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Abstract

In an epidemic, individuals can widely differ in the way they spread the infection, for instance
depending on their age or on the number of days they have been infected for. The latter allows
to take into account the variation of infectiousness as a function of time since infection. In the
absence of pharmaceutical interventions such as a vaccine or treatment, non-pharmaceutical in-
terventions (e.g. social distancing) are of great importance to mitigate the pandemic. We propose
a model with a double continuous structure by host age and time since infection. By applying
optimal control theory to our age-structured model, we identify a solution minimizing deaths and
costs associated with the implementation of the control strategy itself. This strategy depends on
the age heterogeneity between individuals and consists in a relatively high isolation intensity over
the older populations during a hundred days, followed by a steady decrease in a way that depends
on the cost associated to a such control. The isolation of the younger population is weaker and
occurs only if the cost associated with the control is relatively low. We show that the optimal con-
trol strategy strongly outperforms other strategies such as uniform constant control over the whole
populations or over its younger fraction. These results bring new facts the debate about age-based
control interventions and open promising avenues of research, for instance of age-based contact
tracing.
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1 Introduction

Following its emergence in December 2019, COVID-19 has become an international public health
emergency [12]. The infection is similar to that caused by influenza virus regarding clinical pre-
sentation and transmission mechanism [12]. Contrary to seasonal influenza, COVID-19 has become
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pandemic by spreading rapidly among completely naive host populations, i.e. with no pre-existing im-
munity [17, 21, 51, 52]. At the start of the pandemic, no pharmaceutical interventions such as vaccines
or treatments were available and, based on earlier epidemics, it will take several months before their
deployment. For this reason, developing non-pharmaceutical intervention strategies, such as social
distancing, is of great importance to mitigate the pandemic [1].

Generally, age structure is a key determinant of such acute respiratory diseases, e.g. when it comes
to infection severity. For example, children are considered to be responsible for most of the transmis-
sion of influenza [8], but the related hospitalization and mortality burden is largely carried by people
of ages over 65 years [38, 50]. While much remains unknown about the COVID-19 epidemics, evi-
dence to date suggests that mortality among people who have been tested positive for the coronavirus
is substantially higher at older ages and near zero for young children [40, 51]. Moreover, the infec-
tiousness of an individual has been reported to vary as a function of time since infection [24], which
is known to affect epidemic spread [2, 27, 31].

Here we propose an epidemiological model for the disease stage-progression [2] structured both by
the continuous age of the host population and the continuous age of infection. This formulation differs
from the existing literature where only one type of structure is considered at a time [13, 29, 36, 39],
and is particularly suited to investigate an infection such as COVID-19, with strong host and infect age
effects. Indeed, in addition to taking into account the host population’s age structure, as well as the
gradient of disease severity from mild to critical symptoms, the model readily captures the variation in
infectiousness as a function of the time since infection. From a theoretical point of view, age-structured
models have been proposed to investigate the spread of acute respiratory diseases [4, 18, 34, 47, 48].
However in the literature, very few models consider both structures as continuous variables, see for
instance [13, 28].

In a context of non-pharmaceutical interventions, we adopt a modeling approach based on the
optimal control theory to determine the best strategy to implement during a finite time interval. In
the context of age-structured models, this approach allows one to determine the optimal strategies of
age-specific social distancing taking into consideration the cost of implementing such strategies [3, 5,
6, 14, 25]. Here, more specifically, we look for the intevention that significantly reduces morbidity
associated with COVID-19 at a minimal cost. In the same context, mathematical modeling using
optimal control theory has been carried out to identify optimal strategies involving non-pharmaceutical
interventions to control infectious diseases such as influenza and COVID-19 [15, 30, 35, 41]. However,
none of these models take into account the age structure of the host population or the variation of the
infectiousness with the time since infection.

In Section 2, we first introduce the mathematical model. The model parameters and outputs are
then defined in Section 3. In Section 4, we characterize the optimal control strategy that minimizes the
number of deaths as well as the cost due to the implementation of the control strategy itself. Section 5
contains the main body of the results. We first analyse the epidemic spread without any intervention,
before comparing the performance of the optimal control in terms of deaths and hospitalizations for
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different costs of the control measure. Finally, the optimal control is compared to two other strategies
using the same amount of resources to control the outbreak. The article ends by a Discussion in
Section 6.

2 The age-structured model of COVID-19

2.1 Model overview

At time t ∈ [0,T ], the density of individuals of age a ∈ [0,amax] that are susceptible to the infection is
denoted by S(t,a). These individuals can become infected with a rate called the force of infection and
denoted λ (t,a). We assume that a fraction p of these individuals are paucisymptomatic, which means
they will develop very mild to no symptoms, and enter group Ip. Note that this class can also be inter-
preted as the fraction of the population that will not isolate themselves during their infection. Other
individuals are assumed to develop more symptomatic infections, either severe Is with proportion q(a)
depending on the age a, or mild Im with proportion 1−q(a).

Each of the three infected host populations are structured in time since infection, so that Iv(t,a, i),
v∈ {p,s,m}, denotes the density at time t of individuals of age a that have been infected for a duration
i ∈ R+. Upon infection, all exposed individuals are assumed to remain non-infectious during an
average period ilat . Next, they enter an asymptomatic period during which they are infectious. Only
Im and Is develop significant symptoms after an average time since infection isympt , which can allow
them to self-isolate to limit transmission. During their infection, individuals can recover at a rate
hv(a, i) (v ∈ {p,m,s}) that depends on the severity of the infection and the time since infection i.
Severely infected individuals of age a may also die from the infection at rate γ(a, i).

The infection life cycle is shown in Figure 1. The total size of the host population of age a at time
t is

N(t,a) = S(t,a)+R(t,a)+
∫

∞

0
(Ip(t,a, i)+ Im(t,a, i)+ Is(t,a, i))di. (1)

2.2 Age-structured transmission and severity

We use two components to model the infection process. First, we define the transmission probability
βv(a, i) (v ∈ {p,m,s}) for each contact between an infected of age a and a susceptible person, which
depends on the time since infection i. Second, we introduce the kernel K(a,a′) that represents the
average number of contacts by unit of time between an individual of age a′ and an individual of age a.
Here, this contact matrix is informed by data from an earlier study conducted in France [7]. The force
of infection underwent by susceptible individuals of age a at time t is then given by

λ (t,a,c) = (1− c(t,a))
∫ amax

0
K(a,a′)

∫
∞

0

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
di da′.

