = {i1, . . . , ir}. The degree and the length of τ ,
denoted by deg(τ) and by h1(τ), are respectively defined as the maximum degree of
the gI ’s and as the logarithm of the `1-norm of the coefficient list of all the gI ’s.
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The degree and height of the subvariety X, denoted by deg(X) and by h(X), are
respectively defined as the degree and the canonical height of the closure of its image
with respect to the standard inclusion AnQ ↪→ PnQ. The degree and the height of an
affine variety are measures of its geometric and arithmetic complexity, see for instance
[KPS01, §1.2] or [DKS13, §2.3] for more details.

The following result corresponds to Theorem 6.6, and bounds the numerator and de-
nominators in the residue multi-sequence (1.1) in the most general situation considered
in this paper.

Theorem 1.1. With notation as above, write ω = τ/f0 with τ a polynomial r-form on
Cn defined over Z and f0 ∈ Z[x1, . . . , xn] not vanishing on X∩V (f). Set di = deg(fi),
i = 0, . . . , r, and e = deg(τ). Set also

DX,f = deg(X)

r∏
j=1

dj and κX,f =
h(X)

deg(X)
+

r∑
j=1

h(fj)

dj
+4(n+5)2 log((n+1) deg(X)).

Then, for α ∈ Nr,

log |aα|, log |bα|+ h1(τ) ≤
(
n

r

)(
h1(τ) + e (r + 1)DX,f κX,f

+ (|α|+ 1)
(
2(r + 1)DX,f h(f0) + (3d0 + r + 1)D2

X,f κX,f
))
. (1.3)

In Theorem 6.7, we give a sharper bound for the case when X = AnQ: set now

Df =
n∏
j=1

dj and κ′f =
n∑
j=1

h(fj)

dj
+ (4n+ 8) log(n+ 3).

Then, for α ∈ Nn,

log |aα|, log |bα|+ h1(τ) ≤ h1(τ) + e nDf κ
′
f

+ (|α|+ 1)
(
Df h(f0) + (d0 + n)(nDf + 1)Df κ

′
f

)
.

Also, in Theorems 6.2 and 6.3 we present sharper bounds for the special case when
X is in good position with respect to the system of coordinates, in the sense that
#X ∩ V (x1, . . . , xr) = deg(X), and ω is a polynomial r-form. Nevertheless, all of
these bounds have a quadratic dependence on the Bézout number DX,f that does not
seem optimal, although at this moment we cannot not tell if this is the case or not.

For the affine line X = A1
Q, residue calculus and Euclidean division are deeply

correlated. The following result, corresponding to Theorem 3.2, bounds the numerators
and denominators of the residue sequence of to a polynomial 1-form on the affine line.

Theorem 1.2. Let f ∈ Z[x] \ Z and g ∈ Z[x]. Set d = deg(f) and e = deg(g), and
let fd be the leading coefficient of f . Then, for α ∈ N,

f
e+1−(α+1)(d−1)
d Res

[
g dx
fα+1

]
∈ Z

and

log
∣∣∣fe+1−(α+1)(d−1)
d Res

[
g dx
fα+1

]∣∣∣ ≤ h1(g) + (e+ 1− (α+ 1)d) h(f) + (e− d+ 1) log(2).

If e < (α+ 1)d− 1, then Res
[
g dx
fα+1

]
= 0.
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In Theorems 4.3 and 4.4, we generalize this result to residues on a higher dimensional
affine variety and a system of univariate polynomials in separated variables. In contrast
to the general case, these upper bounds do seem to be sharp, as shown by Example 3.6
for the case of the affine line.

Our approach to these results is based on the arithmetic membership problem that
we next explain, since it might be of independent interest. Recall that X ⊂ AnQ
is a variety of pure dimension r and f = (f1, . . . , fr) a system of polynomials in
Z[x1, . . . , xn] \ Z with a finite number of common zeros in X. A classical method to
solve the system of equations given by

f1(x) = · · · = fr(x) = 0 for x ∈ X

is to eliminate variables, that is, find φl ∈ Z[xl] \ {0}, l = 1, . . . , r, and al,i ∈
Z[x1, . . . , xn], l, i = 1, . . . , n, such that

φl =
n∑
i=1

al,ifi on X, (1.4)

in the sense that this polynomial relation holds modulo the ideal of definition of X.
In [Jel05], Jelonek obtained an optimal upper bound for the degrees of these poly-

nomials, using a variant of his approach to the effective Nullstellensatz. Here we prove
the following arithmetic analogue of this result, corresponding to Corollary 5.6 in the
body of the paper. Its proof proceeds by adapting Jelonek’s approach with the tools
from geometric and arithmetic intersection theory from [DKS13].

Theorem 1.3. With notation as above, there are φl ∈ Z[xl] \ {0} and al,1, . . . , al,r ∈
Z[x1, . . . , xn], l, i = 1, . . . , n, satisfying the identity (1.4) with

deg(φl), deg(al,i) + di ≤
( r∏
j=1

dj

)
deg(X),

h(φl),h(al,i) + h(fi) ≤
( r∏
j=1

dj

)(
h(X) + deg(X)

( r∑
j=1

h(fj)

dj

+(r + 1) log(2(r + 2)(n+ 1)2)
))
.

In the case X = AnQ, we have r = n, deg(AnQ) = 1 and h(AnQ) = 0. If moreover
deg(fj) ≤ d and h(fj) ≤ h for all j, then the previous bound specializes to

deg(φl), deg(al,i) + deg(fi) ≤ dn,
h(φl),h(al,i) + h(fi) ≤ ndn−1h+ (n+ 2) log(2(n+ 2)(n+ 1)2)dn.

The proof of Theorem 1.1 and 6.7 is incremental. We first obtain the bounds for
residues on the affine line (Theorems 1.2 and 3.10) by a recurrence scheme based on the
relationship of these residues with the Euclidean division. The treatment of residues
on affine varieties and a system of univariate polynomials in separated variables (The-
orems 4.3 and 4.4) is based on the arithmetic Perron’s theorem from [DKS13] and
the relationship between residues and traces on polynomial algebras. The general
case is then treated by reducing to the case of univariate polynomials by applying the
transformation law (Theorem 2.8) and Theorem 1.3.

As an application of our results on the heights in the residue multi-sequence, we
derive a bound for the coefficients in the Bergman-Weil trace formula. To formulate
it, let f = (f1, . . . , fn) be a family of polynomials in Z[x1, . . . , xn] \ Z defining a
complete intersection on AnQ and, for simplicity, suppose that the map AnQ → AnQ
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defined by x 7→ f(x) is proper. Set d = (d1, . . . , dn) ∈ Nn with di = deg(fi). For
p ∈ Z[x1, . . . , xn], the Bergman-Weil trace formula gives an explicit polynomial identity

p =
∑
α∈Nn

pα f
α

with pα ∈ Q[x1, . . . , xn] of degree bounded by |d| − n, that are zero except for a finite
number of α’s (Theorem 2.15) . The next result corresponds to Corollary 6.4.

Theorem 1.4. With notation as above, set

Df =

n∏
j=1

dj and κ′′f =

n∑
j=1

h(fj)

dj
+ 3(n+ 2) log(n+ 2).

Set also e = deg(p). Then there exists ϑ ∈ Z \ {0} with log |ϑ| ≤ nκ′′f such that, for
α ∈ Nn, we have that ϑe+|d|+(|α|+1)(nDf+1)pα ∈ Z[x1, . . . , xn] and

h
(
ϑe+|d|+(|α|+1)(nDf+1)pα

)
≤ h1(g) + (e+ |d|+ (|α|+ 1)(nDf + 1))nDf κ

′′
f .

In a general way, we expect that the result from this paper might be useful to obtain
arithmetic versions of other problems from effective commutative algebra allowing an
analytic treatment, like the Briançon-Skoda theorem or the Artin-Rees lemma, among
others.

The paper is organized as follows. In §2, we recall the definition of the global
residue in the algebraic setting and its basic properties, including the transformation
law and other results from multivariate residue calculus. In §3, we study in detail
global residues on the affine line. Section 4 is devoted to the case of an arbitrary
affine variety and univariate polynomials in separated variables. In §5, we present the
arithmetic analogue of Jelonek’s theorem, bounding the degree and the height of the
polynomials in the elimination theorem. Finally, in §6 we exploit these arithmetic
constructions in accordance with multivariate residue calculus as described in §2, to
achieve the stated bounds for the height of multivariate residues.

Acknowledgments. Part of this work was done while the authors met at the Uni-
versitat de Barcelona and at the Institut de Mathématiques de Bordeaux. We thank
these institutions for their hospitality.

2. Global residues on affine varieties

In this section, we introduce global residues of meromorphic forms on affine varieties
and recall its basic properties. This material is classical, and we base most of our
exposition on the book [CH78] and on the paper [BVY05]. We refer to these sources
for precisions and the proof of the stated results.

Boldface letters and symbols denote finite sets or sequences of objects, where the
type and number should be clear from the context: for instance, for n ≥ 1 we denote
by x the group of variables (x1, . . . , xn), so that C[x] = C[x1, . . . , xn].

2.1. Definition and basic properties. Let X ⊂ AnC be a variety of pure dimension
r ≥ 1 and f = (f1, ..., fr) ∈ C[x1, . . . , xn]r = C[x]r a family of r polynomials in
n variables defining a complete intersection on X. To simplify the exposition, we
identify X with its set of complex points X(C).

We denote by Xsing and Xreg the subsets of X of singular and regular points,
respectively. Since the family f defines a complete intersection on X, its Jacobian
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locus is proper closed subset of X. We denote by W an algebraic hypersurface of X
containing both Xsing and this Jacobian locus. We also denote by

X ∩ V (f) = {x ∈ X | f1(x) = · · · = fr(x) = 0}

the finite set of zeros of the system f on X.
Let ‖ · ‖ denote the Euclidean norm of Cn and fix R > 0 such that the open ball

BR = {x ∈ Cn | ‖x‖ < R}

contains X ∩ V (f). Let η > 0 and ε = (ε1, ..., εr) ∈ (R≥0)n with εi ≤ η for all i, and
consider the tube around X ∩ V (f) given by

Γε = BR ∩ {x ∈ X | |f1(x)| = ε1, . . . , |fr(x)| = εr}. (2.1)

When η is sufficiently small, this is a compact, not necessarily connected, semianalytic
set of dimension r, without components contained in W and smooth outside this
hypersurface. We orient the smooth semianalytic set Γε \W so that the inverse image
to it of the differential r-form

∧r
j=1 darg(fj) is positive.

Let ω be a meromorphic r-form on Cn that is regular on X ∩ V (f). For α =
(α1, . . . , αr) ∈ Nr, the integral ∫

Γε

ω

fα1+1
1 · · · fαr+1

r

is defined as the integral of a regular (r, 0)-form on the r-dimensional smooth semian-
alytic chain Γε \W . Its value does not depend on the choice of W . It does neither
depend on the choice of ε, by Stokes’ theorem on semianalytic chains ([Her66, B-§2,3],
[Poly74]).

Definition 2.1. Let X ⊂ AnC be a variety of pure dimension r ≥ 1, f = (f1, ..., fr) ∈
C[x]r a family of r polynomials defining a complete intersection on X, and ω a mero-
morphic r-form on Cn that is regular on X ∩ V (f). With notation as above, given
α ∈ Nr, the (global) residue on X of ω with respect to fα+1 := (fα1+1

1 , ..., fαr+1
r ) is

defined as

ResX

[ ω
fα+1

]
=

1

(2πi)r

∫
Γε

ω

fα1+1
1 · · · fαr+1

r

for any η > 0 sufficiently small and ε = (ε1, . . . , εr) ∈ (R≥0)n with εi ≤ η for all i.

Remark 2.2. This notion coincides with that in (1.1). Since in this paper we are only
concerned with global residues, here we define them directly without passing through
the local case.

To profit from the flexibility of analysis, as well as to emphasize the action of the
residue instead of the result of this action on an specific form, it is often convenient to
enlarge this notion with a currential approach. Following Coleff and Herrera [CH78,
§4.1], we can define a residual current by considering the limit of residue integrals
along special, so-called “admissible”, paths of the form

s 7→ ε(s) = (sβ1 , . . . , sβr)

for some fixed positive numbers β1 � · · · � βr. Given a compactly supported (r, 0)-
form η and α ∈ Nr, the limit〈 r∧

j=1

∂

(
1

f
αj+1
j

)
∧ [X], η

〉
= lim

s→0

1

(2πi)r

∫
Γε(s)

η

fα1+1
1 · · · fαr+1

r
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exists and defines a (0, r)-current which is independent of the choice of the admissible
path [CH78]. Using an arbitrary C∞-function χ : Cn → R with compact support that
is identically equal to 1 on a neighborhood of X ∩ V (f), the residues in Definition 2.1
can be then written as

ResX

[
ω

fα+1

]
=

〈 r∧
j=1

∂

(
1

f
αj+1
j

)
∧ [X], χ ω

〉
. (2.2)

Residues of holomorphic r-forms can also be represented as integrals of the Bochner-
Martinelli type over a (2r − 1)-dimensional cycle. For α ∈ Nr, we set

|α| = α1 + · · ·+ αr and α! = α1! . . . αr!.

Proposition 2.3. With notation as in Definition 2.1, suppose that ω is a holomorphic

r-form on Cn and let R > 0 such that X ∩V (f) ⊂ BR. Then ResX

[ ω
fα+1

]
is equal to

(−1)
r(r−1)

2 (|α|+ r − 1)!

(2iπ)rα!

∫
∂(X∩BR)

( r∏
j=1

f
αj
j

) ∑r
j=1(−1)j−1f j

∧r
l=1
l 6=j

dfl

(
∑r

j=1 |fj |2)r+|α|
∧ ω

Proof. When X = Cn, such Bochner-Martinelli type integral representation formulae
are also known as Andreotti-Norguet formulae, see for instance [BGVY94, §2.4] or
[TY04, §3.1 and 3.2]. We adapt here the proof to the relative case, when X is a
r-dimensional subvariety in AnC with 1 ≤ r < n.

