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� The first investigation of atmospheric
particulate Hg (HgPM) in whole
Africa.

� PCA analysis showed that HgPM in
Bizerte city was mainly produced by
fossil fuel combustion.

� Ambient temperature, precipitation
and wind speed were identified as
the major factors influenced HgPM
concentrations.

� All atmospheric PM organic extracts
from Bizerte city showed dioxin-like
activity.

� PAHs are responsible for 40% of
dioxin-like activity of atmospheric
PM.
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As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate
matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were
characterized for their chemical compositions, including mercury (HgPM), as well as organic contami-
nants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pes-
ticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we
applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-
associated organic contaminants. Results showed that average HgPM concentration over the entire
sampling period was found to be 13.4 ± 12 pg m�3. Seasonal variation in the HgPM concentration was
observed with lower values in spring and summer and higher values in winter and autumn due to the
variation of meteorological conditions together with the emission sources. Principal component analysis
suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic
HgPM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts
of atmospheric PM from Bizerte city (388.3e1543.6 fg m�3), and shows significant positive correlations
Barhoumi).

mailto:barhoumibadredine@yahoo.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemosphere.2020.127312&domain=pdf


with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was
related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants,
with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and
utility of the use of bioassays in risk assessment of complex environmental samples.
1. Introduction

Atmospheric particulate matter (PM) is a highly complex
mixture, whose toxicity depend on its composition, particle size,
emission sources, geography, demography and weather conditions
(Seinfeld and Pankow, 2003; Brown et al., 2005; Wenger et al.,
2009). It can induce various pathologies including bronchitis,
asthma, lung cancer, preterm birth, inflammatory and cardiovas-
cular problems, and chronic diseases (Hoek et al., 2002; Bernstein
et al., 2004; Pope and Dockery, 2006; Reche et al., 2012; Breysse
et al., 2013; Mesquita et al., 2015). Among the PM constituents,
pollutants such as polycyclic aromatic hydrocarbons (PAHs),
organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs)
and mercury (Hg) have attracted much interest due to their
mutagenic, carcinogenic, teratogenic and bioaccumulative effects,
as well as their long-range transport (Wania and Mackay, 1996;
Schroeder and Munthe, 1998; Kim et al., 2013; AMAP/UN
Environment, 2019).

Hg in the atmosphere originated from both natural and
anthropogenic sources (Zhang et al., 2015; Outridge et al., 2018;
AMAP/UN Environment, 2019), and exists under three physico-
chemical forms: gaseous elemental Hg (GEM), gaseous oxidized
Hg (GOM) and particulate-bound Hg (HgPM) (Lindqvist and Rodhe,
1985). Although atmospheric HgPM accounts for only <5% of total
atmospheric Hg, it plays an important role in the global Hg
biogeochemical cycle due to its high solubility, deposition velocity
and scavenging coefficients (Schroeder and Munthe, 1998; Fang
et al., 2001; Driscoll et al., 2013). Incomplete combustion of
organic matter, diffuse sources, and agricultural applications were
identified as primarily emissions sources of PAHs, PCBs and OCPs in
the atmosphere, respectively (Breivik et al., 2002; Dyke et al., 2003;
Zhang and Tao, 2009; Yılmaz et al., 2016; Barhoumi et al., 2018).
Depending on their physicochemical properties and emission
sources, as well as meteorological conditions, PAHs, PCBs, OCPs and
HgPM can exhibit strong temporal and regional distribution pat-
terns in atmospheric PM.

Over past decades, both developed and developing countries
have established new directives/guidelines to reduce PM expo-
sures, and therefore protect human health (Krzyzanowski, 2008).
Traditionally, air pollutionmonitoring ismade using very expensive
instrumental tools for analysis of some classes of contaminants
such as PAHs, PCBs, OCPs, Hg, inorganic oxides, and ozone (Klanova
et al., 2009; Nov�ak et al., 2013; Huang et al., 2016). However, the
determination of contaminant concentrations alone is often
insufficient to derive accurate conclusions on the potential toxicity
of such very complex matrix like atmosphere, as it is almost
impossible to identify and quantify all potential toxicants in at-
mospheric PM. In addition, the levels of contamination can not take
into consideration synergistic, antagonistic, and additive in-
teractions of toxicants. Thus, it seems important to use bioassays for
screening of toxicity because, unlike chemical analyses, they can
integrate the effects of various chemicals in a complex mixture and
their potential interactions (Nov�ak et al., 2013). An essential aspect
in determining the toxic effects of organic contaminants, such as
PAHs, PCBs and OCPs, is their ability to bind and activate the aryl
hydrocarbon receptor (AhR), a key regulator of phase I and II
metabolic enzymes (Nebert et al., 1993; Gonzalez and Fern�andez-
Salguero, 1998). This biological activity is commonly known as
AhR-mediated or dioxin-like activity. This activity can bemonitored
by the DR-CALUX (Dioxin Responsive Chemical-Activated LUcif-
erase gene eXpression) assay, in which the AhR is challenged with
extracts of PM samples to determine their toxic potential (Olivares
et al., 2011; Khedidji et al., 2017). Due to its simplicity, efficiency,
rapidity and ability to screen a large number of samples (Hodge
et al., 2003; Kroese et al., 2015), several studies worldwide have
used this bioassay to assess the toxic effect of ambient air (Clemons
et al., 1998; Arrieta et al., 2003; Nov�ak et al., 2009; Wenger et al.,
2009).

