Hussein Cheikh Ali 
  
THE SECOND BEST CONSTANT FOR THE HARDY-SOBOLEV INEQUALITY ON MANIFOLDS

We consider the second best constant in the Hardy-Sobolev inequality on a Riemannian manifold. More precisely, we are interested with the existence of extremal functions for this inequality. This problem was tackled by Djadli-Druet [5] for Sobolev inequalities. Here, we establish the corresponding result for the singular case. In addition, we perform a blow-up analysis of solutions Hardy-Sobolev equations of minimizing type. This yields informations on the value of the second best constant in the related Riemannian functional inequality. 2 for all u ∈ H 2 1 (M ). Discussions on the Hardy and Hardy-Sobolev inequalities are in Ghoussoub-Moradifam [10]. When s = 0, this is the classical Sobolev inequality,

Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 without boundary, d g be the Riemannian distance on M and H 2 1 (M ) be the completion of C ∞ (M ) for the norm u → u 2 + ∇u 2 . We fix x 0 ∈ M , s ∈ [0, 2) and we let 2 (s) := 2(n-s) n-2 be the critical Hardy-Sobolev exponent. Here, and in the sequel, we set

u → u p,s := M |u| p d g (•, x 0 ) -s dv g 1 p
and we define L p (M, d g (x, x 0 ) -s ) = {u ∈ L 1 (M )/ u p,s < ∞} where dv g is the Riemannian element of volume. The Hardy-Sobolev embedding theorem H 2 1 (M ) → L 2 (s) (M, d g (x, x 0 ) -s ) yields A, B > 0 such that (1) u 2 2 (s),s ≤ A ∇u 2 2 + B u 2 and extensive discussions on the optimal values of the constants are in the monograph Druet-Hebey [START_REF] Druet | The AB program in geometric analysis: sharp Sobolev inequalities and related problems[END_REF]. It was proved by Hebey-Vaugon [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev[END_REF] (the classical case s = 0) and by Jaber [START_REF]Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] (s ∈ (0, 2)) that µ s (R n ) -1 = inf{A > 0 s.t. there exists B > 0 for which [START_REF] Brendle | Blow-up Phenomena for the Yamabe Equation[END_REF] is true}, and that the infimum is achieved, where

µ s (R n ) = inf      R n |∇u| 2 dX R n |u| 2 (s) |X| s dX 2 2 (s) , u ∈ C ∞ c (R n )     
is the best constant in the Hardy-Sobolev inequality (see Lieb [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] Theorem 4.3 for the value). Therefore, there exists B > 0 such that (2)

u 2 2 (s),s ≤ µ s (R n ) -1 ∇u 2 2 + B u 2 2
for all u ∈ H 2 1 (M ). Saturating this inequality with repect to B, we define the second best constant as B s (g) := inf{B > 0 s.t. [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] holds for all u ∈ H 2 1 (M )}, to get the optimal inequality (3)

u 2 2 (s),s ≤ µ s (R n ) -1 ∇u 2 2 + B s (g) u 2 2
for all u ∈ H 2 1 (M ). A remark is that it follows from the analysis of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that

   B s (g) ≥ c n,s Scal g (x 0 ) if n ≥ 4;
The mass of ∆ g + B s (g) is nonpositive if n = 3, where Scal g (x 0 ) is the scalar curvature at x 0 and (4) c n,s := (n -2)(6 -s) 12(2n -2 -s) ,

and the mass will be defined in Proposition-Definition 1.

In this paper, we are interested in the value of the second best constant and the existence of extremal functions for the inequality (3):

Definition 1. We say that u 0 ∈ H 2 1 (M ), u 0 ≡ 0 is an extremal for (3

) if u 0 2 2 (s),s = µ s (R n ) -1 ∇u 0 2 2 + B s (g) u 0 2 2 .
When s = 0, the existence of extremals has been studied by Druet and al.: Theorem 1.1 (The case s = 0, [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF][START_REF] Druet | Optimal Sobolev inequalities and extremal functions. The three-dimensional case[END_REF]). Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Assume that s = 0 and that there is no extremal for (3). Then

• B 0 (g) = c n,0 max M Scal g (x 0 ) if n ≥ 4;

• The mass of ∆ g + B 0 (g) vanishes if n = 3, where c n,0 is defined in [START_REF] Chen | Blow-up solutions for Hardy-Sobolev equations on compact Riemannian manifolds[END_REF].

We establish the corresponding result for the singular case s ∈ (0, 2): Theorem 1.2 (The case s > 0). Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We fix x 0 ∈ M and s ∈ (0, 2). We assume that there is no extremal for [START_REF] Cheikh-Ali | Construction of blow-up for Hardy-Sobolev equations on manifolds[END_REF]. Then • B s (g) = c n,s Scal g (x 0 ) if n ≥ 4;

• The mass of ∆ g + B s (g) vanishes if n = 3, where c n,s is defined in [START_REF] Chen | Blow-up solutions for Hardy-Sobolev equations on compact Riemannian manifolds[END_REF].

Our proof relies on the blow-up analysis of critical elliptic equations in the spirit of Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]. Let (a α ) α∈N ∈ C 1 (M ) be such that lim α→+∞ a α = a ∞ in C 1 (M ). [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF] We assume uniform coercivity, that is there exists c 0 > 0 such that [START_REF] Druet | Optimal Sobolev inequalities and extremal functions. The three-dimensional case[END_REF] M |∇w| 2 g + a α w 2 dv g ≥ c 0 M w 2 dv g for all w ∈ H 2 1 (M ).

Note that this is equivalent to the coercivity of ∆ g + a ∞ . We consider (λ α ) α ∈ (0, +∞) such that lim α→+∞ λ α = µ s (R n ). [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF] We let (u α ) α ∈ H 2 1 (M ) is a sequence of weak solutions to

(8) ∆ g u α + a α u α = λ α u 2 (s)-1 α dg(x,x0) s in M, u α ≥ 0 a.e. in M,
where ∆ g := -div g (∇) is the Laplace-Beltrami operator. We assume that (9) u α 2 (s),s = 1, and that u α 0 as α → +∞ weakly in H 2 1 (M ). [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] It follows from the regularity and the maximum principle of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that u α ∈ C 0,β1 (M ) ∩ C 2,β2 loc (M \{x 0 }), β 1 ∈ (0, min(1, 2 -s)), β 2 ∈ (0, 1) and u α > 0. Therefore, since M is compact, there exists x α ∈ M and µ α > 0 such that [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF] µ α := max

M u α -2 n-2 = (u α (x α )) -2 n-2 .
We prove two descriptions of the asymptotics of (u α ):

Theorem 1.3. Let M be a compact Riemannian manifold of dimension n ≥ 3. We fix x 0 ∈ M and s ∈ (0, 2). Let (a α ) α∈N ∈ C 1 (M ) and a ∞ ∈ C 1 (M ) be such that (5) holds and ∆ g + a ∞ is coercive in M . In addition, we suppose that (λ α ) α ∈ R and (u α ) α ∈ H 2 1 (M ) be such that (5) to [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF] hold for all α ∈ N. Then, there exists C > 0 such that, [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] 

u α (x) ≤ C µ n-2 2 α µ n-2 α + d g (x, x 0 ) n-2 for all x ∈ M,
where µ α → 0 as α → +∞ is as in [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF].

Theorem 1.4. Let M be a compact Riemannian manifold of dimension n ≥ 3. We fix x 0 ∈ M and s ∈ (0, 2). Let (a α ) α∈N ∈ C 1 (M ) and a ∞ ∈ C 1 (M ) be such that (5) holds and ∆ g + a ∞ is coercive in M . In addition, we suppose that (λ α ) α ∈ R and (u α ) α ∈ H 2 1 (M ) be such that [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF] to [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF] hold for all α ∈ N. Then, (1) If n ≥ 4, then a ∞ (x 0 ) = c n,s Scal g (x 0 ). [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] If n = 3, then m a∞ (x 0 ) = 0, where m a∞ (x 0 ) is the mass of the operator ∆ g + a ∞ (see Proposition-Definition 1) and c n,s is defined in [START_REF] Chen | Blow-up solutions for Hardy-Sobolev equations on compact Riemannian manifolds[END_REF].

The mass is defined as follows:

Proposition-Definition 1. [The mass] Let (M, g) be a compact Riemannian manifold of dimension n = 3, and let h ∈ C 0 (M ) be such that ∆ g + h is coercive. Let G x0 be the Green's function of ∆ g + h at x 0 . Let η ∈ C ∞ (M ) such that η = 1 around x 0 . Then there exists β x0 ∈ H 2 1 (M ) such that

(13) G x0 = 1 4π ηd g (•, x 0 ) -1 + β x0 in M \ {x 0 }.
Moreover, we have that

β x0 ∈ H p 2 (M ) ∩ C 0,θ (M ) ∩ C 2,γ (M \{x 0 }
) for all p ∈ 3 2 , 3 and θ, γ ∈ (0, 1). We define the mass at x 0 as m h (x 0 ) := β x0 (x 0 ), which is independent of the choice of η.

Theorem 1.4 yields a necessary condition for the existence of solutions to (8) that blow-up with minimal energy. Conversely, in a work in progress [START_REF] Cheikh-Ali | Construction of blow-up for Hardy-Sobolev equations on manifolds[END_REF], we show that this is a necessary condition by constructing an example via the finite-dimensional reduction in the spirit of Micheletti-Pistoia-Vétois [START_REF] Maria Micheletti | Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds[END_REF].

The role of the scalar curvature in blow-up analysis has been outlined since the reference paper [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF] of Druet for s = 0. In the singular Hardy-Sobolev case (s ∈ (0, 2)), the critical threshold c n,s Scal g (x 0 ) was first observed by Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] who proved that there is a solution

u ∈ H 2 1 (M ) ∩ C 0 (M ) to ∆ g u + hu = u 2 (s)-1 d g (x, x 0 ) s ; u > 0 in M.
when n ≥ 4 as soon as h(x 0 ) < c n,s Scal g (x 0 ) where h ∈ C 0 (M ) and ∆ g + h is coercive. More recently, it was proved by Chen [START_REF] Chen | Blow-up solutions for Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that for any potential h ∈ C 1 (M ) such that ∆ g + h is coercive, then there is a blowing-up family of solutions (u ) >0 to

∆ g u + hu = u 2 (s)-1- d g (x, x 0 ) s ; u > 0 in M. when h(x 0 ) > c n,s Scal g (x 0 ) and n ≥ 4.
This paper is organized as follows. In Section 2 we introduce some preliminary results that will be of use in the sequel. In Section 3, We establish sharp pointwise estimates for arbitrary sequences of solutions of 8, in particular we prove the Theorem 1.3. Section 4 describes the C 0 -theory for blowing-up sequences of solutions of (8) developed in [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]. The proof of the main Theorems 1.2 and 1.4 will be given in Sections 5 and 6.

Preliminary blow-up analysis

We let (a α ) α , a ∞ ∈ C 1 (M ), (λ α ) α ∈ R and u α ∈ H 2 1 (M ) be such that ( 5)-( 11) hold. In the sequel, for any ρ > 0 and z ∈ M (resp. z ∈ R n ), B ρ (z) ⊂ M (resp. ⊂ R n ) denotes the geodesic ball of center z and of radius ρ in M for the Riemannian distance d g (resp. in R n for the Euclidean distance).

Lemma 2.1. We claim that

lim α→+∞ u α = 0 in C 0 loc (M \{x 0 }) .
Proof of Lemma 2.1: We take y ∈ M \{x 0 }, r y = 1 3 d g (y, x 0 ). Since u α verifies the equation ( 7), we have ∆ g u α = H α u α in B 2ry (y), where the function

H α (x) := a α + λ α u 2 (s)-2 α d g (x, x 0 ) s . Since a α → a ∞ in C 1 , for any r ∈ ( n 2 , n 2-s ), then there exists c 0 > 0 independant of α such that B2r y (y) H r α dv g ≤ c 0 .
Using Theorem 8.11 in Gilbarg-Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], that there exists C n,s,y,c0 > 0 independant of α such that max Br y (y)

u α ≤ C n,s,y,c0 u α L 2 (B2r y (y)) .
Therefore, it follows from the convergence in [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] that

u α L ∞ (Br y (y)) → 0 as α → +∞.
A covering argument yields Lemma 2.1.

