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Abstract

In problems involving simultaneous heat and mass transfer there exist coupling be-
tween these phenomena: temperature gradient may cause mass flux (Soret effect) and
concentration gradient may cause heat flux (species interdiffusion and Dufour effect).
In a large number of scientific works the authors do not include these effects into their
models, without providing any justifications. In this paper we model natural convection
inside a two-dimensional square cavity having evaporation and condensation boundary
conditions. All coupling effects are taken into account and their relative impacts on nu-
merical solutions are accurately assessed. Numerical results demonstrate that the species
interdiffusion phenomenon has to be taken into account in order to guarantee the energy
conservation in the domain. The influence of Soret and Dufour effects is examined and
it is shown that for a binary mixture of steam and air these two effects have negligible
contribution. We point out, however, that for some circumstances involving large thermal
diffusion ratios Dufour effect may become important.

Keywords: natural convection, evaporation, condensation, square cavity, species

interdiffusion, Soret and Dufour effects

1. Introduction

During some postulated accidents inside a nuclear reactor building, a large amount
of hot water vapor can be released inside the containment. The steam condensation at
the walls and structures of the reactor building has a mitigation effect in pressure rise
inside in the containment. In order to assess this effect, one has to have a reliable physical5

model in which heat and mass transfer phenomena, including coupling between them, are
extensively validated. In a large number of scientific works the authors do not include the
coupling effects into their models, without providing any justifications. However, these
can be very important inside boundary layers where large temperature and concentration
gradients are present. This paper represents a first step of the validation work where10

we consider a comprehensive physical model involving all coupling effects. For the sake
of simplicity, we test our model using a two-dimensional square cavity depicted on the
Figure 1a.

At the left wall of the cavity, called in what follows, the hot wall, water evaporation
takes place at a constant temperature TH . A constant concentration of water vapor Yv15
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is taken at saturation condition at temperature TH . At the right wall, further called
the cold wall, water condensation occurs at constant temperature TC . The value for the
mass fraction of vapor Yv,C is determined, as before, at saturation condition at TC . The
boundary values at the hot (resp. cold) wall will be denoted in this paper with a subscript
•H (resp. •C).20

Double diffusion model for temperature and concentration, which has been widely
applied to this problem [1, 2], neglect species interdiffusion, Soret effect and Dufour effect.
Sun et al. [2] applied the low Mach number model to a similar problem and the effect
of the total pressure variation was taken into account. The dimensionless form of their
system of equations does not allow to consider a mixture of two gases having different25

specific heat ratios, which is an essential shortcoming. Moreover, the authors neglected
the species interdiffusion phenomenon meaning that the model remains double-diffusive.
In order to enforce the energy conservation inside the computational domain, the authors
redefined the Nusselt number and Sherwood number according to the mathematical form
of their energy transport equation. This modification enables them to balance the total30

Nusselt numbers on the left and right sides of the cavity at the steady state at the cost
of losing the physical meaning of these numbers.

Weaver and Viskanta [3] investigated the influence of species interdiffusion under small
heat capacity variation, alongside with Soret and Dufour effects. But the formulation
of their Dufour effect heat flux is not consistent and more development is needed. A35

simplified model, as recently applied by Kefayati [4, 5, 6], takes into account these effects.
The study is carried out in a similar square cavity without condensation or evaporation.

The aim of our paper is to propose a low-Mach number model which satisfies the energy
conservation law which will be confirmed by the balance of total Nusselt numbers on both
sides of the cavity. The definition of the total Nusselt number involve all coupling effects40

in accordance to the solved equations. Moreover, the model allows having different specific
heat ratios for each component of the binary mixture. The paper is organized as follows.
Section 2 describes the physical phenomena that we consider. Section 3 introduces the
nondimensionalization. Section 4 describes our algorithm. Section 5 compares the current
results to the litterature. Section 6 presents the computed results for air-steam mixture.45