In Africa, population growth, urbanization, traffic emissions,
transported dust and open burning have strongly contributed to the
current air pollution (Fayiga et al., 2018). It has been shown that on
this continent, where air quality monitoring stations are almost
non-existent and studies on atmospheric contaminants few, air
pollution causes more premature deaths per year than either un-
safe drinking water or malnutrition (Roy, 2016; Bahino et al., 2018).
This highlights the need of carrying out atmospheric pollution
studies over the African continent. A year-long sampling campaign
was conducted in a North African city (Bizerte, Tunisia) which was
affected by a considerable anthropogenic pressure in last decade
due to the increase of urbanization, traffic density and economic
activity, including agriculture, fishing and heavy industries. The
chemical composition of atmospheric PM and its sources in Tunisia
have been described previously (Castro-Jim�enez et al., 2017; Castro-
Jim�enez and Semp�er�e, 2018; Barhoumi et al., 2018, 2020); however,
studies on atmospheric HgPM and the toxicological effects of at-
mospheric PM are not available in Tunisia yet. Therefore, the
objective of this study is to (1) investigate the concentration levels,
seasonal variability and sources of HgPM in Bizerte city, and (2) to
assess the dioxin-like potency of atmospheric PM using an in vitro
reporter gene assay (DR-CALUX). The PM-associated organic con-
taminants (PAHs, alkylated PAHs, PCBs and OCPs) determined in a
previous study were appeled here, in order to identify their role in
the dioxin-like activity of atmospheric PM. To the best of our
knowledge, this is the first long-term monitoring of HgPM in whole
Africa.
2. Materials and methods

2.1. Site description and PM sampling

Fifty-four atmospheric PM samples were collected from March
2015 to January 2016 on the roof of the Faculty of Sciences of Bizerte
(37� 160 0.5802”N, 9� 520 49.875” E), located directly adjacent to the
Mediterranean Sea shoreline and the Bizerte lagoon and ~1 km
from the Bizerte city center (Fig. S1 in the supplementary infor-
mation (SI)). More detailed on sampling procedures including de-
scriptions of the sampling site have been reported in Barhoumi
et al. (2018). Briefly, Bizerte is a medium-sized city, with eco-
nomic activity focused mainly on agriculture (7800 ha of cereal
crops, 3400 ha of vegetables and 500 ha of tree crops), fishing (1253



fishing units, 3 fishing ports and 2 international shipping ports) and
operations of light and heavy industries (cementery, plastic, textile,
mechanic and electronic manufacturing, iron and steel metallurgy,
petroleum refining and lubricants) (Barhoumi et al., 2018; Mhadhbi
et al., 2019). In addition to these activities, the high urbanization
and the high traffic density around the sampling site have induced a
considerable anthropogenic pressure.

For sampling, a high volume air sampler equipped with a pre-
combusted quartz fiber filters (QFFs, 20.3 x 25.4 cm) was used to
collect the samples for 48 h at an average flow of 0.66 m3 min�1. At
regular intervals, field blanks were collected to provide an envi-
ronmental background blank filter for biological and chemical
assessment (Castro-Jim�enez and Semp�er�e, 2018). Then, QFFs were
wrapped in aluminum foil, transported to the laboratory and stored
in a freezer at �20 �C before processing. Sampling details and
meteorological data are given in the SI (Table S1).

2.2. Sample preparation for chemical analysis and bioassay

Each QFF was conditioned in a desiccator (25 �C) for 24 h,
weighted using a microbalance, and then cut into two equal parts.
One part was used for PAHs, alkylated PAHs, PCBs and OCPs analysis
and the other part was divided into subsamples for the determi-
nation of HgPM, organic carbon (OC), organic nitrogen (ON), total
suspended particles (TSP), and preparation of the organic extracts
for in vitro tests.

To obtain enough PM mass for organic extracts preparation for
the in vitro tests, filter subsamples (3e7) of each month were
pooled together. The organic extracts were obtained by sonication
with a mixture of hexane and acetone (1:1 v/v; 3 x 20 mL; 20 min).
The extracts were then concentrated using a Turbovap to 1 mL,
filtered in a glass vial using a filter syringe containing a 0.45 mm
PFTE membrane, and further concentrated under a gentle nitrogen
gas stream. At the point of dryness, dimethyl sulfoxide (DMSO) was
added to obtain an equivalent concentration of 20 m3 of sampled
air per 1 mL of solution. A dilution series were prepared by 4-fold
dilution (0.04, 0.16, 0.63, 2.5 and 10 m3 mL�1) from the final
extract to generate a dosee response curve. Samples were stored at
4 �C and tested using in vitro bioassays within a few days after
sample preparation. Details on chemicals and reagents used in
present study are presented in the SI (Text S1).

2.3. PM chemical characterization

Details on analytical procedures for organic compounds analysis
are reported elsewhere (Barhoumi et al., 2018). The analyzed
compounds which included 16 US Environmental Protection
Agency (EPA) PAHs, 14 alkylated PAHs, 14 PCBs and 6 OCPs are
summarized in Table S2. Particulate Hg was analyzed using stan-
dard cold vapor atomic absorption spectrometry (CV-AAS; LECO
AMA 254) equipped with a low-level optical cell (Diez et al., 2017).
A subsample of 25 mm diameter was punched out of the QFF filter,
loaded into a nickel boat and placed inside the combustion tube.
The subsample was thermally decomposed at 750 �C during 5 min
and the evolved gases passed through catalytic tube removing
possible interferants. The Hg(0) vapor was then retained by the
amalgamator. The amalgamator was heated to 900 �C to release the
accumulated Hg at once into the optical cell for detection. The
concentrations of PM, OC and ON on QFFs were determined ac-
cording to Barhoumi et al. (2018) and Raimbault et al. (2008).