Lemma 2.2. We claim that

(14) sup x∈M u α (x) = +∞ as α → +∞.
Proof of Lemma 2.2: If (14) does not hold, then there exists C > 0 such that

u α ≤ C for all x ∈ M.
The convergence [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] and Lebesgue's Convergence Theorem yield lim α→+∞ u α 2 (s),s = 0, contradiction [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]. This proves Lemma 2.2.

From the introduction (see [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF]), we recall the definition of x α ∈ M and µ α > 0:

µ α := max M u α -2 n-2 = (u α (x α )) -2 n-2 .
It follows from Lemmae 2.1 and 2.2 that

x α → x 0 as α → +∞. ( 15 
)
We divide the proof of Theorem 1.3 in several steps:

Step 2.1. We claim that

d g (x α , x 0 ) = o(µ α ) as α → +∞.
Proof of Step 2.1: With the convergence in [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] and taking z α = x α in Theorem 7.1, we get that d g (x α , x 0 ) = O(µ α ) as α → +∞. We define the rescaled metric ḡα (x

) := exp xα g (µ α X) in B δ -1 0 µα (0) and ūα (X) := µ n-2 2 α u α (exp xα (µ α X)) for all X ∈ B δ0µ -1 α (0) ⊂ R n . Here, exp xα : B δ0 (0) → B δ0 (x 0 ) ⊂ M is the exponential map at x α . It follows from Theorem 7.1 that ūα → ũ in C 0 loc (R n ) as α → +∞,
where ũ is as in Theorem 7.1. Since ūα (0) = 1 = max ūα , we get ũ(0) = lim α→+∞ ūα (0) = 1. On the other hand, we have ūα ∞ = 1 thus 0 is a maximum of ũ. Let us define X 0,α := µ -1 α exp -1 xα (x 0 ) such that X 0 := lim α→+∞ X 0,α . Using the explicit form of ũ in Theorem 7.1 that ũ(X) ≤ ũ(X 0 ) for all X ∈ R n . This yields X 0 = 0. We have that

d g (x α , x 0 ) = µ α d gα (X 0,α , 0) = µ α |X 0,α | = o (µ α ) .
This yields Step 2.1.

We fix δ 0 ∈ (0, i g (M )) where i g (M ) > 0 is the injectivity radius of (M, g). We define the metric ( 16) gα (x) := exp x0 g (µ α X) in B δ -1 0 µα (0), and the rescaled function [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] ũα (X

) := µ n-2 2 α u α (exp x0 (µ α X)) for all X ∈ B δ0µ -1 α (0) ⊂ R n
, where exp x0 is the exponential map at x 0 . Equation ( 8) rewrites [START_REF] Maria Micheletti | Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds[END_REF] ∆

gα ũα + ãα ũα = λ α ũ2 (s)-1 α |X| s in B δ0µ -1 α (0) \ {0}, where ãα (X) := µ 2 α a α (exp x0 (µ α X)) → 0 in C 1 loc (R n ) as α → +∞.
Step 2.2. We claim that, [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] lim

α→+∞ ũα = ũ, in C 2 loc (R n \{0}) and uniformly in C 0,β loc (R n ), for all β ∈ (0, min{1, 2 -s}). Where (20) ũ(X) = K 2-s K 2-s + |X| 2-s n-2 2-s for all X ∈ R n \ {0}, with (21) K 2-s = (n -2)(n -s)µ s (R n ) -1 .
In particular, ũ verifies

∆ Eucl ũ = µ s (R n ) ũ2 (s)-1 |X| s in R n \ {0} and R n ũ2 (s) |X| s dX = 1, ( 22 
)
where Eucl is the Euclidean metric of R n . Moreover,

(23) lim R→+∞ lim α→+∞ M \B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g = 0.
Proof of Step 2.2: Using Step 2.1 and applying again Theorem 7.1 with z α = x 0 , we get the convergence of ũα (see [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]). Now, we want to proof (23). We obtain by change of variable X = µ -1 α exp -1 x0 (x) and the definition of ũα in (17) that,

B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g = B R (0) ũ2 (s) α |X| s dv gα ,
where gα is defined in [START_REF]Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF]. Therefore, applying Lebesgue's convergence Theorem and using the uniform convergence in C 0,β loc (R n ), for all β ∈ (0, min 1, 2 -s) of ( 19), 

lim R→+∞ lim α→+∞ B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g = lim R→+∞ B R (0) ũ2 (s) |X| s dX = R n ũ2 (s) |X| s dX = 1,
∆ gα ũα = f α := λ α ũ2 (s)-1 α |X| s -ãα ũα .
Thanks to [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF], we get

f α (X) → f (X) = µ s,0 (R n ) ũ2 (s)-1 (X) |X| s in C 0,β loc (R n \{0}
), for all β ∈ (0, min{1, 2 -s}). For any R > 0, we have

f α L p (B 2R (0)) ≤ |X| -s L p (B 2R (0)) ũα L ∞ (B 2R (0)) . It follows from (19) that (ũ α ) α is bounded in L ∞ loc . Since X → |X| -s ∈ L p loc (R n ) for 1 < p < n
s , then for such p, we have that (f α ) α is bounded in L p (B 2R (0)). Using standard elliptic theory (see for instance [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we infer that

ũα H p 2 (B0(R)) ≤ C f α L p (B 2R (0)) + ũα L p (B 2R (0)) . Define now p such that 1 p = 1 p -1 n . If p ≤ 0, H p 1 (B R (0)) is compactly embedded in L 2 (B R (0)). Now, if p > 0, we have H p 1 (B R (0)) is compactly embedded in L q (B R (0)) for 1 ≤ q < p and L 2 (B R (0)) → L 2 (B R (0)) iff 2 ≤ p ⇐⇒ p ≥ 2n
n+2 . But, s ∈ (0, 2) then there exists p > 1 such that p ∈ ( 2n n+2 , n s ) and then (ũ α ) is bounded in

H p 2 (B 0 (R)) → H 2 1 (B 0 (R))
. Since the embedding is compact, up to extraction, we get (25) and ends Step 2.3.

Step 2.4. We claim that there exists C > 0 such that

d g (x, x 0 ) n-2 2 u α (x) ≤ C for all x ∈ M and α > 0.
Proof of Step 2.4: We follow the arguments of Jaber [START_REF]Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] (see also Druet [6] and Hebey [START_REF] Hebey | Sharp Sobolev inequalities of second order[END_REF]). We argue by contradiction and assume that there exists (y α ) α ∈ M such that (26) sup

x∈M d g (x, x 0 ) n-2 2 u α (x) = d g (y α , x 0 ) n-2 2 u α (y α ) → +∞ as α → +∞.
Since M is compact, we then get that lim α→+∞ u α (y α ) = +∞. Thanks again to Lemma 2.1, we obtain that, up to a subsequence, (27) lim α→+∞ y α = x 0 .

For α > 0, we define ν α := u α (y α ) -2 n-2 , and then (28) ν α → 0 as α → +∞.

We adopt the following notation: (θ R ) will denote any quantity such that lim

R→+∞ θ R = 0.
We claim that

Bν α (yα) u 2 (s) α d g (x, x 0 ) s dv g = o(1) as α → ∞. ( 29 
)
Proof of (29): We fix δ > 0 and for any R > 0,

B δ (x0)\B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g ≤ M \B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g .
Therefore, it follows from the equation (23) in the Step 2.2 that, (30)

B δ (x0)\B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g = θ R + o(1).
On the other hand, equations ( 27) and (28) yield B να (y α )\B δ (x 0 ) = ∅, and

Bν α (yα) u 2 (s) α d g (x, x 0 ) s dv g = Bν α (yα)∩B δ (x0) u 2 (s) α d g (x, x 0 ) s dv g = Bν α (yα)∩(B δ (x0)\B Rµα (x0)) u 2 (s) α d g (x, x 0 ) s dv g + Bν α (yα)∩B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g ≤ θ R + Bν α (yα)∩B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g + o(1) (with (30)) (31)
We now distinguish two cases:

Case 1: If B να (y α ) ∩ B Rµα (x 0 ) = ∅, then (29) is a consequence of (23). Case 2: If B να (y α ) ∩ B Rµα (x 0 ) = ∅. Then, (32) d g (y α , x 0 ) ≤ ν α + Rµ α .
It follows from the definition of ν α and (26) that, (33) lim

α→+∞ ν α d g (y α , x 0 ) = 0.
Combining the equations (32) and (33), (34)

d g (y α , x 0 ) = O(µ α ) and ν α = o(µ α ) as α → +∞.
We now consider an exponential chart Ω 0 , exp -1 x0 centered at x 0 such that exp -1 x0 (Ω 0 ) = B r0 (0), r 0 ∈ (0, i g (M )). We take Ỹα = µ -1 α exp -1 x0 (y α ). By compactness arguments, there exists c > 1 such that for all

X, Y ∈ R n , µ α |X|, µ α |Y | < r 0 , 1 c |X -Y | ≤ d gα (X, Y ) ≤ c|X -Y |.
Therefore, we have:

µ -1 α exp -1 x0 (B να (y α )) ⊂ B c να µα ( Ỹα ).
And by equation (34),

Ỹα = O d gα ( Ỹα , 0) = O µ -1 α d g (y α , x 0 ) = O(1).
It follows from (33), (34) and the change of variables 

X = µ -1 α exp -1 x0 (x) that, Bν α (yα)∩B Rµα (x0) u 2 (s) α d g (x, x 0 ) s dv g ≤ µ -1 α exp -1 x 0 (Bν α (yα)) ũ2 ( 
u 2 (s) α d g (x, x 0 ) s dv g = 0.
Therefore, combining this with (31), we conclude (29). This proves the claim.

We take now a family Ω α , exp -1 yα α>0 of exponential charts centered at y α . Set r 0 ∈ (0, i g (M )), we define

ûα (X) = ν n-2 2 α u α (exp yα (ν α X)) on B r0ν -1 α (0) ⊂ R n
, and the metric, ĝα (X) = exp yα g(ν α X) on R n . Since u α verifies the equation (8), we get ûα verifies also weakly

∆ ĝα ûα + âα ûα = λ α û2 (s)-1 α d ĝα (X, X 0,α ) s in R n ,
where âα (X) := ν 2 α a α (exp yα (ν α X)) → 0 as α → +∞ and X 0,α = µ α -1 exp -1 yα (x 0 ). We claim that (35) ûα → û ≡ 0 in C 0 loc (R n ) as α → +∞. We prove (35). Using the definition of ûα and the equation (26), we get

ûα (X) ≤ d g (x 0 , y α ) d g (exp yα (ν α X), x 0 ) n-2 2 for all X ∈ B r0ν -1 α (0). ( 36 
)
On the other hand, from the triangular inequality and for any X ∈ B R (0), we obtain that

d g (exp yα (ν α X), x 0 ) ≥ d g (x 0 , y α ) -d g (exp yα (ν α X), y α ) = d g (x 0 , y α ) -ν α |X| ≥ d g (x 0 , y α ) -ν α R.
Therefore, with the equation (36), we have for all

X ∈ B R (0) that, ûα (X) ≤ 1 1 -ναR dg(x0,yα) n-2 2
.

Moreover, with (32), we obtain for all X ∈ B R (0), that ûα (X)

≤ 1 + o(1) in C 0 (B R (0)).
Using again the definition ν α , we have ûα (0) = 1 for all α > 0. Elliptic Theory yields ûα → û in C 0 loc (R n ) and we have also that û(0) = lim α→+∞ ûα (0) = 1. This yields (35) and the claim is proved.

