
HAL Id: hal-02879512
https://hal.science/hal-02879512v2

Submitted on 26 Feb 2021 (v2), last revised 28 Sep 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Age-structured non-pharmaceutical interventions for
optimal control of COVID-19 epidemic

Quentin Richard, Samuel Alizon, Marc Choisy, Mircea T Sofonea, Ramsès
Djidjou-Demasse

To cite this version:
Quentin Richard, Samuel Alizon, Marc Choisy, Mircea T Sofonea, Ramsès Djidjou-Demasse. Age-
structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic. PLoS Com-
putational Biology, 2021, �10.1371/journal.pcbi.1008776�. �hal-02879512v2�

https://hal.science/hal-02879512v2
https://hal.archives-ouvertes.fr


Age-structured non-pharmaceutical interventions for optimal1

control of COVID-19 epidemic2

Quentin Richarda, Samuel Alizona, Marc Choisya,b,c

Mircea T. Sofoneaa, Ramsès Djidjou-Demassea,∗
3

aMIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France4

b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford,5

UK6

c Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam7

∗Author for correspondence: ramses.djidjoudemasse@ird.fr8

Abstract9

In an epidemic, individuals can differ widely in how they spread the infection depending on10

their age or on the number of days they have been infected for. In the absence of pharmaceutical11

interventions such as a vaccine or treatment, non-pharmaceutical interventions (e.g. physical dis-12

tancing) are essential to mitigate the pandemic. We develop an original approach to identify the13

optimal age-stratified control strategy to implement as a function of the time since the onset of the14

epidemic. This is based on a model with a double continuous structure in terms of host age and15

time since infection. By applying optimal control theory to this model, we identify a solution that16

minimizes deaths and costs associated with the implementation of the control strategy itself. We17

also implement this strategy to three countries with contrasted age distributions (Burkina-Faso,18

France, and Vietnam). Overall, the optimal strategy varies over the course of the epidemic, with a19

more intense control early on. It also depends on host age, with a stronger control over the older20

population, except in the scenario where the cost associated with the control is low. In the latter21

scenario, we find strong differences across countries because the control extends to younger pop-22

ulation in France and Vietnam 2 to 3 months after the onset of the epidemic, but not in Burkina23

Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uniform24

control over the whole population or over its younger fraction only. This improved understanding25

of the effect of age-based control interventions opens new perspectives for the field, especially for26

age-based contact tracing.27
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1 Introduction30

Following its emergence in December 2019, COVID-19 has become an international public health31

emergency [1]. The infection has many similarities with that caused by influenza virus regarding32

clinical manifestations and transmission mechanism [1]. Contrary to seasonal influenza, COVID-1933

has become pandemic by spreading rapidly among completely naive host populations, i.e. with no34

pre-existing immunity [2–5]. At the start of the pandemic, no pharmaceutical interventions such as35

vaccines or treatments were available and, based on earlier epidemics, it will take several months36

before their deployment. For this reason, non-pharmaceutical intervention strategies, such as physical37

distancing, are key to controlling the pandemic [6].38

When an intervention is summarized by one or few parameter values, identifying an optimal strat-39

egy according to some criterion variable can readily be done, e.g. using a gradient approach [7]. Things40

become much more challenging when the intervention parameter value is a function of time. Optimal41

control theory [8], also known as Pontryagin’s maximum principle, specifically addresses this issue42

by identifying a function of time such that, over a finite time interval, some criterion is optimized.43

This has allowed studies to identify optimal non-pharmaceutical interventions to control infectious44

diseases such as influenza and COVID-19 [9–12]. However, a strong limitation of these studies is45

that they all ignore at least one aspect of the host population structure. First, infection parameters46

vary with infection age, i.e. depending on the number of days since infection. Second, hosts vary in47

age. The latter point is particularly important because in addition to being a function of time since48

the onset of the outbreak, optimal strategies involving physical distancing can also vary depending49

on host age [13–17]. Accounting for two dimensions, time and host age, make the optimization pro-50

cedure more challenging because Pontryagin’s maximum principle is applied to ordinary differential51

equations (ODEs) –something very common– while here we are working on partial differential equa-52

tions (PDEs) –which is less common, and more challenging. Here, we address this challenge and53

identify interventions varying in intensity with time and host age, that significantly reduce morbidity54

associated with COVID-19 at a minimal cost. Furthermore, we compare the situation in countries55

with contrasted age-structure, namely Burkina-Faso, France, and Vietnam, to show how this affects56

optimal strategies.57

The age structure of the population is a known key determinant of acute respiratory diseases,58

especially when it comes to infection severity. For example, children are considered to be responsible59

for most of the transmission of influenza virus [18], but the related hospitalization and mortality burden60

is largely carried by people of ages over 65 years [19, 20]. While much remains unknown about the61

COVID-19 epidemics, evidence to date suggests that mortality among people who have been tested62

positive for the coronavirus is substantially higher at older ages and near zero for young children63

[3, 21]. Moreover, the infectiousness of an individual has been reported to vary as a function of time64

since infection [22], which is known to affect epidemic spread [23–26].65

Our epidemiological model for the disease stage-progression [24] is structured both by a (con-66
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tinuous) age of the host and a (continuous) age of infection. A variety of epidemiological models67

allow for one or the other type of structure [27–30], starting with a seminal article from the 1920s68

[23]. However, models allowing for a double continuous structure are rare [30–37]. Such a double69

structure is particularly suited to investigate an infection such as COVID-19, with strong host and in-70

fection age effects. Indeed, in addition to taking into account the age-structure of the host population,71

as well as the gradient of disease severity from mild to critical symptoms, the model readily captures72

the variation in infectiousness as a function of the time since infection. From a theoretical point of73

view, age-structured models have been proposed to investigate the spread of acute respiratory diseases74

[38–42], and some rare models of acute respiratory diseases consider both structures as continuous75

variables [30, 32], although not in the context of optimal control theory.76

In Section 2, we first introduce the mathematical model. The model parameters and outputs are77

then defined in Section 3. In Section 4, we characterize the optimal control strategy that minimizes the78

number of deaths as well as the cost due to the implementation of the control strategy itself. Section 579

contains the main body of the results. We first analyze the epidemic spread without any intervention80

for three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam). Next, the81

performance of optimal control in terms of deaths and hospitalizations is compared for different costs82

of the control measure. Finally, the optimal control is compared to two other strategies using the same83

amount of resources to control the outbreak. The article ends by a discussion in Section 6.84

2 An age-structured epidemiological model85

2.1 Model overview86

We denote the density of individuals of age a ∈ [0,amax] that are susceptible to the infection at time87

t ∈ [0,T ] by S(t,a). These individuals can become infected with a rate called the force of infection88

and denoted λ (t,a). We assume that a fraction p of these individuals are paucisymptomatic, which89

means that they will develop very mild to no symptoms, and enter group Ip. Note that this class90

can also be interpreted as the fraction of the population that will not isolate themselves during their91

infection. Other individuals are assumed to develop more symptomatic infections, either severe Is with92

proportion q(a) depending on the age a, or mild Im with proportion 1−q(a).93

Each of the three infected host populations are structured in time since infection, so that Iv(t,a, i),94

v∈ {p,s,m}, denotes the density at time t of individuals of age a that have been infected for a duration95

i ∈ R+. Upon infection, all exposed individuals are assumed to remain non-infectious during an96

average period ilat . Next, they enter an asymptomatic period during which they are infectious. Only97

Im and Is develop significant symptoms after an average time since infection isympt , which can allow98

them to self-isolate to limit transmission. During their infection, individuals can recover at a rate99

hv(a, i) (v ∈ {p,m,s}) that depends on the severity of the infection and the time since infection i.100

Severely infected individuals of age a may also die from the infection at rate γ(a, i).101

The infection life cycle is shown in Figure 1. The total size of the host population of age a at time102
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t is103

N(t,a) = S(t,a)+R(t,a)+
∫

∞

0
(Ip(t,a, i)+ Im(t,a, i)+ Is(t,a, i))di. (1)

S(t,a) R(t,a)

D(t)

�(t,a)

p

(1-p)q(a)

(1-p)(1-q(a)) 

i0 ilat isympt �(a,i)

exposed asympt

Is(t,a,.)

Im(t,a,.)