(2)
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Figure 1: The model flow diagram. Susceptible hosts of age a at time t (S(t,a)) are exposed to the
virus with a force of infection λ (t,a). A fraction p of exposed individuals, which are infected since
time i, will never develop symptoms and enter the group of paucisymptomatic infections (Ip(t,a, i)).
The rest will develop symptomatic infections, either severe (Is(t,a, i)) with proportion q(a) depending
on age a of individuals, or mild (Im(t,a, i)). Exposed individuals remain non-infectious for a duration
ilat after infection. Next, they become asymptomatic infectious and only symptomatic infected will
develop symptoms at time isympt after infection. Infected individuals recover at rate hv(a, i). Only
severely infected of age a die from the infection at rate γ(a, i). Notations are shown in Table 1.

Here, c(t,a) is the percentage of reduction of contacts towards people with age a, due to public
measures, at time t. The total force of infection at time t in the whole population is computed as∫ amax

0 λ (t,a,c)da.
The dynamics of newly infected individuals (i.e. i = 0) in each group is thus defined by

Is(t,a,0) = (1− p)q(a)λ (t,a,c)S(t,a),
Im(t,a,0) = (1− p)(1−q(a))λ (t,a,c)S(t,a),
Ip(t,a,0) = pλ (t,a,c)S(t,a).

(3)

We assume that only severe infections Is lead to hospitalization and we denote by

H(t) =
∫ amax

0

∫
∞

isympt

Is(t,a, i)di da (4)

the total population hospitalized at time t, where isympt is the average time to symptoms onset. Each
individual of age a dies at a rate µ(a,H(t)) at time t, defined by

µ (a,H(t)) = µnat(a)+µadd (a,H(t)) .

In the latter equation, µnat denotes the natural mortality rate when hospitals are not saturated. Further,
we assume that this rate increases significantly as soon as the number of severe cases exceeds the
healthcare capacity Hsat and µadd is such additional death rate due to hospital saturation (see Section
3.2).

We apply the same reasoning by assuming that the disease-related mortality can increase because
of hospital saturation. Therefore, severely infected individuals of age a infected since time i die at
time t at rate γ(a, i,H(t)) defined by

γ(a, i,H(t)) = (γdir(a)+ γindir(a,H(t)))1[isympt ,ismax]
(i).
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Here, γdir and γindir are mortality rates directly and indirectly due to the COVID-19 respectively (see
Section 3.2). The disease-related mortality occurs after the emergence of symptoms and before the
mean final time of infection for severe cases, i.e. for i ∈ [isympt , ismax].

Finally, infected individuals of age a infected since time i recover at rates hs(a, i), hm(a, i) and
hp(a, i) for severe, mild and paucisymptomatic infections respectively.

The boundary conditions (3) are coupled with the following equations:

∂S
∂ t

(t,a) = −µ(a,H(t))S(t,a)−λ (t,a,c)S(t,a),(
∂ Is

∂ t
+

∂ Is

∂ i

)
(t,a, i) = − [µ(a,H(t))+ γ(a, i,H(t))+hs(a, i)] Is(t,a, i),(

∂ Im

∂ t
+

∂ Im

∂ i

)
(t,a, i) = − [µ(a,H(t))+hm(a, i)] Im(t,a, i),(

∂ Ip

∂ t
+

∂ Ip

∂ i

)
(t,a, i) = − [µ(a,H(t))+hp(a, i)] Ip(t,a, i),

∂R
∂ t

(t,a) = ∑
v∈{s,m,p}

∫
∞

0
hv(a, i)Iv(t,a, i)di−µ(a,H(t))R(t,a),

(5)

for any (t,a, i) ∈ (0,T ]× [0,amax]×R+, with initial conditions (at t = 0):

S(0,a) = S0(a), R(0,a) = 0, Is(0,a, i) = Is,0(a, i), Im(0,a, i) = Im,0(a, i), Ip(0,a, i) = IA,0(a, i)

for each (a, i) ∈ [0,amax]×R+. The initial conditions of infected populations are detailed in Section
3.3. Using (3) and an integration over i of (5), one may observe that the total population N defined by
(1) is strictly decreasing since it satisfies the following inequality:

∂N
∂ t

(t,a)≤−µnat(a)N(t,a), ∀a ∈ [0,amax], ∀t ≥ 0.

This is due to the fact that population aging and births are neglected in this model since we consider a
time horizon of only one year.

3 Epidemiological outputs, model parameters and initial conditions

In this section we briefly describe some useful epidemiological outputs, the shape of age dependent
parameters considered for the simulations of model (3)-(5), and the initial conditions. All state vari-
ables and other parameters are summarized in Table 1.

3.1 Epidemiological outputs

In addition to the total number of hospitalized cases H(t) at time t defined by (4), we define additional
epidemiological outputs such as the number of non-hospitalized cases (NH(t)), the cumulative number
of deaths due to COVID-19 directly (Dcum

dir (t)) and indirectly (Dcum
indir(t)) respectively by

NH(t) =
∫ amax

0

[∫ isympt

0
Is(t,a, i)di+

∫
∞

0
(Im(t,a, i)+ Ip(t,a, i))di

]
da, (6)
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and
Dcum

dir (t) =
∫ t

0
Ddir(s)ds, Dcum

indir(t) =
∫ t

0
Dindir(s)ds, (7)

where Ddir(t) and Dindir(t) are the number of deaths at time t respectively defined by

Ddir(t) =
∫ amax

0

∫ ismax

isympt

γdir(a)Is(t,a, i)di da,

Dindir(t) =
∫ amax

0
µadd(a,H(t))N(t,a)da+

∫ amax

0
γindir(a,H(t))

∫ ismax

isympt

Is(t,a, i)di da.

Note that non-hospitalized cases NH defined by (6) are composed of the paucisymptomatic, the mildly
infected, and the severely infected but not yet hospitalized populations. We can also note that every
output aforementioned implicitly depends on parameter c which we will omit when no confusion
is possible. However, in order to compare different public health measures we will explicitly write
this dependence. The relative performance between two strategies c1 and c2, denoted by ∆(c1,c2), is
estimated by assessing the cumulative number of deaths in the whole population during the T days of
control period with the strategy c1 relatively to deaths with the strategy c2. Formally we have

∆(c1,c2) = 1−
Dcum

dir (c1,T )+Dcum
indir(c1,T )

Dcum
dir (c2,T )+Dcum

indir(c2,T )
.

Hence, a relative performance ∆(c1,c2) = 0.1 implies that the strategy c1 reduces the number of deaths
by 10% relatively to c2.