Take X = ν -1 α exp -1 yα (x)
and from the definition of ûα , we infer that

B1(0) û2 (s) α d ĝα (X, X 0,α ) s dv ĝα = Bν α (yα) u 2 (s) α d g (x, x 0 ) s dv g .
Therefore, using Lebesgue's convergence Theorem and (29), we obtain that

B1(0) û2 (s) |X| s dX = lim α→+∞ Bν α (yα) u 2 (s) α d g (x, x 0 ) s dv g = 0. with θ R → 0 as R → +∞. Which yields û ≡ 0 in B 1 (0), contradicting û ∈ C 0 (B 1 (0)
) and û(0) = 1. This completes the proof of Step 2.4.

Step 2.5. We claim that

lim R→+∞ lim α→+∞ sup x∈M \B Rµα (x0) d g (x, x 0 ) n-2 2 u α (x) = 0.
Proof of Step 2.5: The proof is a refinement of Step 2.4. We omit it and we refer to [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF] and Chapter 4 in Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] where the case s = 0 is dealt with.

3. Refined blowup analysis: proof of Theorem 1.3 11) hold. The next Step towards the proof of Theorem 1.3 is the following:

We let (u α ) α ∈ H 2 1 (M ), (a α ) α ∈ C 1 (M ), a ∞ ∈ C 1 (M ), (λ α ) α ∈ R be such that (5)-(
Step 3.1. We claim that there exists 0 > 0 such that for any ∈ (0, 0 ), there exists C > 0 such that

u α (x) ≤ C µ n-2 2 - α d g (x, x 0 ) n-2-for all x ∈ M \B Rµα (x 0 ). ( 37 
)
Proof of Step 3.1: Let G be the Green function on M of ∆ g + (a ∞ -ξ) where ξ > 0. Up to taking ξ small enough, the operator is coercive and the

G x0 := G(x 0 , •) is defined on M \{x 0 }. In others words, G x0 satisfies (38) ∆ g G x0 + (a ∞ -ξ)G x0 = 0 in M \{x 0 }.
Estimates of the Green's function (see Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]) yield for δ 0 > 0 small the existence of

C i > 0 for i = 1, 2, 3 such that (39) C 2 d g (x, x 0 ) 2-n ≤ G x0 (x) ≤ C 1 d g (x, x 0 ) 2-n ,
and,

|∇G x0 (x)| g ≥ C 3 d g (x, x 0 ) 1-n , (40) 
for all α ∈ N and all x ∈ B δ0 (x 0 )\{x 0 }. Define the operator

M g,α := ∆ g + a α -λ α u 2 (s)-2 α d g (x, x 0 ) s .
Step 3.1.1: We claim that there exists ν 0 ∈ (0, 1) and R 0 > 0 such that for any ν ∈ (0, ν 0 ) and R > R 0 , we have that

(41) M g,α G 1-ν x0 > 0 for all x ∈ M \B Rµα (x 0 ).
Proof of Step 3.1.1: With (38), we get that

M g,α G 1-ν x0 G 1-ν x0 (x) = a α -a ∞ + ν (a ∞ -ξ) + ξ + ν (1 -ν) ∇G x0 G x0 2 g -λ α u 2 (s)-2 α d g (x, x 0 ) s ,
for all x ∈ M \{x 0 }. Using again [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF], there exists α 0 for all α > α 0 such that

a α (x) -a ∞ (x) ≥ - ξ 2 for all x ∈ M.
Take now ν 0 ∈ (0, 1) and we let ν ∈ (0, ν 0 ), we get that

M g,α G 1-ν x0 G 1-ν x0 (x) ≥ ξ 4 + ν (1 -ν) ∇G x0 G x0 2 g -λ α u 2 (s)-2 α d g (x, x 0 ) s . ( 42 
)
Fix ρ > 0, it follows from the result of the Step 2.5 that there exists R 0 > 0 such that for any R > R 0 and for α > 0 large enough, we obtain that (43)

d g (x, x 0 ) n-2 2 u α (x) ≤ ρ for x ∈ M \B Rµα (x 0 ). We let ν ∈ (0, ν 0 ) and R > R 0 . We first let x ∈ M such that d g (x, x 0 ) ≥ δ 0 , then from Corollary 2.1 (44) lim α→+∞ u α (x) = 0 in M \B δ0 (x 0 ).
From ( 42) and ( 7), we have that

M g,α G 1-ν x0 G 1-ν x0 (x) ≥ ξ 4 -2µ s (R n ) u α (x) 2 (s)-2 δ s 0 ,
and α ∈ N. The convergence in (44) yields (41) when d g (x, x 0 ) ≥ δ 0 for α large enough.

We now take x ∈ B δ0 (x 0 )\B Rµα (x 0 ). It follows from ( 42), ( 43), ( 7), ( 39) and (40) that,

M g,α G 1-ν x0 G 1-ν x0 (x) ≥ 1 d g (x, x 0 ) 2 ν (1 -ν) C 3 C 1 2 -2µ s (R n )ρ 2 (s)-2 .
Up to taking ρ > 0 small enough, we then obtain (41) when x ∈ B δ0 (x 0 )\B Rµα (x 0 ). This ends Step 3.1.1.

Step 3.1.2: We claim that there exists C R > 0 such that

u α (x) ≤ C R µ n-2 2 -ν(n-2) α G x0 (x) 1-ν for any x ∈ ∂B Rµα (x 0 ) and α ∈ N.
Proof of Step 3.1.2: It follows from ( 17), ( 19) and (39) that,

u α (x) ≤ C µ -n-2 2 α = C µ -n-2 2 α d g (x, x 0 ) -(2-n)(1-ν) d g (x, x 0 ) (2-n)(1-ν) ≤ C C ν-1 2 µ -n-2 2 α d g (x, x 0 ) (n-2)(1-ν) G x0 (x) 1-ν ≤ C C ν-1 2 R (n-2)(1-ν) µ n-2 2 -ν(n-2) α G x0 (x) 1-ν .
This ends Step 3.1.2.

Step 3.1.3: We claim that

u α (x) ≤ C R µ n-2 2 -ν(n-2) α G x0 (x) 1-ν for any x ∈ M \B Rµα (x 0 ). Proof of Step 3.1.3: We define v α := C R µ n-2 2 -ν(n-2) α G x0 (x) 1-ν -u α . Since u α
verifies [START_REF] Druet | The AB program in geometric analysis: sharp Sobolev inequalities and related problems[END_REF] and by (41), we observe that

M g,α v α = C R µ n-2 2 -ν(n-2) α M g,α G 1-ν x0 -M g,α u α = C R µ n-2 2 -ν(n-2) α M g,α G 1-ν x0 > 0 in M \B Rµα (x 0
). Then Step 3.1.3 follows from this inequality, Step 3.1.2 and the comparison principle (See Berestycki-Nirenberg-Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF]). This ends Step 3.1.3.

We are in position to finish the proof of Step 3.1. Step 3.1.3 and (39) yield

(45) u α (x) ≤ C R µ n-2 2 -ν(n-2) α d g (x, x 0 ) (n-2)(1-ν) for all x ∈ M \B Rµα (x 0 ).
On the other hand, in [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF], for x ∈ B Rµα (x 0 ) \ {x 0 } and ν ∈ (0, ν 0 )

u α (x) ≤ µ -n-2 2 α ≤ µ n-2 2 -ν(n-2) α µ (ν-1)(n-2) α ≤ R (1-ν)(n-2) µ n-2 2 -ν(n-2) α d g (x, x 0 ) (1-ν)(n-2) for all x ∈ B Rµα (x 0 ).
Up to taking C R larger and = (n -2)ν, by (45), we get inequality (37). This ends Step 3.1.

Step 3.2. We claim that there exists C > 0 such that

(46) d g (x, x 0 ) n-2 u α (x α )u α (x) ≤ C for all x ∈ M. Proof of Step 3.2: We let (y α ) α ∈ M be such that sup x∈M d g (x, x 0 ) n-2 u α (x α )u α (x) = d g (y α , x 0 ) n-2 u α (x α )u α (y α ).
The claim is equivalent to proving that for any y α , we have that

d g (y α , x 0 ) n-2 u α (x α )u α (y α ) = O(1) as α → +∞.
We distinguish two cases:

Case 1: We assume that d g (y α , x 0 ) = O(µ α ) as α → +∞. Therefore, it follows from the definition of µ α that

d g (y α , x 0 ) n-2 u α (x α )u α (y α ) ≤ Cµ n-2 α u 2 α (x α ) ≤ C.

This yields (46).

Case 2: We assume that (47) lim

α→+∞ d g (y α , x 0 ) µ α = +∞.
Let G α be the Green's function of ∆ g + a α in M . Green's representation formula and standard estimates on the Green's function (see (39) and Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]) yield the existence of C > 0 such that

u α (y α ) = M G α (y α , x)λ α u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C M d g (x, y α ) 2-n λ α u 2 (s)-1 α (x) d g (x, x 0 ) s dv g . ( 48 
)
We fix R > 0 and we write M := ∪ 4

i=1 Ω i,α where

Ω 1,α := B Rµα (x 0 ) and Ω 2,α := Rµ α < d g (x, x 0 ) < d g (y α , x 0 ) 2 , Ω 3,α := d g (y α , x 0 ) 2 < d g (x, x 0 ) < 2d g (y α , x 0 )
and Ω 4,α := {d g (x, x 0 ) ≥ 2d g (y α , x 0 )} ∩ M.

Step 3.2.1: We first deal with Ω 1,α .

Using (47), we fix C 0 > R. For α large, we have that

d g (y α , x 0 ) ≥ C 0 µ α ≥ C 0 R d g (x, x 0 ) for all x ∈ Ω 1,α .
Then since

C 0 > R > 1, we get d g (x, y α ) ≥ 1 -R C0 d g (y α , x 0 ). Therefore, we take x = exp x0 (µ α X), then for R > 1 there exists C > 0 such that Ω1,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C d g (y α , x 0 ) 2-n Ω1,α u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ n-2 2 α d g (y α , x 0 ) 2-n B R (0) ũ2 (s)-1 α (X) |X| s dv gα , (49) 
where ũα , gα are defined in [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF], [START_REF]Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF]. Since ũα ≤ 1, by applying Lebesgue's Convergence Theorem and thanks to Step 2.2, we get that

lim α→+∞ B R (0) ũ2 (s)-1 α (X) |X| s dv gα = B R (0) ũ2 (s)-1 |X| s dX. (50)
Combining ( 49) and (50) yields

Ω1,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ n-2 2 α d g (y α , x 0 ) 2-n . (51) Step 3.2.2: We deal with Ω 2,α . Noting that d g (x, y α ) ≥ d g (y α , x 0 ) -d g (x, x 0 ) ≥ 1 2 d g (y α , x 0 ) for all x ∈ Ω 2,α
, we argue as in Step 3.2.1 by using (37) with > 0 small to get

Ω2,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C d g (y α , x 0 ) 2-n Ω2,α u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) 2-n Ω2,α d g (x, x 0 ) -s-(n-2-)(2 (s)-1) dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) 2-n M \B Rµα (x0) d g (x, x 0 ) -s-(n-2-)(2 (s)-1) dv g
Taking the change of variable X = exp -1 x0 (x) and ĝ = exp x0 g on R n , we get

Ω2,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) 2-n R n \B Rµα (0) |X| -s-(n-2-)(2 (s)-1) dv ĝ ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) 2-n R n \B Rµα (0) |X| -s-(n-2-)(2 (s)-1) dX ≤ C µ n-2 2 α d g (y α , x 0 ) 2-n +∞ R r s-2+ (2 (s)-1)-1 dr.
Hence for > 0 sufficiently small, we have that

(52) Ω2,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C R µ n-2 2 α d g (y α , x 0 ) 2-n , as α → +∞, where C R → 0 as R → +∞.
Step 3.2.3: We deal with Ω 3,α . For > 0 small in the control (37), we get

Ω3,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) -s-(n-2-)(2 (s)-1) Ω3,α d g (x, y α ) 2-n dv g .
It follows from the change of variable x = exp x0 (X) and

y α = exp x0 (Y α ) that, Ω3,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) -s-(n-2-)(2 (s)-1) 1 2 |Yα|<|X|<2|Yα| |X -Y α | 2-n dv ĝ ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) -s-(n-2-)(2 (s)-1) 1 2 |Yα|<|X|<2|Yα| |X -Y α | 2-n dX ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) -s-(n-2-)(2 (s)-1) |Y α | 2 1 2 |<|X|<2 X - Y α |Y α | 2-n dX ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) -s-(n-2-)(2 (s)-1) d g (y α , x 0 ) 2 |X|<2 X - Y α |Y α | 2-n dX ≤ C µ ( n-2 2 -)(2 (s)-1) α d g (y α , x 0 ) 2-n-n-2 2 (2 (s)-2)+ (2 (s)-1) |X|<3 |X| 2-n dX ≤ C µ n-2 2 α d g (y α , x 0 ) 2-n µ α d g (y α , x 0 ) ( n-2 2 )(2 (s)-2)-(2 (s)-1)
.