Within this proof, we set for short fα =
∏r
j=1 f

αj
j . Consider the (0, r − 1)-form

Ωf ,α = f
α

r∑
j=1

(−1)j−1f j

r∧
l=1
l 6=j

dfl

on Cn, and let λ be a formal parameter. A formal computation shows that, if [X]
denotes the integration current on X, then

d

(∏r
j=1 |fj |2λ

‖f‖2(r+|α|) Ωf ,α ∧ ω ∧ [X]

)
= r λ

(∏r
j=1 |fj |2λ

)
fα

‖f‖2(r+|α|)

r∧
l=1

dfl ∧ ω ∧ [X]. (2.3)

For t ∈ (R≥0)n, set tα =
(
t
1/(2(α1+1))
1 , ..., t

1/(2(αr+1))
r

)
and let Γtα be the associated

r-dimensional semianalytic chain on X as in (2.1). For η > 0 small enough (depending

on R and α) and t ∈ (0, η]r, we have that
1

(2iπ)r

∫
Γtα

ω

fα1+1
1 · · · fαr+1

r

= ResX

[ ω
fα+1

]
.

Consider the subset

I(R, η) =
{
x ∈ X ∩BR

∣∣ |fj(x)| ≤ η
1

2(αj+1) , j = 1, ..., r
}

and let now λ be a complex parameter with Re(λ)� 1. It follows from Stokes’ theorem
and from (2.3) that∫

∂(X∩∂BR)

∏r
j=1 |fj |2λ

‖f‖2(r+|α|) Ωf ,α ∧ ω

=

∫
∂I(R,η)

∏r
j=1 |fj |2λ

‖f‖2(r+|α|) Ωf ,α ∧ ω + r λ

∫
X\I(R,η)

(∏r
j=1 |fj |2λ

)
fα

‖f‖2(r+|α|)

r∧
l=1

dfl ∧ ω. (2.4)
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It follows again from Stokes’ theorem and (2.3) that∫
∂I(R,η)

∏r
j=1 |fj |2λ

‖f‖2(r+|α|) Ωf ,α ∧ ω = r λ

∫
I(R,η)

(∏r
j=1 |fj |2λ

)
fα

‖f‖2(r+|α|)

r∧
l=1

dfl ∧ ω

=
rλ∏r

l=1(αl + 1)

∫
I(R,η)

(∏r
j=1 |fj |2λ

)
fα

‖f‖2(r+|α|)

r∧
l=1

dfαl+1
l ∧ ω.

We have that
∧
l d
(
|fl|2(αl+1)

)
= fα+1 ∧

l(∂fl)
αl+1. It follows then from Lebesgue’s

domination and Fubini’s theorems and using the map t = (|f1|2(α1+1), ..., |fr|2(αr+1))
to define the slicing locally about each point in X \W , that since W has Lebesgue
measure 0 with respect to the r-dimensional Lebesgue measure on X and the set Cr(t)
of critical values of the map t|X has Lebesgue measure 0 in (R≥0)r thanks to Sard’s
lemma,

rλ∏r
l=1(αl + 1)

∫
I(R,η)

(∏r
j=1 |fj |2λ

)
fα

‖f‖2(r+|α|)

r∧
l=1

dfαl+1
l ∧ ω

=
rλ∏r

l=1(αl + 1)

∫
{x∈(X∩BR)\W | tj(x)≤η, j=1,...,r}

∏r
l=1 |tl(x)|λ/(αl+1)

fα+1 ‖f‖2(r+|α|)

r∧
l=1

dtl(x) ∧ ω

= (−1)(r(r−1)/2 rλ∏r
l=1(αl + 1)

∫
(0,η]r\Cr(t)

(∫
Γtα

ω

fα+1

) ∏r
l=1 t

λ/(αl+1)
l(∑r

l=1 t
1/(αl+1)
l

)r+|α| dt

= (−1)(r(r−1)/2 (2iπ)r ResX

[ ω
fα+1

]
× rλ∏r

l=1(αl + 1)

∫
(0,η]r

∏r
l=1 t

λ/(αl+1)
l(∑r

l=1 t
1/(αl+1)
l

)r+|α| dt.

We now consider both sides of (2.4) as meromorphic functions of λ having no poles in
Re(λ) > −κ for some sufficiently small value of κ > 0. Identifying the values at λ = 0
of both sides of (2.4), we get∫
∂(X∩BR

Ωf ,α

‖f‖2(r+|α|) ∧ ω

= (−1)(r(r−1)/2 (2iπ)r

[
rλ∏r

l=1(αl + 1)

∫
(0,η]r

∏r
l=1 t

λ/(αl+1)
l(∑r

l=1 t
1/(αl+1)
l

)r+|α| dt

]
λ=0

ResX

[ ω
fα+1

]
= (−1)(r(r−1)/2 (2iπ)r

α!

(|α|+ r − 1)!
ResX

[ ω
fα+1

]
,

which leads to (2.3). �

For each subset I ⊂ {1, . . . , n} of cardinality r, write I = {i1, . . . , ir} with i1 <
· · · < ir and consider the holomorphic r-form on Cn given by

dxI =

r∧
j=1

dxij . (2.5)

Definition 2.4. A holomorphic r-form ω on Cn is polynomial if it writes down as

ω =
∑
I

gI dxI ,

the sum being over the subsets I ⊂ {1, . . . , n} of cardinality r, with gI ∈ C[x] for all I.
It is defined over Z if gI ∈ Z[x] for all I.
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A meromorphic r-form ω on Cn is rational if there is h ∈ C[x] \ {0} such that hω
is a polynomial r-form on Cn. It is defined over Q if there is h ∈ Z[x] \ {0} such that
hω is a polynomial r-form defined over Z.

We next list the basic properties of residues on affine varieties. We will restrict to the
algebraic setting and in particular, we will only consider polynomial or rational forms,
although several of these properties hold in greater generality. As before, we assume
that X ⊂ AnC is a variety of pure dimension r ≥ 1 and that f = (f1, ..., fr) ∈ C[x]r is
a complete intersection on X.

Residues on affine varieties vanish on the ideal generated by f in the ring of regular
functions of X.

Proposition 2.5. Let ω be a rational r-form that is regular on an open subset U ⊂ X
containing X ∩ V (f) and p ∈ (f), the ideal generated by f in OX(U). Then

ResX

[
pω
f

]
= 0.

Proof. See instance [CH78, §4.4, Theorem 4.4.1(2)]. �

Also, these residues are invariant under linear change of variables.

Proposition 2.6. Let ` : AnC 7→ AnC be an invertible affine map. Then

ResX

[
ω
f

]
= Res`−1(X)

[
`∗ω
`∗f

]
.

Proof. See for example [BVY05, page 25]. �

Another important property is the Lagrange-Jacobi vanishing theorem. Consider
the map

ϕf : X 7−→ ArC, x 7−→ f(x). (2.6)

This map is proper if and only if there exist δi > 0, i = 1, . . . , r, and C, τ > 0 such
that, for all x ∈ X with ‖x‖ ≥ C,

r∑
i=1

|fi(x)|
‖x‖δi

≥ τ, (2.7)

see for instance [Hic01, Theorem 5.2]. In the case when the homogenizations fh
j ,

j = 1, ..., r, have no common zeros in the intersection of the hyperplane at infinity
{x0 = 0} with the Zariski closure of X in PnC, in the inequality (2.7) we can take

δi = deg(fi), i = 1, ..., r. (2.8)

Theorem 2.7. Suppose that the map ϕf in (2.6) is proper and let δ = (δ1, . . . , δr) be
as in (2.7). Let ω be a polynomial r-form on Cn such that deg(ω) < |δ| − r. Then

ResX

[
ω
f

]
= 0.

Proof. See for instance [BVY05, Proposition 4.1]. �

We also need the next extension of the transformation law for affine residues.
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Theorem 2.8. Let φ = (φi)1≤i≤r ∈ C[x]r and A = (ai,j)1≤i,j≤r ∈ C[x]r×r such that
φ is a complete intersection on X and A · f = φ. Let u = (u1, . . . , ur) be a group of
r variables and set al =

∑r
i=1 al,iui ∈ C[u,x], i = 1, . . . , r. For α ∈ Nr, set

H = det(A) ·
r∏
l=1

( |α|∑
k=0

φkl a
|α|−k
l

)
∈ C[u,x] (2.9)

and G = coeffuα(H) ∈ C[x], the coefficient of uα in the monomial expansion of H
with respect to the group of variables u. Let ω be a polynomial r-form on Cn. Then

ResX

[ ω

fα1+1
1 , ..., fαr+1

r

]
= ResX

[
Gω

φ
|α|+1
1 , ..., φ

|α|+1
r

]
. (2.10)

Proof. The case when α = 0 is done in [BVY05, Proposition 3.2]. The general case
when α ∈ Nr is arbitrary, can be similarly proven by transposing the proof of [BH97]
on Cn to the case of an arbitrary affine variety, using the Bochner-Martinelli integral
representation of affine residues from Proposition 2.3. �

When X is the affine line, we can compute the residue of a polynomial 1-form as a
coefficient in the Laurent expansion around the point at infinity of a rational function.

Proposition 2.9. Let f ∈ C[x] \ {0} and ω = g dx be a polynomial 1-form on A1
C.

Then

ResA1
C

[
ω
f

]
equals the coefficient of degree −1 in the expansion of g/f as a Laurent series around
the point at infinity.

Proof. Consider ω/f as a rational 1-form on P1(C). As usual, we identify the complex
plane C with the open subset P1(C) \ {∞}, with ∞ = (0 : 1) the point at infinity.
With this identification,

ResA1
C

[
ω
f

]
=

∑
ξ∈V (f)

resξ

(ω
f

)
,

where resξ the action of the local residue at a point ξ.
The sum of the local residues of the rational 1-form ω/f on P1(C) vanishes, as a

consequence of Stokes’ theorem on this compact manifold. Hence

ResA1
C

[
ω
f

]
= − res∞

(ω
f

)
.

The local residue is invariant under changes of coordinates. Putting y = x−1, we get

res∞

(ω
f

)
= − res0

( g(y−1)

f(y−1)

dy

y2

)
.

By Cauchy’s integral formula, this coincides with the coefficient of degree 1 in the
expansion of g(y−1)/f(y−1) as a Laurent series around the origin or, equivalently,
with the coefficient of degree −1 in the expansion of g/f as a Laurent series around
the point at infinity. �

Reciprocally, we can compute the Laurent expansion around the point at infinity of
the inverse of a polynomial, in terms of residues over the affine line.
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Corollary 2.10. Let f ∈ C[x] \ C and set d = deg(f). Then, for x ∈ C with
|x| > maxξ∈V (f) |ξ|,

1

f(x)
=
∑
l∈N

ResA1
C

[
xd+l−1 dx

f

]
x−d−l.

Proof. We can write f = (fd + x−1q(x−1))xd with fd ∈ C× and q ∈ C[x−1]. Hence,
the Laurent expansion of 1/f around the point at infinity is of the form

1

f
=
∑
l∈N

cl x
−d−l

with cl ∈ C. Since 1/f is holomorphic for x ∈ C with |x| > maxξ∈V (f) |ξ|, this
expansion is convergent on this region, and the expression for the cl’s in terms of
residues follows from Proposition 2.9. �

2.2. Relationship to traces and division formulae in polynomial rings. Mul-
tivariate residue calculus is deeply related to the concept of trace. In particular, traces
over reduced 0-dimensional C-algebras can be expressed in terms of residues.

Definition 2.11. Let K be a field, L a finite-dimensional K-algebra, and q ∈ L.
The trace of q, denoted by TrL/K(q), is defined as the trace of the multiplication map
mg : L→ L given by mq(p) = q · p.

Let X ⊂ AnC be a variety of pure dimension r ≥ 1 and f = (f1, ..., fr) a complete
intersection on X. Set

df =
r∧
i=1

dfi.

Proposition 2.12. Suppose that the finite-dimensional C-algebra B = C[x]/(I(X) +
(f)) is reduced, and let q ∈ C(x1, . . . , xn) be a rational function that is regular on
X ∩ V (f). Then

TrB/C(q) = ResX

[
q df
f

]
.

Proof. Write X ∩ V (f) = {ξ1, . . . , ξL} with L = #(X ∩ V (f)) and ξl ∈ Cn. Since B
is reduced, the map

ψ : B −→ CL, q 7−→ (q(ξ1), . . . , q(ξL))

is an isomorphism of C-algebras. For q ∈ B, the matrix of the multiplication map mq

in the standard basis S of CL is diagonal, namely (mq)S = diag(q(ξ1), . . . , q(ξL)) ∈
CL×L. Hence

TrB/C(q) =

L∑
l=1

q(ξl). (2.11)

Set Z(f) = X ·
∏r
j=1 div(fj) for the 0-dimensional intersection cycle of f on X, and

let [Z(f)] be the integration current on this cycle. By [CH78, §1.9 and 3.6], we have
the currential identity ( r∧

j=1

∂

(
1

fj

)
∧X

)
∧ df = [Z(f)].



12 SOMBRA AND YGER

Since B is reduced, so is Z(f) and hence [Z(f)] =
∑L

l=1 δξl , where δξl denotes the
Dirac delta measure at the point ξl. By (2.2),

ResX

[
q df
f

]
=

〈 r∧
j=1

∂

(
1

fj

)
∧ [X], χ q df

〉
=

∫
X
χ q d[Z(f)] =

L∑
l=1

q(ξl),

where χ : Cn → R is an arbitrary C∞-function with compact support that is identically
equal to 1 on a neighborhood of X ∩ V (f). The statement follows from this equality
together with (2.11). �

We can also consider traces of rational functions on X, which are rational functions
over the base space Cr. The hypothesis that f is complete intersection over X implies
that the map ϕf in (2.6) is dominant and generically finite. Let K = K(ArC) and
L = K(X) respectively denote the function fields of ArC and of X, and let ϕ#

f : K ↪→ L

be the finite field extension induced by this map. We identify K with the field C(y),
where y = (y1, . . . , yr) denotes a group of r variables.

Let g, h ∈ C[x] such that h /∈ I(X). Then q = g/h is a rational function on X, and
the trace

ΘX,f ,q := TrL/K(q) ∈ K = C(y) (2.12)
is a rational function on Cr. Under suitable hypothesis, the Taylor expansion of this
rational function can be computed in terms of affine residues. Set

D =

( r∏
i=1

di

)
deg(X)

for the Bézout number of f on X.

Proposition 2.13. Suppose that #(X ∩ V (f)) = D and let g ∈ C[x]. Then ΘX,f ,g ∈
C[y] and

ΘX,f ,g =
∑
α

ResX

[ g df
fα+1

]
yα,

the sum being over the vectors α ∈ Nr such that
∑r

j=1 αj deg(fj) ≤ deg(g).