2. Analysis

We denote in the following ρ the density, P the pressure, T the temperature, Yi the
mass fraction of a component cp (cv respectively) the specific heat at constant pressure
(at constant volume respectively), h the specific enthalpy, U the velocity, φ the mass flux,
g the gravitational acceleration and m the total mass of gas in the cavity. An indexed
physical quantity si means the partial quantity s of component i ∈ {a, v}.The binary
mass diffusion coefficient D and the kinetic viscosity ν are supposed to be constant. The
gas mixture satisfies the Navier-Stokes equations as follows [7]:

∂ρ

∂t
+∇ · ρU = 0, (1)

∂ρYi
∂t

+∇ · ρYiU = −∇ · ji, (2)

∂ρU

∂t
+∇ · ρU ⊗U = −∇P +∇ · τ + ρg, (3)

∂ρ
(
h+ 1

2
‖U‖2

)
∂t

+∇ · ρU
(
h+

1

2
‖U‖2

)
= −∇ · (q +U · τ ) +

∂P

∂t
, (4)
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Nomenclature

Greek Symbols

αd thermal diffusion ratio

φ mass flux

τ stress tensor

∆• difference between two wall values, ·H−·C

γ specific heat ratio

ν kinetic viscosity

ρ density

εm mass non-Boussinesq factor, ∆r/rref

εt thermal non-Boussinesq factor, ∆T/Tref

Dimensionless Numbers

Fr Froude number, Uref/
√
gL

Nu Nusselt number

Pr Prandtl number, ρrefcp,refν/k

Ra Rayleigh number,
ρrefcp,refgL

3(εt + εm)

νk

Re Reynolds number, UrefL/ν

Sc Schmidt number, ν/D

Sh Sherwood number

Roman Symbols

g gravitational acceleration

j mass flux

q energy flux

U velocity

cp specific heat capacity at constant pres-

sure

cv specific heat capacity at constant volume

D binary mass diffusion coefficient

h specific enthalpy

k thermal conductivity

M molar mass

m total mass of the gas in the cavity

P pressure

Pth thermodynamic pressure

pd dynamic pressure

R gas constant

r specific gas constant of mixture

T temperature

t time

Y mass fraction

Superscripts

•? corresponding dimensionless quantity

Subscripts

•ref reference value for nondimensionalization

•a advection

•C value of a quantity on the cold wall

•D Dufour effect

•d diffusion

•H value of a quantity on the hot wall

•I species interdiffusion

•i component i, where i = a for air and

i = v for steam

•S Soret effect

where ji = ji,d + ji,S and q = qd + qI + qD. We apply Fick’s law ji,d = −ρD∇Yi and
Fourier’s law qd = −k∇T following [8]. In addition, (1) and (2) lead to

∑
i ji = 0. From

(2), one identifies the partial mass flux of i-th component φi = Yiφ + ji and one defines
the i-th component partial velocity as Ui = U + ji

ρYi
.50
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2.1. Gas properties
All the definitions in the following section can be found in [8]. We consider the ideal

gas model for the gas mixture. To simplify the work, we consider a binary mixture consists
of two gases with the following propertiees: the two gases obey separately the ideal gas
law ρi = Pi

riT
where we define ri = R/Mi the specific gas constant; for each gas, the55

specific heat ratio γi = cp,i/cv,i is constant; the internal energy of the mixture is equal
to the sum of the partial internal energies: ρe =

∑
i ρiei. These assumptions lead to

the following properties of the binary gas mixture: cp,i and cv,i are constant; the mixture
satisfies the ideal gas law ρ = P

rT
; the enthalpy of the mixture is equal to the sum of the

partial enthalpies: ρh =
∑

i ρihi; the specific gas constant r and the specific heats of the60

mixture cv and cp are independent of temperature and equal to the weighted average of
the each substance weighted by their mass fraction: s =

∑
i Yisi where s = r, cv or cp; the

specific heat ratio γ is independent of temperature and function only of the composition;
the Mayer’s relation holds: r = cp − cv.