Just take > 0 small, hence ( n-2 2 )(2 (s) -2) -(2 (s) -1) > 0 and we obtain that,

Ω3,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ n-2 2 α d g (y α , x 0 ) 2-n µ α d g (y α , x 0 ) ( n-2 2 )(2 (s)-2)-(2 (s)-1)
.

(53)

Step 3.2.4: We deal with Ω 4,α . For x ∈ Ω 4,α , we have that

d g (x, y α ) ≥ d g (x, x 0 ) -d g (y α , x 0 ) ≥ 1 2 d g (x, x 0 ). Taking X = exp -1 x0 (x) and Y α = exp -1 x0 (y α ), we obtain that Ω4,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α Ω4,α d g (x, x 0 ) 2-n-s-(n-2-)(2 (s)-1) dv g ≤ C µ ( n-2 2 -)(2 (s)-1) α B δ (0)\B 2|Yα| (0) |X| 2-n-s-(n-2-)(2 (s)-1) dv ĝ ≤ C µ ( n-2 2 -)(2 (s)-1) α +∞ 2|Yα| r -n+s+ (2 (s)-1)-1 dr.
For > 0 sufficiently small, we get that (54)

Ω4,α d g (x, y α ) 2-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g ≤ C µ n-2 2 α d g (y α , x 0 ) 2-n µ α d g (x 0 , y α ) ( n-2 2 )(2 (s)-2)-(2 (s)-1)
.

Plugging the equations ( 51)-( 54) in (48), we get (46). This ends Step 3.2.

Step 3.3. We claim that there exists C > 0, such that

(55) u α (x) ≤ C µ n-2 2 α µ n-2 α + d g (x, x 0 ) n-2 for all x ∈ M.
Proof of Step 3.3: Using (46) and the definition of µ α (see ( 11)), we have

µ n-2 α + d g (x, x 0 ) n-2 µ -n-2 2 α u α (x) ≤ µ n-2 2 α u α (x) + C ≤ µ n-2 2 α u α (x α ) + C ≤ 1 + C.
This proves Theorem 1.3 and ends Step 3.3.

As a first remark, it follows from the definition [START_REF] Elliott | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] and the pointwise control (12) of Theorem 1.3 that (56) ũα (X) ≤ C

(1 + |X| 2 ) n-2 2 in B µ -1 α δ0 (0).
Proposition 3.1. For all R > 0, we claim that there exists C > 0 such that

|∇u α (x)| g ≤ C µ n-2 2 α (d g (x, x 0 ) 2 + µ 2 α ) n-1 2 
for all x ∈ M \B Rµα (x 0 ), (57)

as α → +∞. Proof of Proposition 3.1: Let (y α ) α ∈ M be such that sup x∈M d g (x, x 0 ) n-1 + µ n-1 α u α (x α )|∇u α (x)| g = d g (y α , x 0 ) n-1 + µ n-1 α u α (x α )|∇u α (y α )|.
The claim is equivalent to proving that for any y α , we have that

d g (y α , x 0 ) n-1 + µ n-1 α u α (x α )|∇u α (y α )| g = O(1) as α → +∞.
We let G α be the Green's function of ∆ g +a α in M . Green's representation formula and the estimates (40) yield C > 0 such that

|∇u α (y α )| ≤ M |∇G α (y α , x)| g λ α u 2 (s)-1 α (x) d g (x, x 0 ) s dv g (x) ≤ C M d g (x, y α ) 1-n u 2 (s)-1 α (x) d g (x, x 0 ) s dv g (x).
More generally, we prove that for any sequence (y α ) α ∈ M such that d g (y α , x 0 ) ≥ Rµ α for some R > 0, then there exist C > 0 such that

|∇u α (y α )| ≤ C µ n-2 2 α µ n-1 α + d g (y α , x 0 ) n-1 as α → +∞.
Then using the pointwise estimates ( 12) the proof goes exactly as in Step 3.2.

Proposition 3.2. We claim that

(58) lim α→+∞ u α µ n-2 2 α = d n G x0 in C 2 loc (M \{x 0 }),
where,

d n := µ s (R n ) R n ũ2 (s)-1 |X| s dX, and G x0 is the Green's function for ∆ g + a ∞ on M at x 0 . Proof of Proposition 3.2: We define v α := µ -n-2 2 α u α . Equation (8) rewrites (60) ∆ g v α + a α v α = λ α µ n-2 2 (2 (s)-2) α v 2 (s)-1 α dg(x,x0) s in M \{x 0 }, v α ≥ 0 in M \{x 0 }. (59) 
We fix y ∈ M such that y = x 0 . We choose δ ∈ (0, δ) such that d g (y, x 0 ) > δ . Let G α be the Green's function of ∆ g + a α . Green's representation formula yields,

v α (y) = µ -n-2 2 α λ α M G α (y, x) u 2 (s)-1 α d g (x, x 0 ) s dv g = µ -n-2 2 α λ α B δ (x0) G α (y, x) u 2 (s)-1 α d g (x, x 0 ) s dv g + M \B δ (x0) G α (y, x) u 2 (s)-1 α d g (x, x 0 ) s dv g .
On the other hand, since d g (x, y) ≥ δ 2 in the second integral, using the estimation of G α (see (39)) and Theorem 1.3, we get

M \B δ (x0) G α (y, x) u 2 (s)-1 α d g (x, x 0 ) s dv g ≤ C µ n-2 2 (2 (s)-1) α δ s+(n-2)(2 (s)-1) M \B δ (x0) d g (x, y) 2-n dv g ≤ C δ µ n-2 2 (2 (s)-1) α V ol g (M ), we obtain that v α (y) = µ -n-2 2 α λ α B δ (x0) G α (y, x) u 2 (s)-1 α d g (x, x 0 ) s dv g + O(µ 2-s α ) as α → +∞ = λ α B δ µ -1 α (0) G α (y, exp x0 (µ α X)) ũ2 (s)-1 α |X| s dv gα + O(µ 2-s α ) as α → +∞.
Thanks again to Step 2.2, (7), the pointwise control (56) and Lebesgue's Convergence Theorem, we get

lim α→+∞ v α (y) = d n G(y, x 0 ), ( 61 
)
where d n is defined in (59). The definition of v α and the estimates (12) yields,

v α (x) ≤ c d g (x, x 0 ) 2-n for all x ∈ M and α ∈ N. Then, v α is bounded in L ∞ loc (M \{x 0 }).
It then follows from (60), (61) and elliptic theory that the limit (61) in C 2 loc (M \{x 0 }). This proves Proposition 3.2.

4. Direct consequences of Theorem 1.3

Proposition 4.1. Let (u α ) α be as in Theorem 1.3. Let (y α ) α ∈ M be such that y α → y 0 as α → +∞. Then

lim α→+∞ µ 2-s α + dg(yα,x0) 2-s K 2-s µ 2-s 2 α n-2 2-s u α (y α ) = 1 if y 0 = x 0 , d n dg(y0,x0) K n-2 G x0 (y 0 ) if y 0 = x 0 ,
where,

K 2-s = (n -2)(n -s)µ s (R n ) -1 and d n := µ s (R n ) R n ũ2 (s)-1 |X| s dX,
and G x0 is the Green's function for ∆ g + a ∞ on M at x 0 .

As a consequence, we get that Corollary 4.1. Let (u α ) α be as in Theorem 1.3. Then there exists C > 1 such that

1 C µ n-2 2 α µ 2-s α + dg(x,x0) 2-s K 2-s n-2 2-s ≤ u α (x) ≤ C µ n-2 2 α µ 2-s α + dg(x,x0) 2-s K 2-s n-2 2-s .
Proof of Proposition 4.1: We recall ũα (X) := µ n-2 2 α u α (exp x0 (µ α X)) and satisfies [START_REF] Maria Micheletti | Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds[END_REF]. It follows from [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] 

in Step 2.2 that lim α→+∞ ũα = ũ in C 2 loc (R n \{0}) ∩ C 0 loc (R n )
, where ũ is as in Step 2.2 and satisfies (22). Let G α be the Green's function of ∆ g + a α . We fix δ > 0. As in the proof of Proposition 3.2, we have that

u α (y α ) = λ α B δ (x0) G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g + o µ n-2 2 α as α → +∞. ( 62 
)
Case 1: We first assume that lim α→+∞ y α = y 0 = x 0 . The result is a direct consequence of (58).

Case 2: We assume that lim α→+∞ y α = x 0 . Case 2.1: We assume that there exists L ∈ R such that (63)

d g (y α , x 0 ) µ α → L ∈ R as α → +∞.
We let Y α ∈ R n be such that y α = exp x0 (µ α Y α ). It follows from (63) that

|Y α | → L as α → +∞. ( 64 
)
We have that

d g (y α , x 0 ) n-2 µ -n-2 2 α u α (y α ) = d g (y α , x 0 ) µ α n-2 ũα (Y α ).
It then follows from the convergence ( 19), ( 63) and (64) that

lim α→+∞ d g (y α , x 0 ) n-2 µ -n-2 2 α u α (y α ) = L 2-s 1 + L 2-s K 2-s n-2 2-s . ( 65 
)
Case 2.2: We assume that (66)

y α → x 0 and d g (y α , x 0 ) µ α → +∞ as α → +∞.
Coming back to (62), we have as α → +∞ that, With a change of variable, we get (68)

d g (y α , x 0 ) n-2 µ -n-2 2 α u α (y α ) = d g (y α , x 0 ) n-2 µ -n-2 2 α λ α D1,α G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g + D2,α G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g + O µ n-2 2 (2 (s)-2) α , (67) with 
µ -n-2 2 α D1,α G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g = D 1,α G α (y α , exp x0 (µ α X)) ũ2 (s)-1 α |X| s dv gα ,
where D 1,α = µ -1 α exp x0 (D 1,α ). For R > 0, we take X ∈ B R (0) and z α := exp x0 (µ α X), by (66) we have that

d g (y α , z α ) µ α → +∞ as α → +∞. (69) Writing, d g (y α , z α ) -d g (z α , x 0 ) ≤ d g (y α , x 0 ) ≤ d g (y α , z α ) + d g (z α , x 0 ), and nothing that d g (z α , x 0 ) = µ α |X|, we obtain that 1 -|X| µ α d g (y α , z α ) ≤ d g (y α , x 0 ) d g (y α , z α ) ≤ 1 + |X| µ α d g (y α , z α ) ,
therefore, with (69), we get

lim α→+∞ d g (y α , x 0 ) d g (y α , z α ) = 1.
Therefore for all R > 0, we have that B R (0) ⊂ D 1,α for α > 0 large enough. Moreover, since d g (y α , z α ) → 0 as α → +∞ and by Proposition 12 in Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF],

we have

lim α→+∞ d g (y α , x 0 ) n-2 G α (y α , z α ) = d g (y α , x 0 ) d g (y α , z α ) n-2 d g (y α , z α ) n-2 G α (y α , z α ) = 1 (n -2)ω n-1 ,
where ω n-1 is the volume of the unit (n -1)-sphere. It then follows from (68), (39) the pointwise control (56) and Lebesgue's Convergence Theorem that

lim α→+∞ d g (y α , x 0 ) n-2 µ -n-2 2 α λ α D1,α G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g = µ s (R n ) 1 (n -2)ω n-1 R n ũ2 (s)-1 |X| s dX (70)
Now, going back to the definition of ũ (see (20)) and with a change of variable,

R n ũ2 (s)-1 |X| s dX = K n-s R n |X| -s 1 + |X| 2-s -n-2 2-s (2 (s)-1) dX = K n-s ω n-1 +∞ 0 r n-s-1 (1 + r 2-s ) n-2 2-s (2 (s)-1) dr = K n-s ω n-1 2 -s +∞ 0 t n-s 2-s -1 (1 + t) n-2s+2 2-s dr = K n-s ω n-1 2 -s Γ( n-s 2-s )Γ(1) Γ( n-s 2-s + 1) = K n-s ω n-1 n -s . ( 71 
)
Since µ s (R n ) = K s-2 (n -2)(n -s) and by (70), we get (72) lim

α→+∞ d g (y α , x 0 ) n-2 µ -n-2 2 α λ α D1,α G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g = K n-2 .
Note that d g (x, x 0 ) ≥ 1 2 d g (y α , x 0 ) for all x ∈ D 2,α . Then, it follows from ( 12), (39) and (66) that

µ -n-2 2 α d g (y α , x 0 ) n-2 D2,α G α (y α , x) u 2 (s)-1 α d g (x, x 0 ) s dv g ≤ C µ α d g (y α , x 0 ) 2-s 1 d g (y α , x 0 ) 2 D2,α d g (y α , x) 2-n dv g ≤ C µ α d g (y α , x 0 ) 2-s = o(1). (73)
Combining (67), (72) and (73), we write that (74) lim

α→+∞ d g (y α , x 0 ) n-2 µ -n-2 2 α u α (y α ) = K n-2 .
Proposition 4.1 is a direct consequence of (58), (65) and (74).