3.2 Setting model parameters

We assume mortality rates indirectly due to the COVID-19 to grow as the number of hospitalisations
H exceeds a healthcare capacity threshold Hsat . The natural mortality rate increases by µadd(a,H) in
the whole population and by γindir(a,H) for severely infected individuals of age a. These rates are
respectively defined by logistic functions that are arbitrarily chosen as:

µadd(a,H(t)) =
10−2 µnat(a)

1+99 exp
(
−10

(
H(t)
Hsat
−1
)) , γindir(a,H(t)) =

γdir(a)

1+99 exp
(
−10

(
H(t)
Hsat
−1
)) . (8)

This choice of functional parameters implies that

µadd(a,0)≈ 0, γindir(a,0)≈ 0, µadd(a,Hsat) = 10−4
µnat(a), γindir(a,Hsat) = 10−2

γdir(a)

so that those additional mortalities are negligible when hospitals are not saturated (Figure 2 b,c). In
case of saturation, the following estimates hold:

lim
H→∞

µadd(a,H) = 10−2
µnat(a), lim

H→∞
γindir(a,H) = γdir(a)

for each a ∈ [0,amax], meaning that the natural mortality rate is only increased by 1%, while the
disease-induced mortality rate γ is doubled. Indeed, according to [23], 50% of patients in critical care
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(a) (b) (c)

Figure 2: (a) Transmission probabilities of paucisymptomatic infections βp, symptomatic severe βs

and mild infections βm. (b)-(c) Mortality rates due to the healthcare system saturation, with a maximal
healthcare capacity Hsat = 5×103.

will die in case of no saturation of hospitals. Here, we then make the assumption that this percentage
will grow to 100% in case of over-saturation of hospitals.

The infectiousness of an individual aged a, which is infected since time i, is given by βv(a, i)
(v∈{s,m, p}). Based on estimates described in [24], we assume that βv does not depends on age a, i.e.,
βv(a, i) = βv(i). This assumption is discussed later in Section 6. Next, we set βv(i) = α×ξv(i)×β (i),
for v ∈ {s,m, p}. Here, as explained below, α is a scaling parameter obtained from the value of the
basic reproduction number R0. Parameter β is assumed to be identical to that reported in [24] and
to follow a Weibull distribution β ∼W (3,5.65). Parameters ξv(i) are factors capturing the reduction
of the transmission probability. For paucisymptomatic individuals, these are assumed to be constant
(ξp(i) = ξp), while the reduction factor in more symptomatic infections (severe and mild) is assume to
vary after symptom onset to capture admission in a healthcare facility or self-isolation at home. More
precisely, we assume that

ξs(i) =

1 if i ∈ [0, isympt ],

e− ln(10)(i−isympt) if i > isympt

and ξm(i) =

1 if i ∈ [0, isympt ],

e− ln(2)(i−isympt) if i > isympt .
(9)

These two functions are chosen arbitrarily by assuming that individuals do not isolate before symp-
toms onset (i ≤ isympt), and that isolation is stronger when symptoms are more (Figure 2 (a)). We
therefore assume that the transmission probability β is divided by 10 (respectively 2) every day after
the average time of symptoms onset for individuals severely (resp. mildly) infected.

Finally, we assume that recover rates hv(a, i), v∈{s,m, p}, of infected individuals of age a infected
since time i are independent of the age a and take the following form:

hs(·, i) = 1[ismax,∞](i), hm(·, i) = hp(·, i) = 1[immax,∞](i), ∀i ∈ R+. (10)

That is, one can recover from severe (resp. mild and paucisymptomatic) infections only after a time
since infection ismax (resp. immax) corresponding to the mean duration of infection.
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State variables

S Susceptible individuals
Is Severely infected individuals
Im Mildly infected individuals
Ip Paucisymptomatic infected individuals
R Recovered individuals

Model parameters

Param. Description (unit) Values [source]

t,T time and final time of simulations (days) t ∈ [0,T ] (ad hoc)
a,amax age and maximal age of individuals (years) a ∈ [0,amax], amax = 100 (ad hoc)
i time since infection (days) R+ (ad hoc)
ilat latency from exposed to asympt. (days) 4.2 [33]
isympt average time of symptoms onset (days) ilat +1 = 5.2 [23]
ismax mean final time of infection for severe cases

(days)
isympt +20 = 25.2 [53]

immax mean final time of infection for mild cases
(days)

isympt +17 = 22.2 [53]

S0 initial population of susceptible [20]
µnat natural death rate

(
days−1) [43]

µadd additional death rate
(
days−1) defined by (8)

Hsat maximal healthcare capacity 5×103 [16]
βs,βm,βp transmission probabilities (unitless) computed in Section 3.2
ξs,ξm,ξp infectiousness reduction factors (unitless) defined by (9) and ξp = 0.1 [24]
hs,hm,hp recovery rates per infection

(
days−1) defined by (10)

K matrix of social contacts
(
days−1) [7]

c, cmax public health measure and its upper bound
(unitless)

c ∈ [0,cmax], cmax = 0.95 (assumed)

γdir mortality rate directly due to the COVID-19(
days−1) [23]

γindir mortality rate indirectly due to the COVID-19(
days−1) defined by (8)

p proportion of paucisymptomatic (unitless) variable
q proportion of symptomatic requiring

hospitalisation (unitless)
[23]

B cost of the control measure (unitless) variable

Table 1: Model variables and parameters
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3.3 Initial conditions

According to the French public health agency [16], there were 130 confirmed cases of COVID-19 in
France on March 1st, 2020, which we will consider as t = 0 in our model. Since tests in France were
initially performed based on severe symptoms, we assume that all those cases are severe infections.
Thus, we set

∫ ismax
isympt

∫ amax
0 Is,0(a, i)da di = 130 as the initial severely infected individuals, which is as-

sumed to be uniformly distributed with respect to the time since infection i on the interval [0, ismax].
Using estimates from [10, 16] on the age distribution of hospitalised people, we derive an estimation
of Is,0(a, i) for each (a, i) ∈ [0,amax]×R+. Next, following the life cycle (Figure 1), we obtain an
estimation of the total initial infected population by Is,0(a,i)

(1−p)q(a) . From there, we deduce the initial mildly
and paucisymptomatic infected populations respectively by

Im,0(a, i) =
1−q(a)

q(a)
Is,0(a, i) and IA,0(a, i) =

p
q(a)(1− p)

Is,0(a, i).

The initial susceptible population size S0 comes from the French National Institute of Statistics and
Economic Studies [20].