Ip(t,a,.)

sympt

h
s(a,i)

hm(a,i)

hp(a
,i)

Figure 1: The model flow diagram. Susceptible hosts of age a at time t (S(t,a)) are exposed to the
virus with a force of infection λ (t,a). A fraction p of exposed individuals, which are infected since
time i, will never develop symptoms and enter the group of paucisymptomatic infections (Ip(t,a, i)).
The rest will develop symptomatic infections, either severe (Is(t,a, i)) with proportion q(a) depending
on age a of individuals, or mild (Im(t,a, i)). Exposed individuals remain non-infectious for a duration
ilat after infection. Next, they become asymptomatic infectious and only symptomatic infected will
develop symptoms at time isympt after infection. Infected individuals recover at rate hv(a, i). Only
severely infected of age a die from the infection at rate γ(a, i). Notations are shown in Table 1.

Remark 2.1 Contrarily to classical SEAIR models, disease-stage progression in our model is not cap-104

tured by discrete compartments (exposed, asymptomatic, and infected) with exponentially distributed105

waiting times to switch between compartments. The advantage of our formalism is that disease pro-106

gression can be modelled using a continuous variable, called the time since infection (in days) denoted107

here by i. Every infected person then remains in the “infection compartment” from exposure until re-108

covery (or death). The time since infection grows linearly with time, according to the derivative with109

respect to i. Latency from exposed to asymptomatic and time of symptoms onset are not needed for110

this modelling approach because these are captured through the functions describing the transmission111

rate, the mortality rate, and the recovery rate at time i post infection. More precisely, the average112

latency from exposed to asymptomatic (ilat) is simply mentioned to define the average time to infection113

onset (isympt), and also to help the readers to understand the model flow diagram (Figure 1). On the114

other hand, the time to infection onset (isympt) is used to define infectiousness reduction factors (ξs,ξm)115

and the mortality rate due to the infection (γ).116

2.2 Age-structured transmission and severity117

We use two components to model the infection process. First, we define the transmission probability
βv(a, i) (v ∈ {p,m,s}) for each contact between an infected of age a and a susceptible person, which
depends on the time since infection i. Second, we introduce the kernel K(a,a′) that represents the
average number of contacts by unit of time between an individual of age a′ and an individual of age a.
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Here, this contact matrix is informed by data from earlier study [43]. The force of infection underwent
by susceptible individuals of age a at time t is then given by

λ (t,a,c) = (2)

(1− c(t,a))
∫ amax

0
K(a,a′)

∫
∞

0

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
di da′.

Here, c = c(t,a) is the percentage of contacts reduction towards people with age a, due to public118

measures, at time t. The total force of infection at time t in the whole population is computed as119 ∫ amax
0 λ (t,a,c)da. The dynamics of newly infected individuals (i.e. i = 0) in each group is thus defined120

by121 
Is(t,a,0) = (1− p)q(a)λ (t,a,c)S(t,a),
Im(t,a,0) = (1− p)(1−q(a))λ (t,a,c)S(t,a),
Ip(t,a,0) = pλ (t,a,c)S(t,a).

(3)

Note that p likely depends on age, but because is it totally unknown, we assume it is a constant.122

Further, we assume that only severe infections Is lead to hospitalization and we denote by123

H(t) =
∫ amax

0

∫
∞

isympt

Is(t,a, i)di da (4)

the total population hospitalized at time t, where isympt is the average time to symptoms onset. Each
individual of age a dies at a rate µ(a,H(t)) at time t, defined by

µ (a,H(t)) = µnat(a)+µadd (a,H(t)) .

In the latter equation, µnat denotes the natural mortality rate when hospitals are not saturated. Further,124

we assume that this rate increases significantly as soon as the number of severe cases exceeds the125

healthcare capacity Hsat and µadd is such additional death rate due to hospital saturation (see Section126

3.2).127

We apply the same reasoning by assuming that the disease-related mortality can increase because
of hospital saturation. Therefore, severely infected individuals of age a infected since time i die at
time t at rate γ(a, i,H(t)) defined by

γ(a, i,H(t)) = (γdir(a)+ γindir(a,H(t)))1[isympt ,ismax]
(i).

Here, γdir and γindir are mortality rates directly and indirectly due to the COVID-19 respectively (see128

Section 3.2). The disease-related mortality occurs after the emergence of symptoms and before the129

mean final time of infection for severe cases, i.e. for i ∈ [isympt , ismax].130

Finally, infected individuals of age a infected since time i recover at rates hs(a, i), hm(a, i) and131

hp(a, i) for severe, mild and paucisymptomatic infections respectively.132
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The boundary conditions (3) are coupled with the following equations:133 

∂S
∂ t

(t,a) = −µ(a,H(t))S(t,a)−λ (t,a,c)S(t,a),(
∂ Is

∂ t
+

∂ Is

∂ i

)
(t,a, i) = − [µ(a,H(t))+ γ(a, i,H(t))+hs(a, i)] Is(t,a, i),(

∂ Im

∂ t
+

∂ Im

∂ i

)
(t,a, i) = − [µ(a,H(t))+hm(a, i)] Im(t,a, i),(

∂ Ip

∂ t
+

∂ Ip

∂ i

)
(t,a, i) = − [µ(a,H(t))+hp(a, i)] Ip(t,a, i),

∂R
∂ t

(t,a) = ∑
v∈{s,m,p}

∫
∞

0
hv(a, i)Iv(t,a, i)di−µ(a,H(t))R(t,a),

(5)

for any (t,a, i) ∈ (0,T ]× [0,amax]×R+, with initial conditions (at t = 0):

S(0,a) = S0(a), R(0,a) = 0, Is(0,a, i) = Is,0(a, i), Im(0,a, i) = Im,0(a, i), Ip(0,a, i) = IA,0(a, i)

for each (a, i) ∈ [0,amax]×R+. The initial conditions of infected populations are detailed in Section
3.3. Using (3) and an integration over i of (5), one may observe that the total population N defined by
(1) is strictly decreasing since it satisfies the following inequality:

∂N
∂ t

(t,a)≤−µnat(a)N(t,a), ∀a ∈ [0,amax], ∀t ≥ 0.

This is due to the fact that population aging and births are neglected in this model since we consider134

a time horizon of only one year. Further, basic properties of the model such as existence and pos-135

itiveness of solutions is out of the primary scope of our study. However, these can be specifically136

addressed using an integrated semigroup approach and Volterra integral formulation (see e.g. [44–137

47] and references therein). More specifically, one may follow [31] where the well-posedness of an138

epidemiological model with a double continuous structure is handled.139

3 Epidemiological outputs, model parameters and initial conditions140

In this section we briefly describe some useful epidemiological outputs, the shape of age-dependent141

parameters considered for the simulations of model (3)-(5), and the initial conditions. All state vari-142

ables and other parameters are summarized in Table 1.143

3.1 Epidemiological outputs144

In addition to the total number of hospitalized cases H(t) at time t defined by (4), we define additional145

epidemiological outputs such as the number of non-hospitalized cases (NH(t))146

NH(t) =
∫ amax

0

[∫ isympt

0
Is(t,a, i)di+

∫
∞

0
(Im(t,a, i)+ Ip(t,a, i))di

]
da. (6)
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Note that the latter encompasses paucisymptomatic, mildly infected, and severely infected but not yet147

hospitalized hosts.148

For the cumulative number of deaths, we distinguish between those directly due to COVID-19149

infections (Dcum
dir (t)), and those indirectly due to the epidemic (Dcum

indir(t)), which originate from the150

saturation of the health system:151

Dcum
dir (t) =

∫ t

0
Ddir(s)ds, Dcum

indir(t) =
∫ t

0
Dindir(s)ds, (7)

where Ddir(t) and Dindir(t) are the number of deaths at time t respectively defined by152

Ddir(t) =
∫ amax

0

∫ ismax

isympt

γdir(a)Is(t,a, i)di da,

Dindir(t) =
∫ amax

0
µadd(a,H(t))N(t,a)da+

∫ amax

0
γindir(a,H(t))

∫ ismax

isympt

Is(t,a, i)di da.

Every aforementioned output implicitly depends on parameter c = c(t,a), which we will omit
in the notations when no confusion is possible. However, for clarity, we do explicitly write this
dependence to compare public health measures. The relative performance between two strategies c1

and c2, denoted by ∆(c1,c2), is estimated by assessing the cumulative number of deaths in the whole
population during the T days of control period with the strategy c1 relatively to deaths with the strategy
c2. Formally we have

∆(c1,c2) = 1−
Dcum

dir (c1,T )+Dcum
indir(c1,T )

Dcum
dir (c2,T )+Dcum

indir(c2,T )
.