We give the proof of this result after the next lemma. This lemma shows that, on a
nonempty open subset of Cr, the function ΘX,f ,g can be computed in terms of traces
over “fiber” algebras.

Lemma 2.14. Let notation be as in Proposition 2.13 and set, for y ∈ Cr,
By = C[x]/(I(X) + (f − y)).

Then there is nonempty open subset U ⊂ Cr such that, for y ∈ W , the C-algebra By
is reduced, dimC(By) = D, and

ΘX,f ,q(y) = TrBy/C(q).

Proof. The hypothesis that #(X ∩ V (f)) = D is equivalent to the fact that the fiber
of ϕf at the point 0 ∈ Cr has exactly D points. By Bézout’s theorem, this fiber is
reduced and moreover, there is a nonempty open subset U1 ⊂ Cr with 0 ∈ U1 such
that, for y ∈ U1,

#ϕ−1
f (y) = #(X ∩ V (f − y)) = D

and ϕ−1
f (y) is also reduced.

For the third statement, let ` ∈ C[x] be a linear form such that `(ξ) 6= `(ξ′) for all
ξ, ξ′ ∈ ϕ−1

f (0) with ξ 6= ξ′. Then B = (`k)0≤k≤D−1 gives a basis for the C-algebra B0.
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Let U2 ⊂ U1 be nonempty open subset 0 ∈ U2 where the fibers of ϕf have cardinality
D and the linear form ` separates the point of these fibers. Similarly, the collection B
is a C-basis of the fiber algebra By for all y ∈ U2. In particular, this also implies that
B is a K-basis of the K-algebra L.

For 0 ≤ j, k ≤ D − 1, write

`j · `k =
∑
l

γj,k,l `
l (2.13)

with γj,k,l ∈ K. Then we choose U as any nonempty open subset of U2 such that
0 ∈ U and where all the rational functions γj,k,l are regular. Hence, the relations in
(2.13) also hold in the C-algebra By, for y ∈ U .

Let Mq = (mq)B ∈ KD×D be the matrix of the multiplication map of q over L
with respect to this basis. For y ∈ U , this matrix specializes into the matrix of the
multiplication map of q over By with respect to the basis B. Hence

ΘX,f ,q(y) = Tr(Mq(y)) = TrBy/C(q),

as stated. �

Proof of Proposition 2.13. By Lemma 2.14 and Proposition 2.12, there is a nonempty
open subset U ⊂ Cr with 0 ∈ U such that, for y ∈ U ,

ΘX,f ,g(y) = ResX

[
g df
f − y

]
.

Hence, the rational function ΘX,f ,g is regular at 0 ∈ Cr, and we can consider its Taylor
expansion around this point.

Since the set-valued function y 7→ X ∩ V (f − y) varies continuously on a neighbor-
hood of 0 ∈ Cr, there exist R > 0 and η > 0 such that X ∩ V (f − y) ⊂ X ∩ BR for
all y ∈ Cr with ‖y‖ < η. By Proposition 2.3,

ResX

[
g df
f − y

]
=

(−1)r(r−1)/2(r − 1)!

(2iπ)r

∫
∂(X∩BR)

Ωf−y
‖f − y‖2r

∧ g df

with Ωf−y =
∑r

j=1(−1)j−1(fj − yj)
∧r

l=1
l6=j

dfl. Differentiating this identity, it follows

from Lebesgue’s differentiation theorem that

∂|α|ΘX,f ,g

∂yα
=

(−1)(r(r−1)/2(r + |α| − 1)!

(2iπ)r

∫
∂(X∩BR)

(f − y)α
Ωf−y

‖f‖2(r+|α|) ∧ g df .

Evaluating this identity at y = 0, we get from the integral representation in Proposi-
tion 2.3 that

∂|α|ΘX,f ,g

∂yα
(0) = α!ResX

[ g df
fα+1

]
. (2.14)

The hypothesis that #(X ∩ V (f)) = D implies that the system f on X has no
zeros at infinity. By (2.8) and the Lagrange-Jacobi theorem 2.7, the residues in (2.14)
vanish for α ∈ Nr such that

deg(g df) <

( r∑
j=1

(αj + 1) deg(fj)

)
− r.

We have that deg(g df) = deg(g) +
(∑r

j=1 deg(fj)
)
− r. Hence, the residues in (2.14)

vanish whenever
∑r

j=1 αj deg(fj) > deg(g), which finishes the proof. �
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Residues also play an important role in division formulae in polynomial rings. An
example of this connection is the Bergman-Weil trace formula for the case when X =
AnC, see [AY83, II §9] and [Tsi92, IV], or [BH99] for an extended bibliography on this
subject as well as a presentation of Weil’s formula and Bergman-Weil’s developments
within an algebraic setting.

To describe this formula, let z = (z1, . . . , zn) be a group of variables, fix 1 ≤ i ≤ n,
let hi,j ∈ C[x, z], 1 ≤ j ≤ n, be a family of n polynomials such that

fi(z)− fi(x) =

n∑
j=1

hi,j(x, z)(zk − xk), (2.15)

and set hi =
∑n

j=1 hi,j dzj . This is a polynomial 1-form in the variables z whose
coefficients are polynomials in C[x].

Theorem 2.15. With notation as above, let p ∈ C[x] and choose R > 0 such that
X ∩ V (f) is contained in the ball BR. Then, for x ∈ Cn such that ‖f(x)‖ <
miny∈X ∩ ∂BR ‖f(y)‖,

p(x) =
∑
α∈Nn

ResAnC

[
p(z)

n∧
i=1

hi(x, z)

f1(z)α1+1, ..., fn(z)αn+1

]
f(x)α. (2.16)

When the map ϕf in (2.6) is proper, the Lagrange-Jacobi theorem 2.7 implies that
all but a finite number of residues in the expansion (2.16) vanish. Hence in the proper
case, this expansion becomes a polynomial identity.

As an application of the Bergman-Weil formula, we can express the coefficients of
the f -adic expansion of a univariate polynomial in terms of residues on the affine line.

Definition 2.16. Given f ∈ C[x] \ C, the f -adic expansion of a polynomial p ∈ C[x]
is its unique finite representation as

p =
∑
α∈N

pf,αf
α

with pf,α ∈ C[x] satisfying deg(pf,α) ≤ deg(f)− 1 for all α.

Corollary 2.17. With notation as in Definition 2.16, coefficients of the f -adic ex-
pression of p are given, for α ∈ N, by

pf,α(x) = ResA1
C

[
p(z)

f(z)− f(x)

z − x
dz

f(z)α+1

]
. (2.17)

Proof. For n = 1, the formula in Theorem 2.15 reduces to

p(x) =
∑
α∈N

ResA1
C

[
p(z)

f(z)− f(x)

z − x
dy

f(z)α+1

]
f(x)α. (2.18)

Set d = deg(f). The quotient (f(z) − f(x))/(z − x) is a polynomial in C[x, y] of
degree bounded by d− 1, and so the residues in the right-hand side of (2.17) are also
polynomials in C[x] of degree bounded by d− 1.

By the Lagrange-Jacobi theorem 2.7, these residues vanish when deg(p) + d − 1 <
(α + 1)d − 1 or, equivalently, when deg(p) < αd. Hence, the representation (2.18) is
finite, and so it gives the f -adic expansion of p, as stated. �



MULTIVARIATE RESIDUES AND THE ELIMINATION THEOREM 15

3. Residues on the affine line

Here we consider the problem of bounding the residues of polynomial and rational
1-forms on the affine line. More precisely, let f ∈ Z[x] \ Z and g, h ∈ Z[x] with h
coprime with f . For α ∈ N, the residue

ResA1
C

[
g/h dx
fα+1

]
is a rational number, and we want to bound its numerator and denominator. In this
section, we only consider residues of this type and, for ease of notation, we omit the
variety A1

C when denoting them.

Definition 3.1. Let f =
∑d

i=0 fix
i ∈ Z[x]. The (logarithmic) height and the (loga-

rithmic) length of f are respectively defined as

h(f) = log
(

max
0≤i≤d

|fi|
)

and h1(f) = log

( d∑
i=0

|fi|
)
.

These quantities are related by the inequalities

h(f) ≤ h1(f) ≤ h(f) + log(d+ 1).

The length is submultiplicative, in the sense that, for f1, f2 ∈ Z[x],

h1(f1f2) ≤ h1(f1) + h1(f2).

The following is the main result of this section. It bounds the numerators and
denominators of the residue sequence of to a polynomial 1-form on the affine line.

Theorem 3.2. Let f ∈ Z[x] \ Z and g ∈ Z[x]. Set d = deg(f) and e = deg(g), and
let fd be the leading coefficient of f . Then, for α ∈ N,

f
e+1−(α+1)(d−1)
d Res

[
g dx
fα+1

]
∈ Z

and

log
∣∣∣fe+1−(α+1)(d−1)
d Res

[
g dx
fα+1

]∣∣∣ ≤ h1(g) + (e+ 1− (α+ 1)d) h(f) + (e− d+ 1) log(2).

If e < (α+ 1)d− 1, then Res
[
g dx
fα+1

]
= 0.

We give the proof of this theorem after some preliminary results. Let f ∈ C[x] \ C
and, for j, α ∈ N, set

%f (j, α) = Res
[
xj dx
fα+1

]
. (3.1)

Set also %f (j,−1) = 0 for all j ∈ N.

Proposition 3.3. With notation as in (3.1), write f =
∑d

i=0 fix
i with d = deg(f)

and fi ∈ C. Then, for all j, α ∈ N,
d∑
i=0

fi %(j + i, α) = %(j, α− 1). (3.2)

Proof. By linearity of the residue, the sum in the left-hand side of (3.2) is equal to

Res
[
fxj dx
fα+1

]
. The identity Res

[
fxj dx
fα+1

]
= %(j, α−1) follows easily from the definition

of the residue. �
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Using the formula in the previous proposition, we obtain a recursive algorithm for
computing the residue sequence of a monomial 1-form.

Proposition 3.4. Let notation be as in Proposition 3.3. Then, for all j, α ∈ N,

%f (j, α) =


0 if j ≤ (α+ 1)d− 2,

f−α−1
d if j = (α+ 1)d− 1,

%f (j − d, α− 1)−
∑d

i=1 f
−1
d fd−i %f (j − i, α) if j ≥ (α+ 1)d.

Proof. By Proposition 2.9, the residue %f (j, α) coincides with the coefficient of de-
gree −1 in the expansion of xj/fα+1 as a Laurent series around the point at infinity.
Write f = (fd + x−1q)xd with fd ∈ C× and q ∈ C[x−1]. Hence

xj

fα+1
= f−α−1

d xj−(α+1)d + higher order terms,

which implies first and second equalities in the statement. The third equality follows
from Proposition 3.3. �

When f has integral coefficients, we can apply the recursive formulae in Proposi-
tion 3.4 to bound the numerator and the denominator in the residue sequence of a
monomial 1-form.

Proposition 3.5. With notation as in (3.1), suppose that f ∈ Z[x] \Z, and denote by
d and fd its degree and leading coefficient. Then, for all j, α ∈ N,

f
j+1−(α+1)(d−1)
d %f (j, α) ∈ Z (3.3)

and

log
∣∣f j+1−(α+1)(d−1)
d %f (j, α)

∣∣ ≤ (j + 1− (α+ 1)d) h(f) + (j − d+ 1) log(2). (3.4)

If j < (α+ 1)d− 1, then %f (j, α) = 0.

Proof. Set %̃f (j, α) = f
j+1−(α+1)(d−1)
d %f (j, α). The recursive formulae in Proposi-

tion 3.4 then translate into the relations, for j, α ∈ N,

%̃f (j, α) =


0 if j ≤ (α+ 1)d− 2,

1 if j = (α+ 1)d− 1,

%̃f (j − d, α− 1)−
∑d

i=1 f
i−1
d fd−i %̃f (j − i, α) if j ≥ (α+ 1)d.

Set H = eh(f) = maxi |fi|. The statements (3.3) and (3.4) amount to the conditions

%̃f (j, α) ∈ Z and |%̃f (j, α)| ≤ 2j−d+1Hj+1−(α+1)d.

We prove them by induction on the quantity j + α. If j + α = 0, then j = α = 0 and
both statements follow from the recursive formulae above.

Suppose that j + α ≥ 1. If j ≤ (α+ 1)d− 1, this also follows from these formulae.
So we assume that j ≥ (α + 1)d. By the inductive hypothesis, %̃f (j, α) ∈ Z, which
gives (3.3). For the bound (3.4), we use again the inductive hypothesis and these
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formulae to obtain that

|%̃f (j, α)| ≤ |%̃f (j − d, α− 1)|+
d∑
i=1

H i |%̃f (j − i, α)|

≤ 2j−2d+1Hj−d+1−αd +
d∑
i=1

H i 2(j−i)−d+1H(j−i)+1−(α+1)d

=
(

2j−2d+1 +

d∑
i=1

2(j−i)−d+1
)
Hj+1−(α+1)d

= 2j−d+1Hj+1−(α+1)d.

The last statement follows directly from Proposition 3.4 or, alternatively, it can be
derived from the Lagrange-Jacobi vanishing theorem 2.7. �

Proof of Theorem 3.2. Write g =
∑e

j=0 gjx
j with gj ∈ Z. By linearity,

Res
[
g dx
fα+1

]
=

e∑
j=0

gjRes
[
xj dx
fα+1

]
.

Hence, with the notation in the proof of Proposition 3.5,

f
e+1−(α+1)(d−1)
d Res

[
g dx
fα+1

]
=

e∑
j=0

fe−jd gj %̃f (j, α). (3.5)

It follows from this proposition that this quantity lies in Z, proving the first statement.
By the same result,∣∣∣∣ e∑

j=0

fe−jd gj %̃f (j, α)

∣∣∣∣ ≤ ( e∑
j=0

|gj |
)

max
j

(
|fd|e−j2j−d+1Hj+1−(α+1)d

)
≤
( e∑
j=0

|gj |
)

2e−d+1He+1−(α+1)d,

with H = eh(f) = maxi |fi|. The second statement follows from this and (3.5). The
last statement follows from (3.5) and Proposition 3.5. �

The bounds in Theorem 3.2 are essentially optimal, as shown by the next example.