4 Optimal intervention

In this section, following well established methodology in optimal control theory [3, 6, 14, 22, 25], we
search for the optimal control effort function c∗ that minimizes the objective functional J : L∞(R+×
[0,amax]) 3 c 7−→ J(c) ∈ R, where

J(c) = Dcum
dir (c,T )+Dcum

indir(c,T )+
∫ T

0

∫ amax

0
B(a)c2(t,a)da dt,

where Dcum
dir , Dcum

indir are cumulative number of deaths defined by (7) and B(a) is the cost associated with
the implementation of such control c for the age class a. Our aim is to find the function c∗ satisfying

J(c∗) = min
c∈U

J(c) (11)

wherein the set U is defined by

U = {c ∈ L∞(R+× [0,amax]) : 0≤ c(·, ·)≤ cmax},

with cmax ≤ 1 a positive constant. That is to say, the function c∗ will minimize the cumulative number
of deaths during T days, as long as the cost of the control strategy is not too large.

Let (S, Is, Im, Ip,R) be a given solution of (3)-(5) then let λ and H be respectively defined by (2)
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and (4). After some computations (Appendix B), we find that the adjoint system of (5) reads as

∂ zS
∂ t (t,a)

∂ zR
∂ t (t,a)(

∂ zIs
∂ t +

∂ zIs
∂ i

)
(t,a, i)(

∂ zIm
∂ t +

∂ zIm
∂ i

)
(t,a, i)(

∂ zIp
∂ t +

∂ zIp
∂ i

)
(t,a, i)


=


µ(a,H(t))zS(t,a)−µadd(a,H(t))
µ(a,H(t))zR(t,a)−µadd(a,H(t))

(µ(a,H(t))+hs(a, i))zIs(t,a, i)−µadd(a,H(t))− γ(a, i,H(t))(1− zIs(t,a, i))
(µ(a,H(t))+hm(a, i))zIm(t,a, i)−µadd(a,H(t))
(µ(a,H(t))+hp(a, i))zIp(t,a, i)−µadd(a,H(t))



−


ζ2(t,).

∫
∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′ di
0

ζ1(t,a)1[isympt ,∞)(i)+βs(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hs(a, i)
βm(a, i)

∫ amax
0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hm(a, i)

βp(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hp(a, i)


(12)

with final conditions zS(T,a) = zR(T,a) = 0, zu(T,a, i) = 0 and limi→∞ zu(t,a, i) = 0, for any u ∈
{Is, Im, Ip} and (a, i) ∈ [0,amax]×R+, while ζk (k ∈ {1,2,3}) satisfy the system:ζ1(t,a)

ζ2(t,a)
ζ3(t,a)

=


∂ µ

∂H (a,H(t))(S(t,a)(1− zs(t,a))+R(t,a)(1− zR(t,a)))
[1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0)− (1− c(t,a))zS(t,a)

zR(t,a)



+


∫

∞

0

∂ µ

∂H
(a,H(t))(Is(t,a, i)(1− zIs(t,a, i))+ Im(t,a, i)(1− zIm(t,a, i)))di

0
0



+


∫

∞

0

(
∂ µ

∂H
(a,H(t))Ip(t,a, i)(1− zIp(t,a, i)+

∂γ

∂H
(a, i,H(t))Is(t,a, i)(1− zIs(t,a, i))

)
di

0
0

 .

(13)

Finally, the Hamiltonian H of (11) is given by (B.1). Then, solving
∂H

∂c
= 0, it comes that

c∗(t,a) = max(0,min(ĉ(t,a),1)), (14)

for every (t,a) ∈ [0,T ]× [0,amax], where

ĉ(t,a) =
S(t,a)λ0(t,a)

[
(1− p)(1−q(a))zIm(t,a,0)+(1− p)q(a)zIs(t,a,0)+ pzIp(t,a,0)

]
2B(a)

,

with λ0 defined by (A.4).
We also assume that the cost B(a) of the control measure over individuals aged a ∈ [0,amax] is

proportional to their density in the initial susceptible population S0, i.e.

B(a) =
B∗S0(a)∫ amax

0 S0(u)du
,

10



where B∗ ∈ R+ is a variable parameter characterizing the relative cost in implementing the strategy.
The state system (3)-(5) and the adjoint system (12)-(13) together with the control characteriza-

tion (14) form the optimality system to be solved numerically. Since the state equations have initial
conditions and the adjoint equations have final time conditions, we cannot solve the optimality system
directly by only sweeping forward in time. Thus, an iterative algorithm, forward-backward sweep
method, is used [32]. In other words, finding c∗ numerically, involves first solving the state vari-
ables (3)-(5) forward in time, then solving the adjoint variables (12)-(13) backward in time, and then
plugging the solutions for the relevant state and adjoint variables into (14), subject to bounds on the
control function. Finally, the proof of the existence of such control is standard and is mostly based
on the Ekeland’s variational principle [19]. Therefore, existence of the optimal control to the above
problem is assumed and we refer to [14] for more details.

5 Results

5.1 The basic reproduction number R0

An explicit expression of the R0 of model (3)-(5) is difficult to obtain in general. We show in Ap-
pendix A that it is possible to write R0 = α × r(U), where α is the scaling parameter introduced in
Section 3.2, and r(U) is the spectral radius of the next generation operator U defined on L1(0,amax)

by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax).

where S0 is the initial susceptible population, K is the contact matrix and ω(a, i) is the infectiousness
of individuals of age a infected since time i (Appendix A). We set R0 = 3.3 [45, 49] and it follows that

α =
R0

r
(
U
) .

Using a numerical approach, we find r(U)≈ 12.074, whence α ≈ 0.575.

5.2 Typical outbreak dynamics simulated with the model

Numerical simulations are based on the reference values of the model parameters defined previously
and summarized in Table 1, with R0 = 3.3.

We first use the model to describe the outbreak of the epidemics without any public health measure
(i.e. c≡ 0). The peak of the epidemics is reached approximately at day t = 54 for hospitalised people,
and day t = 48 for non-hospitalised (Figure 3a). The delay between the two peaks is due to the
latency time isympt for symptoms onset (Table 1). The healthcare capacity is quickly exceeded (about
twenty days) and the number of deaths increases sharply from then on. At the end of the simulation
(t = 150 days), the total number of infections (severe, mild and paucisymptomatic) is around 90.1%
and varies with the age class considered (Figure 3 b). Further, in each age class the proportion of
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infected individuals is larger than the theoretical herd immunity threshold given by 1−1/R0 ≈ 69.7%
(Figure 3b). While people older than 70 are the less affected (in proportion), they however represent
the age class with the highest cumulative number of deaths (Figure 3c). On the contrary, most of the
infections that occur in the young population do not require hospitalisation (Figure 3d,e).