Hence, a relative performance ∆(c1,c2) = 0.1 implies that the strategy c1 reduces the number of deaths153

by 10% relatively to c2.154

3.2 Model parameters155

Mortality rates156

We assume that indirect mortality, i.e. not directly due to COVID-19, increases when the number of157

hospitalisations H(t), at time t, exceeds a healthcare capacity threshold Hsat (which is approximated158

with the maximal intensive care capacity). The natural mortality rate then increases by µadd(a,H) for159

the whole population, and by γindir(a,H) for severely infected individuals of age a. These rates are160

modelled by logistic functions that are arbitrarily chosen as:161

µadd(a,H(t)) =
10−2 µnat(a)

1+99 exp
(
−10

(
H(t)
Hsat
−1
)) , γindir(a,H(t)) =

γdir(a)

1+99 exp
(
−10

(
H(t)
Hsat
−1
)) . (8)

This choice of functional parameters implies that

µadd(a,0)≈ 0, γindir(a,0)≈ 0, µadd(a,Hsat) = 10−4
µnat(a), γindir(a,Hsat) = 10−2

γdir(a)
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which means these additional mortalities are negligible when hospitals are not saturated (Figure 2 b).
In case of full saturation, we have

lim
H→∞

µadd(a,H) = 10−2
µnat(a), lim

H→∞
γindir(a,H) = γdir(a)

for each a ∈ [0,amax], meaning that the natural mortality rate is only increased by 1%, while the162

disease-induced mortality rate γ is doubled. Indeed, according to [48], less than 50% of patients in163

critical care will die in case of no saturation of hospitals.164

(a) (b)

Figure 2: (a) Transmission probabilities of paucisymptomatic infections βp, symptomatic severe βs

and mild infections βm. (b) Disease induced mortality rate with a maximal healthcare capacity Hsat =

5×103.

Transmission rates165

The infectiousness of an individual aged a, which is infected since time i, is given by βv(a, i) (v ∈166

{s,m, p}). Based on estimates described in [22], we assume that βv does not depend on host age a,167

i.e., βv(a, i) = βv(i). This assumption is only made for parameterization purpose and does not impact168

the general formulation of the model proposed here (this is discussed later in Section 6).169

The transmission rate at a given day i post infection of a given type of infectious host is defined170

such that βv(i) = α × ξv(i)×β (i), for v ∈ {s,m, p}. As detailed below, α is a scaling parameter ob-171

tained from the value of the basic reproduction number R0, which is the mean number of secondary172

infections caused by an infected host [24]. As [22], we assume that parameter β , which strongly de-173

pends on the generation interval, follows a Weibull distribution β ∼W (3,5.65). Finally, parameters174

ξv(i) are factors that capture variations in infectiousness based on the type of host. For paucisymp-175

tomatic individuals, for instance, these are assumed to be constant (ξp(i) = ξp), while the reduction176

factor in more symptomatic infections (severe and mild) is assumed to vary after symptom onset to177
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capture admission in a healthcare facility or self-isolation at home. More precisely, we assume that178

ξs(i) =

1 if i ∈ [0, isympt ],

e− ln(10)(i−isympt) if i > isympt

and ξm(i) =

1 if i ∈ [0, isympt ],

e− ln(2)(i−isympt) if i > isympt .
(9)

These two functions are chosen arbitrarily by assuming that individuals do not isolate before symp-179

toms onset (i≤ isympt), and that isolation is stronger when symptoms are more severe (Figure 2 a). We180

therefore assume that the transmission probability β is divided by 10 (respectively 2) every day after181

the average time of symptoms onset for individuals severely (resp. mildly) infected.182

Recovery rates183

We assume that recovery rates hv(a, i), v ∈ {s,m, p}, of infected individuals of age a infected since184

time i are independent of the age a and take the following form:185

hs(·, i) = 1[ismax,∞](i), hm(·, i) = hp(·, i) = 1[immax,∞](i), ∀i ∈ R+. (10)

That is, one can recover from severe (resp. mild and paucisymptomatic) infections only after a time186

since infection ismax (resp. immax) corresponding to the mean duration of infection.187

3.3 Initial conditions188

The initial susceptible population S0 and epidemic size I0 are given in Table 1. Since, initially, screen-
ing is usually restricted to individuals with severe symptoms, we assume that all initial cases are severe
infections. Thus, we set

∫ ismax
isympt

∫ amax
0 Is,0(a, i)da di = I0 as the initial severely infected individuals, which

we assume to be uniformly distributed with respect to the time since infection i on the interval [0, ismax].
Using estimates from [55, 60] on the age distribution of hospitalised people, we derive an estimation
of Is,0(a, i) for each (a, i) ∈ [0,amax]×R+. Next, following the life cycle (Figure 1), we obtain an
estimation of the total initial infected population by Is,0(a,i)

(1−p)q(a) . From there, we deduce the initial mildly
and paucisymptomatic infected populations, which can be denoted respectively by

Im,0(a, i) =
1−q(a)

q(a)
Is,0(a, i) and IA,0(a, i) =

p
q(a)(1− p)

Is,0(a, i).

4 Optimal intervention189

As explained above, our goal is to find an optimal control strategy that is allowed to vary depending on
the number of days since the onset of the epidemic (t) and on host age (a). In this section, following
well established methodology in optimal control theory [13–16, 61], we search for the optimal control
effort function c∗ that minimizes the objective functional J : L∞(R+× [0,amax]) 3 c 7−→ J(c) ∈ R,
where

J(c) = Dcum
dir (c,T )+Dcum

indir(c,T )+
∫ T

0

∫ amax

0
B(a)c2(t,a)da dt,

9



Param. Description (unit) Values [source]
State variables

S Susceptible individuals
Is Severely infected individuals
Im Mildly infected individuals
Ip Paucisymptomatic infected individuals
R Recovered individuals

General parameters
t,T time and final time of simulations (days) t ∈ [0,T ] (ad hoc)
a,amax age and maximal age of individuals (years) a ∈ [0,amax], amax = 100 (ad hoc)
i time since infection (days) R+ (ad hoc)
ilat average latency from exposed to asympt. (days) 4.2 [49]
isympt average time of symptoms onset (days) ilat +1 = 5.2 [48]
ismax mean final time of infection for severe cases (days) isympt +20 = 25.2 [50]
immax mean final time of infection for mild cases (days) isympt +17 = 22.2 [50]
µadd additional death rate

(
days−1) defined by (8)

βs,βm,βp transmission probabilities (unitless) computed in Section 3.2
ξs,ξm,ξp infectiousness reduction factors (unitless) defined by (9) and ξp = 0.1 [22]
hs,hm,hp recovery rates per infection

(
days−1) defined by (10)

c, cmax percentage of contacts reduction and its upper bound c ∈ [0,cmax], cmax = 0.95 (assumed)
γdir mortality rate directly due to the COVID-19

(
days−1) [48]

γindir mortality rate indirectly due to the COVID-19
(
days−1) defined by (8)

p proportion of paucisymptomatic (unitless) variable
q proportion of symptomatic requiring hospitalisation

(unitless)
[48]

B cost of the control measure (unitless) variable

Specific parameters for each country
Param. Description (unit) Burkina Faso France Vietnam
S0 initial population of susceptible [51] [52, 53] [54]

I(∗)0 initial epidemic size 288 (WHO)(∗∗) 130 [55] 217 (Ministry of Health)
µnat natural death rate

(
days−1) [56] [57] [58]

Hsat maximal healthcare capacity (unitless) 11 [59] 5000 [55] 5932 (NIHE)(∗∗)

K matrix of social contacts
(
days−1) [43] [43] [43]

Parameters and range for the global sensitivity analysis
Param. Description Range
Pop.Struc population structure {Burkina Faso, France, Vietnam}
Hsat maximal healthcare capacity {10, 100, 500, 2000, 5000, 6000, 50000, 5e+05, 5e+06}
p proportion of paucisymptomatic {0.05 to 0.95} by step of 0.1
isympt average time of symptoms onset {1.2 to 9.2} by step of 2
ξp infectiousness reduction of Ip {0.1, 0.3, 0.5, 0.7, 1}

(∗): corresponds to March, 1st, 2020 in France and April, 1st, 2020 in Burkina Faso and Vietnam.
(∗∗): WHO: World Health Organisation, NIHE: National Institut of Hygiene and Epidemiology