Example 3.6. Let d ≥ 1, α ≥ 0, e ≥ (α+ 1)d, H2 ≥ H1 ≥ 1 and H3 ≥ 1. Set

f = H1x
d −H2x

d−1, g = H3x
e and ρ = Res

[
g dx
fα+1

]
.

We have that

ρ = Res
[ H3x

e dx
(xd−1(H1x−H2))α+1

]
= H3Res

[
xe−(α+1)(d−1) dx

H1x−H2

]
.
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Making the change of variables y = H1x−H2 and applying Propositions 2.6 and 2.9,
we get

ρ = H3Res
[
(H−1

1 (y +H2))e−(α+1)(d−1)H−1
1 dy

yα+1

]
=

(
e− (α+ 1)d

α

)
H3H

e+1−(α+1)d
2

H
e+1−(α+1)(d−1)
1

. (3.6)

We have that deg(f) = d, h(f) = log(H2), deg(g) = e, and h1(g) = log(H3). In this
case, Theorem 3.2 says that

H
e+1−(α+1)(d−1)
1 ρ ∈ Z and

∣∣He+1−(α+1)(d−1)
1 ρ

∣∣ ≤ 2e−d+1H3H
e+1−(α+1)d
2 ,

which can be compared with the explicit expression for ρ in (3.6).

As an application of these results, we derive a bound for the coefficients of the
Laurent expansion around the point at infinity of the inverse of a polynomial. For a
polynomial f ∈ Z[x] \ Z of degree d and α ∈ N, by Corollary 2.10 the Laurent series

f−α−1 =
∑
l∈N

cf,α,l x
−(α+1)d−l (3.7)

is convergent when |x| > maxξ∈V (f) |ξ|, and its coefficients can be expressed in terms
of residues on the affine line as

cf,α,l = Res
[
x(α+1)d+l−1 dx

fα+1

]
. (3.8)

Corollary 3.7. Let f ∈ Z[x] \ Z and α ∈ N. Set d = deg(f) and let fd be the leading
coefficient of f . Then the coefficients of the Laurent expansion of f−α−1 in (3.7) satisfy

f l+α+1
d cf,α,l ∈ Z and log |f l+α+1

d cf,α,l| ≤ l h(f) + (l + αd) log(2).

Proof. This follows directly from the formula (3.8) and Proposition 3.5. �

As a second application, we bound the coefficients of the f -adic expansion of a
polynomial (Definition 2.16).

Proposition 3.8. Let f ∈ Z[x] \Z and p ∈ Z[x]. Set d = deg(f) and e = deg(p), and
let fd be the leading coefficient of f . Then

p =

be/dc∑
α=0

pf,αf
α

with pf,α ∈ Q[x] such that deg(pf,α) ≤ d− 1 and

f
e+1−α(d−1)
d pf,α ∈ Z[x] and h1(f

e+1−α(d−1)
d pf,α) ≤ h1(p)+(e−αd) h1(f)+e log(2),

for all α.

Proof. For α ∈ N, let pf,α ∈ Q[x] be the α-th coefficient in the f -adic expansion of p.
Clearly, pf,α = 0 for α > e/d.

For 0 ≤ α ≤ e/d, write pf,α =
∑d−1

i=0 pf,α,ix
i and f =

∑d
i=0 fix

i. Then

f(z)− f(x)

z − x
=

d∑
i=0

fi
zi − xi

z − x
=

d∑
i=0

qi(z)x
i
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with qi =
∑d−1−i

l=0 fi+l+1z
l. By Corollary 2.10, pf,α,i = Res

[p qi dz
fα+1

]
for i = 0, . . . , d−1.

We have that deg(qi) ≤ d− i− 1 and h1(qi) ≤ h1(f). Hence deg(p qi) ≤ e+ d− i− 1

and h1(p qi) ≤ h1(p) + h1(f). By Theorem 3.2, fe+1−α(d−1)
d pf,α,i ∈ Z and

log
∣∣fe+1−α(d−1)
d pf,α,i

∣∣ ≤ h1(p) + h1(f) + (e− i− αd) h(f) + (e− i) log(2),

as stated. �

To extend the bounds in Theorem 3.2 to rational functions, we need the following
particular case of the arithmetic Nullstellensatz. Given two polynomials f0, f1 ∈ Z[x] of
respective degrees d0 and d1, we denote by S(f0, f1) ∈ Q(d0+d1)×(d0+d1) their Sylvester
matrix, and by σ(f0, f1) = det(S(f0, f1)) their Sylvester resultant. If f0 and f1 are
coprime, this Sylvester resultant is nonzero.

Lemma 3.9. Let f0, f1 ∈ Z[x] be coprime polynomials. Then there exist p0, p1 ∈ Z[x]
such that

σ(f0, f1) = p0f0 + p1f1

satisfying, for i = 0, 1,
(1) deg(pi) + deg(fi) ≤ deg(f0) + deg(f1)− 1,
(2) h1(pi) + h1(fi) ≤ deg(f1) h1(f0) + deg(f0) h1(f1).

Moreover, log |σ(f0, f1)| ≤ deg(f1) h1(f0) + deg(f0) h1(f1).

Proof. Set di = deg(fi) for short. Since f0 and f1 are coprime, there are unique
q0, q1 ∈ Q[x] with deg(q0) ≤ d1 − 1 and deg(q1) ≤ d0 − 1 such that

1 = q0f0 + q1f1. (3.9)

This Bézout identity translates into a square system of linear equations over Q. Such
system can be written down as

S(f0, f1) ·Q = b

with b ∈ Qd0+d1 a vector with an entry equal to 1, that corresponding to the constant
term in (3.9), and all others ones equal to 0, and Q ∈ Qd0+d1 the vector of coefficients
of q0 and q1.

Set pi = σ(f0, f1)qi, i = 0, 1. The upper bound for the degree of pi follows from
this construction. By Cramer’s rule, the coefficients of pi are (d0 + d1 − 1)-minors of
S(f0, f1). The upper bounds for σ(f0, f1) and for the length of the pi’s can be verified
by analyzing these minors. �

Theorem 3.10. Let f ∈ Z[x] \ Z and f0, g ∈ Z[x] with f0 coprime with f0. Set
d = deg(f), d0 = deg(f0) and e = deg(g), and let fd be the leading coefficient of f .
Then, for α ∈ N,

σ(f, f0)α+1fe+α+1
d Res

[
g/f0 dx
fα+1

]
∈ Z

and

log
∣∣∣σ(f, f0)α+1fe+α+1

d Res
[
g/f0 dx
fα+1

]∣∣∣ ≤ h1(g) + ((α+ 1)d− 1) h1(f0)

+ (e+ (α+ 1)d0) h1(f) + (e+ αd) log(2). (3.10)
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Proof. The polynomials f0 and fα+1 are coprime of degrees d0 and (α + 1)d, and
lengths h1(f0) and h1(fα+1) ≤ (α+ 1) h1(f).

By the multiplicativity of the Sylvester resultant,

σ(fα+1, f0) = σ(f, f0)α+1.

Set γ = σ(f, f0) for short. By Lemma 3.9, there are pα,0, pα,1 ∈ Z[x] such that

γα+1 = pα,0f0 + pα,1f
α+1 (3.11)

with deg(pα,0) ≤ (α+ 1)d− 1 and h1(pα,0) ≤ ((α+ 1)d− 1) h1(f0) + (α+ 1)d0 h1(f).
By (3.11), we have the congruence on the open subset A1

Q \ V (f0)

g

f0
≡ pα,0g

γα+1
(mod fα+1).

Since this open subset is a neighborhood of V (f), by Proposition 2.5,

Res
[
g/f0 dx
fα+1

]
=

1

γα+1
Res
[
pα,0 g dx
fα+1

]
. (3.12)

Using that deg(pα,0 g) ≤ (α+1)d−1+e, it follows from Theorem 3.2 that γα+1fe+α+1
d

is a denominator for the residue in the left-hand side of (3.12). Similarly, the bound
in (3.10) follows also from Theorem 3.2, using that

h1(pα,0 g) ≤ h1(pα,0) + h1(g) ≤ ((α+ 1)d− 1) h1(f0) + (α+ 1)d0 h1(f) + h1(g).

�

4. Residues on an affine variety: polynomials in separated variables

In this section, we bound the residues on an affine variety with respect to a family
of univariate polynomials in separated variables.

We first extend the different notions of size of polynomials to the multivariate case.
As in § 2, we denote by x the group of variables (x1, . . . , xn). For f ∈ C[x], we adopt
the usual notation

f =
∑
α

fαx
α

where, for each index α = (α1, . . . , αn) ∈ Nn, fα denotes an element of C and xα
the monomial xα1

1 . . . xαnn . The support of f , denoted by supp(f), is the finite subset
α’s such that fα 6= 0. For each α ∈ Nn, we set |α| =

∑n
i=1 αi for its length and

coeffα(f) = fα for the coefficient of xα in the monomial expansion of f . For α,β ∈ Nr,
we denote by 〈α,β〉 =

∑r
i=1 αiβi their scalar product.

Definition 4.1. Let f =
∑
α fαx

α ∈ Z[x]. The (logarithmic) height, length and
Mahler measure of f are respectively defined as

h(f) = log(max
α
|fα|), h1(f) = log

(∑
α

|fα|
)

and m(f) =

∫
(S1)n

log |f | dµn,

where S1 = {z ∈ C | |z| = 1} is the unit circle of C, and µ the probability Haar
measure on it.

These quantities are related by the inequalities

h(f) ≤ h1(f) ≤ h(f) + log(n+ 1) deg(f), |m(f)− h(f)| ≤ log(n+ 1) deg(f), (4.1)

see for instance [DKS13, Lemma 2.30].
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The projective space PnQ has a standard structure of toric variety. Using Arakelov
geometry, one can define a notion of canonical height for its equidimensional subvari-
eties, as explained in [BPS14, Chapter 1]. Alternatively, this height can be defining
using Chow forms and a limit procedure à la Tate as in [DP99], see also [DKS13, §2.3].

For an equidimensional projective variety V ⊂ PnQ, its canonical height is denoted
by h(V ). It is a nonnegative real number that measures the arithmetic complexity of
V , and that can also be considered as an arithmetic analogue of its degree.

When V is of dimension zero, its canonical height coincides with the sum of the Weil
heights of its points. In the other extreme, h(PnQ) = 0. When V is a hypersurface,
its canonical height is the Mahler measure of its primitive defining polynomial, see for
instance [DKS13, Proposition 2.39].

Definition 4.2. For an equidimensional affine variety X ⊂ AnQ, we define its degree
and height, respectively denote by

deg(X) and h(X),

as the degree and the canonical height of the closure of the image of X by the standard
inclusion ι : AnQ ↪→ PnQ given by ι(x1, . . . , xn) = (1 : x1 : · · · : xn).

Given a field extension Q ↪→ K, we set

XK = X × Spec(K)

for the subvariety of AnK obtained from X by base change. Set also 1 = (1, . . . , 1) ∈ Nr
and, for i = 1, . . . , r, let εi ∈ Nr denote the i-th vector in the standard basis of Rr.

The following is the main result of this section.

Theorem 4.3. Let X ⊂ AnQ be a variety of pure dimension r ≥ 1 such that

#(XC ∩ V (x1, . . . , xr)) = deg(X).

Let fi ∈ Z[xi] \ Z, i = 1, . . . , r, and g ∈ Z[x1, . . . , xn]. Set d = (d1, . . . , dr) ∈ Nr with
di = deg(fi) and e = deg(g), and let fi,di be the leading coefficient of fi, i = 1, . . . , r.
Then there exists γ ∈ Z \ {0} with

log |γ| ≤ e (h(X) + deg(X)(n+ 2) log(2n+ 3))

such that, for α = (α1, . . . , αr) ∈ Nr,

γ ·
( r∏
i=1

f
e+r−〈α+1,d−εi〉
i,di

)
· ResXC

[g dx1 ∧ · · · ∧ dxr
fα1+1

1 , ..., fαr+1
r

]
∈ Z

and

log

∣∣∣∣γ · ( r∏
i=1

f
e+r−〈α+1,d−εi〉
i,di

)
· ResXC

[g dx1 ∧ · · · ∧ dxr
fα1+1

1 , ..., fαr+1
r

]∣∣∣∣ ≤ h1(g)

+ (e+ r − 〈α+ 1,d〉)
r∑
i=1

h(fi) + e h(X) + e deg(X)(n+ 3) log(2n+ 3).

If e < 〈α+ 1,d〉 − r, then ResXC

[g dx1 ∧ · · · ∧ dxr
fα1+1

1 , ..., fαr+1
r

]
= 0.

When X is the affine space, we have the following more precise result.
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Theorem 4.4. Let fi ∈ Z[xi]\Z, i = 1, . . . , n, g ∈ Z[x1, . . . , xn] and α = (α1, . . . , αn) ∈
Nn. Set d = (d1, . . . , dn) ∈ Nn with di = deg(fi) and e = deg(g), and let fi,di be the
leading coefficient of fi, i = 1, . . . , n. Then( n∏

i=1

f
e+n−〈α+1,d−εi〉
i,di

)
· ResAnC

[g dx1 ∧ · · · ∧ dxn
fα1+1

1 , ..., fαn+1
n

]
∈ Z

and

log

∣∣∣∣( n∏
i=1

f
e+n−〈α+1,d−εi〉
i,di

)
· ResAnC

[g dx1 ∧ · · · ∧ dxn
fα1+1

1 , ..., fαn+1
n

]∣∣∣∣
≤ h1(g) + (e+ n− 〈α+ 1,d〉)

r∑
i=1

h(fi) + (e− |d|+ n) log(2).

If e < 〈α+ 1,d〉 − n, then ResAnC

[g dx1 ∧ · · · ∧ dxn
fα1+1

1 , ..., fαn+1
n

]
= 0.

We give the proof of these theorems after some definitions and auxiliary results.
We first extend the bound for the coefficients of Laurent expansions (Corollary 3.7)
to our current multivariate setting. Let f = (f1, . . . , fr) with fi ∈ Z[xi] \ Z, and
α = (α1, . . . , αr) ∈ Nr. Consider the multivariate Laurent series of f−α−1 given by
the product of univariate Laurent series of the f−αi−1

i ’s around the point at infinity:
with notation as in (3.7),

f−α−1 =
r∏
i=1

f−αi−1
i =

r∏
i=1

∑
li∈N

cfi,αi,li x
−αidi−li
i

=
∑
l∈Nr

cf ,α,l x
−(α1+1)d1−l1
1 . . . x−(αr+1)dr−lr

r (4.2)

with cf ,α,l =
∏r
i=1 cfi,αi,li . This series is convergent for (x1, . . . , xr) ∈ Cr such that

|xi| > maxξ∈V (fi) |ξ| for all i.
The following bound is a direct consequence of Corollary 3.7.