2.2. Species interdiffusion65

The enthalpy per unit volume of the mixture is the sum of partial enthalpies per
unit volume of each component:

∑
i ρYihi = ρh. However, the enthalpy flux per unit

volume is not equal to the sum of partial fluxes per unit volume, i.e.
∑

i ρihiUi =∑
i hi (ρiU + ji) = ρhU +

∑
i hiji. The term

∑
i hiji shows that there exists a heat flux

induced by the concentration transport, which we call species interdiffusion flux or simply70

the interdiffusion flux, noted qI =
∑

i hiji. Note that the interdiffusion flux is independent
of the transport of specific heat induced by the transport of concentration. In the case of
a binary mixture, the expression yields to qI = (cp,v − cp,a)Tjv.

2.3. Soret and Dufour effects
According to [8], Soret and Dufour effects appear in the case of simultaneous mass75

and heat transfer as a result of chemical potential. We shall use expressions [8]: jv,S =
αdρDYv (1− Yv) 1

T
∇T and qD = αdRT

M
MaMv

jv where αd is the thermal diffusion ratio for
vapour in air. Note that jv = jv,d + jv,S and that qI and qD depend both on jv. We
define respectively the interdiffusion heat flux and the Dufour effect heat flux originated
from Fick’s law mass flux and Soret effect mass flux, noted as qId, qIS, qDd and qDS.80

2.4. Velocity boundary conditions modelling wall condensation and evaporation
In the case of binary mixture of air and steam, one obtains by noticing Ya = 1−Yv and

jv = −ja, Ua = U − 1
ρ(1−Yv)

jv. On the vertical walls, because air is incondensable, the
air mass flux through the boundary is zero, i.e. Ua,n = 0. This leads to U |wall,n = jv,n

ρ(1−Yv)

on these walls. When Soret effect is neglected, the mass flux is only constituted by Fick’s85

law mass flux and the boundary condition becomes U |wall,n = − D
(1−Yv)

∂Yv
∂n

which is called
Stefan’s velocity.

3. Scaling analysis

3.1. Nondimensionalization
In the square cavity problem, we have Yv,H and Yv,C as the highest and lowest steam90

mass fractions, and we define Yv,ref = 1
2
(Yv,H +Yv,C), ∆Yv = Yv,H−Yv,C and dimensionless
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parameter Y ? varying from −0.5 to +0.5: Yv = Yv,ref + ∆YvY
?. Similarly, we set T =

Tref + ∆TT ?, where T is the dimensionless temperature varying from −0.5 to +0.5. The
reference state defining ρref, rref and cp,ref with subscript ref of the gas is taken at the initial
pressure Pth,ref and at Tref and Yv,ref. We define the following dimensionless numbers:95

Rayleigh number Ra =
ρrefcp,refgL

3(εt+εm)

νk
, Prandtl number Pr = ρrefcp,refν/k, Schmidt

number Sc = ν/D, Reynolds number Re = UrefL/ν, Froude number Fr = Uref/
√
gL.

Here we take Uref =
√
gL(εt + εm), thus Re =

√
Ra/Pr. The non-Boussinesq factors are

introduced: εt = ∆T/Tref and εm = ∆r/rref, where ∆r = rH − rC .

3.2. Low Mach number model100

The low Mach number model is based on the acoustic wave filtering introduced by
Paolucci. [9]. The idea is, with a low Mach number of the flow, to separate the pressure
into a thermodynamic pressure Pth and a dynamic one pd. The calculation of the ther-
modynamic pressure is based on the total mass conservation in the volume, and it can be
calculated by Pth = m

(∫
Ω

1
rT

dV
)−1

. Furthermore, the assumption of low Mach number105

enables us to neglect the dissipation of kinetic energy by viscous force and the spatial
variation of pressure [9].

By defining φ = ρU , we write the non-dimensional low Mach number model for (1, 2,
3, 4) as :

∂

∂t?
ρ? +∇? · φ? = 0 (5)

∂

∂t?
(ρ?U ?) +∇? · (φ? ⊗U ?) = ∇? · τ ? +

ρ? − 1

εt + εm

g

‖g‖
− ∇?p?d (6)

∂

∂t?
(
ρ?c?pT

?
)

+∇? ·
(
φ?c?pT

?
)

=
γ − 1

γεt

dP ?
th

dt?
− 1

RePr
∇? (q?d + q?Id + q?IS + q?Dd + q?DS)

(7)
∂

∂t?
(ρ?Y ?) +∇? · (φ?Y ?) = − 1

ReSc
∇? ·

(
j?v,d + j?v,S

)
(8)

where τ is the viscosity stress tensor: τ ? (U ?) = 1
Re

(
∇?U ? + (∇?U ?)T

)
− 2

3
1
Re∇

? ·U ?I

and the thermodynamic pressure is P ?
th = m?