Table 1: Model variables and parameters.10



Dcum
dir , Dcum

indir being the cumulative number of deaths defined by (7), and B(a) the cost associated with190

the implementation of such control c for the age class a. Our aim is to find the function c∗ satisfying191

J(c∗) = min
c∈U

J(c) (11)

wherein the set U is defined by

U = {c ∈ L∞(R+× [0,amax]) : 0≤ c(·, ·)≤ cmax},

with cmax ≤ 1 a positive constant. That is to say, the function c∗ will minimize the cumulative number192

of deaths during T days, as long as the cost of the control strategy is not too large.193

Let (S, Is, Im, Ip,R) be a given solution of (3)-(5) then let λ and H be respectively defined by (2)194

and (4). After some computations (Appendix C), we find that the adjoint system of (5) reads as195 

∂ zS
∂ t (t,a)

∂ zR
∂ t (t,a)(

∂ zIs
∂ t +

∂ zIs
∂ i

)
(t,a, i)(

∂ zIm
∂ t +

∂ zIm
∂ i

)
(t,a, i)(

∂ zIp
∂ t +

∂ zIp
∂ i

)
(t,a, i)


=


µ(a,H(t))zS(t,a)−µadd(a,H(t))
µ(a,H(t))zR(t,a)−µadd(a,H(t))

(µ(a,H(t))+hs(a, i))zIs(t,a, i)−µadd(a,H(t))− γ(a, i,H(t))(1− zIs(t,a, i))
(µ(a,H(t))+hm(a, i))zIm(t,a, i)−µadd(a,H(t))
(µ(a,H(t))+hp(a, i))zIp(t,a, i)−µadd(a,H(t))



−


ζ2(t,a)

∫
∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′ di
0

ζ1(t,a)1[isympt ,∞)(i)+βs(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hs(a, i)
βm(a, i)

∫ amax
0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hm(a, i)

βp(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hp(a, i)


(12)

with final conditions zS(T,a) = zR(T,a) = 0, zu(T,a, i) = 0 and limi→∞ zu(t,a, i) = 0, for any u ∈
{Is, Im, Ip} and (a, i) ∈ [0,amax]×R+, while ζk (k ∈ {1,2,3}) satisfy the system:ζ1(t,a)

ζ2(t,a)
ζ3(t,a)

=


∂ µ

∂H (a,H(t))(S(t,a)(1− zs(t,a))+R(t,a)(1− zR(t,a)))
[1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0)− (1− c(t,a))zS(t,a)

zR(t,a)



+


∫

∞

0

∂ µ

∂H
(a,H(t))(Is(t,a, i)(1− zIs(t,a, i))+ Im(t,a, i)(1− zIm(t,a, i)))di

0
0



+


∫

∞

0

(
∂ µ

∂H
(a,H(t))Ip(t,a, i)(1− zIp(t,a, i)+

∂γ

∂H
(a, i,H(t))Is(t,a, i)(1− zIs(t,a, i))

)
di

0
0

 .

(13)
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Finally, the Hamiltonian H of (11) is given by (C.1). Then, solving
∂H

∂c
= 0, it comes that196

c∗(t,a) = max(0,min(ĉ(t,a),1)), (14)

for every (t,a) ∈ [0,T ]× [0,amax], where

ĉ(t,a) =
S(t,a)λ0(t,a)

[
(1− p)(1−q(a))zIm(t,a,0)+(1− p)q(a)zIs(t,a,0)+ pzIp(t,a,0)

]
2B(a)

,

with λ0 defined by (B.4).197

We also assume that the cost B(a) of the control measure over individuals aged a ∈ [0,amax] is
proportional to their density in the initial susceptible population S0, i.e.

B(a) =
B∗S0(a)∫ amax

0 S0(u)du
,

where B∗ ∈ R+ is a variable parameter characterizing the relative cost in implementing the strategy.198

Additionally, one may consider the age distribution of the economic cost on the shape of the function199

B. For example, the economic cost can be assumed more important for the working population (i.e.200

age group 20−60) compared to the older, mostly retired, population. However, in absence of relevant201

references on this topic we stand with our primary assumption.202

The state system (3)-(5) and the adjoint system (12)-(13) together with the control characteriza-203

tion (14) form the optimality system to be solved numerically. Since the state equations have initial204

conditions and the adjoint equations have final time conditions, we cannot solve the optimality system205

directly by only sweeping forward in time. Thus, an iterative algorithm, forward-backward sweep206

method, is used [8]. In other words, finding c∗ numerically, involves first solving the state variables207

(3)-(5) forward in time, then solving the adjoint variables (12)-(13) backward in time, and then plug-208

ging the solutions for the relevant state and adjoint variables into (14), subject to bounds on the control209

function. Finally, the proof of the existence of such control is standard and is mostly based on the Eke-210

land’s variational principle [62]. Therefore, existence of the optimal control to the above problem is211

assumed and we refer to [13] for more details.212

5 Results213

Here we consider three countries as case studies: Burkina Faso, France and Vietnam. They have quite214

contrasted age-structure and social contacts of their population (Figure 3). Indeed, in Burkina Faso215

the very large majority (96.1 %) of the population is under 60 while it is respectively 87.7 % and 73.4216

% in Vietnam and France (Figure 3 a,b). It shows that an higher proportion of the population is older217

than 60, hence at risk for COVID-19 infection, in France 26.6%, in comparison to Vietnam 12.3 %, or218

to Burkina Faso 3.9 % (Figure 3 a,b). Also, contacts are more frequent among the older population in219

France compared to Vietnam (Figure 3 d, e). By contrast, very few contacts are observed among older220

populations in Burkina Faso (Figure 3 c).221
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(a) (b)

(c) (d) (e)

Figure 3: (a)-(b) The population age-structure of Burkina Faso, France and Vietnam. (c)-(e) Contact
matrices in the three countries, in log scale where dark color intensities indicate less likely events
i.e. smaller tendency of having a household member of that age, lower proclivity of making the age-
specific contact.

5.1 Global sensitivity analysis222

We study the sensitivity of infected individuals, hospitalizations and deaths to five parameters: pro-223

portion of paucisymptomatic (p), average time of symptoms onset (isympt), infectiousness reduction of224

paucisymptomatic infections (ξp), healthcare capacity (Hsat) and population structure (including the225

natural mortality, the size of the population, age-structure and social contacts). The variation range of226

above parameters is assigned in Table 1. Sensitivity indices are estimated by fitting an ANOVA (Anal-227

ysis Of Variance) linear model, including third-order interactions, to the data generated by simulation.228

Note that this ANOVA linear model fitted well with 99% of variance explained. Overall, the popula-229

tion structure is the main parameter highlighted by the sensitivity analysis with 70% of the variance230

explained for the number infected individuals, 40% for hospitalizations and deaths (Figure S1). The231

population structure is followed by ξp, p, and isympt which have quite similar importance on the num-232

ber infected individuals with a slight dominance of ξp (Figure S1). By contrast, for hospitalizations233

and deaths, the population structure is followed by p with 40% and 30% of the variance explained234

respectively; while ξp and isympt have very marginal impact (Figure S1). Finally, the importance of235

Hsat is strictly negligible on the three output variables, with however, a greater importance on deaths236

as compared to hospitalizations and infected (Figure S1).237
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5.2 The basic reproduction number R0238

An explicit expression of the R0 of model (3)-(5) is difficult to obtain in general. We show in Ap-239

pendix B that it is possible to write R0 = α × r(U), where α is the scaling parameter introduced in240

Section 3.2, and r(U) is the spectral radius of the next generation operator U defined on L1(0,amax)241

by242

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax). (15)

where S0 is the initial susceptible population, K is the contact matrix and ω(a, i) is the infectiousness243

of individuals of age a infected since time i (Appendix B). It follows that244

α =
R0

r
(
U
) . (16)

Setting R0 = 3.3 [63, 64] for all three countries and using a numerical approach and corresponding245

values for S0 and K for each country, we successively determine r(U) and α by (15) and (16) respec-246

tively.247

5.3 Uncontrolled epidemic248

We first use the model (3)-(5) to describe the outbreak of the epidemics for all three countries, without249

any public health measure (i.e. c ≡ 0), with R0 = 3.3 and other parameters defined in Section 3 and250

summarized in Table 1.251

The peak of the epidemics is reached approximately at day t = 51 for hospitalised people, and day252

t = 46 for non-hospitalised people without any control measures in the France scenario (Figure 4 e).253