Proof of Corollary 4.1: We define

v α (x) := µ 2-s α + dg(x,x0) 2-s K 2-s µ 2-s 2 α n-2 2-s u α (x)
for all x ∈ M and α ∈ N. We let (y α ) α ∈ M be such that v α (y α ) = min x∈M v α (x) for all α ∈ N. Since G α > 0, it follows from Proposition 4.1 that there exists c 0 > 0 such that v α (y α ) ≥ c 0 for all α ∈ N. This yields the lower bound of Corollary 4.1.

The upper bound is [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. This proves Corollary 4.1.

5.

Pohozaev identity and proof of Theorem 1.4

We let (u α ) α ∈ H 2 1 (M ), (λ α ) α ∈ R and (a α ) α , a ∞ in C 1 (M ) be such that ( 5) to (11) hold. In the sequel, we fix δ ∈ (0,

ig(M )
2 ) where i g (M ) > 0 is the injectivity radius of (M, g). We consider the following function, ûα (X) := u α (exp x0 (X)) for all X ∈ B δ (0) ⊂ R n , where exp x0 : B δ (0) → B δ (x 0 ) ⊂ M is the exponential map at x 0 . We define also the metric ĝ(X) := exp x0 g (X) on R n . It then follows from ( 8) that

(75) ∆ ĝ ûα + âα ûα = λ α û2 (s)-1 α |X| s weakly in B δ (0),
where âα = a α (exp x0 (X)). For l ≥ 1, the Pohozaev identity writes (see for instance Ghoussoub-Robert [START_REF] Ghoussoub | The Hardy-Schrödinger operator with interior singularity: the remaining cases[END_REF])

B δ (0) X l ∂ l ûα + n -2 2 ûα ∆ Eucl ûα -λ α û2 (s)-1 α |X| s dX = ∂B δ (0) (X, ν) |∇û α | 2 2 - λ α 2 (s) û2 (s) α |X| s -X l ∂ l ûα + n -2 2 ûα ∂ ν ûα dσ,
where ν(X) is the outer normal vector of B δ (0) at X ∈ ∂B δ (0), that is ν(X) = X |X| . With (75), the Pohozaev identity writes (76)

C α + D α = B α , with B α := ∂B δ (0) (X, ν) |∇û α | 2 2 - λ α 2 (s) û2 (s) α |X| s -X l ∂ l ûα + n -2 2 ûα ∂ ν ûα dσ. C α := - B δ (0) X l ∂ l ûα + n -2 2 ûα âα ûα dX,
and,

D α := - B δ (0) X l ∂ l ûα + n -2 2 ûα (∆ ĝ ûα -∆ Eucl ûα ) dX.
We are going to estimate these terms separately.

Step 5.1. We claim that (77)

lim α→+∞ B α µ n-2 α = d 2 n ∂B δ (0) δ 2 |∇ Ĝx0 | 2 - 1 δ X, ∇ Ĝx0 2 + n -2 2 X, ∇ Ĝx0 Ĝx0 dσ ,
as α → +∞, where d n is defined in (59), and Ĝx0 (X) = G(x 0 , exp x0 (X)).

Proof of Claim 5.1: It follows from the definition of ûα that

µ -(n-2) α B α = ∂B δ (0) (X, ν)    |µ -n-2 2 α ∇û α | 2 2 - λ α 2 (s) µ 2-s α µ -n-2 2 α ûα 2 (s) |X| s    -X l µ -n-2 2 α ∂ l ûα + n -2 2 µ -n-2 2 α ûα µ -n-2 2 α ∂ ν ûα dσ.
Since µ α → 0 as α → +∞, the convergence of Proposition 3.2 yields (77). This proves the claim.

In this section, we will extensively use the following consequences of the pointwise estimates ( 12) and (57):

ûα (X) ≤ C µ α µ 2 α + |X| 2 n-2 2 in B δ (0), (78) |∇û α |(X) ≤ C µ n-2 2 α (µ 2 α + |X| 2 ) n-1 2 in B δ (0) \ B Rµα (0), (79) and ũα (X) ≤ C 1 1 + |X| 2 n-2 2 in B δµ -1 α (0), (80) |∇ũ α |(X) ≤ C 1 (1 + |X| 2 ) n-1 2 in B δµ -1 α (0) \ B R (0), (81) where 
(82) ũα (X) = µ n-2 2 α u α (exp x0 (µ α X)) for all X ∈ B δµ -1 α (0) ⊂ R n .
Step 5.2. We claim that, as α → +∞,

C α =      µ 2 α ln 1 µα ω 3 K 4 a ∞ (x 0 ) + o(1) if n = 4, µ 2 α a ∞ (x 0 ) R n ũ2 dX + o(1) if n ≥ 5,
where K is defined in (21).

Proof of Step 5.2: Using the definition of C α and integrating by parts, we get

C α = - B δ (0) X l âα ∂ l û2 α 2 + n -2 2 âα û2 α dX = - B δ (0) - n 2 âα û2 α -X l ∂ l âα û2 α 2 + n -2 2 âα û2 α dX - 1 2 ∂B δ (0) (X, ν) âα û2 α dσ = B δ (0) âα + X l ∂ l âα 2 û2 α dX - 1 2 ∂B δ (0) (X, ν) âα û2 α dσ. (83)
With (78), we can write that

∂B δ (0) (X, ν) âα û2 α dσ ≤ C(δ)µ n-2 α ∂B δ (0) 1 |X| 2(n-2) dσ, then, ∂B δ (0) (X, ν) âα û2 α dσ = O µ n-2 α .
Moreover, with (83) we have

C α = B δ (0) âα + X l ∂ l âα 2 û2 α dX + O(µ n-2 α ) as α → +∞.
We now define

(84) ϕ α (X) := âα + X l ∂ l âα 2 .
We distinguish three cases: Case 1: If n ≥ 5, with a change of variable X = µ α Y , we get that

B δ (0) ϕ α (X)û 2 α dX = µ 2 α B δµ -1 α (0) ϕ α (µ α X)ũ 2 α dX,
where ũα is defined in (82). Since µ α → 0 as α → +∞, we use ( 84) and ( 5)

lim α→+∞ ϕ α (µ α X) = a ∞ (x 0 ). Since n ≥ 5, we have that X → 1 + |X| 2 -n-2 2 ∈ L 2 (R n ).
Therefore, with the pointwise control (80), Lebesgue's dominated convergence theorem and Step 2.2 yield Step 5.2 when n ≥ 5.

Case 2: If n = 4, we have that

K -4 B δµ -1 α (0) 1 1 + |X| K 2-s 4 2-s dX = B δµ -1 α (0) 1 (K 2-s + |X| 2-s ) 4 2-s dX = ω 3 δµ -1 α 1 r 3 (K 2-s + r 2-s ) 4 2-s dr + O(1) = ω 3 δµ -1 α 1 1 r dr + δµ -1 α 1 r 3 1 -1 + 1 r 2 2 (1 + r 2 ) 2 dr + O(1) = ω 3 ln δ µ α + O δµ -1 α 1 1 r 3 dr + O(1) = ω 3 ln δ µ α + O(1). (85)
Therefore, it follows from Proposition 4.1, for any > 0, there exists δ > 0 such that, up to a subsequence, for any α and any X ∈ B δ (0), ( 86)

1 1 + 1 1 + |X| K 2-s 2 2-s ≤ ũα (X) ≤ (1 + ) 1 1 + |X| K 2-s 2 2-s .
Combining the last equation and (85), by letting α → +∞ and then → 0, we obtain that

lim α→+∞ 1 ln( 1 µα ) B δµ -1 α (0) ϕ α (X)û 2 α dX = ω 3 K 4 a ∞ (x 0 ).
This yields Step 5.2 for n = 4. These two cases yield Step 5.2. We shall make frequent use of the following Lemma in dimension n = 4.

Lemma 5.1. For i, j, β 1 , β 2 ≥ 1, and n = 4, we claim that (87)

lim α→+∞ B δµ -1 α (0) X β1 X β2 ∂ i ũα ∂ j ũα dX ln( 1 µα ) = (n -2)K n-2 2 S n-1 σ i σ j σ β1 σ β2 dσ,
where ũα is defined in (82), and

(88) K 2-s = (n -2)(n -s)µ s (R n ) -1 .
Proof of the Lemma 5.1: We divide the proof into several steps.

Step 5.3. We fix a family of parameters

(β α ) ∈ (0, ∞) such that (89) lim α→+∞ β α = 0 and lim α→+∞ µ α β α = 0.
Then, for all X ∈ R n \{0}, we have that

lim α→+∞ β n-2 α µ n-2 2 α u α (exp x0 (β α X)) = K n-2 |X| 2-n .
Moreover, this limit holds in C 2 loc (R n \{0}). Proof of the Step 5.3: First, we define

w α (X) := β n-2 α µ n-2 2 α u α (exp x0 (β α X)) for all X ∈ R n ∩ β -1 α U.
Step 5.3.1: We claim that there exists w ∈ C 2 (R n \{0})

lim α→+∞ w α = w in C 2 loc (R n \{0}).
Therefore, there exists Λ ≥ 0 such that

w(X) = Λ|X| 2-n for all X ∈ R n .
Proof of the Step 5.3.1: Since u α satisfies [START_REF] Druet | The AB program in geometric analysis: sharp Sobolev inequalities and related problems[END_REF], with the definition of w α , we have

that (90)    ∆ g w α + β 2 α a α (exp x0 (β α X))w α = λ α µ n-2 2 α β n-2 α 2 (s)-2 β 2-s α w 2 (s)-1 α |X| s in R n ∩ β -1 α U, w α ≥ 0 in R n ∩ β -1 α U. Since 2 (s) > 2, we get with (89) that µ n-2 2 α β n-2 α 2 (s)-2 β 2-s α = µ α β α n-2 2 (2 (s)-2)
= o(1) as α → +∞.

From the pointise control ( 12) that there existe C > 0 such that

0 < w α (X) ≤ C |X| 2-n for all X ∈ R n ∩ β -1 α U. It follows from standard elliptic theory that there exists w ∈ C 2 (R n \{0}) such that lim α→+∞ w α = w in C 2 loc (R n \{0}).
Passing to the limit as α → +∞ in (90),

∆ Eucl w = 0 in R n , 0 ≤ w(X) ≤ C |X| 2-n in R n , that there exists Λ ≥ 0 such that w(X) = Λ|X| 2-n for all X ∈ R n .
This ends Step 5.3.1.