(∫
Ω

(1 + εtT
?)−1(1 + εmY

?)−1dV
)−1. Using

the result from Section 2.4, the boundary conditions are the following:110

• on the horizontal walls, U?
x = U?

y = 0 and ∂T ?

∂n
= 0, ∂Y ?

∂n
= 0 .

• on the cold (resp. hot) wall, T ? = Y ? = −0.5, (resp., T ? = Y ? = +0.5).

• on the hot and cold walls, U?
y = 0 and U?

x = U?
wall,n = ∆Yv

1−Yv
1

ReSc
1
ρ?

(
j?v,d + j?v,S

)
· ex .

3.3. Definition of Nusselt and Sherwood number
The Nusselt number consists, like the heat flux itself, of 6 parts: Nua due to advection,115

Nud due to diffusion, NuI = NuId + NuIS due to interdiffusion (where NuId is related to
diffusive mass flux and NuIS is related to Soret effect mass flux) and NuD = NuDd+NuDS
due to Dufour effect (where NuDd related to mass flux and NuDS related to Soret effect
mass flux). Hence, one may find the expression of the dimensionless heat flux as following:
q?a = RePr ρ?c?p

(
1
εt

+ T ?
)
U ?, q?d = −∇?T ?, q?Id = −Pr

Sc
∆cp
cp,ref

(
1
εt

+ T ?
)
ρ?∇?Y ?, q?IS =120
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−Pr
Sc

∆cp
cp,ref

Yv(1−Yv)
Yv,H−Yv,C

αdρ
?∇?T ?, q?Dd = −Pr

Sc
αdR

2

rcp,refMaMv

(
1
εt

+ T ?
)
ρ?∇?Y ?,

q?DS = −Pr
Sc

α2
dR

2

rcp,refMaMv

Yv(1−Yv)
Yv,H−Yv,C

ρ?∇?T ?. In the same way, the different contributions to
the mass flux, due to advection, diffusion and Soret effect, are identified as following:
j?v,a = ReSc ρ?

(
Yv,ref

Yv,H−Yv,C
+ Y ?

)
U ?, j?v,d = −ρ?∇?Y ?, j?v,S = −αdρ? Yv(1−Yv)

Yv,H−Yv,C
εt

1+εtT ?∇?T ?.
In the following sections, these average values of Nusselt and Sherwood numbers are125

going to be computed along either cold or hot wall by the following: Nu• =
∫
wall q

?
• · en,

Sh• =
∫
wall j

?
v,• · en, where en is the normal vector to the surface.

4. Numerical solution

The solution of the original system demands non-zero velocity boundary conditions
given by Stefan’s velocity calculated from the vapour distribution at current time step.130

However, this definition of boundary condition may cause instability of the algorithm. Our
solution to this problem is to build a decomposition of U as Uint + Ub, where Uint = 0
on each wall (no matter if there is a phase change or not) and Ub is a partial velocity
indicating the boundary condition of U .

4.1. Definition of a boundary condition of velocity135

For the case of a square cavity, there exists actually two types of walls with or without
phase changes in our physical scenario. In the case of an adiabatic and impermeable
wall, the boundary condition is U = 0. The condition for Ub is therefore Ub = 0. In
the case of a wall with evaporation or condensation, the tangential velocity Ut = 0 and
the normal velocity Un = ρ−1(1 − Yv)−1jv · en therefore Ub = (ρ−1(1 − Yv)−1jv · en)en.140

The idea is to define a phase-change factor fk associated with each wall k such that
Ub = −

∑
k fk(ρ

−1(1− Yv)−1jv · en,k)en,k. On each wall k, fk is either equal to 1 if phase
change is present or 0 otherwise.