2.4. In vitro DR-CALUX bioassay

The DR-CALUX (Dioxin Responsive Chemical-Activated LUcif-
erase gene eXpression) assay, consisting of rat hepatocarcinoma
H4IIE cells, stably transfected with a luciferase reporter gene under
the control of dioxin responsive elements, was applied to detect
AhR-mediated activity (dioxin-like activity) in PM extracts as
described previously (Scippo et al., 2005; Van der Heiden et al.,
2009; Van Langenhove et al., 2011). Briefly, cells were cultivated
in MEMa medium (supplemented with 10% v/v fetal bovine serum,
50 IU/mL penicillin and 50 mg/mL streptomycin) at 37 �C/5% CO2.
When the confluency was about 80e90%, 100 ml of cells suspension
were transferred into wells of the 96-well microplate and incu-
bated overnight at 37 �C/5% CO2 to attach the cells in wells. After-
wards, the cells were exposed in triplicates to the dilution series of
organic extract samples, solvent controls, field blanks, filter blanks
and dilution series of calibration reference TCDD
(0.025e25 pg mL�1), with a final DMSO concentration of 0.4% (v/v)
in the exposure media. Five concentration levels of PM extracts
were prepared by 4-fold dilution to provide a dose-response curve
for each sample. The final volume per well was 200 mL. At least
three independent assays were conducted for each PM sample.
After 24 h exposure, the cell viability was confirmed under a mi-
croscope. Subsequently, the medium was removed and the cells
were washed with non-sterile phosphate buffer and lysed using a
solution containing Triton X100. Next, a glow-mix solution con-
taining the substrates of luciferase, i.e. ATP and luciferin, was added
and luciferase activity (luminescence production) was determined
under a luminometer (ORION II, Berthold Detection System,
Pforzheim, Germany) and reported as relative light units (RLUs).
The RLUs were converted to relative responses, calculated as a
percentage of the mean maximum responses induced by the
reference TCDD. The mean solvent control response (DMSO) was
subtracted from both the sample and the TCDD standard responses
prior to conversion into percentages. The calculation of the sample
extracts was based on Effective Concentration (EC50), which was
directly generated from the Hill regression of both the TCDD
standards and sample extract doseeresponse curves (Khinkis et al.,
2003). Therefore, AhR-mediated activity of each PM extract was
reported as toxic equivalents (Bio-TEQ) expressed in femtograms of
equivalent TCDD per cubic meter of air (fg m�3) and assessed as the
ratio of EC50, TCDD (fg/mL) over EC50, Sample (m3/mL).

2.5. Quality assurance/quality control (QA/QC)

QA/QC for organic compounds analysis are detailed elsewhere
(Barhoumi et al., 2018). The method detection limits (MDLs) of Hg,
estimated as three times standard deviation of the blank samples,
was 1.2 pg, equivalent to 0.01 pg m�3, considering an average
sampled air volume of 84 m3. The certified reference material (NRC
MESS-4: 90 ± 4 ng g�1, 1s) was run several times per analytical
batch and constantly before starting the measurements, to check
the accuracy of the measurements. The measured values were on
average, within ±5% of the recommended values.

For in vitro bioassays, to eliminate the interference of solvent
traces in DMSO solutions, and extraction methods on luminescence
intensity, extraction solvents (hexane, acetone, dichloromethane,
and mixture of hexane:acetone (1/1, v/v)) and extraction methods
(ultrasound bath, ASE) were optimized before sample extractions.
In additon, the performance and stability of the H4IIE cells response
were checked before each bioassay (Text S3 and Figs. S2 and S3).

2.6. Data analysis

Results of the DR-CALUX assay were expressed as toxic equiv-
alents (Bio-TEQ) (femtograms of equivalent TCDD per cubic meter
of air (fg m�3)). The Bio-TEQs determined in this study were
calculated as the means of three independent assays for pooled PM
samples of each month. To estimate the degree of contribution of



analyzed PAHs to the AhR-mediated activities (dioxin-like activity)
of the PM extracts, PAH-TEQs were calculated on the basis of PAH-
potencies relative to TCDD (Bols et al., 1999), as the sum of the
product of the concentration of each of the 7 carcinogenic PAHs
(BaA, Chr, BbF, BkF, BaP, IcdP and DahA) multiplied by its respective
bioassay-specific relative potency factor (REP) (Table S2) from
Machala et al. (2001) for H4IIE-luc cell-based assays.