Step 5.3.2: We are left with proving that Λ = K n-2 defined in (88).

Proof of the Step 5.3.2: We fix X ∈ R n . Let G α the Green's function of ∆ g + a α . Green's representation formula and the defintion of w α yields,

w α (X) = λ α M β n-2 α µ n-2 2 α G α (exp x0 (β α X), y) u α (y) 2 (s)-1 d g (y, x 0 ) s dv g = A α + B α , (91) 
where,

A α := λ α β n-2 α µ n-2 2 α B Rµα (x0)\B δµα (x0) G α (exp x0 (β α X), y) u α (y) 2 (s)-1 d g (y, x 0 ) s dv g , B α := λ α β n-2 α µ n-2 2 α M \(B Rµα (x0)\B δµα (x0))
G α (exp x0 (β α X), y) u α (y) 2 (s)-1 d g (y, x 0 ) s dv g .

Step 5.3.2.1: We claim that lim R→+∞,δ→0

lim α→+∞ A α = K n-2 |X| n-2 . (92) Proof of the Step 5.3.2.1: Taking y = exp x0 (µ α Y ), we write (93) A α = λ α B R (0)\B δ (0) β n-2 α G α (x α , y α ) ũ2 (s)-1 α |Y | s dv gα ,
where, x α := exp x0 (β α X) and y α := exp x0 (µ α Y ), and ũα is defined in (82) and gα (x) := exp x0 g (µ α X) in B δ -1 µα (0).

The triangle inequality yields

d g (x α , x 0 ) -d g (y α , x 0 ) ≤ d g (x α , y α ) ≤ d g (x α , x 0 ) + d g (y α , x 0 ), and since d g (x α , x 0 ) = β α |X| and d g (y α , x 0 ) = µ α |Y |, we get that |X| - µ α β α |Y | ≤ d g (x α , y α ) β α ≤ |X| + µ α β α |Y |,
therefore, with (89),

d g (x α , y α ) → 0 and β α d g (x α , y α ) → 1 |X| ,
as α → +∞. Therefore, it follows from Proposition 12 in Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] that

lim α→+∞ β n-2 α G α (x α , y α ) = lim α→+∞ β α d g (x α , y α ) n-2 d g (x α , y α ) n-2 G α (x α , y α ) = 1 (n -2)w n-1 1 |X| n-2
uniformly. Therefore, with (93), applying again Lebesgue's Convergence Theorem and thanks to Step 2.2 and the convergence in [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF], we infer that

(94) A α = µ s (R n ) (n -2)w n-1 1 |X| n-2 B R (0)\B δ (0) ũ(Y ) 2 (s)-1 |Y | s dY + o(1) as α → +∞.
Other, going back to (71), we have that

R n ũ(Y ) 2 (s)-1 |Y | s dY = K n-s ω n-1 n -s and µ s (R n ) = K s-2 (n -2)(n -s).
Replacing the last equation in (94), we get (92). This ends Step 5.3.2.1.

Step 5.3.2.2:

lim R→+∞,δ→0 lim α→+∞ B α = 0. ( 95 
)
Proof of the Step 5.3.2.2: By the definition of B α and the estimate's on the Green's function (see (39) and Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]) and u α see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], then there exists C > 0 such that

B α ≤ C λ α β n-2 α µ -n-2 2 (2 (s)-2) α M \(B Rµα (x0)\B δµα (x0)) d g (exp x0 (β α X), y) 2-n (µ 2 α + d g (y, x 0 ) 2 ) n-2 2 (2 (s)-1) d g (y, x 0 ) s dv g , For R 0 > 0, taking y = exp x0 (µ α Y ), we have that B α ≤ C λ α B R 0 µ -1 α (0)\(B R (0)\B δ (0)) |X -µα βα Y | 2-n (1 + |Y | 2 ) n-2 2 (2 (s)-1) |Y | s dY = C(B 1,α + B 2,α ), (96) 
where

B 1,α = B δ (0) J α dY and B 2,α = R n \B R (0) J α dY, and 
J α := λ α |X -µα βα Y | 2-n (1 + |Y | 2 ) n-2 2 (2 (s)-1) |Y | s . First, we estimate B 1,α . Since µα βα → 0, we have |X -µα βα Y | 2-n → |X| 2-n
uniformly on B δ (0) as α → +∞ and with the convergence of λ α in [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF], we infer that

B 1,α ≤ (C(X) + o(1)) B δ (0) 1 (1 + |Y | 2 ) n-2 2 (2 (s)-1) |Y | s dY ≤ (C(X) + o(1)) B δ (0) 1 |Y | s dY ≤ (C(X) + o(1)) δ n-s .
and therefore, (97) lim

δ→0 lim α→+∞ B 1,α = 0.
We divide B 2,α as follows

(98) B 2,α = R≤|Y |≤ βα µα |X| 2 J α dY + βα µα |X| 2 ≤|Y |≤2 βα µα |X| J α dY + |Y |≥2 βα µα |X| J α dY. Since |Y | ≤ βα µα |X| 2 , we have that |X -µα βα Y | ≥ |X| 2 .
Therefore, with the convergence of λ α in [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF] and lim α→+∞ µα βα = 0, we get

R≤|Y |≤ βα µα |X| 2 J α dY ≤ C(X) R≤|Y |≤ βα µα |X| 2 1 |Y | n-s+2 dY ≤ C(X) µ α β α 2-s |X| 2 s-2 -R s-2 ≤ C(X)R s-2 . ( 99 
)
For the next term, a change of variable yields

βα µα |X| 2 ≤|Y |≤2 βα µα |X| J α dY ≤ C(X) µ α β α 2-s |X| 2 ≤|Y |≤2|X| |X -Y | 2-n dY = o(1), (100) 
as α → +∞. Finaly, we estimate the last term. Since |Y | ≥ 2 βα µα |X|, we have that |X -µα βα Y | ≥ |X|. Therefore, it follows from the convergence of λ α in (7) and lim α→+∞ µα βα = 0 that The equations ( 91), (92), and (95) yields the result of the Step 5.3.2

|Y |≥2 βα µα |X| J α dY ≤ C(X) |Y |≥2 βα µα |X| 1 |Y | n-s+2 dY ≤ C(X) µ α β α 2-s = o(1), (101) 
Step 5.4. We claim that the result of Lemma 5.1 holds.

Proof of Step 5.4: For the sake of clarity, we define

U X,α := X β1 X β2 ∂ i ũα ∂ j ũα ,
For R > 0, we write

B δµ -1 α (0) U X,α dX = B R (0) U X,α dX + B δµ -1 α (0)\B R (0) U X,α dX.
It follows from the strong convergence of (25) that

µ 2 α B δµ -1 α (0) U X,α dX = µ 2 α B δµ -1 α (0)\B R (0) U X,α dX + O(µ 2 α ). (103) We define θ α := 1 √ | ln(µα)| , s α = µ -θα α and t α = µ θα-1 α . We have as α → +∞ that (104)    s α = o(t α ); µ α = o(s α ); µ α t α = o(1) ln( 1 tαµα ) = o(ln( 1 µα )); ln(s α ) = o(ln( 1 µα )); ln( tα sα ) ln( 1 µα ).
With (103), we get

µ 2 α B δµ -1 α (0) U X,α dX = µ 2 α B δµ -1 α (0)\Bt α (0) U X,α dX + Bt α (0)\Bs α (0) U X,α dX + Bs α (0)\B R (0) U X,α dX + o µ 2 α ln 1 µ α . (105) 
Thanks again to the pointwise control (80) and to (104), we have (106)

µ 2 α B δµ -1 α (0)\Bt α (0) U X,α dX = O µ 2 α δµ -1 α tα 1 r dr = O µ 2 α ln δ t α µ α = o µ 2 α ln 1 µ α ,
and, (107)

µ 2 α Bs α (0)\B R (0) U X,α dX = O µ 2 α ln s α R = o µ 2 α ln 1 µ α .
Since µ α = o(s α ) as α → +∞, it follows from the result of Step 5.3 that

lim α→+∞ sup Bt α (0)\Bs α (0) |X| 2n-2 ∂ i ũα ∂ j ũα -K n X i X j |X| 2 = 0,
where

K n := (n -2)K n-2 2
. Therefore, we have that

µ 2 α Bt α (0)\Bs α (0) U X,α dX = µ 2 α Bt α (0)\Bs α (0) X β1 X β2 |X| 2n-2 |X| 2n-2 ∂ i ũα ∂ j ũα -K n X i X j |X| 2 dX + K n µ 2 α Bt α (0)\Bs α (0) X β1 X β2 X i X j |X| 2n dX = K n µ 2 α Bt α (0)\Bs α (0) X β1 X β2 X i X j |X| 2n dX + o µ 2 α Bt α (0)\Bs α (0) X β1 X β2 |X| 2n-2 dX = K n µ 2 α Bt α (0)\Bs α (0) X β1 X β2 X i X j |X| 2n dX + o µ 2 α ln( 1 µ α ) . ( 108 
)
On the other hand, since ln( tα sα ) ln( 1 µα ), we have

Bt α (0)\Bs α (0) X β1 X β2 X i X j |X| 2n dX = S n-1 σ i σ j σ β1 σ β2 dσ tα sα 1 r dr = ln t α s α S n-1 σ i σ j σ β1 σ β2 dσ = ln 1 µ α (1 + o(1)) S n-1 σ i σ j σ β1 σ β2 dσ. (109) 
Combining the equations (108), (109), we obtain that (110)

µ 2 α Bt α (0)\Bs α (0) U X,α dX = K n µ 2 α ln 1 µ α (1 + o(1)) S n-1
σ i σ j σ β1 σ β2 dσ, with K n := (n -2)K n-2 2 . The equations (105), ( 106), ( 107) and (110) yields the result of this Lemma. This ends the proof of Lemma 5.1.

We are left with estimating D α . Recall that -

(∆ ĝ -∆ Eucl ) = ĝij -δ ij ∂ ij - ĝij Γk ij ∂ k and the Christoffel symbols are Γk ij := 1 2 ĝkp (∂ i ĝjp + ∂ j ĝip -∂ p ĝij ). Then, we write (111) D α = D 1,α -D 2,α + n -2 2 D 3,α - n -2 2 D 4,α ,
where

D 1,α := B δ (0) ĝij -δ ij X l ∂ l ûα ∂ ij ûα dX , D 2,α := B δ (0) ĝij X l Γk ij ∂ l ûα ∂ k ûα dX, D 3,α := B δ (0) ĝij -δ ij ûα ∂ ij ûα dX , D 4,α := B δ (0) ĝij ûα Γk ij ∂ k ûα dX. ( 112 
)
We now estimate the D i,α 's separately. Note that, since the exponential map is normal at 0, we have that ∂ β1 ĝij (0) = 0 for all i, j, β 1 = 1, ..., n. For i, j, k = 1, ..., n, the Taylor formula at 0 writes

(113) Γ k ij (X) = n m=1 X m ∂ m Γ k ij (0) + O |X| 2 ,
and, ĝij (X) -

δ ij = 1 2 n β1,β2=1 X β1 X β2 ∂ β1β2 ĝij (0) + O |X| 3 . ( 114 
)
Step 5.5. We claim that (115)

B δ (0) |X| 3 |∇û α | 2 dX =    o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4, O(δµ α ) if n = 3.
And,

B δ (0) |X|û 2 α dX =    o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4, O(δµ α ) if n = 3. ( 116 
)
Proof of Step 5.5: Estimate (116), this is a direct consequence of the upper bound (78). We deal with (115). We fix R > 0 and we write

B δ (0) |X| 3 |∇û α | 2 dX = B Rµα (0) |X| 3 |∇û α | 2 dX + B δ (0)\B Rµα (0) |X| 3 |∇û α | 2 dX = µ 3 α B R (0) |X| 3 |∇ũ α | 2 dX + B δ (0)\B Rµα (0) |X| 3 |∇û α | 2 dX,
where ũα is as in (82). It follows from the strong convergence of (25

) that B R (0) |X| 3 |∇ũ α | 2 dX = O(1)
as α → +∞. As for (116), the control of the integral on B δ (0) \ B Rµα (0) is a direct consequence of (81). This yields (116). This proves the claim.