Now we need to search for the value of fk inside the domain. The simplest possi-
ble definition, which consists in taking fk = 0 in the interior of the domain, is actually
equivalent to the Stefan’s-velocity-type boundary condition and causes the discontinu-
ity of Ub . We need a more “smooth” definition of fk. In order to keep the continuity
of Ub, one may assume ∇2fk = 0. In practice, we solve the factors fk at the initial-
ization step of the algorithm. The dimensionless air diffusive velocity is calculated by
U ?
a,d = 1

ReSc
Yv,H−Yv,C

1−Yv

(
∇?Y ? + αd

Yv(1−Yv)
Yv,H−Yv,C

εT
1+εTT ?∇?T ?

)
. Finally, in the low Mach model,

the equation (6) is replaced by

∂

∂t?
(ρ?U ?

int) +∇? · (φ?U ?
int) = ∇? · τ ?(U ?

int) +
ρ? − 1

εT + εm

g

‖g‖
− ∇?p?d

−
(
∂

∂t?
(ρ?U ?

b ) +∇? · (φ?U ?
b )−∇? · τ ?(U ?

b )

) (9)

and the whole system of (5), (9), (7) and (8) is subject to the boundary conditions in
3.2 and U?

int = 0 when x? = 0, 1 or y? = 0, 1. For the computation of U ?
int and p?d, we145

apply the Pressure Implicit Splitting of Operators (PISO) algorithm based on OpenFOAM
framework.
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4.2. Adjustment of thermodynamic pressure
Mass conservation needs to be enforced through the Poisson equation. In an incom-

pressible system, the only way to keep the mass conservation is to balance the inlet150

and outlet of mass. However, in a low Mach system, we gain the possibility to ad-
just the mass in a constant volume by raising the density of the fluid. The way that
we implement this idea is to adjust the thermodynamic pressure Pth. In order to ad-
just Pth we calculate first the mass flux dm

dt
=
∫

Ω
∇ · φdV and thus at time t + ∆t:

P ?
th(t? + ∆t?) =

m?(t?)+ dm?

dt?
∆t?∫

Ω?
1

(1+εT T?)(1+εmY ?)
dV ? This updated value P ?

th(t + ∆t) is used to cal-155

culate the physical parameters in the following iterations within the time step. Once
the internal iteration is finished, we enforce the total air mass unchanged by updating

m(t? + ∆t?) =
m?

a

∫
Ω?

1
(1+εT T?)(1+εmY ?)

dV ?∫
Ω?

1−Yv,0−∆YvY ?

(1+εT T?)(1+εmY ?)
dV ?

.

5. Validation and comparisons

Validation of our model was established [10] for purely thermal convection [11] as160

well as cases for the mixture with evaporation and condensation under nearly constant
thermodynamic pressure [1]. The mesh convergence was obtained with a resolution of
160× 160. All results in the present paper are computed using a mesh of 320× 320.

The low Mach approximation is applied to the double-diffusive model in the work
of Sun and Lauriat [2] in 2010. In their work, a case of large thermodynamic pressure165

variation is examined.

5.1. Case description
Since the dimensionless heat transport equation in the double-diffusive model can be

transformed into conservative form, conservative heat fluxes may be reconstructed. In
their paper [2], the definition of the Sherwood and Nusselt numbers are given by such170

reconstruction, which shall be translated in our notations as: Sh = ReSc ρ?Y ?U ? · en −
ρ?∇?Y ? · en, Nu = RePr ρ?T ?U ? · en − ρ?∇?T ? · en. It is clear that these definitions,
which will be called the reconstructed definitions in the following to be differentiated from
the physical definitions, do not take into account neither the reference mass fraction nor
the reference temperature in advection and therefore are not equivalent to the physical175

definitions of advection Sherwood and Nusselt number. The transport properties of case
1 in Table 5 in [2] are shown in Table 1 (s1). In addition, in the initial conditions, the
dimensionless temperature and concentration are set to be −0.5 in order to reinforce the
evaporation and to increase the thermodynamic pressure variation. Since the amount
of steam in the cavity is expected to increase from its initial value, the thermodynamic180

pressure is supposed to be bigger than 1. Table 1 compares results from the reference [2],
results based on the double-diffusive approach using incorrect (reconstructed) definitions
(ddR) and correct ones (dd), and results based on our full model.