PAH� TEQs ðpg =m3Þ ¼
X7

i¼1

concentration PAHi x REP

In order to statistically compare datasets, the Mann-Whitney
nonparametric U test was used (Stat-View 5.0). To identify
whether there was a significant correlation between two sets of
variables, a Pearson’s correlation coefficient was used (graph prism
5 software). The Pearson’s correlation coefficients were calculated
based on the average of each variable (PAHs, alkylated PAHs, PCBs,
OCPs, HgPM, Bio-TEQs, PAH-TEQs, OC, ON, TSP, AT, RH, WS, P) for 11
months. Box-and-whisker plots and Pearson principal component
analysis (PCA) were performed using graph prism 5 and XLSTAT
2013.5.01, respectively.
3. Results and discussion

3.1. Characterization of aerosol samples according to chemical
analyses

A detailed description of the distribution of organic contami-
nants (PAHs, PCBs, OCPs) in Bizerte atmospheric samples for the
sampling period (March 2015eJanuary 2016) is given in Barhoumi
et al. (2018). Briefly, the analyzed compounds were detected in
most of the samples (Table S2). Overall, all contaminants showed
higher levels in winter. Average concentration of S16 PAHs
(1.61 ng m�3) was 2, 447 and 1464 fold higher than that of S14
alkylated PAHs (0.95 ng m�3), S14 PCBs (3.60 pg m�3) and S6 OCPs
(1.10 pg m�3), respectively. Source analysis showed that PAHs/
alkylated PAHs originated from vehicular traffic emissions (diesel
combustion), while cement, electronic, iron and lubricant factories
were identified as dominant sources for PCBs. The dominant OCP
congeners were p,p’-DDT and p,p’-DDE, reflecting a current or past
use in agriculture. Wind sector and back-trajectories of air mass
showed predominance of local sources relative to long-range at-
mospheric transport for these pollutants.

Fig. 1A displays the time series of daily atmospheric HgPM and
TSP concentrations, and the HgPM mass content in TSP (HgPM/TSP)
in Bizerte city during the study period. The HgPM concentrations
varied from 2.5 to 63.9 pg m�3 with an annual average of
13.4 ± 12 pg m�3 and a median of 9.8 pg m�3. The median value,
which was smaller than the mean value, indicated the occurrence
of episodes of higher levels of HgPM during the study period. To our
knowledge, this is the first report of temporal distribution of HgPM
across Africa (AMAP/UN Environment, 2019; Zhang et al., 2019a,
2019b). Although attention should be paid to the comparisons due
to the uncertainties caused by the characteristics of sampling sites
(source strength, size of the particles collected, sampling period,
different methods of extraction used…), our values were compared
with those reported in other locations worldwide (Table 1) to fully
understand the pollution levels of HgPM in Bizerte city. As shown in
Table 1, HgPM concentrations in Bizerte city are comparable to those
measured in the cities of Taichung (China), Elora (Canada),
G€oteborg (Sweden), Waldhof (Germany), and Marais Vernier
(France), but far lower than those recorded in urban megacities,
such as Mumbai (India), Beijing (China), S~ao Paulo State (Brazil) and
Mexico City. At those sites, the mean HgPM concentrations are
approx. 12 to 70-fold higher than those we measured in Bizerte
(Table 1). Compared to HgPM levels observed over open ocean and
coastal areas such as the southern Indian Ocean, north Atlantic
Ocean, Adriatic Sea, Thompson Farm (USA) and Cape Hedo (Japan),
the HgPM levels in Bizerte city are about 12-fold higher (Table 1),
suggesting that the atmosphere of Bizerte was contaminated with
HgPM during the study period. Globally, our values are in the same
order of magnitude as HgPM concentrations in the Southern
Hemisphere (53.5 ± 47.4 pg m�3), but much lower than in the
Northern Hemisphere (113.8 ± 102.1 pg m�3) (Zhang et al., 2019a,
2019b).

Moreover, as shown in Fig.1A, the HgPM toTSPmass ratio (HgPM/
TSP) ranged from 53.7 to 1179 ng g�1 with an average of
233.3 ± 187.9 ng g�1, which was similar to Okinawa Island, Japan
(200 ng g�1) (Chand et al., 2008), higher than Chuncheon, Korea
(60 ng g�1) (Kim et al., 2012), but lower than Shanghai, China
(1050e2850 ng g�1) (Xiu et al., 2005) and Nepal, South Asia
(2586.0 ng g�1) (Guo et al., 2017). The positive correlation between
HgPM and TSP (r ¼ 0.256; p ¼ 0.06) and the strong significant
positive correlation between HgPM and HgPM/TSP (r ¼ 0.860;
p < 0.0001) may indicate that TSP and HgPM had either same or
similar sources or gaseous Hg (e.g., GOM) in the same air mass got
adsorbed on to existing atmospheric particles before they arrived to
the sampling site. It is important to keep in mind that only HgPM
was investigated within this study but GEM and GOM were not
considered. Therefore, more studies are required to verify this
assumption in the future. The previous studies in other locations
have reported that the HgPM was mainly associated with atmo-
spheric particles such as dust or was likely produced by adsorption
of Hg2þ species onto atmospheric particulates (Schroeder and
Munthe, 1998).