5.3 Effect of the optimal intervention

In this section, we investigate the interaction between the optimal intervention and the age structure
of the population. We illustrate the optimal intervention strategy and their performance in terms of
cumulative number of deaths for three costs of the control (relatively low B∗ = 102, intermediate
B∗ = 103 and high B∗ = 104). Overall, the optimal control particularly targets the older populations
compared to the younger ones (Figure 4). If the cost B∗ is relatively high, the optimal control is
almost restricted to individuals above 55, with a significant reduction in deaths (Figure 4d,e). This
strict lock down of older individuals lasts approximately 100 days for B∗ = 103 and 104. The relative
performance of the optimal control c∗ compared to a doing nothing scenario (∆(c∗,0)) is at least 92%
(resp. 82%) when the cost is B∗ = 103 (resp. 104). With a low cost of the control measure (B∗ = 102),
the optimal control significantly extends to younger populations (Figure 4 a), with a maximum reached
near the 4th month of the epidemics and a steady decrease until the end of the control period. At first,
the control is over people above 35 but that after 2 or 3 months the control begin to extend to people
less than 35. The resulting reduction in the number of deaths is very pronounced with a relative
performance ∆(c∗,0) of at least 99%.

5.4 Comparative analysis and practicability of the optimal control

We investigated how the optimal strategy compares to other control strategies that use the same amount
of ‘resources’ (that is the same cumulative cost). Assuming an relatively high cost B∗ = 103, we inves-
tigated a uniform control strategy (denoted by cu) either over the younger fraction of the population
(Figure 5a) or over the whole population with level cmax = 0.95 (Figure 5b). The effect of these strat-
egy lasts about 55 days during which the epidemic is suppressed. However, once the control resources
are exhausted, the epidemic reemerges (Figure 5c) and, in the end, the cumulative mortality over the
time period of interest is comparable to that without any control measure (Figure 5d) and relative
performance ∆(c∗,cu), of the optimal control c∗ relatively to the uniform control cu, is approximately
92%. With the (longer) uniform control over the younger fraction of the population, the first epidemic
peak is slightly delayed, but a second peak appears a few months later (Figure 5c). With this strategy,
the cumulative mortality comparable to the one without any control measure (Figure 5d).

The optimal control is a continuous function and is then quite difficult to enforce in practice.
However, we can derive step functions leading to practical implementations of the optimal control.
For instance, the population is subdivided into 10-year amplitude classes and the control is updated
every 3-weeks by keeping a constant amount of control during each 3-weeks period for each age-class.

12



(a)

(b) (c)

(d) (e)

Figure 3: Epidemic simulated with default parameter values and no intervention with p= 0.5. (a)
Dynamics of epidemiological outputs over time: number of hospitalised, non hospitalised, cumulative
deaths, recovered and susceptible. (b) Age distribution of the proportion of the population that have
been infected before 150 days. (c) The number of cumulative deaths by age class and over time.
(d)-(e) Density of hospitalised and non-hospitalised people by age class over time.
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(Figure S1). Importantly, the constant defining the control intensity for each period is captured from
the knowledge of the continuous optimal control strategy. The effect of such strategy is overall similar
to the optimal control (Figure S1) with a relative performance of 91% compared to a doing nothing
scenario.

(a) (b) (c)

(d) (e)

Figure 4: The optimal control strategy c∗ plotted over time, age and its intensity, as well as their
performance in terms of cumulative number of deaths for three costs of the control measure. (a)
relatively low B∗ = 102, (b) intermediate B∗ = 103, (c) high B∗ = 104. (d) Number of hospitalizations.
(e) Cumulative deaths per age at final time T = 365 days. The relative performance ∆(c∗,0) of the
optimal control c∗ compared to a doing nothing scenario is at least 99% (resp. 92%, 82%) with
B∗ = 102 (resp. 103, 104). Here p = 0.5.

6 Discussion

Non-pharmaceutical public health interventions can be implemented either to mitigate the COVID-19
epidemic wave, and rely on natural immunisation, or to suppress the wave long enough to develop and
implement a vaccine or a treatment. Here, we explicitly factor in the age heterogeneity of the host
population in the identification of the optimal allocation of the control efforts.

We use optimal control theory to characterize an optimal strategy that significantly reduces the
number of deaths, while being sustainable at the population level. Our formulation assume a quadratic
cost for the control effort. We find that, with this strategy, the intensity of the control is always
relatively high on the older fraction of the population during at least a hundred days, before decreasing
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(a) (b)

(c) (d)

Figure 5: Comparing optimal control with uniform control. (a) Illustration of the uniform control
over the young population and (b) independently of the age. (c) Number of hospitalizations. (d)
Cumulative deaths per age at final time T = 365 days. Here, we assume B∗ = 103. Here p = 0.5.
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more or less rapidly depending on the cost associated to the control. The control over the younger
fraction of the population is weak and only occurs when the cost associated with the optimal control
is relatively low and, even then, the level control only increases 2 or 3 months after that on the older
fraction of the population. This late control over the younger part of the population actually mimics
the results [15] where the control didn’t peak right away. Intuitively, if control strategies come at a
high cost for the population, it is best to focus on the age classes that are the most at risk. Conversely,
if the control measures are more acceptable to the population, the optimal strategy is to aim wide in
order to completely suppress the epidemic wave.

Information on the natural history of paucisymptomatic infections of COVID-19 remains rela-
tively little-known [9, 44]. It is estimated that a proportion p of infected individuals will remain
asymptomatic throughout the course of infection. However, this proportion remains largely unspeci-
fied in the literature [9, 44]. We explored effects of the proportion p on the optimal control strategy
c∗. Overall, the proportion of paucisymptomatic infections have marginal effect of the optimal control
strategy (Figure S2). The optimal control remains strong over the older population from the beginning
of the epidemic, before progressively alleviated. The control over the younger population is weaker
and occurs only if control cost themselves is low. But, the level of control over its younger fraction
increases when the proportion of paucisymptomatic infections decreases.