5.2. Results
One notices that the reference result and the double diffusive result with reconstructed185

post-treatment are in very good agreement. This validates our low-Mach calculation
without species interdiffusion. Comparison of specific contributions for the two double-
diffusive cases, which are based on the same calculation, illustrates the difference in the
definition of the Nusselt numbers. While the contributions to diffusion are the same, the
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advective contributions are totally different. Since the reconstructed definitions do not190

take into account the reference values, it is possible to obtain negative values on the cold
wall as the two dimensionless fields take negative values there. The double-diffusive case
with the correct definition does not lead to matching Nusselt numbers on each side of the
cavity.

In contrast, our calculation with our full model accounting for species interdiffusion195

leads to equal Nusselt numbers on each side. Since the specific heat capacity difference
is large (cp,v/cp,a = 4), interdiffusion heat fluxes make a major contribution to the total
heat transfer (46.50% of the total heat flux on the hot wall and 41.10% on the cold wall).

In conclusion, we have shown that the energy conservation is not guaranteed in double
diffusive model.200

6. Calculations for air and steam mixture

We investigate the influence of species interdiffusion together with Soret and Dufour
effect for air steam mixture representative of our problem. We now consider a square
cavity, side length of which is 2 cm, with an initial pressure of 5 bar. The Rayleigh
number for this case is Ra = 4.05 × 105. We take Pr = 1.32 and Sc = 0.66. The205

temperature of the hot wall is TH = 120 ◦C and that of the cold wall is TC = 80 ◦C.
Assuming the steam is saturated on both walls, we take Yv,H = 0.29 and Yv,C = 0.06. The
initial state of the interior is set as the reference state.

6.1. Values of αd
The intensity of Soret and Dufour effects is a function of the thermal diffusion ratio210

αd, which depends on the composition of mixture, but is approximately independent to
temperature and concentration of components [8]. When αd = 0, all the terms due to
Soret and Dufour effects do not contribute. We therefore use this value to set up a
reference result without Soret and Dufour effects, which is denoted as case e1 in Table 1.
According to [12, 13], a realistic value αd = −0.0059 is found for the air-steam mixture215

and it is applied for the case e2. In [8], we find that αd can reach 0.4 in a mixture of
Ne−He or N2−H2. This value is applied for the case e3 in order to assess to a maximal
influence of Soret and Dufour effects. Consequently, we consider the following values of
αd in the calculations: 0 (e1), -0.0059 (e2), 0.4 (e3).

6.2. Results220

First of all, according to comparison between the results of e1 and e2 (Table 1), the
influence of Soret and Dufour effects remains slight with αd = −0.0059. The mass fluxes
are mostly the same in the two cases and the Soret effect is negligible in the case e2. The
heat fluxes are pratically not affected by the Dufour effect heat flux, which is negligible
compared to the total heat flux. However, the Dufour effect shows a more important225

contribution to the total heat transfer (-0.31% / -0.42%) compared to that of Soret effect
to the total mass transfer (-0.04% / -0.03%). In the case e3, Soret and Dufour effects are
amplified. With their influence large difference in the case e1 is observed both in mass
transfer and in heat transfer. Compared to e1, e3 shows that a positive αd may intensify
the mass transfer and the evaporation-condensation rate. It is also necessary to point out230

that in e3 the Dufour effect contributes significantly to the total heat transfer. However
the Soret effect do not contribute a lot to the mass transfer even with a rather large αd.
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In Figure 1, (1c) and (1f) show the distribution of the temperature and the concentra-
tion fields in the cavity along the velocity streamlines. No visible difference is observed
between cases e1 (1b and 1e) and e2 (1c and 1f), which agrees with the results in Table 1.235

Figures 1d and 1g show that the fluid is hotter and less rich in steam in the top portion
while it is colder and richer in steam in the bottom portion. Moreover, the thermal bound-
ary layers appear to be thicker on both vertical walls in Figure 1d, which is consistent
with the reduced diffusion fluxes noted in Table 1. It is also observed that the velocity
field is characterized by larger recirculation zones.240