Such times to peaks for hospitalised and non-hospitalised people are 47 and 41 (resp. 50 and 45) for254

Burkina Faso (resp. Vietnam) scenario (Figure 4 a, resp. Figure 4 i). The delay between the two peaks255

is due to the latency time isympt for symptoms onset (Table 1).256

In absence of control measures, the healthcare capacity is quickly exceeded, about twenty days257

for France scenario (Figure 4 e), and the number of deaths increases sharply from then on. Such258

configuration is similar for Vietnam scenario (Figure 4 i). By contrast, due to a very low healthcare259

capacity in Burkina Faso, the health system is exceeded only after a few days compared to France260

and Vietnam (Figure 4 a). However, this overloading of the health system does not have the same261

consequences in terms of mortality in Burkina Faso compared to France and Vietnam. This is partially262

explained on the one hand by the fact that less than 4% of the population is above 60 years in Burkina263

Faso (Figure 3 a) and on the other hand by the fact that very few contacts are observed with older264

population in Burkina Faso compared to France or Vietnam (Figure 3 b-d).265

At the end of the simulation (t = 150 days), without any control measures, the herd immunity266

threshold (1− 1/R0 ≈ 69.7%) is reached in Burkina Faso, France and Vietnam (Figure 5). Indeed,267

the average size of the epidemic (severe, mild, and paucisymptomatic infections) is close to 90% in268

France and Vietnam but only 78% in Burkina Faso (Figure 5). Interestingly, in all three countries,269
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Figure 4: Epidemic scenario without any control measures. (a) Dynamics of epidemiological
outputs, (b) number of cumulative deaths, (c) number of hospitalised and (d) non-hospitalised people
in Burkina Faso. (e-h) As for (a-d) but in France. (i-l) As for (a-d) but in Vietnam. Parameter values
are default in Table 1, R0 = 3.3 and the proportion of paucisymptomatic infections is p = 0.5.

15



Figure 5: Simulated age distribution of the proportion of the population infected in Burkina
Faso, France, and Vietnam in absence of control measures. Parameter values are default, R0 = 3.3
and the proportion of paucisymptomatic infections is p = 0.5.

the proportion of the population less than 20 that have been infected is around 93%. While almost270

the same proportion of the group [20−60] was infected in France and Vietnam (94%), only 65% was271

infected in Burkina Faso. This proportion then decreases for the population older than 60, more or less272

quickly depending on the country, and is around 73% in France, 56% in Vietnam and 33% in Burkina273

Faso. Further, among the infected population, more than 98% are less than 60 in Burkina Faso, while274

this proportion is 92% in Vietnam and 76% in France. This age structure of infected populations is275

particularly important since most of the infections that occur in the young population do not require276

hospitalisation (Figures 4g, 4 c, 4 k) while people older than 60 represent the age class with the highest277

cumulative number of deaths (Figures 4 f, 4 b, 4 j).278

5.4 Optimal intervention279

We now investigate the result of implementing an optimal intervention that accounts for the age struc-280

ture of the population. Strategies performances are here compared in terms of cumulative number of281

deaths for three costs of control measures (low B∗ = 102, intermediate B∗ = 103, and high B∗ = 104).282

The optimal control strategy varies in time and depends on host age. In general, regardless of283

the country (Burkina Faso, France or Vietnam), the control is stronger early in the epidemic and for284

older populations (Figures 6, S2, S3). Overall, the level of optimal control is lower in Burkina Faso285

compared to France and Vietnam (Figures 6, S2, S3). If the cost of implementing the measures B∗ is286

intermediate or high, the optimal control is almost restricted to individuals above 55 and to the first287

third of the time interval considered, with a significant reduction in deaths (Figures 6 d, e, Figure S2288

d, e and Figure S3 d, e). In France, the relative performance of the optimal control c∗ compared to a289
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(a) (b)

(c)

(d) (e)

Figure 6: Optimal control strategy (c∗) as a function of the cost of the control measures in France.
Intensity of the control as a function of time and host for for (a) relatively low B∗ = 102, (b) an
intermediate B∗ = 103, and (c) a high B∗ = 104 cost. (d) Prevalence of hospitalized patients as a
function of the strategy and the cost. (e) Cumulative deaths per age at the end of the time interval
(when T = 365 days). Parameter values not related to the control are identical to Figure 4. Cases of
Burkina Faso and Vietnam are given by Figures S2, S3.

‘doing nothing’ scenario (∆(c∗,0)) is at least 92% (resp. 82%) when the cost is B∗ = 103 (resp. 104).290

For Burkina Faso, ∆(c∗,0) is at least 50% (resp. 4%) when B∗ = 103 (resp. 104). Finally, for Vietnam291

∆(c∗,0) is at least 87% (resp. 62%) when B∗ = 103 (resp. 104). In the case of Burkina Faso, note that292

the level of the optimal control is quite low when the cost of implementation is high (Figure S2 c),293
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and as a result, the effect of this control in reducing mortality at the population level is negligible. This294

is due to the relatively small number of deaths in the whole population in Burkina Faso without any295

control measures (Figure 4 a).296

If the implementation of the control measure comes at a low cost (B∗ = 102), the optimal control297

significantly extends to younger populations in all three countries (Figures 6 a, S2 a, S3 a), with298

a maximum intensity reached near the 4th month of the epidemics and a steady decrease until the299

end of the control period. Overall, the optimal control lasts less longer in Burkina Faso (Figure S2 a)300

compared to the cases of France and Vietnam (Figures 6 a, S3 a). At first, the control is mainly applied301

to people above 35 in all three countries (Figures 6 a, S2 a, S3 a). But, while the control extends to302

people less than 35 in France and Vietnam after 2 or 3 months (Figures 6 a, S3 a), such an extension303

is very moderate (or even negligible) in Burkina Faso (Figure S2 a). The resulting reduction in the304

number of deaths is very pronounced with a relative performance ∆(c∗,0) of at least 80% (resp. 99%,305

97%) in Burkina Faso (resp. France, Vietnam).306

5.5 Performance and practical implementation307

To illustrate how the strategy identified using optimal control theory outperforms “classical” optimi-308

sation approaches, we derive optimal strategies that do not vary in time and use the same amount of309

“resources” (that is the same cumulative cost). Assuming a relatively high cost B∗ = 103, we first310

investigate a control strategy that targets the younger fraction of the population (Figure 7 a), a second311

strategy that uniformly targets the whole population (Figure 7 b). Both strategies have a control level312

cmax = 0.95 and vary in duration (the total amount of resource used being constant).313

In France, when targeting the population uniformly, the epidemic is under control during approxi-314

mately 60 days. However, once the control resources are exhausted, the epidemic reemerges (Figure 7315

c). With the (longer) control over the younger fraction of the population, the first epidemic peak is316

slightly delayed and the epidemic appears to be under control for a longer time period (180 days). Un-317

fortunately, resources also become exhausted and a second peak appears a few months later (Figure 7318

c). Whether it is for a uniform control of the whole population or over its younger fraction, the cu-319

mulative mortality over the time period of interest is comparable to that without any control measure320

(Figure 7 d). The performance of the optimal control relatively to the uniform control of the whole321

population or over its younger fraction, is approximately 92%; and at the end, 55% of the whole popu-322

lation has been infected with the optimal control and at least 85% with control of the whole population323

or over its younger fraction (Figure 7 e). A such configuration is quite similar for the case of Vietnam324

(Figure S4).325

By contrast, for the case of Burkina Faso, regardless the control strategy (optimal, uniform or326

over the younger fraction) the proportion of infected population is approximately the same as without327

control (78%). The herd immunity threshold (1−1/R0 ≈ 69.7%) is then reached for all the three con-328

trol measures and the epidemic cannot restart (Figure 8 e). The cumulative mortality with a uniform329

control of the whole population or over its younger fraction is comparable to that without any control330
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(a) (b)

(c) (d)

(e)

Figure 7: Comparing optimal control with uniform control of the whole population of over its
younger fraction in France. (a) Illustration of the control over the young population and (b) uniform
control of the whole population. (c) Number of hospitalizations. (d) Cumulative deaths per age at final
time T = 365 days. (e) Age distribution of the proportions of the population that have been infected
before one year. Here, we assume B∗ = 103 and p = 0.5.

measure (Figure 8 d). However, despite their same proportion of infected individuals, the performance331

of the optimal control relatively to the uniform control of the whole population or over its younger332

fraction, is at least 50%.333

A practical issue regarding the implementation of such optimal control strategy is the fact that334

it is a continuous function. One possibility to address this problem is to derive step functions. For335

instance, in Supplementary Figure S5, we subdivided the population into 10-year amplitude classes336
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(a) (b)