Temporal variations of monthly/seasonality average HgPM con-
centrations in the atmosphere of Bizerte during the study period
are illustrated in Fig. 1. The seasonal mean HgPM concentrations
were higher in winter (27.2 ± 25.2 pg m�3) and autumn
(13.8 ± 10.1 pg m�3) than in spring (11.6 ± 5.4 pg m�3) and summer
(9.8 ± 6.3 pg m�3), with the highest monthly mean value of
40.6 ± 26.4 pg m�3 in December and the lowest of 7.2 ± 3.7 pg m�3

in November (Fig. 1B and C). Statistical analysis (U tests) showed
that HgPM concentrations were significantly higher (p < 0.05) in
winter than in summer (Fig. 1C). A similar seasonal behavior has
also been observed in other studies, including Seoul (Korea), Beijing
(China), Michigan (US) and Ostrava (Czech Republic) (Lynam and
Keeler, 2005; Kim et al., 2009; Topinka et al., 2015; Tang et al.,
2019), which was in consistence with the severe particulate
pollution during cold season as well as the unfavorable meteoro-
logical conditions. It has been reported that anthropogenic emis-
sions from industrial facilities such as coalfired power plants,
cement factories, as well as coal burning for heating purpose
(especially in winter) and liquid fossil fuel combustion (petroleum
refinery, fuel including gasoline and diesel) were the main con-
tributors of Hg into atmosphere (Wang et al., 2000; Jiang et al.,
2006; Xiu et al., 2009; Zhang et al., 2015). In view of the fact that
no industry using coal as fuel source is present in the study area and
that the Bizerte cement factory, the petroleum refinery and the
highway are located close to our sampling site (<1 km), the high
levels of atmospheric HgPM during the winter season could be
greatly related to emissions from these sources. Besides emissions
by local anthropogenic sources, the changes of the meteorological
conditions (e.g., precipitation (P), ambient temperature (AT), wind
speed (WS) and direction, relative humidity (RH)), chemical
transformations through interactions with other chemical species
(O3, SO2, CO, radicals), emissions from natural sources, and long-
range transportation might also be responsible for the seasonal
variation of atmospheric Hg (WIO�S , 2013; Huang et al., 2016;



Table 1
Comparison of HgPM concentrations (in pg m�3) at Bizerte city with those reported from other locations worldwide.

Locations Sampling time Site type Size Concentrations References

Bizerte city, Tunisia 2015/03e2016/01 Mixed area TSP 13.40 (2.51e63.95) This study
Taichung city, Taiwan, China 2010/03e2011/02 Suburban TSP 71.1 ± 46.1 Huang et al. (2012)
Mt. Gongga, China 2005/05e2006/04 Remote TSP 30.7 (5.2e135.7) Fu et al. (2008)
Taiwan, China 2015/01e2015/04 Mixed area PM2.5 30.5 Fang et al. (2017)
Baltic sea, Poland 2007/12e2008/12 Coastal TSP 20 ± 18 Beldowska et al. (2012)
Elora, Ontario, Canada 2006/11e2007/08 Rural TSP 16.40 ± 9.54 Baya and Van Heyst (2010)
G€oteborg, Sweden 2005/02 Urban PM2.5 12.5 (3.59e20.26) Li et al. (2008)
Marais Vernier, France 2010/10e2012/03 Rural TSP 10 ± 10 Connan et al. (2013)
Rochester, NY, USA 2007/12e2009/11 Suburban PM2.5 8.7 (<DLe271.2) Choi et al. (2013)
Waldhof, Germany 2009/01e2011/12 Rural PM2.5 6.3 (<0.4e262) Weigelt et al. (2013)
Seoul, Korea 2009/12e2010/07 Urban TSP 6.8 ± 6.5 Kim et al. (2012)
Holland 2007/07e2007/11 Urban PM2.5 6 ± 6 Gratz et al. (2013)
Southern Indian Ocean 2012/01e2012/04 Ocean TSP 0.34 Barret et al. (2013)
Thompson Farm, USA 2009/02e2010/08 Coastal PM2.5 0.19e1.14 Mao et al. (2012)
North Atlantic Ocean 2004/06e2004/08 Ocean TSP 2.4 ± 1.1 Aspmo et al. (2006)
Nova Scotia, Canada 2009/01e2010/12 Urban PM2.5 2.3 ± 3.1 Cheng et al. (2013)
Cape Hedo, Japan 2004/03e2004/05 Remote PM2.5 3.0 ± 2.5 Chand et al. (2008)
Adriatic Sea 2004/10e2004/11 Ocean TSP 4.5 ± 8 Sprovieri and Pirrone (2008)
Mumbai, India 1991/02e1992/04 Mixed area TSP 1100e2400 Kumar et al. (2001)
Beijing, China 2003/01e2004/09 Urban TSP 1180 (180e3510) Wang et al. (2006)
Santander, Northern Spain 2008 Urban PM10 1400 (<DLe25400) Arruti et al. (2010)
Lichwin, Poland 2004/01e2004/02 Suburban TSP 1050 ± 180 Zielonka et al. (2005)
Kathmandu, Nepal 2013/04e2014/04 Suburban TSP 850.5 ± 926.8 Guo et al. (2017)
Changchun city, China 1999/07e2000/01 Urban TSP 22e1984 Fang et al. (2001)
S~ao Paulo State, Brazil 2002e2003 Urban TSP 400 ± 300 Fostier and Michelazzo (2006)
Lhasa, China 2013/04e2014/08 Urban TSP 224 (61.2e831) Huang et al. (2016)
Mexico City 2006/03 Urban PM2.5 187 ± 300 Rutter et al. (2009)