7. Conclusion

In this paper, we have presented a low Mach number model for the binary mixture
of condensable and non-condensable gases with constant thermophysical properties. The
model was applied to the case of a two-dimensional square cavity. A boundary condition
treatment strategy based on the air partial velocity was implemented in the solver and245

was found to improve the robustness of the PISO algorithm.
Application of the model for different test cases showed that the contribution of in-

terdiffusion to the Nusselt number was significant on both side walls of the cavity when
∆cp/cp,ref is not negligible. Consideration of species interdiffusion is therefore essential
to guarantee the energy conservation in the domain. It will be interesting to study the250

influence of ∆cp/cp,ref on interdiffusion. Moreover, as species interdiffusion is not generally
taken into account in study of turbulence, the inclusion of this phenomenon in the model
and particularly in wall functions should be investigated.

The influence of Soret and Dufour effects was also examined. For a mixture of air
and vapour, we established that these two effects are negligible. However, we found that255

Dufour effects may become important when the thermal diffusion ratio gets sufficiently
large. This will bring us to reconsider the influence of Soret and Dufour effects if for
example hydrogen or helium is involved.
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Figure 1: Illustrations of dimensionless fields T ? and Y ? with the streamlines of velocity field of the

calculation results of e2 and e3.
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case s1-ref s1-ddR s1-dd s1-full e1 e2 e3

Ra 5.63 × 106 5.63 × 106 5.63 × 106 5.63 × 106 4.05 × 105 4.05 × 105 4.05 × 105

Pr 0.71 0.71 0.71 0.71 1.32 1.32 1.32

Sc 0.71 0.71 0.71 0.71 0.66 0.66 0.66

Ma/g.mol−1 29 29 29 29 29 29 29

Mv/g.mol−1 7.25 7.25 7.25 7.25 18 18 18

γa 1.4 1.4 1.4 1.4 1.4 1.4 1.4

γv 1.4 1.4 1.4 1.4 1.29 1.29 1.29

TH/K 352 352 352 352 393.15 393.15 393.15

TC/K 288 288 288 288 353.15 353.15 353.15

Yv,H 0.074 0.074 0.074 0.074 0.29 0.29 0.29

Yv,C 0 0 0 0 0.06 0.06 0.06

αd — — — 0 0 -0.0059 0.4

model ref. ddR dd full full full full

P ∗
th 1.255 1.257 1.257 1.261 0.9988 0.9989 0.9915

hot wall

Sha — 0.71 1.42 1.41 1.85 1.85 2.05

Shd — 17.72 17.72 17.72 4.53 4.52 4.93

ShS — — — 0.00 0.00 0.00 0.08

Sh 18.40 18.43 19.13 19.13 6.38 6.36 7.06

Nua — 0.78 8.56 8.56 31.65 31.57 35.04

Nud — 15.53 15.53 13.88 5.03 5.08 2.49

NuId — — — 19.46 18.05 18.01 19.66

NuIS — — — 0.00 0.00 -0.01 0.32

NuDd — — — 0.00 0.00 -0.17 12.80

NuDS — — — 0.00 0.00 0.00 0.21

Nu 16.34 16.31 24.09 41.90 54.73 54.47 70.52

cold wall

Sha — -0.71 0.00 0.00 0.39 0.39 0.43

Shd — 19.12 19.12 19.12 5.99 5.97 6.58

ShS — — — 0.00 0.00 0.00 0.05

Sh 18.40 18.42 19.12 19.12 6.38 6.36 7.06

Nua — -0.64 5.73 5.73 23.20 23.13 25.68

Nud — 16.93 16.93 18.93 10.07 10.17 3.55

NuId — — — 17.20 21.45 21.40 23.59

NuIS — — — 0.00 0.00 -0.01 0.16

NuDd — — — 0.00 0.00 -0.23 17.43

NuDS — — — 0.00 0.00 0.00 0.12

Nu 16.34 16.30 22.67 41.86 54.72 54.46 70.53

Table 1: Input data and numerical results of different dimensionless numbers
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