Given the leverage represented by school and university closure, we investigated the effect of
control measures over individuals aged under 25. Our results show that NPIs targeting the younger
fraction of the population are not very efficient in reducing cumulative mortality, unless they can be
implemented strongly and for a relatively long period. Indeed, a control only over the younger popu-
lation barely reduces the number of deaths by 3% compared to a doing nothing scenario (Figure 5a,c).
Note that this result could depend on the contact matrix between ages, for which there is little date in
France (here we used the one found by [7]). Furthermore, transmission probability could vary with
age, as discussed below.

The model proposed here is an extension of the classical models based on ordinary differential
equations that tackled the issue of the optimal control of COVID-19 outbreak [15, 30, 35, 41]. Here,
the whole population is structured by age (a) and additionally by the time since infection (i) for
infectious individuals, which echoes the model developed in [49] using a discrete-time formulation
of the infection. With our continuous structure, we show that the number of new cases IN(t,a) at time
t in individuals of age a is given by the renewal equation

IN(t,a) = S0(a)
∫

∞

0

∫ amax

0
K(a,a′)ω(a′, i)IN(t− i,a′)da′ di,

where K is the contact matrix and ω(a, i) is the infectiousness of individuals aged a which are infected
since time i (Appendix A). For parameterisation purpouses, we assume that ω(a, i) is the product
between the proportion of individuals of age a in the whole population and the infectiousness β (i) of
individuals infected since time i. This is potentially a strong limitation since infectiousness β could
depend on the age a thereby creating an additional heterogeneity in addition to that since the time
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since infection i. This issue can be particularly important since some studies suggest a low risk of
transmission in the young population (e.g. [11]).

Another potential limiation is the lack of gender structure in the model formulation. Given the
observed male biased in mortality during the COVID-19 pandemic, it has been suggested that males
are more at risk of developing severe infections [46]. This heterogeneiry could readily be introduced
in the model.

Contacts networks have an important role in transmission dynamic models. Epidemic models
that determine which interventions can successfully prevent an outbreak may benefit from account-
ing for social structure and mixing patterns. Contacts are highly assortative with age across a given
country, but regional differences in the age-specific contacts is noticeable [42]. The current model
could be modified to explore epidemiological dynamics in a spatially structured population with non-
homogeneous mixing, e.g. by using a meta-population model [37].

Another potential extension of the model would be to allow for the isolation of symptomatic cases
and their contacts, following the method developed in [26] and applied recently to digital contact
tracing [24]. Indeed, these measures strongly depend on the relative timing of infectiousness and
the appearance of symptoms, and the formulation of the presented model seems suitable for that.
However, this also raises technical challenges due to the double continuous structure. However, being
able to identify age classes to follow in priority with contact tracing could be an asset in controling
epidemic spread.
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Figure S1: Practicability of the age-structured optimal control. (a)-(b) Step optimal controls with
a 3-weeks update over the older and younger populations. The corresponding optimal is given by
Figure 4b. (c)-(d) Cumulative deaths per age at final time T = 365 days.

22



Relative cost of the strategy B∗ = 102

p = 0 p = 0.2 p = 0.5

Relative cost of the strategy B∗ = 103

p = 0 p = 0.2 p = 0.5

Relative cost of the strategy B∗ = 104

p = 0 p = 0.2 p = 0.5

Figure S2: The effect of paucisymptomatic infections, through their proportion p, on the optimal
control c∗.
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A The basic reproduction number

Here we compute the basic reproduction number R0 of the model (3)-(5). First let us set for i≥ 0 and
a ∈ [0,amax] the following functions

πs(a, i) = exp
(
−iµnat(a)−

∫ i

0
[γdir(a)1[isympt ,ismax]

(σ)+hs(a,σ)]dσ

)
,

πm(a, i) = exp
(
−iµnat(a)−

∫ i

0
hm(a,σ)dσ

)
,

πp(a, i) = exp
(
−iµnat(a)−

∫ i

0
hp(a,σ)dσ

)
,

that describe the survival probability of infected individuals (in the respective compartment), with age
a, from their infection until the time since infection i, in case of no hospitalisation (i.e. H ≡ 0). We
get the following Volterra formulation of the linearized system of (3)-(5):

Is(t,a, i) =

Is,0(a, i− t) πs(a,i)
πs(a,i−t) , for t ∈ [0, i),

(1− p)q(a)λ0(t− i,a)S0(a)πs(a, i), for t ≥ i,
(A.1)

Im(t,a, i) =

Im,0(a, i− t) πm(a,i)
πm(a,i−t) , for t ∈ [0, i),

(1− p)(1−q(a))λ0(t− i,a)S0(a)πm(a, i), for t ≥ i
(A.2)

and

Ip(t,a, i) =

IA,0(a, i− t) πp(a,i)
πp(a,i−t) , for t ∈ [0, i),

pλ0(t− i,a)S0(a)πp(a, i), for t ≥ i
(A.3)

where λ0 = λ (·, ·,0) is defined by

λ0(t,a) =
∫ amax

0
K(a,a′)

∫
∞

0

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
di da′,

(A.4)
where βk, k ∈ {s,m, p} are defined in Section 3.2. Let IN(t,a) = λ0(t,a)S0(a) be the density of newly
infected of age a at time t, with c ≡ 0. Then (A.1)-(A.2)-(A.3) can be rewritten as the following
Volterra formulation:

IN(t,a) = S0(a)
∫ t

0

∫ amax

0
K(a,a′)ω(a′, i)IN(t− i,a′)da′ di+ f (t,a),

where

ω(a′, i) = βs(a′, i)(1− p)q(a′)πs(a′, i)+βm(a′, i)(1− p)(1−q(a′))πm(a′, i)+βp(a′, i)pπp(a′, i)

and f (t,a) is the density of new infections produced by the initial population. Therefore, the basic
reproduction number R0 is the spectral radius, denoted by r(U), of the next generation operator U
defined on L1

+(0,amax) by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax)
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As explained in Section 3.2, it is estimated in [24] that each average infectiousness βk (k ∈ {s,m, p})
takes the form of a Weibull distribution W (3,5.65) so that the mean and median are equal to 5.0
days while the standard deviation is 1.9 days. Based on this estimation, we assume that βk(a, i) =
αβ (i)ξk(i) where β ∼W (3,5.65) and α is a positive parameter to be determined. Consequently, it
follows that α is given by

α =
R0

r
(
U
) , (A.5)

where U is the operator defined by

U : L1(0,amax) 3 v 7−→ S0(·)
∫

∞

0

∫ amax

0
K(·,a′)ω(a′, i)v(a′)da′ di ∈ L1(0,amax)

with

ω(a′, i) = β (i)
[
ξs(i)(1− p)q(a′)πs(a′, i)+ξm(i)(1− p)(1−q(a′))πm(a′, i)+ξp(i)pπp(a′, i)

]
.