ND: no data, <DL: below detection limit, TSP: total suspended particles, PM: particulate matter.
Kumari and Kulshrestha, 2018).
Meteorological datas and other pollutants (OC and ON) are

applied to further understand the influencing factors on HgPM
concentrations over Bizerte city (Table S1 and Table S3). As shown
in Table S1, ATwas higher in summer/autumn than in spring/winter
with a significant difference between all seasons, while RH andWS
showed little variation among the seasons. Compared to previous
years, the period during which the study took place (March
2015eJanuary 2016) was characterized by an exceptionally dry
year, with very little rainfall (annual mean of 0.3 mm). Gas phase-
particulate phase partitioning of atmospheric Hg is highly depen-
dent on AT, with high Hg adsorption onto the particles at low
temperature and vice versa (Pankow, 1987). The Pearson correla-
tion coefficient between HgPM concentrations and AT (Table S3)
showed that HgPM was negatively correlated with AT based on the
whole yearly observation in Bizerte city, indicating that the
adsorption of HgPM onto particles surface might be the key process
for the formation of HgPM (Xiu et al., 2009). This is in accordance
with the above results, showing that the lowest and the highest
HgPM concentrations were observed in summer (with highest
temperature) and winter (with lowest temperature), respectively
(Fig. 1C, Table S1). RH can influence Hg concentrations in particles
through its impact on Hg gas-particle partitioning. The high RH can
increase the aerosol liquid water content, which promotes more Hg
partitioning into the condensed phase and adsorption onto parti-
cles (Zhang et al., 2019a, 2019b). In this study, although RH was
slightly higher in winter than in spring/summer, the influence of
this parameter on seasonal variation was probably minor since
Bizerte city is generaly characterized by a high RH over the whole
year (mean of 69.4 ± 7.6%) (Table S1). As shown in Fig. S4, mean
HgPM concentration on the days with precipitation was lower by
50% relative to that on the days without precipitation. Therefore,
precipitation was one of the main meteorological factors affecting
HgPM concentration in the atmosphere of Bizerte city. Similarly,
previous studies (Kim et al., 2012; Guo et al., 2017) have also
documented that HgPM concentrations decreased dramatically after
heavy precipitation events. The latter can remove the HgPM in the
atmosphere via wet scavenging processes (Schleicher et al., 2015).
WS plays a key role in the dispersion of air pollution, and generally
calm wind could restrict the diffusion and dispersion of atmo-
spheric pollutants (Guo et al., 2017). As shown in Fig. 1 and Table S1,
the HgPM concentrations under calm wind condition (winter sea-
son) were remarkably higher than those under high speed wind
which promoted air masses mixing. The calm wind speed com-
bined with lower temperatures might enhance adsorption of GOM
onto particles (Kim et al., 2012; Lee et al., 2016) and therefore, in-
crease the HgPM levels in winter season (particularly in December).
This result was also confirmed by the significant negative correla-
tion between WS and HgPM (Table S3). In addition, OC, which is
often used as tracer of both primary aerosols formed from com-
bustion processes and secondary aerosols generated from atmo-
spheric oxidation and gas-to-particle conversion (Han et al., 2018),
was positively correlated with HgPM (Table S3), indicating that
combustion processes and gas-to-particle conversion are important
mechanisms of HgPM formation in Bizerte city. Lin and Pehkonen
(1999) found that in the presence of OC, iron oxides can catalyze
GEM oxidization to HgPM. Despite their clear influences on HgPM
seasonal variation, some meteorological parameters listed above
(AT and WS) have shown a minor or not significant correlations
with HgPM. The lack of significant correlations may due, in part, to
the anthropogenic source emissions, which very likely contributed
more to HgPM levels in the ambient air than the meteorological
parameters did (Li et al., 2017).

As mentioned by several authors (Huang et al., 2016; Siudek
et al., 2016), HgPM concentration in atmospheric PM may be influ-
enced not only by anthropogenic inputs and meteorological pa-
rameters, but also by wind direction and long-range transport. In a
previous study, Barhoumi et al. (2018) found through the wind
sector analysis that in the same area and same sampling period, the
most predominant wind directions were from the west-north-west
(WNW) in spring, the north-west (NW) in summer and autumn,
and the south-east (SE) in winter, suggesting that local emissions



Fig. 1. Time series plots of (A) daily, (B) monthly and (C) seasonally atmospheric HgPM
concentrations in Bizerte city during the study period (March 2015 to January 2016).
Boxes represent the interquartile range, bound by the 75th and 25th percentile. Line
markers, cross markers and error bars indicate the medians, averages and minimum/
maximum HgPM concentrations, respectively. Lowercase letters on the top correspond
to statistically different groups of data, calculated by Mann-Whitney nonparametric
tests (U tests). Groups sharing the same letter are not statistically different at p < 0.05.
from downtown Bizerte (vehicular exhaust), Bizerte harbor and the
cement factory, located NW of the site, and from Zarzouna area
(petroleum refinery, the Tunisian Company of Lubricants (SOTU-
LUB)) and Menzel Jemil city (electronic and plastic industries),
located SE of the site, are the most likely to influence the pollutant
levels observed in atmospheric PM. The highest concentrations
occurred in winter when winds were from the SE, indicating the
presence of a local source in this direction. By using the NOAA
HYSPLIT Backward Trajectory Model, Barhoumi et al. (2018) also
found that the influence of long-range atmospheric transport was
minor, since the air masses reaching the sampling site were of
oceanic origin with limited passage through the European conti-
nent. Indeed, the clean nature of the oceanic air masses and high
wind speeds above the Mediterranean Sea can disperse pollutants
before they reach the sampling site. The negative correlations
observed here betweenWS and HgPM concentrations (Table S3) can
support the previous observations and confirmed the predomi-
nance of HgPM local sources, as strong winds flush pollutants out of
the study area whereas weak winds allow pollutants to accumulate
over time.