(c) (d)

(e)

Figure 8: Comparing optimal control with uniform control of the whole population or over its
younger fraction in Burkina Faso. (a) Illustration of the control over the young population and (b)
uniform control of the whole population. (c) Number of hospitalizations. (d) Cumulative deaths per
age at final time T = 365 days. (e) Age distribution of the proportions of the population that have been
infected before one year. Here, we assume B∗ = 103 and p = 0.5.

and updated the control every 3-weeks. Importantly, even though it is assumed to be constant during337

each 3-weeks period for each age-class, the control intensity directly originates from the results of338

the continuous optimal control strategy. This discrete implementation of the optimal strategy achieve339

similar efficiencies (Figure S5), with a relative performance of 91% compared to a doing nothing340

scenario.341
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6 Discussion342

Non-pharmaceutical public health interventions can be implemented either to mitigate the COVID-19343

epidemic wave, and rely on natural immunisation, or to suppress the wave long enough to develop344

and implement a vaccine or a treatment. Here, we explicitly factor in the age heterogeneity of the345

host population in the identification of the optimal allocation of the control efforts in three countries346

(Burkina Faso, France, Vietnam) which have quite contrasted age-structure of their population and347

social contacts (Figure 3).348

We use optimal control theory to characterize an optimal strategy that significantly reduces the349

number of deaths, while being sustainable at the population level. Our formulation assumes a quadratic350

cost for the control effort. Overall, the optimal control lasts less shorter in Burkina Faso compared to351

cases of France and Vietnam. We find that, with this strategy, the intensity of the control is always352

relatively high on the older fraction of the population during at least a hundred days, before decreasing353

more or less rapidly depending on the cost associated to the control and the social structure of the host354

population. The control over the younger fraction of the population is weak and only occurs when355

the cost associated with the optimal control is relatively low and, while the control extends to the356

younger population in France and Vietnam after 2 or 3 months, such extension is very moderate (or357

even negligible) in Burkina Faso. This late control over the younger part of the population actually358

mimics the results [10] where the control did not peak right away. Intuitively, if control strategies359

come at a high cost for the population, it is best to focus on the age classes that are the most at risk.360

Conversely, if the control measures are more acceptable to the population, the optimal strategy is to361

aim wide in order to completely suppress the epidemic wave.362

Information on the natural history of paucisymptomatic infections of COVID-19 remains rela-363

tively little-known [65, 66]. It is estimated that a proportion p of infected individuals will remain364

asymptomatic throughout the course of infection. However, this proportion remains largely unspeci-365

fied in the literature [65, 66]. We explored effects of the proportion p on the optimal control strategy366

c∗. Overall, the proportion of paucisymptomatic infections has marginal effects on the optimal control367

strategy (Figure S6). The optimal control remains strong over the older population from the begin-368

ning of the epidemic, before being progressively relaxed. The control over the younger population is369

weaker and occurs only if the control cost itself is low. But, the level of control over the younger frac-370

tion increases when the proportion of paucisymptomatic infections decreases. Further, for high values371

of B∗ (103 or 104), the shape of the optimal control is qualitatively the same when the proportion p372

varies, except for extreme high values of p= 0.9 and B∗= 104 for which the control becomes naturally373

low for the whole population (Figure S6). Indeed, the epidemics cannot be stopped and the strategy374

is then to reduce mortality by protecting the population the most at risk (here the older population).375

However, with low value of B∗ (102), different shape of the optimal control give the same result since376

there are enough resources to stop the epidemics.377

Given the leverage represented by school and university closure, we investigated the effect of378
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control measures over individuals aged under 25. Our results show that NPIs targeting the younger379

fraction of the population are not very efficient in reducing cumulative mortality, unless they can be380

implemented strongly and for a relatively long period. Indeed, the number of deaths with a control381

only over the younger population is similar to a doing nothing scenario for cases of Burkina Faso,382

France and Vietnam (Figures 7, 8, S4 a, c). Thus, this result does not seems to depend on the age-383

structure and social contacts of the population considered. However, the variation of the transmission384

probability with age (discussed below) can potentially impacts a such result.385

The formulation of the objective functional considered here search for the optimal control effort386

the cumulative number of deaths. However, other objective functions can be considered including for387

example, long-term hospitalizations and long-term health consequences. It is equivalent to consider-388

ing the number of hospitalizations as the variable to be minimized and costs associate to long-term389

hospitalizations and long-term health consequences. This formulation may indeed be interesting to390

look at in details but would deserve to be considered independently in another study.391

The model proposed here is an extension of the classical models based on ordinary differential
equations that tackled the issue of the optimal control of COVID-19 outbreak [9–12]. Here, the whole
population is structured by age (a) and additionally by the time since infection (i) for infectious indi-
viduals, which echoes the model developed in [64] using a discrete-time formulation of the infection.
With our continuous structure, we show that the number of new cases IN(t,a) at time t in individuals
of age a is given by the renewal equation

IN(t,a) = S0(a)
∫

∞

0

∫ amax

0
K(a,a′)ω(a′, i)IN(t− i,a′)da′ di,

where K is the contact matrix and ω(a, i) is the infectiousness of individuals aged a which are in-392

fected since time i (Appendix B). For parameterisation purposes, we assume that ω(a, i) is the product393

between the proportion of individuals of age a in the whole population and the infectiousness β (i)394

of individuals infected since time i. This is potentially a limitation —not in the model formulation395

proposed here, but rather in parameterisation perspective in relation to the existing literature— since396

infectiousness β could depend on the age a thereby creating an additional heterogeneity in addition397

to that since the time since infection i. This issue can be particularly important since some studies398

suggest a low risk of transmission in the young population (e.g. [67]). On the other hand, although399

superpsreading events (of young people) have been documented, there is still much uncertainty about400

their relative role in the spread of the epidemic and about their origin (superspreading could be linked401

to environmental conditions, such as massive gatherings, rather than individual properties). Therefore,402

assuming independence from age seems the most parsimonious assumption given the current data.403

Another potential limitation is the lack of gender structure and comorbidities in the model for-404

mulation. Given the observed male biased in mortality during the COVID-19 pandemic, it has been405

suggested that males are more at risk of developing severe infections [68]. This heterogeneity could406

readily be introduced in the model.407

Contact networks have an important role in transmission dynamic models. Epidemic models that408
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determine which interventions can successfully prevent an outbreak may benefit from accounting409

for social structure and mixing patterns. Contacts are highly assortative with age across a given410

country, but regional differences in the age-specific contacts is noticeable [43]. The current model411

could be modified to explore epidemiological dynamics in a spatially structured population with non-412

homogeneous mixing, e.g. by using a meta-population model [69].413

Another potential extension of the model would be to allow for the isolation of symptomatic cases414

and their contacts, following the method developed in [70] and applied recently to digital contact415

tracing [22]. Indeed, these measures strongly depend on the relative timing of infectiousness and416

the appearance of symptoms, and the formulation of the presented model seems suitable for that.417

However, this also raises technical challenges due to the double continuous structure. Being able to418

identify age classes to follow in priority with contact tracing could be, though, an asset in controlling419

epidemic spread.420

Code availability421

The code (with the Julia Programming Language) used to simulate the model can be accessed through422

the Zenodo platform http://doi.org/10.5281/zenodo.4288144423
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A Supplementary Figures589
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Figure S1: Global sensitivity analysis. Sensitivity of infected individuals, hospitalizations and deaths
to the proportion of paucisymptomatic (p), average time of symptoms onset (isympt), infectiousness
reduction of paucisymptomatic (ξp), healthcare capacity (Hsat) and population structure –Pop.Struc–
(including the natural mortality, the size of the population, age-structure and social contacts).
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(a) (b)

(c)

(d) (e)

Figure S2: Optimal control strategy (c∗) as a function of the cost of the control measures in
Burkina Faso. Intensity of the control as a function of time and host for for (a) relatively low B∗= 102,
(b) an intermediate B∗ = 103, and (c) a high B∗ = 104 cost. (d) Prevalence of hospitalized patients as
a function of the strategy and the cost. (e) Cumulative deaths per age at the end of the time interval
(when T = 365 days). Parameter values not related to the control are identical to Figure 4.
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(a) (b)

(c)

(d) (e)

Figure S3: Optimal control strategy (c∗) as a function of the cost of the control measures in
Vietnam. Intensity of the control as a function of time and host for for (a) relatively low B∗ = 102,
(b) an intermediate B∗ = 103, and (c) a high B∗ = 104 cost. (d) Prevalence of hospitalized patients as
a function of the strategy and the cost. (e) Cumulative deaths per age at the end of the time interval
(when T = 365 days). Parameter values not related to the control are identical to Figure 4.