Proposition 4.5. Let f = (f1, . . . , fr) with fi ∈ Z[xi] \Z and α = (α1, . . . , αr) ∈ Nr.
Set d = (d1, . . . , dr) ∈ Nr with di = deg(fi), and let fi,di be the leading coefficient of fi,
i = 1, . . . , r. Then the coefficients of the Laurent expansion of f−α−1 in (4.2) satisfy( r∏

i=1

f li+αi+1
i,di

)
cf ,α,l ∈ Z

and

log
∣∣∣( r∏

i=1

f li+αi+1
i,di

)
cf ,α,l

∣∣∣ ≤ r∑
i=1

li h(fi) + (|l|+ 〈α,d〉) log(2).

For the remainder of this section, we assume that X ⊂ AnQ is a variety of pure
dimension r ≥ 1 and that

#(XC ∩ V (x1, . . . , xr)) = deg(X). (4.3)

Set also x′ = (x1, . . . , xr).
For g ∈ Z[x1, . . . , xn], we consider the trace function ΘX,x′,g as in (2.12). By Propo-

sition 2.13, this is a polynomial in the variables y = (y1, . . . , yr) with rational coeffi-
cients, and these coefficients are given by the residue multi-sequence of the polynomial
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r-form g dx′: for α = (α1, . . . , αr) ∈ Nr,

coeffα(ΘX,x′,g) = ResXC

[
g dx1 ∧ · · · ∧ dxr
xα1+1

1 , . . . , xαr+1
r

]
.

Moreover, deg(ΘX,x′,g) ≤ deg(g). We next bound these coefficients, by applying the
arithmetic Perron theorem in [DKS13].

Lemma 4.6. Let X, x′ and g be as above, and ΘX,x′g ∈ Q[y] the associated trace
function. Then there exists γ ∈ Z \ {0} with γΘX,x′g ∈ Z[x1, . . . , xr] such that

log |γ| ≤ deg(g) (h(X) + deg(X)(n+ 2) log(2n+ 3)),

h(γΘX,x′g) ≤ h1(g) + deg(g) (h(X) + deg(X)(n+ 2) log(2n+ 3)).

Proof. Set e = deg(g) and D = deg(X) for short. If e = 0, then g ∈ Z and ΘX,x′,g =
Dg, and the statement is clear. Hence, we can suppose without loss of generality
that e ≥ 1.

Write x′ = (x1, . . . , xr) and x′′ = (xr+1, . . . , xn), so that x = (x′,x′′). Consider the
map

π : X −→ ArQ, x 7−→ x′.

Its fiber at 0 coincides with the intersection X ∩ V (x′). By hypothesis, this fiber is of
cardinality deg(X) and so this is a finite map, see for instance [KPS01, Lemma 2.14].
Hence, the map

idAr ×π : An−rQ ×X −→ An−rQ × ArQ
is also finite of degree D. Let u = (ur+1, . . . , un) be a group of n− r variables and set

p = g +
n∑

i=r+1

uixi ∈ Z[u,x].

Set y = (y1, . . . , yr) and let E ∈ Z[u,y, t] be an irreducible polynomial giving a
minimal equation of integral dependence for p with respect to this map.

We have that degt(E) ≤ D. On the other hand, p separates the points of the fiber
of π at 0, which implies that degt(E) ≥ D. Hence,

degt(E) = D

and so this minimal polynomial coincides, up to a scalar factor, with the characteristic
polynomial of p with respect to the map idAr ×π.

Precisely, if we write E =
∑D

j=0Ejt
j with Ej ∈ Z[u,y], j = 0, . . . , D − 1, and

ED ∈ Z\{0}, then E−1
D E is the characteristic polynomial of p with respect to the map

idAr ×π and E−1
D E(0,y) is the characteristic polynomial of g with respect to the map

π. In particular,

ΘX,x′g = −ED−1(0,y)

ED
∈ Q[y].

Setting γ = ED ∈ Z \ {0}, we have that γΘX,x′,g ∈ Z[y] and h(γΘX,x′,g) ≤ h(ED−1).
Consider now the map

An−rQ ×X −→ An−rQ × Ar+1
Q , (u,x) = (u,x′,x′′) 7−→ (u,x′, p(u,x)).

Its image coincides with the hypersurface defined by E. Then [DKS13, Theorem 3.15]
implies that

h(ED) +D h(g), h(ED−1) + (D − 1) h(g)

≤ D h(g) + e (h(ArQ ×X) + deg(ArQ ×X)(n+ 2) log(2n+ 3)). (4.4)
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By [DKS13, Lemma 3.16], deg(ArQ × X) = deg(X) = D and h(ArQ × X) = h(X).
Combining this with (4.4), we easily derive stated bounds for γ and ΘX,x′g. �

The following lemma reduces the computation of residues on an affine variety with
respect to univariate polynomials in separated variables to the monomial case.

Lemma 4.7. With notation as in Theorem 4.3, let cf ,α,l, l ∈ Nr, be the coefficients
of the Laurent expansion of f−α−1 as in (4.2). Then

ResXC

[g dx1 ∧ · · · ∧ dxr
fα1+1

1 , . . . , fαr+1
r

]
=
∑
l

cf ,α,lResXC

[ g dx1 ∧ · · · ∧ dxr

x
(α1+1)d1+l1
1 , . . . , x

(αr+1)dr+lr
r

]
, (4.5)

the sum being over l ∈ Nr such that |l| ≤ e− 〈α+ 1,d〉+ r.

Proof. Let R > maxi maxξ∈V (fi) |ξ|. The multivariate Laurent series in (4.2) converges
uniformly on the r-dimensional analytic cycle

ΓR = {ξ ∈ X(C) | |ξ1| = · · · = |ξr| = R}.

Set for short dx′ = dx1 ∧ · · · ∧ dxr. Then

ResXC

[g dx′

fα+1

]
=

1

(2πi)r

∫
ΓR

g(x) dx′

fα1+1
1 (x1) . . . fαr+1

r (xr)

=
∑
l∈Nr

cf ,α,l
1

(2πi)r

∫
ΓR

g(x) dx′

x
(α1+1)d1+l1
1 , . . . , x

(αr+1)dr+lr
r

=
∑
l∈Nr

cf ,α,lResXC

[ g dx′

x
(α1+1)d1+l1
1 , . . . , x

(αr+1)dr+lr
r

]
.

The hypothesis (4.3) implies that x′ has no zeros onX on the hyperplane at infinity. By
(2.8) and Theorem 2.7, this implies that the residues in this last sum vanish whenever
e < 〈α+ 1,d〉+ |l| − r, concluding the proof. �

Proof of Theorems 4.3 and 4.4. We first consider the general case, when X ⊂ AnQ is of
pure dimension r and #(X ∩ V (x1, . . . , xr)) = deg(X). Set

η =
r∏
i=1

f
e+r−〈α+1,d−εi〉
i,di

∈ Z \ {0}.

Let l ∈ Nr with |l| ≤ e+r−〈α+1,d〉. We have that li+αi+1 ≤ e+r−〈α+1,d−εi〉
for all i. Hence, Proposition 4.5 implies that η cf ,α,l ∈ Z and

log |η cf ,α,l| ≤ (e− 〈α+ 1,d〉+ r)
r∑
i=1

h(fi) + (e− |d|+ r) log(2). (4.6)

Let γ ∈ Z\{0} with log |γ| ≤ e (h(X)+deg(X)(n+2) log(2n+3)) as in Lemma 4.6.
Set for short

ρf (g,α) = ResXC

[g dx1 ∧ · · · ∧ dxr
fα1+1

1 , . . . , fαr+1
r

]
.
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From the formula in Lemma 4.7 and the bounds in Lemma 4.6 and (4.6), we deduce
that γ η ρf (g,α) ∈ Z and that

log |γ η ρf (g,α)| ≤max
l

log |η cf ,α,l|+ h1(g) + e
(

h(X) + deg(X)(n+ 2) log(2n+ 3)
)

+ log(#{l ∈ Nr | |l| ≤ e+ r − 〈α+ 1,d〉})

≤(e+ r − 〈α+ 1,d〉)
r∑
i=1

h(fi) + (e− |d|+ r) log(2) + h1(g)

+ e
(

h(X) + deg(X)(n+ 2) log(2n+ 3)
)

+ (e+ r − 〈α+ 1,d〉) log(r + 1)

≤h1(g) + (e+ r − 〈α+ 1,d〉)
r∑
i=1

h(fi) + e h(X)

+ e deg(X)(n+ 3) log(2n+ 3).

If e < 〈α+1,d〉− r, by Theorem 2.7 all the residues in the sum in the right-hand side
of the the formula (4.5) vanish. Hence ρf (g,α) = 0, proving the last statement.

If X = AnQ, then ΘX,f ,g = TrC(x)/C(x)(g) = g(y). Hence, in this case we can take
γ = 1 and we have that h1(ΘX,x′g) = h1(g). Thus

log |η ρf (g,α)| ≤h1(g) + max
l

log |η cf ,α,l|

≤h1(g) + (e+ r − 〈α+ 1,d〉)
r∑
i=1

h(fi) + (e− |d|+ r) log(2),

as stated. �

For completeness, we also extend the bounds for the coefficients of the f -adic ex-
pansions (Proposition 3.8) to our current multivariate setting. Let f = (f1, . . . , fr)
with fi ∈ Z[xi] \Z. Given p ∈ Z[x′] = Z[x1, . . . , xr], its f -adic expansion is its unique
finite representation as

p =
∑
α∈Nr

pf ,αf
α

with pf ,α ∈ Q[x′] such that degxi(pf ,α) ≤ deg(fi) − 1 for all α and i. Using the
Bergman-Weil formula (Theorem 2.15), these coefficients can be expressed in terms of
residues as

pf ,α(x′) = ResArC

[
p(z)

r∏
i=1

fi(zi)− f(xi)

zi − xi
dz1 ∧ · · · ∧ dzr

f1(z1)α1+1, . . . , fr(zr)
αr+1

]
∈ Q[x′].

Proposition 4.8. Let f = (f1, . . . , fr) with fi ∈ Z[xi] \ Z and p ∈ Z[x1, . . . , xr]. Set
d = (d1, . . . , dr) with di = deg(fi) and e = (e1, . . . , er) with ei = degxi(p), and let fi,di
be the leading coefficient of fi, i = 1, . . . , r. Then( r∏

i=1

f
ei+1−αi(di−1)
i,di

)
· pf ,α ∈ Z[x1, . . . , xr] (4.7)

and

h1

(( r∏
i=1

f
ei+1−αi(di−1)
i,di

)
· pf ,α

)
≤ h1(p) +

r∑
i=1

(ei − αidi) h1(fi) + |e| log(2). (4.8)

If ei < αidi for some i, then pf ,α = 0.
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Proof. Consider first the case when p is a monomial, that is, p = (x′)β with β =
(β1, . . . , βr) ∈ Nr. Since this is a product of polynomials in separated variables, its
f -adic expansion can be obtained by multiplying the fi-adic expansion of its factors.
Hence, for α = (α1, . . . , αr) ∈ Nr,

pf ,α =

r∏
i=1

(xβii )fi,αi . (4.9)

Set ν =
∏r
i=1 f

βi+1−αi(di−1)
i,di

∈ Z \ {0}. By (4.9) and Proposition 3.8, ν pf ,α =∏r
i=1

(
f
βi+1−αi(di−1)
i,di

(xβii )fi,αi) ∈ Z[x′] and

h1(ν pf ,α) ≤
r∑
i=1

h1

(
f
βi+1−αi(di−1)
i,di

(xβii )fi,αi
)
≤

r∑
i=1

(βi − αidi) h1(fi) + βi log(2),

proving (4.7) and (4.8) in this case. Moreover, if ei < αidi for some i, then (xβii )fi,αi = 0
and so pf ,α = 0, giving also the last statement in this case.

The case of an arbitrary p follows by linearity from the monomial one. �

5. An arithmetic elimination theorem

Let f1, . . . , fn ∈ Z[x1, . . . , xn] be polynomials with a finite number of common zeros
in Qn. A classical method to solve the system of equations

f1 = · · · = fn = 0

is to eliminate variables, that is, to find φl ∈ Z[xl] \ {0}, l = 1, . . . , n, and al,i ∈
Z[x1, . . . , xn], l, i = 1, . . . , n, such that

φl =
n∑
i=1

al,ifi.

Applying a variant of his approach to the effective Nullstellensatz, Jelonek has obtained
an optimal upper bound for the degrees of these polynomials [Jel05, Theorem 1.6]. Here
we prove an arithmetic analogue of this result, bounding the height of the φl’s and
the al,i’s. Our proof proceeds by adapting Jelonek’s approach and applying the tools
from arithmetic intersection theory in [DKS13]. Our main result in this section (The-
orem 5.1) is an arithmetic analogue of the “generalized elimination theorem” in [Jel05,
Theorem 4.3].

Given a varietyX ⊂ AnQ, a polynomial relation is said to hold on X if it holds modulo
the ideal of definition I(X) or, equivalently, if it holds for every point of X(Q).

Theorem 5.1. Let X ⊂ AnQ be a variety of pure dimension r ≥ 0, f1, . . . , fs ∈
Z[x1, . . . , xn] \ Z with s ≤ r, and q ∈ Z[x1, . . . , xn] a polynomial that is constant on
every irreducible component of XQ ∩ V (f1, . . . , fs). Set dj = deg(fj), j = 1, . . . , s.
Then there exist φ ∈ Z[t] \ {0} and a1, . . . , as ∈ Z[x1, . . . , xn] such that

φ(q) = a1f1 + · · ·+ asfs on X (5.1)
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satisfying, for i = 1, ..., s,

deg(φ) ≤
( s∏
j=1

dj

)
deg(X), (5.2)

deg(ai) + deg(fi) ≤ deg(q)
( s∏
j=1

dj

)
deg(X), (5.3)

h(φ), h(ai) + h(fi) ≤ deg(q)
( s∏
j=1

dj

)(
h(X) + deg(X)

( s∑
j=1

h(fj)

dj
+

h(q)

deg(q)

+(r + 1) log(2(r + 2)(n+ 1)2)
))

. (5.4)

We give the proof of this result after some auxiliary lemmas.