To identify the potential sources of HgPM and infer the possible
influence factors on their concentrations, principal component
analysis (PCA) was applied (Fig. 2). Two factors with eigenvalues >1
accounted for 56.4% of the dataset total variance. Factor 1, which
explained 41.3% of the variance, showed high loading of

P
16 PAHs

(0.91),
P

14 alkylated PAHs (0.77),
P

6 OCPs (0.79), HgPM (0.70), OC
(0.81) and ON (0.82), and most samples collected in winter season
(0.72e0.90). This may suggest on one hand that HgPM,

P
16 PAHs,P

14 alkylated PAHs and
P

6 OCPs were dominant in winter and
were associated with OC and ON, and on the other hand that HgPM
had similar sources as

P
16 PAHs,

P
14 alkylated PAHs,

P
6 OCPs, OC

and ON. This result is in agreement with that of the Pearson’s
correlation coefficients (Table S3) and aforementioned results,
which indicates that liquid fossil fuel combustion mixed with
biomass burning are important sources of HgPM in Bizerte city.
These observations are in good agreement with data obtained by Yu
et al. (2019) in Shanghai and Beijing, China. In view of urban, res-
idential, industrial and agricultural activities around the sampling
site, HgPM was likely to have originated from the extensive vehic-
ular emissions of heavy and light cars from the highway next the
sampling station (400 m), the petroleum refinery, and from the
Fig. 2. PCA loading (arrows and Black text) and score plots (colored points) of TSP, OC,
ON, chemicals and meteorological variables.



Fig. 3. Aryl hydrocarbon receptor-mediated activity (Bio-TEQs), PAH-TEQs and the
calculated percentage of contribution of these PAHs to the assessed Bio-TEQs (A), and
concentrations of Ʃ16 PAHs, Ʃ14 alkylated PAHs, Ʃ14 PCBs and Ʃ6 OCPs (B) in each PM
extract collected from Bizerte city in the study period (March 2015 to January 2016).
Lowercase letters on the top correspond to statistically different groups of data,
calculated by Mann-Whitney nonparametric tests (U tests) (No significant differences
were observed between Bio-TEQs for the different months). PAH, alkylated PAH, PCB
and OCP concentrations are taken from Barhoumi et al. (2018).
open burning of biomass for crop/forest residue disposal and land
preparation (Barhoumi et al., 2018). Although the combustion of
gasoline and diesel had been regarded as important sources of Hg
in elemental form (Hg0), it can also significantly contribute to the
formation of HgPM (Conaway et al., 2005; Landis et al., 2007; Won
et al., 2007). Indeed, a lot of reactive compounds from exhaust
emission can foster strong oxidative environment (higher OH
radicals and O3) near traffic road to spur Hg oxidation resulting in
the formation of HgPM (Xiu et al., 2009). Similarly, Xiu et al. (2009)
measured significantly higher Hg concentrations in traffic origi-
nated particulate matter at the measurement site near a road
(20$103 vehicles hr�1 in rush hour) in Shanghai, China, suggesting a
large contribution from tailpipe exhaust, wear dust from tires or
brake linings, and the resuspension of road dust. The correlation
between HgPM and

P
6 OCPs may also indicated that HgPM has

agricultural sources, through the intense use of fertilizers. Factor 2
of PCA, which explained 15.1% of the total variance, had significant
positive loading of AT (0.68), and significant negative loadings of
WS (�0.55) and precipitation (�0.65), suggesting that AT, WS and
precipitation were probably the main meteorological parameters
affecting HgPM variations over the year. Therefore, this factor was
thought to describe the climatological change in Bizerte city.

To summarize, liquid fossil fuel combustion, including petro-
leum refinery and traffic emissions, and the Bizerte cement factory
were considered as the dominant local sources of HgPM in Bizerte
city, with a contribution from biomass burning and agricultural
activities. Moreover, the local residential sources, the mechanic,
electronic and iron factories (located SW of the site), the incinera-
tion of municipal waste, and the natural sources (evasion from
surficial soils, water bodies, vegetation surfaces, forest fires) should
not be neglected.

3.2. Aryl hydrocarbon receptor mediated activity of atmospheric
PM extracts

It has been reported that atmospheric particle-bound PAHs,
PCBs and OCPs can induce dioxin-like activity through their ability
to bind and activate the AhR (Nebert et al., 1993; Olivares et al.,
2011; Khedidji et al., 2017). In this regard, AhR-mediated activities
of atmospheric PM collected from Bizerte city were analyzed using
a DR-CALUX assay, and were assessed in relation to their PAHs,
alkylated PAHs, PCBs and OCPs contents determined in a previous
study (Barhoumi et al., 2018). The DR-CALUX assay is widely used
for screening of AhR-mediated (dioxin-like) activity of pure sub-
stances, as well as environmental samples including atmospheric
particles from urban, industrial, rural and semi-rural environments
(Nebert et al., 1993; Olivares et al., 2011;Mesquita et al., 2014, 2015;
Khedidji et al., 2017). There have been several studies worldwide
describing AhR-mediated activities of PM1 (Wenger et al., 2009),
PM10 (Clemons et al., 1998; Khedidji et al., 2017) or total particulate
matter (Hamers et al., 2000; Klein et al., 2006). However, such data
remain very limited for African countries (Khedidji et al., 2017). In
this study, AhR-mediated activities, expressed as Bio-TEQs, were
observed in all PM extract samples (Fig. 3A), suggesting the exis-
tence of AhR ligands such as dioxins and dioxin-like compounds in
the atmospheric PM of Bizerte city. Bio-TEQs were between 388.3
and 1543.6 fg m�3, with a mean value of 637.0 fg m�3. Compared
with other studies, Bio-TEQs in atmospheric PM of Bizerte city were
comparable to those measured in Czech Republic (Nov�ak et al.,
2009), but significantly lower than those measured in
Switzerland (Wenger et al., 2009) and Barcelona, Spain (Mesquita
et al., 2014, 2017). Although they were not statistically significant,
both monthly/seasonally average Bio-TEQs were slightly higher in
the cold season than in the warm season (probably due to the low
degradation of pollutants and more pronounced combustion
sources in cold season) (Fig. 3A and Fig. S5). This trend coincided
with high levels of