Step 5.6. We estimate D 2,α for n ≥ 4.

Since ĝij -δ ij = O(|X| 2 ) as X → 0 and by (113), we estimate as α → +∞ that,

D 2,α = δ ij B δ (0) X l Γk ij ∂ l ûα ∂ k ûα dX + O B δ (0) |X| 3 Γk ij ∂ l ûα ∂ k ûα dX = n m=1 ∂ m Γk ii (0) B δ (0) X l X m ∂ l ûα ∂ k ûα dX + O B δ (0) |X| 3 |∇û α | 2 dX . ( 117 
)
The change of variable Y = µ -1 α X and the estimates (117) and ( 115) yield (118)

D 2,α = µ 2 α n m=1 ∂ m Γk ii (0) B δµ -1 α (0) X l X m ∂ l ũα ∂ k ũα dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4. Case 1: n ≥ 5. In this case, X → |X| 2 (1 + |X| 2 ) (1-n)/2 2 in L 1 (R n ).
Therefore, going back to (118), it follows from the strong convergence (25), the pointwise convergence of Step 2.2, the estimate control (81) and the Lebesgue dominated convergence theorem that

D 2,α = µ 2 α n m=1 ∂ m Γk ii (0) B R (0) X l X m ∂ l ũ∂ k ũ dX + R n \B R (0) X l X m ∂ l ũ∂ k ũ dX + o µ 2 α = µ 2 α n m=1 ∂ m Γk ii (0) R n X l X m ∂ l ũ∂ k ũ dX + o µ 2 α
From the radial symmetry of ũ, we infer that

D 2,α = µ 2 α n m=1 ∂ m Γk ii (0) R n X m X k (ũ ) 2 dX + o µ 2 α = µ 2 α n m=1 ∂ m Γk ii (0) R n X m X k |∇ũ| 2 dX + o µ 2 α = µ 2 α n m,k=1 ∂ m Γk ii (0) S n-1 θ m θ k dθ +∞ 0 r 2 |∇ r ũ| 2 dr + o µ 2 α .
With the symmetries of the sphere, we have that S n-1 θ m θ k dθ = δ mk ωn-1 n . Hence,

D 2,α = µ 2 α n ω n-1 n k=1 ∂ k Γk ii (0) +∞ 0 r 2 |∇ r ũ| 2 dr + o µ 2 α = µ 2 α n n k=1 ∂ k Γk ii (0) R n |X| 2 |∇ũ| 2 dX + o µ 2 α .
Case 2: n = 4. It follows from (118) and the convergence of Lemma 5.1 that

lim α→+∞ 1 µ 2 α ln( 1 µα ) D 2,α = 4K 4 k m=1 ∂ m Γk ii (0) 
S n-1

(σ l ) 2 σ m σ k dσ = ω 3 K 4 ∂ k Γk ii ( 
0), thanks to (130).

Step 5.7. We estimate D 3,α for n ≥ 4.

Thanks to (114), ( 115) and (116), integrations by parts yield

D 3,α = B δ (0) ĝij -δ ij ûα ∂ ij ûα dX = - B δ (0) ∂ i ĝij ûα ∂ j ûα dX + B δ (0) ĝij -δ ij ∂ i ûα ∂ j ûα dX +O ∂B δ (0) |X| 2 |∇û α |û α dσ = - 1 2 B δ (0) ∂ i ĝij ∂ j (û α ) 2 dX + ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + O B δ (0) |X| 3 |∇û α | 2 dX + O ∂B δ (0) |X| 2 |∇û α |û α dσ = - 1 2 - B δ (0) ∂ ij ĝij û2 α dX + ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX +O B δ (0) |X| 3 |∇û α | 2 dX + O ∂B δ (0) |X| 2 |∇û α |û α + |X|û 2 α dσ (119) D 3,α = - 1 2 - B δ (0) ∂ ij ĝij û2 α dX + ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4. = - 1 2 -∂ ij ĝij (0) B δ (0) û2 α dX + ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + O B δ (0) |X|û 2 α dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4.
Therefore, with a change variable Y = µ -1 α X, we infer that

D 3,α = µ 2 α 2 ∂ ij ĝij (0) B δµ -1 α (0) ũ2 α dX -∂ β1β2 ĝij (0) B δµ -1 α (0) X β1 X β2 ∂ i ũα ∂ j ũα dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4. (120) 
Case 1: n ≥ 5. Here again, we have that

X → |X| 2 (1 + |X| 2 ) (1-n)/2 2 ∈ L 1 (R n )
for n ≥ 5. Therefore, going back to (120), it follows from the strong convergence (25), the pointwise convergence of Step 2.2, the pointwise control (81), the Lebesgue dominated convergence theorem that

D 3,α = µ 2 α 2 ∂ ij ĝij (0) R n ũ2 dX -∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α .
Case 2: n = 4. Withing again the equations ( 85) and (86), we get (121) lim

α→+∞ 1 ln( 1 µα ) B δµ -1 α (0) ũ2 α dX = ω 3 K 4 .
Using again (87) and ( 130),

lim α→+∞ ∂ β1β2 ĝij (0) ln( 1 µα ) B δµ -1 α (0) X β1 X β2 ∂ i ũα ∂ j ũα dX = ω 3 6 ∂ β1β1 ĝii (0) + 2∂ ij ĝij (0) . (122) 
Then, it follows from (120), ( 121) and (122) that

lim α→+∞ 1 µ 2 α ln( 1 µα ) D 3,α = ω 3 12 K 4 4∂ ij ĝij (0) -∂ β1β1 ĝii (0) .
Step 5.8. We estimate D 4,α for n ≥ 4.

Using again integrations by parts, we get

D 4,α = - 1 2 n k=1 B δ (0) ∂ k Γk ii û2 α dX + 1 2 ∂B δ (0) Γk ii û2 α ν k dX + O B δ (0) |X|û 2 α dX .
With (116), we get

D 4,α = - 1 2 n k=1 ∂ k Γk ii (0) B δ (0) û2 α dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4.
With a change of variable Y = µ -1 α X, we obtain that

D 4,α = - µ 2 α 2 n k=1 ∂ k Γk ii (0) B δµ -1 α (0) ũ2 α dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4. (123) Case 1: n ≥ 5. Here X → (1 + |X| 2 ) 1-n/2 ∈ L 2 (R n ).
Then with the pointwise convergence of Step 2.2 and the pointwise control (80), Lebesgue's dominated convergence theorem yields

D 4,α = - µ 2 α 2 ∂ k Γk ii (0) R n ũ2 dX + o(µ 2 α ).
Case 2: n = 4. It follows from ( 85) and (86) that, (124) lim

α→+∞ 1 ln( 1 µα ) B δµ -1 α (0) ũ2 α dX = ω 3 K 4 .
Combining ( 123) and (124),

lim α→+∞ 1 µ 2 α ln( 1 µα ) D 4,α = - ω 3 2 K 4 ∂ k Γk ii (0). 
Step 5.9. We now deal with D 1,α for n ≥ 4.

We write b ijl = (g ij -δ ij )X l for all i, j, l = 1, ..., n.

Next, we have that

D 1,α = B δ (0) b ijl ∂ l ûα ∂ ij ûα dX = - B δ (0) ∂ i b ijl ∂ l ûα ∂ j ûα dX - B δ (0) b ijl ∂ j ûα ∂ il ûα dX + ∂B δ (0) b ijl ∂ j ûα ∂ l ûα ν i dX. (125) 
Using the integrations by parts and since b ijl = b jil , we get that

D 1,α := - B δ (0) b ijl ∂ j ûα ∂ il ûα dX = B δ (0) b ijl ∂ lj ûα ∂ i ûα dX + B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX - ∂B δ (0) b ijl ∂ j ûα ∂ i ûα ν l dX = B δ (0) b jil ∂ li ûα ∂ j ûα dX + B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX - ∂B δ (0) b ijl ∂ j ûα ∂ i ûα ν l dX = B δ (0) b ijl ∂ j ûα ∂ il ûα dX + B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX - ∂B δ (0) b ijl ∂ j ûα ∂ i ûα ν l dX = -D 1,α + B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX - ∂B δ (0) b ijl ∂ j ûα ∂ i ûα ν l dX, then, 2D 1,α = B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX - ∂B δ (0) b ijl ∂ j ûα ∂ i ûα ν l dX. (126) 
Combining ( 125) and (126), we get

D 1,α = - B δ (0) ∂ i b ijl ∂ l ûα ∂ j ûα dX + 1 2 B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX + ∂B δ (0) b ijl ∂ j ûα ∂ l ûα ν i dX - 1 2 ∂B δ (0) b ijl ∂ j ûα ∂ i ûα ν l dX (127) With (79), we get ∂B δ (0) b ijl ∂ j ûα ∂ l ûα ν i dX = O µ n-2 α .
Therefore, thanks of ( 114) and (115), we obtain that

D 1,α = - B δ (0) ∂ i b ijl ∂ l ûα ∂ j ûα dX + 1 2 B δ (0) ∂ l b ijl ∂ j ûα ∂ i ûα dX + O µ n-2 α = - B δ (0) X l ∂ i ĝij ∂ l ûα ∂ j ûα dX - B δ (0) ĝij -δ ij δ il ∂ l ûα ∂ j ûα dX + 1 2 B δ (0) X l ∂ l ĝij ∂ j ûα ∂ i ûα dX + n 2 B δ (0) ĝij -δ ij ∂ j ûα ∂ i ûα dX + O µ n-2 α = -∂ iβ1 ĝij (0) B δ (0) X β1 X l ∂ l ûα ∂ j ûα dX - 1 2 ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 δ il ∂ l ûα ∂ j ûα dX + 1 2 ∂ lβ1 ĝij (0) B δ (0) X β1 X l ∂ i ûα ∂ j ûα dX + n 4 ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX +O B δ (0) |X| 3 |∇û α | 2 dX + O µ n-2 α = -∂ iβ1 ĝij (0) B δ (0) X β1 X l ∂ l ûα ∂ j ûα dX - 1 2 ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + 1 2 ∂ lβ1 ĝij (0) B δ (0) X β1 X l ∂ i ûα ∂ j ûα dX + n 4 ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4.
With (115), we observe that

D 1,α = -∂ iβ1 ĝij (0) B δ (0) X β1 X l ∂ l ûα ∂ j ûα dX -1 2 ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + 1 2 ∂ lβ1 ĝij (0) B δ (0) X β1 X l ∂ i ûα ∂ j ûα dX + n 4 ∂ β1β2 ĝij (0) B δ (0) X β1 X β2 ∂ i ûα ∂ j ûα dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4.
With the change of variable Y = µ -1 α X, we get

D 1,α = µ 2 α -∂ iβ1 ĝij (0) B δµ -1 α (0) X β1 X l ∂ l ũα ∂ j ũα dX + n 4 ∂ β1β2 ĝij (0) B δµ -1 α (0) X β1 X β2 ∂ i ũα ∂ j ũα dX + o(µ 2 α ) if n ≥ 5, O(µ 2 α ) if n = 4. (128) 
Case 1: n ≥ 5. We have that

X → |X| 2 1 + |X| n-1 -2 ∈ L 1 (R n ).
Therefore, the strong convergence (25), the pointwise convergence of Step 2.2, the pointwise control (81) and Lebesgue's Convergence Theorem yield

D 1,α = µ 2 α -∂ iβ1 ĝij (0) R n X β1 X l ∂ l ũ∂ j ũ dX + n 4 ∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α ,
Moreover, since ũ is a radially symmetrical, we get Step 5.10. We get as α → +∞ that, where c n,s , K are defined in (4), (21).