Lemma 5.2. Let X ⊂ AnQ be an equidimensional variety and q ∈ Z[x1, . . . , xn] a
polynomial that is constant on every irreducible component of XQ. Then there exists
φ ∈ Z[t] \ {0} such that

φ(q) = 0 on X
with

deg(φ) ≤ deg(X) and m(φ) ≤ deg(q) h(X) + deg(X) h1(q − z), (5.5)

where z is an additional variable. In particular, h(φ) ≤ deg(q) h(X) + deg(X)(h(q) +
deg(q) log(n+ 2)).

Proof. Let Z = {ζ1, . . . , ζl} ⊂ Q be the finite set of values of q on X(Q). It is invariant
under the action of the absolute Galois group Gal(Q/Q), and so we can consider a
primitive polynomial with integer coefficients defined as

φ = γ

l∏
i=1

(t− ζi) ∈ Z[t] \ {0}

for a suitable γ ∈ Q×. By construction, φ(q) = 0 on X. The cardinality of Z is
bounded by the number of irreducible components of X and, a fortiori, by its degree.
Hence deg(φ) ≤ deg(X), which gives the degree bound.

To bound the Mahler measure of φ, consider the hypersurface V (q− z) ⊂ AnQ×A1
Q,

with z the standard coordinate of A1
Q. The variety

Y = (X × A1
Q) ∩ V (q − z)

is of dimension r := dim(X) and its projection onto the last coordinate coincides
with Z. Choose a subset I ⊂ {1, . . . , n} of cardinality r such that the projection
$ : AnQ × A1

Q → ArQ × A1
Q defined by

$(x1, . . . , xn, z) 7−→ ((xi)i∈I , z)

verifies dim($(Y )) = r. Let % : ArQ × A1
Q → A1

Q be the projection onto the second
factor. Then %($(Y )) = Z is zero dimensional. The theorem of dimension of fibers
then implies that

$(Y ) = ArQ × Z,

and so $(Y ) is a hypersurface with defining polynomial φ.
By [DKS13, Corollary 2.61 and Lemma 3.16],

h(Y ) ≤ deg(q) h(X) + deg(X) h1(q − z).
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By [DKS13, Proposition 2.64], we have h($(Y )) ≤ h(Y ). Since $(Y ) = V (φ), we
have that h($(Y )) = m(φ), which completes the proof of (5.5). The last statement
follows from the second inequality in (4.1). �

Definition 5.3. Let ϕ : X → Y be a generically finite dominant map of affine varieties.
We say that ϕ is finite at a point y ∈ Y if there is an open neighborhood U of y such
that the restriction of ϕ to a map ϕ−1(U)→ U is finite.

The following lemma is a variant of [Jel05, Lemma 4.1].

Lemma 5.4. Let X ⊂ AnQ be a variety of pure dimension r ≥ 0, q ∈ Z[x1, . . . , xn]
a polynomial that is not constant on any irreducible component of XQ, and ui,j, i =

1, . . . , r − 1, j = r, . . . , n, a group of (r − 1)(n − r + 1) variables. Consider the
transcendental field extension K = Q((ui,j)i,j) and the map

π : XK −→ ArK, x = (x1, . . . , xn) 7−→
(
x1 +

n∑
j=r

u1,jxj , . . . , xr−1 +

n∑
j=r

ur,jxj , q(x)

)
.

Then π is dominant, and there exists p ∈ Z[tr]\{0} such that π is finite on ArK \V (p).

Proof. Consider the map % : X → A1
Q given by x 7→ q(x) and let X be its generic

fiber. In algebraic terms, this map corresponds to the morphism of Q-algebras Q[z]→
Q[x1, . . . , xn]/I(X) defined by z 7→ q, and X is the subvariety of AnQ(g) defined by the
ideal

I(X ) = Q(q)I(X) ⊂ Q(q)[x1, . . . , xn].

The hypothesis that the polynomial q is not constant on any irreducible component
of XQ implies that the map % is surjective and has no vertical fibers. Hence, X is of
pure dimension r − 1 and the natural morphism

Q[x1, . . . , xn]/I(X) −→ Q(q)[x1, . . . , xn]/I(X )

is an inclusion. Let XK be the affine variety obtained by base change, which is the
subvariety of AnK(g) corresponding to the ideal I(XK) = K(q)I(X) ⊂ K(q)[x1, . . . , xn].

For i = 1, . . . , r − 1, set `i = ui,rxr + · · ·+ ui,nxn ∈ K[xr, . . . , xn]. Then the map

XK −→ Ar−1
K(q), (x1, . . . , xr−1,x

′) 7−→ (x1 + `1(x′), . . . , xr−1 + `r−1(x′)) (5.6)

is dominant and finite, since it is the restriction to XK of a general linear map AnK(q) →
Ar−1
K(g) in reduced triangular form.
Choose `r ∈ Q[xr, . . . , xn] a sufficiently generic linear form, so that the map

XK −→ ArK, (x1, . . . , xr−1,x
′) 7−→ (x1 + `1(x′), . . . , xr−1 + `r−1, `r(x

′)) (5.7)

is also finite, and let P ∈ Q(q)[t1, . . . , tr−1][T ] be a polynomial giving an equation of
integral dependence of `r with respect to the map in (5.6). Let p ∈ Q[tr] \ {0} so that
p(q) is a denominator of P . Then `r integral with respect to the map π on the open
subset ArK \ V (p).

Since the map in (5.7) is finite, this implies that π is finite outside V (p). Since
dim(XK) = r = dim(ArK), this map is also dominant, completing the proof. �

Proof of Theorem 5.1. First we treat the case when q is not constant on any of the
irreducible components of XQ. Let z be an additional variable, consider the map

ϕ : X × A1
Q −→ AnQ × AsQ, (x, z) 7→ (x, zf1(x), . . . , zfs(x)) (5.8)
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and letW ⊂ AnQ×AsQ be the closure of its image. The assumptions on the polynomial q
imply that no irreducible component of X is contained in the zero set of the fj ’s, and
so W is of pure dimension r+ 1. By construction, ϕ gives an isomorphism between X
and W outside the zero set of the fj ’s.

Let {ζ1, . . . , ζl} ⊂ Q be the finite Gal(Q/Q)-invariant subset of values of the poly-
nomial q on the irreducible components of XQ ∩ V (f1, . . . , fs) and set

θ1 = γ
l∏

i=1

(t− ζi) ∈ Z[t]

for a suitable γ ∈ Q× such that θ1 is primitive. The hypersurface H := V (θ1 ◦ q) ⊂ AnQ
contains the variety X ∩ V (f1, . . . , fs) and so the restricted map

ϕ : (X \H)× A1
Q −→W \ (H × AsQ)

is an isomorphism. Since q is not constant on any of the irreducible components of
XQ, the hypersurface H contains no irreducible component of X.

For i = 1, . . . , r, let ui = (ui,1, . . . , ui,n) be a group of n variables and consider the
general linear form

`i = ui,1x1 + · · ·+ ui,nxn ∈ Q(ui)[x1, . . . , xn].

Set u = (u1, . . . ,ur), and consider the field K = Q(u) and the map

π : WK −→ Ar+1
K , (x, z) 7−→ (z1 + `1(x), . . . , zs + `r(x), `s+1(x), . . . , `r(x), q(x)).

By Lemma 5.4 this map is dominant, and there exists θ2 ∈ Z[yr+1] \ {0} such that it
is finite on the open subset Ar+1

K \ V (θ2).
Let ϕK be the base change of the map in (5.8) given by the field extension Q ↪→ K

and set θ = θ1(yr+1)θ2(yr+1) ∈ Z[yr+1]. Then the composition

ψ = π ◦ ϕK : XK × A1
K −→ Ar+1

K (5.9)

is finite on the open subset Ar+1
K \ V (θ).

Set y = (y1, . . . , yr+1). For convenience, we also set fj = 0, j = s+ 1, . . . , r. Then
the previous condition is equivalent to the fact that the inclusion of Q(u)-algebras

ψ# : K[y]θ −→ (K[x]/I(XK))θ◦q ⊗K[z], yi 7−→

{
zfi + `i if 1 ≤ i ≤ r,
q if i = r + 1,

(5.10)

is integral. Let E ∈ K[y]θ[z] be the minimal polynomial of the variable z with respect
to ψ#. It is unique up to a unit of the ring K[y]θ. We choose it as a primitive and
squarefree polynomial in Z[u][y, z] and write it is as

E =

δ∑
j=0

∑
α∈Nr+1

Eα,j y
αzδ−j

with δ = degz(E) and Eα,j ∈ Z[u] for all α, j. The coefficient of zδ is

φ̃ =
∑

α∈Nr+1

Eα,0 y
α.

Since the morphism ψ# in (5.10) is integral, φ̃ = λθk(yr+1) with λ ∈ Z[u] and k ∈ N.
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By definition,

E(z, zf1 + `1, . . . , zfr + `r, q)

=
δ∑
j=0

∑
α∈Nr+1

Eα,j

( r∏
k=1

(zfk + `k)
αi
)
qαr+1zδ−j = 0 on XK × A1

K. (5.11)

Hence, all the coefficients in the expansion of this expression with respect to z vanish
identically on XK. We will extract the relation (5.1) from the coefficient of zδ. Set,
for i = 1, . . . , s,

ãi = −
δ∑
j=1

∑
α∈Nr+1

∑
β∈Bi,j,α

Eα,j

( r∏
k=1

(
αk
βk

)
`αk−βkk

)
fβ11 . . . f

βi−1

i−1 fβi−1
i qαr+1 ∈ Z[u, x],

where the indexing set Bi,j,α consists of the vectors β = (β1, . . . , βr) with |β| = j and
βk ≤ αk for 1 ≤ k ≤ i, βi ≥ 1, and βk = 0 for i + 1 ≤ k ≤ r. It follows from (5.11)
that

φ̃(q) = ã1f1 + · · ·+ ãsfs on XK.

The relation (5.1) is obtained by taking the coefficient of some nonzero term in the
monomial expansion with respect to u of the left-hand side of this relation.

To control the degree and height of the minimal polynomial E, we relate it to the
implicit equation of the image of a polynomial map. Indeed, by [DKS13, Lemma 4.8]
applied to the map ψ in (5.9), the polynomial E gives also an equation for the closure
of the image of the map

XK(z) −→ Ar+1
K(z), (x, z) 7−→ (zf1(x) + `1(x), . . . , zfr(x) + `r(x), q(x)). (5.12)

Note that [DKS13, Lemma 4.8] is stated finite maps, but it also holds for generically
finite maps, with the same proof, and so we can apply it to the map ψ to prove the
claim above.

Hence, we can bound the size of E by applying the arithmetic Perron theorem. To
this end, we summarize the partial degrees, height and number of monomials of the
polynomials defining the map in (5.12). Set dj = deg(fj) and hj = h(fj), j = 1, . . . , s
and, for convenience, we set also dj = 1 and hj = 0, j = s+ 1, . . . , r. For j = 1, . . . , r,
we have

(1) degx(zfj + `j) ≤ dj ,
(2) degu,z(zfj + `j) = 1,
(3) h(zfj + `j) ≤ hj ,
(4) log(# supp(zfj + `j) + 2) ≤ dj log(2n+ 3).

Set e = degx(q) and l = h(q). We have degu,z(q) = 0, and the number of parameters,
that is the auxiliary variables u, z, is rn+ 1.

Write
E =

∑
α∈Nr+1

Eα y
α

with Eα ∈ Z[u, z] \ {0}, and consider the vectors in Nr+1 given by

d = (d1, . . . , ds, 1, . . . , 1, e), δ = (1, . . . , 1, 0), h = (h1, . . . , hs, 0, . . . , 0, l).

By [DKS13, Theorem 3.15], for all α ∈ supp(E),

〈d,α〉 ≤ e
( s∏
j=1

dj

)
deg(X), degu,z(Eα) + 〈δ,α〉 ≤ re

( s∏
j=1

dj

)
deg(X) (5.13)
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and

h(Eα) + 〈h,α〉 ≤e
( s∏
j=1

dj

)(
h(X) + deg(X)

( r∑
j=1

hj + dj log(2n+ 3)) + log(rn+ 2)

dj

+
l + log(# supp(q) + 2)

e
+ log(r + 2)

))
≤e
( s∏
j=1

dj

)(
h(X) + deg(X)

( s∑
j=1

hj
dj

+ r log((2n+ 3)(rn+ 2))

+
l

e
+ log((n+ 3)(r + 2))

))
. (5.14)

From (5.13) we get edegyr+1
(φ̃) ≤ e

(∏s
j=1 dj

)
deg(X), which proves (5.2). Again

by (5.13), for i = 1, ..., s,

degx(ãi) + deg(fi) ≤ max
α∈supp(E)

〈d,α〉 ≤ e
( s∏
j=1

dj

)
deg(X),

which proves (5.3). The bound for the height of φ̃ follows from (5.14). For the height
of the ãi’s we have, for i = 1, ..., s,

δ∑
j=1

∑
α∈Nr+1

Eα,j 6=0

∑
β∈Bi,j,α

r∏
k=1

(
αk
βk

)
≤

∑
α∈supp(E)

∑
β≤α

r∏
k=1

(
αk
βk

)

=
∑

α∈supp(E)

2α1+···+αr ≤ # supp(E) 2degy(E).

Hence, by [DKS13, Lemma 2.37(1)],

h(ãi) + h(fi) ≤ max
j,α,β

{
h

(
Eα,j

( r∏
k=1

`αk−βkk

)
fβ11 . . . f

βi−1

i−1 fβi−1
i qαr+1

)}
+ h(fi) + log

(
# supp(E) 2degy(E)

)
. (5.15)

Let εi ∈ Nr be the i-th vector in the standard basis of Rr. By [DKS13, Lemma 2.37(2)],
for each j,α, β in the maximum in the right-hand side of (5.15), we have

h

(
Eα,j

( r∏
k=1

`αk−βkk

)
fβ11 . . . f

βi−1

i−1 fβi−1
i qar+1

)
≤ h(Eα,j) + |α| log(n)

+ 〈h− εi,α〉+ 〈d,α〉 log(n+ 1), (5.16)

because h1(`k) = log(n) and h1(fj) ≤ h(fj) + dj log(n + 1). It follows from (5.13),
(5.14), (5.15) and (5.16) that, for i = 1, ..., s, the sum h(ãi) + h(fi) is bounded by

e
( s∏
j=1

dj

)(
h(X) + deg(X)

( s∑
j=1

hj
dj

+
l

e
+ (r + 1) log(2(r + 2)(n+ 1)2)

))
,

which gives (5.4). This concludes the case when q is not constant on any of the
irreducible components of XQ.