32



(a) (b)

(c) (d)

(e)

Figure S4: Comparing optimal control with uniform control of the whole population or over
its younger fraction in Vietnam. (a) Illustration of the control over the young population and (b)
uniform control of the whole population. (c) Number of hospitalizations. (d) Cumulative deaths per
age at final time T = 365 days. (e) Age distribution of the proportions of the population that have been
infected before one year. Here, we assume B∗ = 103 and p = 0.5.
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(a) (b)

(c) (d)

Figure S5: Practicability of the age-structured optimal control. (a)-(b) Step optimal controls with
a 3-weeks update over the older and younger populations. The corresponding optimal is given by
Figure 6 b. (c)-(d) Cumulative deaths per age at final time T = 365 days.
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Figure S6: The effect of paucisymptomatic infections, through their proportion p, on the optimal
control c∗.
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B Basic reproduction number593

Here we compute the basic reproduction number R0 of the model (3)-(5). First let us set for i≥ 0 and
a ∈ [0,amax] the following functions

πs(a, i) = exp
(
−iµnat(a)−

∫ i

0
[γdir(a)1[isympt ,ismax]

(σ)+hs(a,σ)]dσ

)
,

πm(a, i) = exp
(
−iµnat(a)−

∫ i

0
hm(a,σ)dσ

)
,

πp(a, i) = exp
(
−iµnat(a)−

∫ i

0
hp(a,σ)dσ

)
,

that describe the survival probability of infected individuals (in the respective compartment), with age594

a, from their infection until the time since infection i, in case of no hospitalisation (i.e. H ≡ 0). We595

get the following Volterra formulation of the linearized system of (3)-(5):596

Is(t,a, i) =

Is,0(a, i− t) πs(a,i)
πs(a,i−t) , for t ∈ [0, i),

(1− p)q(a)λ0(t− i,a)S0(a)πs(a, i), for t ≥ i,
(B.1)

597

Im(t,a, i) =

Im,0(a, i− t) πm(a,i)
πm(a,i−t) , for t ∈ [0, i),

(1− p)(1−q(a))λ0(t− i,a)S0(a)πm(a, i), for t ≥ i
(B.2)

and598

Ip(t,a, i) =

IA,0(a, i− t) πp(a,i)
πp(a,i−t) , for t ∈ [0, i),

pλ0(t− i,a)S0(a)πp(a, i), for t ≥ i
(B.3)

where λ0 = λ (·, ·,0) is defined by599

λ0(t,a) =
∫ amax

0
K(a,a′)

∫
∞

0

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
di da′,

(B.4)
where βk, k ∈ {s,m, p} are defined in Section 3.2. Let IN(t,a) = λ0(t,a)S0(a) be the density of newly
infected of age a at time t, with c ≡ 0. Then (B.1)-(B.2)-(B.3) can be rewritten as the following
Volterra formulation:

IN(t,a) = S0(a)
∫ t

0

∫ amax

0
K(a,a′)ω(a′, i)IN(t− i,a′)da′ di+ f (t,a),

where

ω(a′, i) = βs(a′, i)(1− p)q(a′)πs(a′, i)+βm(a′, i)(1− p)(1−q(a′))πm(a′, i)+βp(a′, i)pπp(a′, i)

and f (t,a) is the density of new infections produced by the initial population. Therefore, the basic
reproduction number R0 is the spectral radius, denoted by r(U), of the next generation operator U
defined on L1

+(0,amax) by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax)
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As explained in Section 3.2, it is estimated in [22] that each average infectiousness βk (k ∈ {s,m, p})600

takes the form of a Weibull distribution W (3,5.65) so that the mean and median are equal to 5.0601

days while the standard deviation is 1.9 days. Based on this estimation, we assume that βk(a, i) =602

αβ (i)ξk(i) where β ∼W (3,5.65) and α is a positive parameter to be determined. Consequently, it603

follows that α is given by604

α =
R0

r
(
U
) , (B.5)

where U is the operator defined by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax)

with

ω(a′, i) = β (i)
[
ξs(i)(1− p)q(a′)πs(a′, i)+ξm(i)(1− p)(1−q(a′))πm(a′, i)+ξp(i)pπp(a′, i)

]
.

We see that U can be rewritten as

Uv(a) = S0(a)
∫ amax

0
K(a,a′)Ω(a′)v(a′)da′, ∀v ∈ L1

+(0,amax) where Ω
(
a′
)
=
∫

∞

0
ω(a′, i)di.

Now, in order to compute the spectral radius r
(
U
)
, we first make the following assumptions:605

Assumption B.1 We suppose that functions S0,K,Ω are bounded and positive almost everywhere.606

Then, we can show that r(U) is given by the spectral radius of the following linear operator:

L1(0,amax) 3 v 7−→
∫ amax

0
K(·,a′)Ω(a′)S0(a′)v(a′)da′ ∈ L1(0,amax)

which can be easily computed since the age a is numerically divided into N classes, so that the term607

inside the integral of the latter equation is a N×N matrix. Finally, we obtain α from (B.5).608

In addition to Assumption B.1, if the function K is symmetric, we can define the positive self-
adjoint operator S by

S : L2(0,amax) 3 v 7−→
√

S0(·)Ω(·)
∫ amax

0
K(·,a′)

√
S0(a′)Ω(a′)v(a′)da′ ∈ L2

+(0,amax).

We then deduce the following609

Proposition B.2 Let K be symmetric and Assumption B.1 be satisfied. Then, operators U and S are
positive and compact, their spectra σ(U)\{0} and σ(S)\{0} are composed of isolated eigenvalues
with finite algebraic multiplicity. Moreover, we have σ(U) = σ(S)⊂ R+ and the following Rayleigh
formula holds:

r(U) = r(S) = sup
v∈L2(0,amax)

‖v‖L2(0,amax)
=1

∫ amax

0

∫ amax

0
K(a,a′)

√
S0(a′)Ω(a′)

√
S0(a)Ω(a)v(a′)v(a)da′ da.
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Proof. The compactness of both integral operators follows from the fact that amax < ∞ by assumption
(see Table 1), hence their spectra are punctual. Now we prove that σ(U) = σ(S). Let ν ∈ σ(U) be an
eigenvalue of U and φ ∈ L1(0,amax) be the associated eigenvector, i.e.

Uφ(a) = S0(a)
∫ amax

0
K(a,a′)Ω(a′)φ(a′)da′ = νφ(a), ∀a ∈ [0,amax]

so that φ ∈ L∞(0,amax)⊂ L2(0,amax). Defining the function

ψ =
φ

√
Ω√

S0
∈ L2(0,amax)

leads to

νψ(a) =
√

S0(a)Ω(a)
∫ amax

0
K(a,a′)

√
Ω(a′)S0(a′)ψ(a′)da′ = Sψ(a), ∀a ∈ [0,amax]

i.e. ν ∈ σ(S) is an eigenvalue of S associated to the eigenvector ψ , so that σ(U) ⊂ σ(S). For the
reverse inclusion, let ν ∈ σ(S) and ψ ∈ L2(0,amax)⊂ L1(0,amax) be the associated eigenvector for S.
It follows that the function

φ =
ψ
√

S0√
Ω
∈ L1(0,amax)

is an eigenvector of U related to the eigenvalue ν ∈ σ(U), whence σ(U) = σ(S). In particular,610

both spectral radius are equal. Finally, the Rayleigh formula is classical for positive and symmetric611

operators.612

C Computations of the adjoint system613

In order to deal with the necessary optimality conditions, we use some results in [61]. Next, we
detail the computations of the adjoint system (12)-(13). To this end, we first define the functions
y1,Q : [0,T ]× [0,amax]→ R and y2 : [0,T ]× [0,amax]×R+ by:

y1(t,a) =

(
S(t,a)
R(t,a)

)
, y2(t,a, i) =

 Is(t,a, i)
Im(t,a, i)
Ip(t,a, i)