D 1,α = µ 2 α -∂ iβ1 ĝij (0) R n X β1 X j (ũ ) 2 dX + n 4 ∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α = µ 2 α -∂ iβ1 ĝij (0) S n-1 θ β1 θ j dθ +∞ 0 r n+1 |∇ r ũ| 2 dr + n 4 ∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α = µ 2 α - 1 n ω n-1 ∂ β1i ĝij (0)δ β1j +∞ 0 r n+1 |∇ r ũ| 2 dr + n 4 ∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α , then, D 1,α = µ 2 α - 1 n ∂ ij ĝij (0) R n |X| 2 |∇ũ| 2 dX + n 4 ∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α .
D α =            O (δµ α ) if n = 3,
Proof of Step 5.10: For n ≥ 5, the steps above yield

D 1,α + n -2 2 D 3,α = µ 2 α - 1 n ∂ ij ĝij (0) R n |X| 2 |∇ũ| 2 dX + n -2 4 ∂ ij ĝij (0) R n ũ2 dX + 1 2 ∂ β1β2 ĝij (0) R n X β1 X β2 ∂ i ũ∂ j ũ dX + o µ 2 α = µ 2 α - 1 n ∂ ij ĝij (0) R n |X| 2 |∇ũ| 2 dX + n -2 4 ∂ ij ĝij (0) R n ũ2 dX + w -1 n-1 2 ∂ β1β2 ĝij (0) S n-1 σ i σ j σ β1 σ β2 dσ R n |X| 2 |∇ũ| 2 dX + o µ 2 α .
It follows from [START_REF] Brendle | Blow-up Phenomena for the Yamabe Equation[END_REF] that (130) S n-1 σ i σ j σ β1 σ β2 dσ = 1 n(n + 2)

w n-1 δ ij δ β1β2 + δ iβ1 δ jβ2 + δ iβ2 δ jβ1 .

Therefore we get

D 1,α + n -2 2 D 3,α = µ 2 α 1 n -∂ ij ĝij (0) + 1 2(n + 2) ∂ β1β1 ĝii (0) + 2∂ ij ĝij (0) R n |X| 2 |∇ũ| 2 dX + n -2 4 ∂ ij ĝij (0) R n ũ2 dX + o µ 2 α = µ 2 α 1 n - n + 1 (n + 2) ∂ ij ĝij (0) + 1 2(n + 2) ∂ β1β1 ĝii (0) R n |X| 2 |∇ũ| 2 dX + n -2 4 ∂ ij ĝij (0) R n ũ2 dX + o µ 2 α .
Therefore, using the definition of D α , we get Step 5.11. We prove Theorem 1.4 for n ≥ 4.

D α = D 1,α -D 2,α + n -2 2 D 3,α - n -2 2 D 4,α = µ 2 α 1 n - n + 1 (n + 2) ∂ ij ĝij (0) + 1 2(n + 2) ∂ β1β1 ĝii (0) -∂ k Γk ii (0) R n |X| 2 |∇ũ| 2 dX + n -2 4 ∂ ij ĝij (0) + ∂ k Γk ii (0) 
First, using the definitions (76) of B α , C α and D α and thanks to Steps 5.2 to 5.10, we get (137)

C α + D α =            µ 2
α (a ∞ (x 0 ) -c(n, s)Scal g (x 0 ))

R n ũ2 dX + o(µ 2 α ) if n ≥ 5, µ 2 α ln( 1 µα ) a ∞ (x 0 ) -1 6 Scal g (x 0 ) ω 3 K 4 + o(1) if n = 4, O(δµ α ) if n = 3.
We distinguish three cases:

Case 1: If n ≥ 5, (77) and ( 137) yield (a ∞ (x 0 ) -c(n, s)Scal g (x 0 ))

R n ũ2 dX = O µ n-4 α = o(1)
and then a ∞ (x 0 ) = c(n, s)Scal g (x 0 ), with c(n, s) as in (4). Case 2: If n = 4, the proof is similar.

Step 5.12. We prove Theorem 1.4 when n = 3.

Step 5.12.1: We claim that since n = 3. This proves (138).

Step 5.12.2: We write the Green's function as in [START_REF] Hebey | Sharp Sobolev inequalities of second order[END_REF] with β x0 ∈ C 2 (M \{x 0 }) ∩ C 0,θ (M ) where θ ∈ (0, 1). In particular, (139) Ĝx0 (x) := G(x 0 , exp x0 (X)) = 1 4π|X| + β x0 (exp x0 (X)) for all x ∈ B δ (0).

Combining (77) and (137), we get that (140)

d 2 3 ∂B δ (0) δ |∇ Ĝx0 | 2 2 + â∞ Ĝ2 x0 2 - 1 δ X, ∇ Ĝx0 2 + 1 2 X, ∇ Ĝx0 Ĝx0 dσ = O(δ)
From (139), we denote that:

|∇ Ĝx0 | 2 = 1 16π 2 δ 4 + |∇β x0 | 2 - 1 2πδ 3 X, ∇β x0 , Ĝ2 x0 = 1 16π 2 δ 2 + β 2 x0 + 1 2πδ X, β x0 , X, ∇ Ĝx0 2 = 1 16π 2 δ 2 + X, ∇β x0 2 - 1 2πδ X, ∇β x0 , X, ∇ Ĝx0 Ĝx0 = - 1 16π 2 δ 2 - 1 4πδ β x0 + X, ∇β x0 4πδ + X, ∇β x0 β x0 .
We replace all the terms in (140) and get X, ∇β x0 = 0.

d
We multiply the last equation by δ 2 and passing the limit δ → 0, we get that β x0 (x 0 ) := β x0 (exp x0 (0)) = 0, so the mass vanishes at x 0 .

6. Proof of Theorem 1.2

We assume that that there is no extremal of (3), i.e. for all u ∈ H 2 1 (M )\{0}, we have that (141)

u 2 2 (s) < µ s (R n ) -1 M |∇u| 2 dv g + B s (g) M u 2 dv g .
We define a α (x) := B s (g) -1 α > 0 for all x ∈ M and α > 0 large. We define the functional J α (u) = M |∇u| 2 dv g + a α u 2 dv g M u 2 (s) dg(x,x0) s dv g It then follows from the definition of B s (g) that there exists w ∈ H 2 1 (M )\{0} such that J α (w) < µ s (R n ), and therefore (142) inf

u∈Ns(M ) J α (u) < µ s (R n ),

, D 1

 1 ,α := x ∈ B δ (x 0 ); d g (y α , x) ≥ 1 2d g (y α , x 0 ) and D 2,α := B δ (x 0 )\D 1,α .

  as α → +∞. Combining (98), (99), (100) and (101), we infer that (102) lim R→+∞ lim α→+∞ B 2,α = 0. It follows from (96), (97) and (102) that the result of this Step. This ends Step 5.3.2.2.

Case 2 :X- 2 α

 22 n = 4. It follows from (87) and (β1 X l ∂ l ũα ∂ j ũα dX = ω 3 K 4 ∂ ij ĝij (0).Therefore, combining (128), (129) and (122)lim α→+∞ µ ln( 1 µα ) D 1,α = ω 3 6 K 4 -4∂ ij ĝij (0) + ∂ β1β1 ĝii (0) .

-µ 2 α ln( 1 µα ) 1 6ũ2 dX + o µ 2 α

 12 Scal g (x 0 )ω 3 K 4 (1 + o(1)) if n = 4, -µ 2 α c n,s Scal g (x 0 ) R n if n ≥ 5.

  ĝij ĝij = Id n and ∂ k ĝij (0) = 0, we get∂ ij ĝij (0) = -∂ ij ĝij (0) for i, j = 1, ..., n.(132)This ends Step 5.10 for n ≥ 5. The analysis is similar when n = 4.

  (138)C α + D α = O(δµ α ) as α → +∞.We prove the claim. It follows from (83) thatC α = O B δ (0) û2 α dx + ∂B δ (0) |X|û 2 α dσas α → +∞. The definitions (112) of D i,α , i = 2, 4 yieldD 2,α = O B δ (0) |X| 2 |∇û α | 2 dx and D 4,α = O B δ (0) |X| • |∇û α |û α dx .The identity (127) yieldsD 1,α = O B δ (0) |X| 2 |∇û α | 2 dx + ∂B δ (0) |X| 3 |∇û α | 2 dσ .It follows from (119) thatD 3,α = O B δ (0) (û 2 α + |X| 2 |∇û α | 2 ) dx + ∂B δ (0) (|X| 3 |∇û α | 2 + |X|û 2 α ) dσ .Therefore, with (111), we get thatC α + D α = O B δ (0) (û 2 α + |X| 2 |∇û α | 2 ) dx + ∂B δ (0) (|X| 3 |∇û α | 2 + |X|û 2 α ) dσ .It then follows from (55) and (57) thatC α + D α = O µ α B δ (0) |X| -2 dx + µ α ∂B δ (0)|X| -1 dσ = O(δµ α )
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Combining (131) and (132), we obtain that

Thanks again of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF], for s ∈ (0, 2) we have that

On the other hand, Cartan's expansion of the metric g in the exponential chart

where r := d g (x, x 0 ). Since g is C ∞ , we have that

The Bianchi identities and the symmetry yields

Scal g (x 0 ). Now, using the Christoffel symbols and ∂ k g ij (0) = 0, we obtain that

Combining (133), (134), ( 135) and (136), we get that

By the assumption (142), classical arguments (see Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF]) yield the existence of a non negative minimizer u α ∈ N s (M ) for λ α . The Euler-Lagrange's equation for u α is then

It follows from the regularity and the maximum principle of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF] that

) and u α > 0.

Step 6.1. We claim that, u α 0 weakly in H 2 1 (M ) as α → +∞. Proof of Step 6.1: For any α > 0, we have u α 2 (s) = 1 and J α (u α ) = λ α < µ s (R n ), and we get (u α ) α>0 is bounded in H 2 1 (M ). Then, there exists

where λ := lim α→+∞ λ α (up to extraction). It follows from ( 141) and (144) that

We get that, λ = µ s (R n ). Therefore, u 0 is a nonzero extremal function of (141) contradiction. Hence u 0 ≡ 0.

Step 6.2. We claim that,

Proof of Step 6.2: Since for all α > 0, we have 0 < λ α < µ s (R n ) then, up to a subsequence, λ α → λ ≤ µ s (R n ) as α → +∞. We proceed by contradiction and assume that λ = µ s (R n ). Then there exists 0 and α 0 > 0 such that for all α > α 0 ,

Thanks of Jaber [START_REF] Jaber | Hardy-Sobolev equations on compact Riemannian manifolds[END_REF], there exists B 1 such that for all α > 0, we have

By the last

Step and since the embedding of

Therefore, u α 2 (s) = 1 and J α (u α ) = λ α , we have

Letting α → +∞ in the last relation, we obtain that λ λ+ 0 ≥ 1, a contradiction since λ ≥ 0 and 0 > 0.

We are in position to prove Theorem 1.4. Since u α above satisfies the hypothesis of Theorem 1.4, we have that B s (g) = c n,s Scal g (x 0 ) if n > 4 and m Bs(g) (x 0 ) = 0 if n = 3.

Appendix

These results and their proofs are closely to the work of Jaber [START_REF]Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF]. We fix δ 0 ∈ (0, i g (M )) where i g (M ) > 0 is the injectivity radius of (M, g). We fix

Theorem 7.1. We let (u α ) α>0 be as in [START_REF] Druet | The AB program in geometric analysis: sharp Sobolev inequalities and related problems[END_REF]. We consider a sequence (z α ) α>0 ∈ M such that lim α→+∞ z α = x 0 . We define the function

, where exp zα : B δ0 (0) → B δ0 (z α ) ⊂ M is the exponential map at z α . We assume that d g (x α , z α ) = O(µ α ) when α → +∞.

Then,

and, up to a subsequence, η α ũα → ũ weakly in

where Eucl is the Euclidean metric of R n .

Proof. We define the metric ḡα (X) := exp zα g (µ α X) in R n and we consider the vector X 0,α = µ -1 α exp -1 zα (x 0 ). Since u α verifies the equation ( 8), we get ũα verifies also weakly ∆ ḡα ũα + ãα ũα = λ α ũ2 (s)-1

where ãα (X) := µ 2 α a α (exp zα (µ α X)) → 0 as α → +∞. Next, we follow the same proof of Theorem 2 in Jaber [START_REF]Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] and we get Theorem 7.1.