For the general case, consider a splitting X = X1 ∪ X2, where X1 and X2 denote
the union of the irreducible components of XQ where q is constant and not constant,
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respectively. Let

φ1(q) = 0 on X1 and φ2(q) = a1f1 + · · ·+ asfs on X2 (5.17)

be the equations obtained by applying Lemma 5.2 on X1 and the previously considered
case on X2, respectively. Then

(φ1φ2)(q) = φ1(q)a1f1 + · · ·+ φ2(q)asfs on X

is the corresponding equation on X. The bounds for the polynomials therein follow
readily for those for the polynomials in (5.17). �

Remark 5.5. The case when s > r, that is, when the number of fi’s exceeds the
dimension of the variety X, can be reduced to the case when s ≤ r considered in
Theorem 5.1, by taking linear combinations of the fi’s. The resulting bounds are not
so neat since, in particular, the influence of the different fi’s mixes and we loose track
of their individual contributions. This case when s > r is not necessary for our present
applications, and we omit the formulation of the corresponding bounds.

The next statement is the specialization of Theorem 5.1 to the 0-dimensional case
and a variable q = xl.

Corollary 5.6. Let X ⊂ AnQ be a variety of pure dimension r ≥ 0, f = (f1, . . . , fr)

with fi ∈ Z[x1, . . . , xn] \ Z a family of polynomials defining a complete intersection
on X. Set dj = deg(fj), j = 1, . . . , r. Then, for l = 1, . . . , n, there exist φl ∈ Z[xl]\{0}
and al,1, . . . , al,r ∈ Z[x1, . . . , xn] such that

φl = al,1f1 + · · ·+ al,rfr on X

satisfying, for i = 1, ..., r,

deg(φl), deg(al,i) + deg(fi) ≤
( r∏
j=1

dj

)
deg(X),

h(φl),h(al,i) + h(fi) ≤
( r∏
j=1

dj

)(
h(X) + deg(X)

( r∑
j=1

h(fj)

dj

+(r + 1) log(2(r + 2)(n+ 1)2)
))
.

In the particular case when X = AnQ, we have deg(AnQ) = 1 and h(AnQ) = 0. Hence,
the previous statement specializes to

deg(φl), deg(al,i) + deg(fi) ≤
n∏
j=1

dj ,

h(φl),h(al,i) + h(fi) ≤
( n∏
j=1

dj

)( n∑
j=1

h(fj)

dj
+ (n+ 1) log(2(n+ 2)(n+ 1)2)

)
.

In particular, if deg(fj) ≤ d and h(fj) ≤ h, then

deg(φl), deg(al,i) + deg(fi) ≤ dn,
h(φl),h(al,i) + h(fi) ≤ ndn−1h+ (n+ 2) log(2(n+ 2)(n+ 1)2) dn.

To prove our bound for residues over an affine variety, we also need the next lemma,
allowing to put the variables in general position with a linear change of controlled
height.
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Proposition 5.7. Let X ⊂ AnQ be a variety of pure dimension r. Then there are
affine polynomials `i ∈ Z[x1, . . . , xn] with h(`i) ≤ 2 log(deg(X)) + n log(2) such that,
for every subset I ⊂ {1, . . . , n} of cardinality r,

#
(
XQ ∩

⋂
i∈I

V (`i)
)

= deg(X). (5.18)

In particular, the map X → ArQ defined by (x1, . . . , xn) 7→ (`i)i∈I is finite of deg(X).

Proof. For i = 1, . . . , n, let u = (ui,1, . . . , un,j) be a group of n variables. Set D =
deg(X) for short. By [KPS01, Proposition 4.5], there is a polynomialG ∈ Q[u1, . . . ,ur]
with degui(G) ≤ 2D2, i = 1, . . . , r, such that the condition G(b1, . . . , br) 6= 0 for
bi ∈ Qn+1, i = 1, . . . , r, implies that

#
(
XQ ∩

r⋂
i=1

V (bi,0 + bi,1x1 + · · ·+ bi,nxn)
)

= D.

We then set
F :=

∏
1≤i1<···<ir≤n

G(ui1 , . . . ,uir) ∈ Q[u1, . . . ,un].

This polynomial verifies, for i = 1, . . . , n,

degui(F ) =

(
n− 1

r − 1

)
2D2 ≤ 2nD2.

Hence there are bi ∈ Zn+1, i = 1, . . . , n, such that |bi,j | ≤ 2nD2 for all i, j, such that

F (b1, . . . , bn) 6= 0.

Then the affine polynomials `i = bi,0 + bi,1x1 + · · · + bi,nxn verify that h(`i) ≤
log maxj |bi,j | ≤ 2 log(D) + n log(2) for all i and satisfy the condition (5.18) for every
subset subset I ⊂ {1, . . . , n} of cardinality r, proving the first statement.

The second statement follows from the first one, applying [KPS01, Lemma 2.14]. �

6. Residues on an affine variety: the general case

In this section, we bound the residue multi-sequence on an affine variety X ⊂ AnQ of
dimension r, associated to a system of polynomials f = (f1, . . . , fr) ∈ (Z[x1, . . . , xn] \
Z)r defining a complete intersection on X and a rational r-form ω (Definition 2.4). We
also apply these results to bound the coefficients of the representation of a polynomial
via the Bergman-Weil trace formula (2.16).

Definition 6.1. Let ω be a polynomial r-form defined over Z (Definition 2.4). Write
ω =

∑
I gI dxI with gI ∈ Z[x1, . . . , xn] for each subset I ⊂ {1, . . . , n} of cardinality r.

For each multi-index I, write gI =
∑
β gI,β x

β with gI,β ∈ Z, β ∈ Nn. The degree and
the (logarithmic) length of ω are respectively defined by

deg(ω) = max
I

deg(gI) and h1(ω) = log
(∑
I,β

|gI,β|
)
.

With the previous notation set, for α ∈ Nr,

ρX,f (ω,α) = ResXC

[ ω
fα+1

]
.

We first consider these residues for the case when X is good position with respect to
a group of variables and ω is a polynomial multiple of the volume form associated to
this group of variables.
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Theorem 6.2. Let X ⊂ AnQ be a variety of pure dimension r ≥ 1 such that

#(X ∩ V (x1, . . . , xr)) = deg(X). (6.1)

Let f = (f1, . . . , fr) be a family of polynomials in Z[x1, . . . , xn] \Z defining a complete
intersection on X, and ω = g dx1 ∧ · · · ∧ dxr with g ∈ Z[x1, . . . , xn]. Set di = deg(fi),
i = 1, . . . , r, e = deg(g) and

DX,f = deg(X)

r∏
j=1

dj and κ0
X,f =

h(X)

deg(X)
+

r∑
j=1

h(fj)

dj
+3(n+2) log(n+2). (6.2)

Then, for α ∈ Nr, there exists ζ ∈ Z \ {0} such that ζ · ρX,f (ω,α) ∈ Z with

log |ζ|, log |ζ · ρX,f (ω,α)| ≤ h1(g) + (r + 1)
(
e+ (r + 1)(|α|+ 1)DX,f

)
DX,f κ

0
X,f .

When X is the affine space, we have the following more precise result.

Theorem 6.3. Let f = (f1, . . . , fn) be a family of polynomials in Z[x1, . . . , xn] \ Z
defining a complete intersection on AnQ, and ω = g dx1 ∧ · · · ∧ dxn a polynomial n-
form defined over Z. Set di = deg(fi), i = 1, . . . , n, and e = deg(g). For l = 1, . . . , n,
denote by πl the projection AnQ → A1

Q to the l-th coordinate of AnQ and set

Df =

n∏
j=1

dj , κ0
f =

n∑
j=1

h(fj)

dj
+3(n+2) log(n+2), ∆f = nDf −

n∑
l=1

deg(πl(V (f))).

Then there exists ϑ ∈ Z \ {0} with log |ϑ| ≤ nκ0
f such that, for all α ∈ Nn, we have

that ϑe+(|α|+1)(∆f+1)ρAnQ,f (ω,α) ∈ Z and

log
∣∣ϑe+(|α|+1)(∆f+1)ρAnQ,f (ω,α)

∣∣ ≤ h1(g) + (e+ (|α|+ 1)∆f )nDf κ
0
f .

Proof of Theorems 6.2 and 6.3. We first consider Theorem 6.2, for an arbitrary affine
variety X ⊂ AnQ of pure dimension r satisfying the condition (6.1). For short, we set
d = (d1, . . . , dr) ∈ Nr, D = DX,f and κ = κ0

X,f .
By Corollary 5.6, there are polynomials φl ∈ Z[xl] \ {0} and al,i ∈ Z[x], for i, l =

1, ..., r, such that φl =
∑r

i=1 al,ifi for all l, with deg(φl), deg(al,i)+di ≤ D deg(X) and

h(φl), h(al,i)+h(fi) ≤ D
( h(X)

deg(X)
+

r∑
j=1

h(fj)

dj
+(r + 1) log(2(r + 2)(n+ 1)2)

)
. (6.3)

For each l, let πl be the projection AnQ → A1
Q to the l-th coordinate of AnQ. Since φl

vanishes on πl(X ∩ V (f)) and f is a complete intersection on X,

deg(φl) ≥ deg(πl(X ∩ V (f))) ≥ 1. (6.4)

We next apply the transformation law (Theorem 2.8) to reduce the study of the
residue ρX,f (ω,α) to the case of separated variables, considered in §4. Let u =
(u1, . . . , ur) be a group of r variables. Set A = (al,i)l,i ∈ Z[x]r×r, al =

∑
i al,iui and

Hl =

|α|∑
k=0

φkl a
|α|−k
l ∈ Z[u,x]. (6.5)

Set H = det(A) ·
∏r
l=1Hl ∈ Z[u,x] as in (2.9) and G = coeffuα(H(u,x)) ∈ Z[x]. By

Theorem 2.8,

ρX,f (ω,α) = ResXC

[g G dx1 ∧ · · · ∧ dxr

φ
|α|+1
1 , ..., φ

|α|+1
r

]
.
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By the expression in (6.5) and the bounds in (6.3), degx(Hl) ≤ |α|D for all l. We
also have that deg(det(A)) ≤ rD − |d|. Thus

deg(g G) ≤ e− |d|+ (|α|+ 1) r D. (6.6)

For the length, using the inequalities in (4.1), the bounds for the height in (6.3) and
comparing it with the constant κ in (6.2), we obtain

h(Hl) ≤ max
k

(k h1(φl) + (|α| − k) h1(al)) + log(|α|+ 1) ≤ |α|Dκ

and h1(det(A)) ≤ rmaxl,i h1(al,i) + log(r!) ≤ r D κ. We deduce that

h1(g G) ≤ h1(g) + (|α|+ 1) r D κ. (6.7)

We next apply Theorem 4.3 to the residue in the right-hand side of (2.10), that
is, to the φi’s instead of the fi’s, the polynomial g G instead of g, and the vector
(|α|, . . . , |α|) ∈ Nr. Set δl = deg(φl) and δ = (δ1, . . . , δr) ∈ Nr, and let φl,δl be the
leading coefficient of φl. With notation as in this result, set

ζ = γ ·
r∏
l=1

φ
deg(g G)+r−(|α|+1)(|δ|−1)
l,δl

∈ Z \ {0}.

Hence ζ · ρX,f (ω,α) ∈ Z. Moreover, setting

κ1 =
(

deg(g G) + r − (|α|+ 1)|δ|
) r∑
l=1

h(φl)

+ deg(g G)
(

h(X) + deg(X)(n+ 3) log(2n+ 3)
)
,

we have that log |ζ| ≤ κ1 and log |ζ · ρX,f (ω,α)| ≤ h1(g G) + κ1. We also have that
di ≥ 1 for all i and, by (6.4), δl ≥ 1 for all l. Hence |d|, |δ| ≥ r. Using this together
with (6.7), we obtain

h1(g G) + κ1 ≤h1(g) + (|α|+ 1) r D κ

+
(
e+ (|α|+ 1) r D

) (
r D κ+ h(X) + deg(X)(n+ 3) log(2n+ 3)

)
≤h1(g) + e (r + 1)Dκ+ (|α|+ 1)(r + 1)2D2 κ,

and similarly κ1 ≤ e (r + 1)Dκ+ (|α|+ 1)(r + 1)2D2κ, which gives the bound in the
theorem.

In the case X = AnQ, set ϑ =
∏n
i=1 φi,δi ∈ Z \ {0}. By (6.3), this quantity satisfies

the inequality log |ϑ| ≤ nD κ as stated. Set

λ = ϑdeg(g G)+n−(|α|+1)(|δ|−1)ρX,f (ω,α).

By Theorem 4.4, λ ∈ Z and this integer can be bounded by

log |λ| ≤ h1(g G) +
(

deg(g G) + n− (|α|+ 1)|δ|
) n∑
l=1

h(φl)

+
(

deg(g G)− |δ|+ n
)

log(2).

By the inequalities (6.6) and (6.4),

deg(g G) + n− (|α|+ 1)(|δ| − 1) ≤ e+ (|α|+ 1)(∆ + 1). (6.8)
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Set also µ = ϑe+(|α|+1)(∆+1)ρX,f (ω,α) = λϑc, where the exponent c ≥ 0 is the
difference between both sides of the inequality in (6.8). Hence µ ∈ Z and

log |µ| ≤ h1(g) +
(
e+ (|α|+ 1)∆

) n∑
l=1

h(φl) +
(
e− |d|+ (|α|+ 1)nD

)
log(2)

≤ h1(g) +
(
e+ (|α|+ 1)∆

)
nD κ,

which concludes the proof of Theorem 6.3. �

We apply these results to bound the coefficients in the Bergman-Weil trace formula.
Let f = (f1, . . . , fn) ∈ C[x]n be a complete intersection on AnQ. Let z = (z1, . . . , zn)
be a group of variables and, for i, j = 1, . . . , n, set

hi,j = (fj(x1, . . . , xj , zj+1, . . . , zn)− fj(x1, . . . , xj−1, zj , . . . , zn))/(zj − xj). (6.9)

These are polynomials in C[x, z] that verify the identity (2.15), namely

fi(z)− fi(x) =
n∑
j=1

hi,j(x, z)(zj − xj).