We see that U can be rewritten as

Uv(a) = S0(a)
∫ amax

0
K(a,a′)Ω(a′)v(a′)da′, ∀v ∈ L1

+(0,amax) where Ω
(
a′
)
=
∫

∞

0
ω(a′, i)di.

Now, in order to compute the spectral radius r
(
U
)
, we first make the following assumptions:

Assumption A.1 We suppose that:

a) functions S0,K,Ω are bounded and positive almost everywhere;

b) the function K is symmetric.

We can note that the Assumption A.1 is satisfied when using the parameters stated in Table 1. Now,
let S be the positive self-adjoint operator defined by

S : L2(0,amax) 3 v 7−→
√

S0(·)Ω(·)
∫ amax

0
K(·,a′)

√
S0(a′)Ω(a′)v(a′)da′ ∈ L2

+(0,amax)

(by symmetry of K supposed in Assumption A.1). We can deduce the following

Proposition A.2 The operators U and S are positive and compact, their spectra σ(U) \ {0} and
σ(S)\{0} are composed of isolated eigenvalues with finite algebraic multiplicity. Moreover, we have
σ(U) = σ(S)⊂ R+ and the following Rayleigh formula holds:

r(U) = r(S) = sup
v∈L2(0,amax)

‖v‖L2(0,amax)
=1

∫ amax

0

∫ amax

0
K(a,a′)

√
S0(a′)Ω(a′)

√
S0(a)Ω(a)v(a′)v(a)da′ da.

Proof. The compactness of both integral operators follows from the fact that amax < ∞ by assumption
(see Table 1), hence their spectra are punctual. Now we prove that σ(U) = σ(S). Let ν ∈ σ(U) be an
eigenvalue of U and φ ∈ L1(0,amax) be the associated eigenvector, i.e.

Uφ(a) = S0(a)
∫ amax

0
K(a,a′)Ω(a′)φ(a′)da′ = νφ(a), ∀a ∈ [0,amax]
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so that φ ∈ L∞(0,amax)⊂ L2(0,amax). Defining the function

ψ =
φ

√
Ω√

S0
∈ L2(0,amax)

leads to

νψ(a) =
√

S0(a)Ω(a)
∫ amax

0
K(a,a′)

√
Ω(a′)S0(a′)ψ(a′)da′ = Sψ(a), ∀a ∈ [0,amax]

i.e. ν ∈ σ(S) is an eigenvalue of S associated to the eigenvector ψ , so that σ(U) ⊂ σ(S). For the
reverse inclusion, let ν ∈ σ(S) and ψ ∈ L2(0,amax)⊂ L1(0,amax) be the associated eigenvector for S.
It follows that the function

φ =
ψ
√

S0√
Ω
∈ L1(0,amax)

is an eigenvector of U related to the eigenvalue ν ∈ σ(U), whence σ(U) = σ(S). In particular,
both spectral radius are equal. Finally, the Rayleigh formula is classical for positive and symmetric
operators.

Remark A.3 Numerically, to compute r(U), we can similarly show that it is given by the spectral
radius of the following operator:

L1(0,amax) 3 v 7−→
∫ amax

0
K(·,a′)Ω(a′)S0(a′)v(a′)da′ ∈ L1(0,amax)

which can be easily computed since the age a is numerically divided into 20 classes, so that the term
inside the integral of the latter equation is a 20×20 matrix. Finally, we obtain α from (A.5).

B Computations of the adjoint system

In order to deal with the necessary optimality conditions, we use some results in [22]. Next, we
detail the computations of the adjoint system (12)-(13). To this end, we first define the functions
y1,Q : [0,T ]× [0,amax]→ R and y2 : [0,T ]× [0,amax]×R+ by:

y1(t,a) =

(
S(t,a)
R(t,a)

)
y2(t,a, i) =

 Is(t,a, i)
Im(t,a, i)
Ip(t,a, i)

 , Q(t,a) =
(

H(t) E(t,a) b(t,a)
)

wherein

gH(i,y2(t,a, i)) = Is(t,a, i)1[isympt ,∞)(i), gR(i,y2(t,a, i)) = ∑
k∈{s,m,p}

hk(a, i)Ik(t,a, i),

gλ (a, i,y1,y2) = S(t,a)
∫ amax

0
K(a,a′)

(
βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i)

)
da′,

H(t) =
∫

∞

0

∫ amax

0
gH(i,y2(t,a, i))da di, E(t,a) =

∫
∞

0
gλ (a, i,y1(t,a, i),y2(t,a, i))di,

b(t,a) =
∫

∞

0
gR(i,y2(t,a, i))di.
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The model (5) thus rewrites as
∂ty1(t,a) = F1(a,Q(t,a),c(t,a),y1(t,a)),

(∂t +∂i)y2(t,a, i) = F2(a, i,Q(t,a),c(t,a),y2(t,a, i)),
y2(t,a,0) = Φ(a,c(t,a),E(t,a)),

with

F1(a,Q(t,a),c(t,a),y1(t,a)) =

(
−µ(a,H(t))S(t,a)− (1− c(t,a))E(t,a)

−µ(a,H(t))R(t,a)+b(t,a)

)
,

F2(a, i,Q(t,a),c(t,a),y2(t,a, i)) =

−(µ(a,H(t))+ γ(a, i,H(t))+hs(a, i))Is(t,a, i)
−(µ(a,H(t))+hm(a, i))Im(t,a, i)
−(µ(a,H(t))+hp(a, i))Ip(t,a, i)


and

Φ(a,c(t,a),Q(t,a)) =

 (1− p)q(a)(1− c(t,a))E(t,a)
(1− p)(1−q(a))(1− c(t,a))E(t,a)

p(1− c(t,a))E(t,a)

 .

We now rewrite the functional J as

J(c) =
∫ T

0

∫ amax

0

(
J1(a,c(t,a),Q(t,a),y1(t,a))+

∫
∞

0
J2(a, i,Q(t,a),y2(t,a, i))di

)
da dt

which is decomposed into

J1(a,c(t,a),Q(t,a),y1(t,a)) = µadd(a,H(t))(S(t,a)+R(t,a))+B(a)c2(t,a)

and

J2(a, i,Q(t,a),y2(t,a, i)) = γ(a, i,H(t))Is(t,a, i)+µadd(a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i)).