P
16 PAHs,

P
14 alkylated PAHs,

P
14 PCBs and

P
6

OCPs in the cold season (Fig. 3B), suggesting a key role of these
compounds in the dioxin-like activity of PM organic extracts. This
has been confirmed by the significant positive correlations be-
tween the dioxin-like activity values and the concentrations of

P
16

PAHs,
P

14 alkylated PAHs,
P

14 PCBs and
P

6 OCPs, as well as the
individual concentrations of different congeners of PAHs, alkylated
PAHs, PCBs and OCPs (Table S3). Using Bio-TEQs and PAH-TEQs,
results showed that the 16 EPA priority PAHs were responsible
for 40% (annual mean) of total AhR-mediated activity of PM
(Fig. 3A). This suggests that analyzed PAHs represented a sub-
stantial fraction of the total dioxin-like activity present in the
samples, which is confirmed by a strong positive correlation be-
tween Bio-TEQs and PAH-TEQs (Table S3). This contribution are
similar to those measured by Olivares et al. (2011), but higher than
those determined in other studies (Brown et al., 2005; Cavanagh
et al., 2009; Wenger et al., 2009; Nov�ak et al., 2014). The emis-
sions related to traffic activities (fossil fuel combustion) are prob-
ably the main causes of dioxin-like activity of PM extracts obseved
here. The PAH isomeric ratios calculated by Barhoumi et al. (2018)
using the same PM samples were consistent with a dominance of
traffic emission sources. As indicated above, total amount of PAHs
cannot fully account for the total AhR-mediated activity observed in



the present study. The unexplained remaining 60% dioxin-like ac-
tivity could be attributed on one hand to the

P
14 alkylated PAHs,P

14 PCBs and
P

6 OCPs, which show significant correlations with
Bio-TEQs, and on the other hand to other priority and non-priority
pollutants not analyzed in this study that showed to possess
dioxin-like potency, such as polycyclic aromatic ketones and qui-
nones (Misaki et al., 2007), polychlorinated naphthalenes (PCNs)
(Villeneuve et al., 2001), benzofuran and 2,3-dimethylbenzofuran
(Hinger et al., 2011; Misaki et al., 2007; Vondracek et al., 2007).
The interaction between contaminants (e.g. antagonism, synergism
and additive effects) may also have an effect on dioxin-like potency.

AhR-mediated activities of PM extracts were observed in pre-
vious works (�Skarek et al., 2007; Nov�ak et al., 2009; Olivares et al.,
2011), where organic contaminants concentrations including PAHs,
were 2e6 fold higher than those measured in this study, which
indicates that DR-CALUX assay is able to detect dioxin-like activity
even with low concentrations. Therefore, this bioassay can be
considered as an early-warning tool for routine screening and
control of particle-bound contaminants emissions.

4. Conclusions

This study investigated chemical composition and biological
activity of atmospheric PM collected from March 2015 to January
2016 in Bizerte city, a mixed urban, agricultural, and industrialized
site bording the Southwestern Mediterranean Sea (North Tunisia).
Physicochemical characterization revealed that atmospheric PM is
a complex mixture with inorganic (HgPM) and organic compounds
(PAHs, alkylated PAHs, PCBs, OCPs, OC and ON) deriving from
anthropogenic as well as natural sources. Contributions of several
sources such as traffic emissions, heavy industries (Bizerte cement,
iron factory and petroleum refinery), biomass burning, mechanic
and electronic factories, and agricultural activities have been evi-
denced in the PM composition. All of the PM components analyzed
exhibited higher concentrations during the cold season than in the
warm season, which could be largely attributed to the local
anthropogenic sources and meteorological conditions (AT, WS and
precipitation). The DR-CALUX bioassay allowed showing that the
organic extracts of atmospheric PM from Bizerte city were biolog-
ically active and could elicit AhR-mediated activity. The biological
response followed the same temporal variation as PM-associated
organic contaminants, with higher dioxin-like activity in the cold
season, highlighting the relevance of this in vitro bioassay for the
evaluation of toxic potential of environmental samples. To our
knowledge, this is the first study to provide atmospheric HgPM data
and to examine the dioxin-like activity of atmospheric PM in North
Africa. Further investigations using fine and ultrafine PM (PM2.5
and PM10) are needed, since they are more hazardous than the TSP.
More attention should be also given to the gaseous phase due to its
high content of atmospheric pollutants.
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