Put hi =
∑n

j=1 hi,j dyj and, for p ∈ C[x] and α ∈ Nn, set

pα = ρAnC ,f

(
g

n∧
i=1

hi,α
)
∈ C[x] (6.10)

for the coefficient corresponding to α in the representation of p given by the Bergman-
Weil trace formula. These are polynomials of degree bounded by

∑n
j=1 deg(fj)− n.

Corollary 6.4. Let f = (f1, . . . , fn) be a family of polynomials in Z[x1, . . . , xn] \ Z
defining a complete intersection on AnQ, and p ∈ Z[x1, . . . , xn]. Set d = (d1, . . . , dn) ∈
Nn with di = deg(fi), and e = deg(p). Set also

Df =
n∏
j=1

dj and κ′′f =
n∑
j=1

h(fj)

dj
+ 3(n+ 2) log(n+ 2).

Then there exists ϑ ∈ Z \ {0} with log |ϑ| ≤ nκ such that, for α ∈ Nn, the coefficient
pα in (6.10) satisfies that ϑe+|d|+(|α|+1)(nDf+1)pα ∈ Z[x1, . . . , xn] and

h
(
ϑe+|d|+(|α|+1)(nDf+1)gα

)
≤ h1(g) + (e+ |d|+ (|α|+ 1)(nDf + 1))nDf κ

′′
f .

Proof. With notation as in (6.9), consider the polynomial n-form ω = p
∧n
j=1 hj in the

variables z with coefficients in Z[x]. From (6.9), we verify that deg(hi,j) ≤ dj − 1 and
h1(hi,j) ≤ h(fj). This implies that

deg(ω) ≤ |d| − n and h1(ω) ≤ h1(p) +

n∑
k=1

h1(fj) + |d| log(2n+ 1),

and the result follows then from Theorem 6.3. �

To extend our bounds for residues to rational forms, we need the following version
of the arithmetic Nullstellensatz. It is a direct application of [DKS13, Theorem 0.1].

Lemma 6.5. Let X ⊂ AnQ be a variety of pure dimension r and fi ∈ Z[x1, . . . , xn],
i = 0, . . . , r, polynomials without common zeros in X. Set di = deg(fi), i = 0, . . . , r.
Then there exist a ∈ Z \ {0} and p ∈ Z[x1, . . . , xn] such that

pf0 ≡ a mod (f1, . . . , fr) on X
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with deg(p) + d0 ≤
(∏r

i=0 di
)

deg(X) and

log |a|,h(p)+h(f0) ≤
( r∏
j=0

dj

)
h(X)+deg(X)

( r∑
i=0

(∏
j 6=i

dj

)
h(fi)+(4r+8) log(n+3)

)
.

The following result bounds the numerator and denominators in a residue multi-
sequence, in the most general case considered in this paper.

Theorem 6.6. Let X ⊂ AnQ be a variety of pure dimension r ≥ 1 and f = (f1, . . . , fr)

a family of polynomials in Z[x1, . . . , xn]\Z defining a complete intersection on X. Let
ω be a rational r-form defined over Q that is regular on X ∩ V (f). Write ω = τ/f0

with τ a polynomial r-form defined over Z and f0 ∈ Z[x1, . . . , xn] not vanishing on
X ∩ V (f). Set di = deg(fi), i = 0, . . . , r, and e = deg(τ). Set also

DX,f = deg(X)

r∏
j=1

dj and κX,f =
h(X)

deg(X)
+

r∑
j=1

h(fj)

dj
+4(n+5)2 log((n+1) deg(X)).

Then, for α ∈ Nr, there is ζ ∈ Z \ {0} such that ζ · ρX,f (ω,α) ∈ Z with

log |ζ|+ h1(τ), log |ζ · ρX,f (ω,α)| ≤
(
n

r

)(
h1(τ) + e (r + 1)DX,f κX,f

+ (α+ 1)
(
2(r + 1)DX,f h(f0) + (3d0 + r + 1)D2

X,fκX,f
))
.

When X is the affine space, we have the following more precise result.

Theorem 6.7. Let f = (f1, . . . , fn) be a family of polynomials in Z[x1, . . . , xn] \ Z
defining a complete intersection on AnQ, and ω a rational n-form that is regular on
V (f). Write ω = (g/f0) dx1∧· · ·∧ dxn with g, f0 ∈ Z[x1, . . . , xn] and f0 not vanishing
on V (f). Set di = deg(fi), i = 0, . . . , n, and e = deg(g). Set also

Df =
n∏
j=1

dj and κf =
n∑
i=1

h(fi)

di
+ (4n+ 8) log(n+ 3).

Then, for α ∈ Nn, there exists ζ ∈ Z \ {0} such that ζ · ρAnQ,f (ω,α) ∈ Z with

log |ζ| , log |ζ · ρAnQ,f (ω,α)| ≤ h1(g) + e nDfκf

+ (|α|+ 1)
(
Df h(f0) + (d0 + n)(nDf + 1)Df κf

)
.

Proof of Theorems 6.6 and 6.7. Set for short D = DX,f , κ = κX,f and

θX =
h(X)

deg(X)
+

r∑
i=1

h(fi)

di
+ (4r + 8) log(n+ 3).

By Lemma 6.5, there exist a ∈ Z \ {0} and p ∈ Z[x1, . . . , xn] such that p f0 ≡ a
mod (f1, . . . , fr) on X with deg(p) + d0 ≤ d0D and

log |a|,h(p) + h(f0) ≤ D (d0 θX + h(f0)). (6.11)

This implies that (p f0)|α|+1 ≡ a|α|+1 mod (fα1+1
1 , . . . , fαr+1

r ) on X. Hence
1

f0
≡ 1

a|α|+1
p|α|+1f

|α|
0 mod (fα1+1

1 , . . . , fαr+1
r ) on X \ V (f0).

Consider the polynomial r-form defined over Z given by σ = p|α|+1f
|α|
0 τ . Since X \

V (f0) is a neighborhood of X ∩ V (f), by Proposition 2.5,

ρX,f (ω,α) =
1

a|α|+1
ResXC

[ σ
fα+1

]
. (6.12)
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The degree and the length of this polynomial r-form are bounded by

deg(σ) ≤ deg(τ) + (|α|+ 1) deg(p) + |α| d0 ≤ e+ (|α|+ 1) d0D

and

h1(σ) ≤ h1(τ)+(|α|+1) h1(p)+|α| h1(f0) ≤ h1(τ)+(|α|+1)D (d0 θX+h(f0)). (6.13)

By Proposition 5.7, there are affine polynomials `i ∈ Z[x], i = 1, ..., n, with h(`i) ≤
2 log(deg(X)) + n log(2) such that, for every subset I ⊂ {1, . . . , n} of cardinality r,

#
(
XC ∩

⋂
i∈I

V (`i)
)

= deg(X).

Consider the invertible linear map

` : AnQ −→ AnQ, x 7−→ (`1(x), . . . , `n(x)) (6.14)

and set X̃ = `(X) ⊂ AnQ. Let m = `−1 be the inverse map. We have that det(`) ∈
Z \ {0}, and it follows from Cramer’s formulae that det(`)m ∈ Zn×n. Moreover,

log | det(`)|, h(det(`)m) ≤ nmax
i

h(`i) + log(n!)

≤ 2n log(deg(X)) + 2n2 log(2), (6.15)

where h(det(`)m) stands for the logarithm of the maximum of the absolute values of
the entries of this matrix with integer coefficients.

By the invariance of the residue under change of variables (Proposition 2.6),

ρX,f (ω,α) =
1

a|α|+1
Res

X̃C

[
m∗σ

(m∗f1)α1+1, . . . , (m∗fr)
αr+1

]
. (6.16)

Let y = (y1, . . . , yn) be a group of n variables, corresponding to the coordinates of
the second AnQ in (6.14). For each pair of subsets I, J ⊂ {1, . . . , n} of cardinality r, put
mI,J = (mi,j)i∈I,j∈J for the corresponding r×r-submatrix ofm. Write σ =

∑
I qI dxI

with qI ∈ Z[x]. For each multi-index J , set

q̃J = det(`)deg(σ)+r
∑
I

det(mI,J)m∗qI ∈ Z[y] (6.17)

and σ̃ =
∑

J q̃J dyJ , so that m∗σ = det(`)− deg(σ)−r σ̃. Set also f̃i = det(`)dim∗fi ∈
Z[y]. It follows from (6.16) that

ρX,f (ω,α) =a−|α|−1det(`)− deg(σ)−r+〈α+1,d〉Res
X̃C

[ σ̃

f̃
α+1

]
(6.18)

=a−|α|−1det(`)− deg(σ)−r+〈α+1,d〉
∑
J

Res
X̃C

[q̃J dyJ

f̃
α+1

]
We next bound the height of each residue in the right-hand side of (6.18). We

have that deg(X̃) = deg(X) and, using [KPS01, Lemma 2.7] and [DKS13, Proposi-
tion 2.39(5)], the height of X̃ can be bounded by

h(X̃) ≤ h(X) + (r + 1)
(
2 log(deg(X)) + n log(2) + 12 log(n+ 1)

)
deg(X).

We have that deg(f̃i) = di and, by [KPS01, Lemma 1.2(c)] and the bounds in (6.15),

h(f̃i) ≤ h(fi) + di(2n log(deg(X)) + 2n2 log(2) + 2 log(n+ 1))

≤ h(fi) + 2ndi log(2n+1 deg(X)).



MULTIVARIATE RESIDUES AND THE ELIMINATION THEOREM 39

Now fix a multi-index J and let q̃J be as in (6.17). We have that

deg(q̃J) ≤ deg(σ) ≤ e+ (|α|+ 1) d0D. (6.19)

Applying again [KPS01, Lemma 1.2(c)] and the bounds in (6.15), we get, for each
multi-index I in (6.17),

h1

(
det(`)deg(σ)+r det(mI,J)m∗qI

)
≤ h1(qI) + 2n log(2n+1 deg(X)) deg(qI).

Hence, for each J ,

h1(q̃J) ≤h1(τ) + (|α|+ 1)D (d0 θX + h(f0)) + 2n
(
e+ (|α|+ 1) d0D

)
log(2n+1 deg(X))

≤h1(τ) + 2n e log(2n+1 deg(X))

+ (|α|+ 1)
((

2nD log(2n+1 deg(X)) +DθX
)
d0 +D deg(X) h(f0)

)
≤h1(τ) + (2n+ 1) e log(2n+1 degX) + (|α|+ 1)Dκ1 (6.20)

with

κ1 = d0

( h(X)

deg(X)
+

r∑
i=1

h(fi)

di
+ 2n log(2n+1 deg(X)) + (4r + 8) log(n+ 3)

)
+ h(f0).

The result follows then from Theorem 6.2. To abridge the rest of the proof, we state
the obtained bounds without detailing the involved computations. Set

κ2 =
h(X)

deg(X)
+

r∑
j=1

h(fj)

dj
+ 2(n+ 1)2 log(deg(X)) + 3(n+ 2)(n+ 5) log(n+ 2),

which is a quantity that bounds from above the constant κ0 given by this theorem
applied to the variety X̃ and the f̃j ’s. Then, this theorem together with the bounds in
(6.19) and (6.20) implies that there exists ζJ ∈ Z\{0} such that ζJ ·ρX̃,f̃ (q̃J dyJ ,α) ∈ Z
and

log |ζJ |, log |ζJ · ρX̃,f̃ (q̃J dyJ ,α)| ≤ h1(τ) + 2n e log(2n+1 deg(X))

+ (r + 1)(eD κ2 + (|α|+ 1)(Dκ1 + (d0 + r + 1)D2 κ2)). (6.21)

It follows from (6.18) that we can take the wanted denominator ζ ∈ Z \ {0} as

ζ = a|α|+1det(`)deg(σ)+r−〈α+1,d〉
∏
J

ζJ ,

the product being over the subsets J ⊂ {1, . . . , n} of cardinality r. We deduce from
(6.11), (6.15) and (6.21) that

log|ζ|+ h1(τ), log
∣∣ζ · ρX,f (ω,α)

∣∣ ≤ d0D θX +D h(f0) + 2n log(2n+1 deg(X)) e

+

(
n

r

)(
h1(τ) +

((n
r

)
+ 1
)

2n log(2n+1 deg(X)) e+ (r + 1)

(
n

r

)
eD κ2 + log

(
n

r

)
+ (|α|+ 1)

(
(r + 1)

(
n

r

)(
Dκ1 + (d0 + r + 1)D2 κ2

)
+ 2n log(2n+1 deg(X)) d0D

)
.

The bound in Theorem 6.6 is a simpler (and rougher) version of this upper bound.
In the case X = AnQ, we apply Theorem 6.3 to the residues associated to the poly-

nomial n-form a−|α|−1 p|α|+1f
|α|
0 g dx = a−|α|−1σ appearing in (6.12). With notation

as in this result, set

ζ = a|α|+1ϑdeg(σ)+(|α|+1)(nD+1) ∈ Z \ {0}.
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By Theorem 6.3, we have that ζ · ρAnQ,f (a−|α|−1σ,α) ∈ Z and, using (6.11) and (6.13),

log |ζ| ≤ (|α|+ 1) log |a|+
(

deg(σ) + (|α|+ 1) (nD + 1)
)

log |ϑ|
≤ (|α|+ 1)(d0Dκ+D h(f0)) +

(
e+ (|α|+ 1) ((d0 + n)D + 1)

)
nD κ

≤ e nD κ+ (|α|+ 1)
(
D h(f0) + (d0 + n)(nD + 1)Dκ

)
.

with κ = θAnQ as in the statement. Similarly, log |ζ · ρAnQ,f (a−|α|−1σ,α)| is bounded by

h1(g) +
(

deg(σ) + (|α|+ 1)nD)
)
nD κ+ (|α|+ 1) (d0Dκ+D h(f0))

≤ h1(g) + e nD κ+ (|α|+ 1)
(
D h(f0) + (d0 + n)(nD + 1)Dκ

)
,

yielding the bounds in Theorem 6.7. �
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