 , Q(t,a) =
(

H(t) E(t,a) b(t,a)
)

wherein614

gH(i,y2(t,a, i)) = Is(t,a, i)1[isympt ,∞)(i), gR(i,y2(t,a, i)) = ∑
k∈{s,m,p}

hk(a, i)Ik(t,a, i),

gλ (a, i,y1,y2) = S(t,a)
∫ amax

0
K(a,a′)

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
da′,

H(t) =
∫

∞

0

∫ amax

0
gH(i,y2(t,a, i))da di, E(t,a) =

∫
∞

0
gλ (a, i,y1(t,a, i),y2(t,a, i))di,

b(t,a) =
∫

∞

0
gR(i,y2(t,a, i))di.
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The model (5) thus rewrites as
∂ty1(t,a) = F1(a,Q(t,a),c(t,a),y1(t,a)),

(∂t +∂i)y2(t,a, i) = F2(a, i,Q(t,a),c(t,a),y2(t,a, i)),
y2(t,a,0) = Φ(a,c(t,a),E(t,a)),

with

F1(a,Q(t,a),c(t,a),y1(t,a)) =

(
−µ(a,H(t))S(t,a)− (1− c(t,a))E(t,a)

−µ(a,H(t))R(t,a)+b(t,a)

)
,

F2(a, i,Q(t,a),c(t,a),y2(t,a, i)) =

−(µ(a,H(t))+ γ(a, i,H(t))+hs(a, i))Is(t,a, i)
−(µ(a,H(t))+hm(a, i))Im(t,a, i)
−(µ(a,H(t))+hp(a, i))Ip(t,a, i)

 ,

and

Φ(a,c(t,a),Q(t,a)) =

 (1− p)q(a)(1− c(t,a))E(t,a)
(1− p)(1−q(a))(1− c(t,a))E(t,a)

p(1− c(t,a))E(t,a)

 .

We now rewrite the functional J as

J(c) =
∫ T

0

∫ amax

0

(
J1(a,c(t,a),Q(t,a),y1(t,a))+

∫
∞

0
J2(a, i,Q(t,a),y2(t,a, i))di

)
da dt

which is decomposed into

J1(a,c(t,a),Q(t,a),y1(t,a)) = µadd(a,H(t))(S(t,a)+R(t,a))+B(a)c2(t,a)

and

J2(a, i,Q(t,a),y2(t,a, i)) = γ(a, i,H(t))Is(t,a, i)+µadd(a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i)).

We denote by z1,ζk : [0,T ]× [0,amax]→ R (for k ∈ {1,2,3}) the following adjoint functions

z1(t,a) = (zS(t,a),zR(t,a)), ζ (t,a) = (ζ1(t,a),ζ2(t,a),ζ3(t,a)),

and we denote by z2 : [0,T ]× [0,amax]×R+ the following adjoint function

z2(t,a, i) = (zIs(t,a, i),zIm(t,a, i),zIp(t,a, i)),

satisfying limi→∞ z2(t,a, i) = 0 and z1(T,a) = z2(T,a, i) = 0. We get

∇y1J1(a,c(t,a),Q(t,a),y1(t,a)) =

(
µadd(a,H(t))
µadd(a,H(t))

)T

∇y2J2(a, i,Q(t,a),y2(t,a, i)) =

µadd(a,H(t))+ γ(a, i,H(t))
µadd(a,H(t))
µadd(a,H(t))


T
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∇y1F1(a,Q(t,a),c(t,a),y1(t,a)) =

(
−µ(a,H(t)) 0

0 −µ(a,H(t))

)
and

∇y2F2 =

−µ(a,H(t))− γ(a, i,H(t))−hs(a, i) 0 0
0 −µ(a,H(t))−hm(a, i) 0
0 0 −µ(a,H(t))−hp(a, i)

 ,

where ∇yF denotes differentiation of F with respect to the variable y.615

Then
(z1 ·∇y1F1)(t,a) =

(
−µ(a,H(t))zS(t,a) −µ(a,H(t))zR(t,a)

)
and

(z2 ·∇y2F2)(t,a, i) =
(
−(µ + γ +hs)zIs(t,a, i) −(µ +hm)zIm(t,a, i) −(µ +hp)zIp(t,a, i)

)
.

Setting

g1(a,y1,y2) =


∫

∞

0 gH(i,y2(t,a, i))di
E(t,a)
b(t,a)

 , g2(a, i,y1,y2) =

 gH(i,y2(t,a, i))
gλ (a, i,y1(t,a, i),y2(t,a, i))

gR(i,y2(t,a, i))

 ,

we see that

∇y1g1(a,y1,y2)=

 0 0∫
∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′ di 0
0 0


and

∇y2g2(a, i,y1,y2) =

 1[isympt ,∞)(i) 0 0
S(t, ·)βs(a, i)K(·,a) S(t, ·)βm(a, i)K(·,a) S(t, ·)βp(a, i)K(·,a)

hs(a, i) hm(a, i) hp(a, i)

 .

From there, we deduce that

(ζ ·∇y1g1)(t,a)=
(

ζ2(t,a)
∫

∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′di 0
)

and

(ζ ·∇y2g2)(t,a, i)=

ζ1(t,a)1[isympt ,∞)(i)+βs(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hs(a, i)
βm(a, i)

∫ amax
0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hm(a, i)

βp(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hp(a, i)


T

.

The adjoint system is given by{
− ∂ z1

∂ t (t,a) = ∇y1J1(t,a)+(z1 ·∇y1F1)(t,a)+(ζ ·∇y1g1)(t,a)
−( ∂ z2

∂ t + ∂ z2
∂ i )(t,a, i) = ∇y2J2(t,a)+(z2 ·∇y2F2)(t,a, i)+(ζ ·∇y2g2)(t,a, i)
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which is equivalent to (12). Next, we see that

∇QΦ(t,a) =

0 (1− p)q(a)(1− c(t,a)) 0
0 (1− p)(1−q(a))(1− c(t,a)) 0
0 p(1− c(t,a)) 0


whence

(z2(·, ·,0) ·∇QΦ)(t,a) =
(

0 [1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0) 0
)
.

Further, we have
∇QJ1(t,a) =

(
∂ µ

∂H (a,H(t))(S(t,a)+R(t,a)) 0 0
)

and

∇QJ2(t,a, i) =
(

∂ µ

∂H (a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i))+
∂γ

∂H (a, i,H(t))Is(t,a, i) 0 0
)
.

We also see that ∇Qg1 ≡ 0, ∇Qg2 ≡ 0,

∇QF1(t,a) =

(
− ∂ µ

∂H (a,H(t))S(t,a) −(1− c(t,a)) 0
− ∂ µ

∂H (a,H(t))R(t,a) 0 1

)
and

∇QF2(t,a, i) =


−
(

∂ µ

∂H (a,H(t))+ ∂γ

∂H (a, i,H(t))
)

Is(t,a, i) 0 0

− ∂ µ

∂H (a,H(t))Im(t,a, i) 0 0
− ∂ µ

∂H (a,H(t))Ip(t,a, i) 0 0


whence

(z1 ·∇QF1)(t,a) =

−
∂ µ

∂H (a,H(t))S(t,a)zS(t,a)− ∂ µ

∂H (a,H(t))R(t,a)zR(t,a)
−(1− c(t,a))zS(t,a)

zR(t,a)


T

and
(z2 ·∇QF2)(t,a, i) =

(
−
(

∂ µ

∂H + ∂γ

∂H

)
IszIs−

∂ µ

∂H ImzIm−
∂ µ

∂H IpzIp 0 0
)
.

Finally, the adjoint functions ζ must satisfy the following equation:

ζ (t,a) =(z2(·, ·,0) ·∇QΦ)(t,a)+(∇QJ1(t,a))+(z1 ·∇QF1)(t,a)+(ζ ·∇Qg1)(t,a)

+
∫

∞

0
(∇QJ2(t,a, i)+(z2 ·∇QF2)(t,a, i)+(ζ ·∇Qg2)(t,a, i))di

which is equivalent to (13). Finally by [61], the Hamiltonian is given by

H (t,a,c) = z2(t,a,0) ·Φ(t,a,c,Q)+J1(a,c,Q,y1)+
∫

∞

0
J2(a, i,Q,y2)di

which leads to

H (t,a,c) = E(t,a)[1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0)

+µadd(a,H(t))(S(t,a)+R(t,a))+B(a)c2(t,a)

+
∫

∞

0
(γ(a, i,H(t))Is(t,a, i)+µadd(a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i)))di. (C.1)
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