We denote by z1,ζk : [0,T ]× [0,amax]→ R (for k ∈ {1,2,3}) the following adjoint functions

z1(t,a) = (zS(t,a),zR(t,a)), ζ (t,a) = (ζ1(t,a),ζ2(t,a),ζ3(t,a)),

and we denote by z2 : [0,T ]× [0,amax]×R+ the following adjoint function

z2(t,a, i) = (zIs(t,a, i),zIm(t,a, i),zIp(t,a, i)),

satisfying limi→∞ z2(t,a, i) = 0 and z1(T,a) = z2(T,a, i) = 0. We get

∇y1J1(a,c(t,a),Q(t,a),y1(t,a)) =

(
µadd(a,H(t))
µadd(a,H(t))

)T

∇y2J2(a, i,Q(t,a),y2(t,a, i)) =

µadd(a,H(t))+ γ(a, i,H(t))
µadd(a,H(t))
µadd(a,H(t))


T
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∇y1F1(a,Q(t,a),c(t,a),y1(t,a)) =

(
−µ(a,H(t)) 0

0 −µ(a,H(t))

)
and

∇y2F2 =

−µ(a,H(t))− γ(a, i,H(t))−hs(a, i) 0 0
0 −µ(a,H(t))−hm(a, i) 0
0 0 −µ(a,H(t))−hp(a, i)

 .

Then
(z1 ·∇y1F1)(t,a) =

(
−µ(a,H(t))zS(t,a) −µ(a,H(t))zR(t,a)

)
and

(z2 ·∇y2F2)(t,a, i) =
(
−(µ + γ +hs)zIs(t,a, i) −(µ +hm)zIm(t,a, i) −(µ +hp)zIp(t,a, i)

)
.

Setting

g1(a,y1,y2) =


∫

∞

0 gH(i,y2(t,a, i))di
E(t,a)
b(t,a)

 , g2(a, i,y1,y2) =

 gH(i,y2(t,a, i))
gλ (a, i,y1(t,a, i),y2(t,a, i))

gR(i,y2(t,a, i))

 ,

we see that

∇y1g1(a,y1,y2)=

 0 0∫
∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′ di 0
0 0


and

∇y2g2(a, i,y1,y2) =

 1[isympt ,∞)(i) 0 0
S(t, ·)βs(a, i)K(·,a) S(t, ·)βm(a, i)K(·,a) S(t, ·)βp(a, i)K(·,a)

hs(a, i) hm(a, i) hp(a, i)

 .

From there, we deduce that

(ζ ·∇y1g1)(t,a)=
(

ζ2(t,a)
∫

∞

0
∫ amax

0 K(a,a′)(βs(a′, i)Is(t,a′, i)+βm(a′, i)Im(t,a′, i)+βp(a′, i)Ip(t,a′, i))da′di 0
)

and

(ζ ·∇y2g2)(t,a, i)=

ζ1(t,a)1[isympt ,∞)(i)+βs(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hs(a, i)
βm(a, i)

∫ amax
0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hm(a, i)

βp(a, i)
∫ amax

0 ζ2(t,a′)S(t,a′)K(a′,a)da′+ζ3(t,a)hp(a, i)


T

.

The adjoint system is given by{
− ∂ z1

∂ t (t,a) = ∇y1J1(t,a)+(z1 ·∇y1F1)(t,a)+(ζ ·∇y1g1)(t,a)
−( ∂ z2

∂ t + ∂ z2
∂ i )(t,a, i) = ∇y2J2(t,a)+(z2 ·∇y2F2)(t,a, i)+(ζ ·∇y2g2)(t,a, i)
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which is equivalent to (12). Next, we see that

∇QΦ(t,a) =

0 (1− p)q(a)(1− c(t,a)) 0
0 (1− p)(1−q(a))(1− c(t,a)) 0
0 p(1− c(t,a)) 0


whence

(z2(·, ·,0) ·∇QΦ)(t,a) =
(

0 [1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0) 0
)
.

Further, we have
∇QJ1(t,a) =

(
∂ µ

∂H (a,H(t))(S(t,a)+R(t,a)) 0 0
)

and

∇QJ2(t,a, i) =
(

∂ µ

∂H (a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i))+
∂γ

∂H (a, i,H(t))Is(t,a, i) 0 0
)
.

We also see that ∇Qg1 ≡ 0, ∇Qg2 ≡ 0,

∇QF1(t,a) =

(
− ∂ µ

∂H (a,H(t))S(t,a) −(1− c(t,a)) 0
− ∂ µ

∂H (a,H(t))R(t,a) 0 1

)
and

∇QF2(t,a, i) =


−
(

∂ µ

∂H (a,H(t))+ ∂γ

∂H (a, i,H(t))
)

Is(t,a, i) 0 0

− ∂ µ

∂H (a,H(t))Im(t,a, i) 0 0
− ∂ µ

∂H (a,H(t))Ip(t,a, i) 0 0


whence

(z1 ·∇QF1)(t,a) =

−
∂ µ

∂H (a,H(t))S(t,a)zS(t,a)− ∂ µ

∂H (a,H(t))R(t,a)zR(t,a)
−(1− c(t,a))zS(t,a)

zR(t,a)


T

and
(z2 ·∇QF2)(t,a, i) =

(
−
(

∂ µ

∂H + ∂γ

∂H

)
IszIs−

∂ µ

∂H ImzIm−
∂ µ

∂H IpzIp 0 0
)
.

Finally, the adjoint functions ζ must satisfy the following equation:

ζ (t,a) =(z2(·, ·,0) ·∇QΦ)(t,a)+(∇QJ1(t,a))+(z1 ·∇QF1)(t,a)+(ζ ·∇Qg1)(t,a)

+
∫

∞

0
(∇QJ2(t,a, i)+(z2 ·∇QF2)(t,a, i)+(ζ ·∇Qg2)(t,a, i))di

which is equivalent to (13). Finally, the Hamiltonian is given by

H (t,a,c) = z2(t,a,0) ·Φ(t,a,c,Q)+J1(a,c,Q,y1)+
∫

∞

0
J2(a, i,Q,y2)di

which leads to

H (t,a,c) = E(t,a)[1− c(t,a)][(1− p)(q(a)zIs +(1−q(a))zIm)+ pzIp ](t,a,0)

+µadd(a,H(t))(S(t,a)+R(t,a))+B(a)c2(t,a)

+
∫

∞

0
(γ(a, i,H(t))Is(t,a, i)+µadd(a,H(t))(Is(t,a, i)+ Im(t,a, i)+ Ip(t,a, i)))di. (B.1)
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